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ABSTRACT 
 

The amount and spatial distribution of aboveground forest biomass (AGB) are required inputs to 
forest carbon budgets and ecosystem productivity models. While emerging satellite remote sensing data 
and empirical methods can estimate forest canopy structure and AGB, they do so to varying degrees of 
success, and few of these methods can account for the effects of terrain on observed reflectance. The 
presence of terrain can affect the accuracy of estimates in sub-alpine and montane environments. This 
paper introduces a new method for obtaining AGB from forest structure estimates using a multiple-
forward-mode (MFM) canopy reflectance model inversion that include constraints that account for the 
effects of terrain. This approach first estimates average tree crown dimensions and stem density for satellite 
image pixels through indirect inversion of a geometric-optical canopy reflectance model. These crown 
dimension and stem density estimates are then related to average tree biomass and AGB for the pixel. The 
estimates of AGB from the MFM approach were evaluated for 40 field validation sites at Kananaskis, 
Alberta, along the eastern slopes of the Canadian Rocky Mountains. On average, AGB estimates were 
within 50 tonnes/ha (RMSE) of the field plot values where biomass ranged from 70 to 250 tonnes/ha. This 
result was similar, or an improvement over other NDVI and Spectral Mixture Analysis empirical methods 
tested. 

 
INTRODUCTION 

 
 Information about forest stand structure and aboveground biomass (AGB) is used for estimating 
forest ecosystem productivity, carbon (C) budgets, and to assess the role of forests in the global C cycle 
(Kurz and Apps, 1999; Cihlar et al., 2002; Palacios-Orueta et al., 2005). Currently, the most established and 
frequently used methods for estimating AGB use field plots or spatial inventory data with statistical or 
allometric models (Parresol, 1999; Brown, 2002). These conventional methods are difficult to extend over 
large areas because they are limited to where inventory data are available. Further, these methods may not 
be suited for future C reporting since the assessment is often done at only a single point in time (Brown, 
2002; Hall et al., 2006). Alternatively, emerging satellite remote sensing methods are potentially well 
suited for providing efficient and timely estimates of forest structure and AGB due to the ability to provide 
both archived and new systematic, repetitive observation at local to global scales (Patenaude et al., 2005). 
 Although a number of remote sensing techniques for estimating stand structure and AGB have 
been reported, the variability in results suggests it remains a difficult, challenging task (Hyyppä et al. 2000; 
Foody et al. 2003; Rosenqvist et al., 2003; Lu 2006). Statistical techniques are among those most 
commonly used, whereby multispectral satellite data or derived information (e.g. vegetation indices, 
mixture fractions) are related empirically to stand structure and biomass (Wulder 1998; Gerylo et al., 2002; 
Hall et al., 2006). Some success has been reported in applications of these methods to areas of limited 
terrain relief (Hame et al., 1997; Peddle et al., 2001a; Gerylo et al., 2002; Franklin et al., 2003; Hall et al., 
2006). The relationships between satellite data and stand characteristics, however, can be adversely 
influenced in areas of high topographic variation (Gemmell, 1995; 1998), or in areas where surface features 



such as exposed rock and soil can lead to mixed pixels that can confound the relationship with biomass 
(Elvidge et al., 1985).   
 An alternative to statistical methods is the inversion of canopy reflectance models. Geometric-
optical canopy reflectance models, in particular, provide a direct physical explanation of the relationship 
between forest stand structure, terrain structure, view angle, illumination angle, and the radiometric 
response of satellite data (Chen et al., 2000). Inversion of these models to provide information about forest 
stand structure has shown some promising results (Wu and Strahler, 1994; Woodcock et al., 1997), 
however, the inversion procedure can be computationally intensive and thus inappropriate for large study 
areas and time sensitive accounting.  Further, some canopy reflectance models are not invertible, 
particularly those with increased model, required in complex terrain. Instead, to facilitate forest information 
extraction from non-invertible models, and to otherwise increase the efficiency of model inversion, it is 
necessary to use indirect inversion methods where canopy reflectance is pre-computed (Kimes et al., 2000). 
The look-up table method has been successfully tested in agricultural (Weiss et al., 2000), and forested 
settings (Peddle et al., 2003) for physical structure and dimensions, but it has not yet been used to estimate 
second-order physical parameters such as AGB. 

This paper introduces a new method for estimating AGB from satellite imagery over mountainous 
terrain using canopy reflectance models that account for variation in reflectance due to either varying 
topography or an off-nadir observation-angle. This approach first estimates average tree crown dimensions 
and stem density for a satellite image pixel through indirect inversion of a geometric-optical canopy 
reflectance model, then it relates the crown dimensions and stem density to average tree biomass and AGB 
for the pixel. The objectives of this study were to:  

(i) Describe this two-step canopy reflectance model based approach;  
(ii) Evaluate the estimates against AGB field estimates collected in a mountainous study 

area; and  
(iii) Compare the canopy reflectance model approach to other multispectral image-based 

approaches including spectral mixture analysis and use of vegetation indices (Peddle et 
al., 2001a).  

The canopy reflectance model approach was hypothesized to generate more accurate estimates of AGB 
than those from multispectral image-based approaches through reference to independent field validation. 
 
 

METHODS 
Study area 

The study area, centered at 51.02° N, 115.07° W, was located in Kananaskis Country Provincial 
Park, Alberta, Canada. Terrain elevations ranged from 1400m to 2100m above sea level with slopes 
ranging from 0° to 55° over a full range of terrain aspect. The study area included both Montane and Sub-
Alpine vegetation zones (Archibald et al., 1996). The dominant overstory coniferous species were 
lodgepole pine (Pinus contorta var. latifolia Dougl ex. Loud.), white spruce (Picea glauca (Moench) Voss), 
Engelmann spruce (Picea engelmannii Parry ex Engelm.), Douglas-fir (Pseudotsuga menziesii (Mirb.) 
Franco), and subalpine fir (Abies lasiocarpa (Hook) Nutl.). The dominant deciduous tree species included 
trembling aspen (Populus tremuloides Michx.), and balsam poplar (Populus balsamifera L.), with lesser 
amounts of white birch (Betula papyrifera Marsh.). 
 
Field data 
 Field data from 36 field plots were collected during two field seasons in 2003 and 2004. Of the 36 
field plots, 21 were located within conifer dominant (>80% stem count) stands and 15 were located within 
deciduous dominant stands. Plot size was set at 0.04 ha to ensure at least one image pixel would coincide 
spatially with each plot. To ensure an adequate representation of the range of terrain and stand density 
conditions within the study area, field plot location was pre-selected based on DEM derivatives and 
information from the Alberta Vegetation Inventory (Alberta Environmental Protection, 1991). AGB 
validation data were calculated for each plot from field measurements of diameter at breast height (dbh) 
and tree heights. Other data, including crown dimensions and vegetation spectral response, were recorded 
to constrain canopy reflectance model parameterization and to validate initial inversion results. 
 Measurements of total tree height, height to center of the crown (HTC), dbh, horizontal, and 
vertical crown radius were taken for each tree within a field plot. In addition, species data and stem counts 



for each plot were recorded. Tree heights and height to center of crown were measured using a digital 
clinometer at 20 m distance. Vertical crown radius was determined by subtracting the height to the base of 
the canopy (a parameter easily and accurately measured) from the total height, and dividing in half. To 
obtain HTC, the height to the base of the canopy was added to the vertical crown radius. The horizontal 
crown radius for each tree was measured using a GRS densiometer to determine the vertical projection of 
the edges of the crown to the ground (i.e. the drip-line). The distance from the drip-line back to the trunk 
was then measured. This process was repeated perpendicular to the first measurement to characterize 
variation in horizontal crown dimensions. 
 Spectral measurements were acquired for leaf (needle) samples from each of the overstory species 
and understory vegetation, and processed following protocols by Peddle et al. (2001b). An Analytical 
Spectral Devices (ASD) Field Spec Full-Range spectroradiometer (ASD, 1998) was used to record the 
spectral properties of sunlit and shadowed vegetation samples. The measurements occurred near the 
expected satellite overpass time on two cloudless dates in June and July, 2004. To ensure a high signal to 
noise ratio, the spectroradiometer was configured to acquire 10 measurements within one minute. These 
measurements were then averaged for each sample. Dark current calibrations and white reference 
measurements were completed prior to each target measurement to account for any internal signal noise 
and to capture illumination (irradiance) variations during measurement. To incorporate the field spectra in 
subsequent satellite image data processing, the spectral dimensionality was reduced by integrating the 
reflectance across a range of wavelengths corresponding to each SPOT band width, based on published 
spectral response functions for the satellite sensor (SPOT Image, 2004). 
 
Estimating tree biomass from field data 
 Destructive sampling was not permitted within the Kananaskis study area to derive tree biomass 
(B). Instead, above ground total individual tree biomass was calculated for each tree within plot boundaries 
using dbh within the log-transformed power model and regression coefficients from Case and Hall (in 
review): 
 ln(B) = b0 + b1ln(dbh) (1) 
It was necessary to apply a correction factor to account for the skewness in the distribution in arithmetic 
units when converting from the logarithm of tree biomass to original biomass units (Baskerville, 1972). The 
B (tonnes·tree-1) was then summed for each plot and divided by the plot area to give total biomass (tonnes) 
within the plot and total standing AGB (tonnes·ha-1). 
 
Image and terrain data 
 Système pour l’Observation de la Terre (SPOT) multispectral satellite imagery covering the study 
area was acquired under cloud free conditions 12 August  2003 by the High Geometric Resolution (HGR) 
SPOT 5 sensor at a -7.3° off-nadir view angle and 10m spatial resolution. The SPOT data were resampled 
to 25m to match the resolution of an associated digital elevation model (DEM) and orthorectified to within 
5m positional error based on an independent ground control point based assessment. After 
orthorectification, the image data were converted from digital count to reflectance using published gain 
values, solar irradiance, and illumination geometry (SPOT Image, 2004). A correction based on pseudo-
invariant features such as a parking lot calibration site (Milton et al., 1997) was also applied to account for 
the potential effects of atmospheric transmission and path radiance (Smith and Milton, 1999). All SPOT 
image bands were used within the canopy reflectance modeling procedure. 
 
Multiple forward mode retrieval of canopy structural parameters 
 The SPOT image data were linked to forest canopy structural conditions using the multiple-
forward-mode (MFM) canopy reflectance model inversion method (Peddle et al., 2003, 2007) and the Li-
Strahler (1992) geometric- optical, mutual shadowing canopy reflectance model (GOMS). The MFM 
method is an indirect, look-up table based approach (Kimes et al., 2000) to canopy reflectance model 
inversion that consists of a set of algorithms for look-up table creation (Peddle et al., 2003), look-up table 
search and description of potential inversion solutions (Soenen et al., 2007b). MFM has been applied 
successfully in retrieval of structural parameters (Peddle et al., 2003; Soenen et al., 2007b), unsupervised 
classification (Peddle et al., 2004) and topographic correction (Soenen et al., 2005, 2007a). A detailed 
description of the MFM method has been provided by Peddle et al. (2003, 2007) and Soenen et al., (2007b), 
however, a brief description of the use of MFM in this study is provided next. 



 In the first MFM stage (Fig. 1), look-up tables were created for each of the four image bands from 
a set of model input canopy structure, viewing and illumination angles and terrain orientation parameters 
and the corresponding modeled reflectance output. A range and increment size was selected for each model 
input parameter from which the parameter sets were generated for the iterative model runs (Table 1). Two 
input parameter sets were used for each species: 1) a general range of structure covering the full range of 
potential canopy conditions in the area; and 2) a refined range of structure constrained by two standard 
deviations from the mean of the observed field structure conditions. The first parameter set simulated 
limited knowledge of field conditions, and the second parameter set was used to determine if improvements 
in prediction accuracy could be obtained with a refined parameter set. Each entry in the look-up table was 
created through a forward-mode execution of the GOMS model using the structural parameter sets as input. 
The resulting look-up tables contained all possible structural input parameter combinations and the 
modeled GOMS reflectance values for each satellite image band. 
 

Table 1 – Model input 

Structural Parameter Min Max inc Min Max inc
Density - λ (trees/m2) 0.05 0.5 0.05 0.06 0.26 0.02
Horizontal Crown Radius - r (m) 0.5 6.5 1 0.5 2.5 0.5
Vertical Crown Radius - b (m) 0.5 6.5 2 1 4 1
Height to Crown Center - h (m) 4 14 2 10 14 1
Height Distribution - dh (m) 5 25 5 6 16 2
Slope - α (°) 0 60 10 0 40 5
Aspect - φ (°) 0 315 45 0 315 45
Size of parameter set

Density - λ (trees/m2) 0.05 0.5 0.05 0.06 0.2 0.02
Horizontal Crown Radius - r (m) 0.5 6.5 1 1 4 0.5
Vertical Crown Radius - b (m) 0.5 6.5 2 1 3 1
Height to Crown Center - h (m) 4 14 2 11 15 1
Height Distribution - dh (m) 5 25 5 6 20 2
Slope - α (°) 0 60 10 0 20 5
Aspect - φ (°) 0 315 45 0 315 45
Size of parameter set

Constrained

445500

829440 302400

Trembling Aspen

Lodgepole Pine

Unconstrained

529200

 
 

Structural parameters were retrieved in the second MFM stage (Fig. 1). The MFM look-up table 
algorithm searches the look-up table for modeled reflectance values that were within a predefined spectral 
range from the image reflectance from all SPOT image bands for each pixel. The spectral range was 
defined using the relative root mean square error (RMSE) between measured (ρi) and modeled (ρm) 
reflectance for the number of image bands (nb) (Weiss et al., 2000): 
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The structural parameters associated with the matching modeled reflectance values within the spectral 
range were then selected as potential inversion results and further refined by ensuring that the slope and 
aspect of a given pixel matched the slope and aspect parameters used to generate the look-up table record. 
The distribution of potential inversion results contained the following structural parameters of interest: stem 
density (λ), horizontal crown radius (r), vertical crown radius (b) and species. 
 



 
Figure 1– Flowchart of methods for MFM estimation of AGB 

  
Estimating tree biomass from a crown spheroid area based empirical model 
 A regression model was created to relate r and b parameters, summarized as crown surface area 
(SA), to tree biomass for stands of uniform age (Fig. 1). The r and b parameters were selected for the 
biomass model instead of height to crown because they can be more accurately predicted due to their 
influence on the relative proportions of the primary drivers of pixel level reflectance: sunlit and shadowed 
canopy and ground area. Crown SA was related to biomass as an analogue to the area of the crown 
supporting physiological processes. Surface area was calculated using maximum horizontal and vertical 
crown radial extent within spheroid area equations. A new SA-based tree biomass allometric equation was 
created for both conifer and deciduous trees using linear least squares regression. Regression models were 
generated using a dataset consisting of field measurements of crown dimensions (r, b) and previous 
calculations of tree biomass from the dbh-based log-transformed power model for 350 individual trees from 
each species type.  
 
AGB estimation from MFM structural parameter retrieval 
 After calculating SA from the estimates of r and b in each set within the distribution of retrieved 
structural parameters from the second stage MFM estimates of crown dimension, the SA-based allometric 
equations were applied to predict average tree biomass within the area covered by the image pixel (Fig. 1). 
Average tree biomass was then aggregated to total biomass for all trees within the area covered by the pixel 
by multiplying the estimate of λ, in units of trees per unit area, by the average tree biomass (AGB = B · λ). 
The result was a set of solutions of potential AGB for the pixel area. The values written to the output image 
and used for validation were summarized from the solution set using the median value, which has been 
shown to be the most suitable statistic for solution distributions (Weiss et al., 2000).  
 
AGB estimation from NDVI and SMA fractions 
 For comparative purposes, biomass density was estimated using empirical relationships with the 
NDVI (Rouse et al., 1974) and spectral mixture analysis (SMA, Adams et al. 1993) sub-pixel scale shadow 
endmember fractions. These have been used extensively and reported as effective predictors in past studies 
(Zheng et al., 2004; Peddle et al., 1999). The NDVI was calculated using SPOT red (band 2) and NIR 



(band 3) reflectance values (equation: [band 3- band 2] / [ band 3+ band 2]).  The SMA used the  ENVI 
linear unmixing module (RSI, 2006) with endmember spectra collected in the field to determine the relative 
abundance of sub-pixel shadow for the SPOT imagery (the same endmember values were used for both 
SMA and MFM). Shadow (S) fraction was used based on previous research that has showed S as both 
theoretically and empirically superior to canopy and background fractions (Hall et al., 1995, Peddle et al., 
1999, 2001a).  AGB as a function (separately) of NDVI and SMA was modeled using leave-one-out cross-
validation methods. The cross-validation involved iteratively removing one AGB validation plot, fitting the 
regression equation to the remainder of the plots and applying the equation to predict AGB for the “left-
out” plot. This was repeated for each plot in the sample, from which the predictive equations were 
aggregated. 
 
 

RESULTS 
 

Field Measured forest stand structure and biomass 
Stand age within the study area was typically between 90 to 120 years for conifer stands and 50 to 

90 years for deciduous stands. Trembling aspen trees in the study area were, on average, slightly larger than 
the lodegpole pine, with an average dbh of 18.8 cm and 17.3cm, respectively. The height distributions, 
however, were similar between the two species with mean conifer stand height only 0.5m greater than 
deciduous stand height (Table 2). Minimum and maximum measured stem density was 725 stems/ha and 
3025 stems/ha respectively. The majority of validation plots within the study area had measured density 
which ranged from 800 to 1600 stems/ha with higher densities on average occurring within conifer 
dominant stands (Table 2). Vertical crown radius ranged from 0.4 to 8.4m and was typically larger and 
more variable in conifer stands than in deciduous stands. The range of horizontal crown radius was similar 
between the two species types, although deciduous stands had a larger r on average. The average conifer 
stand AGB (141 t/ha) was lower than deciduous stand AGB (155 t/ha). The range of AGB was also wider 
for deciduous stands than for the conifer stands (Table 2). 
 
Table 2 - Descriptive statistics for field measured horizontal crown radius (r), vertical crown radius (b), tree 
height (h), diameter at breast height (dbh), stem density (λ), and AGB measured within lodgepole pine and 

trembling aspen validation plots. 

r (m) b (m) h (m) dbh (cm) λ (stems/ha) Biomass (t/ha)
Mean 1.0 3.0 15.1 17.3 1500 141
S.D. 0.4 1.2 3.3 5.4 600 34
Minimum 0.2 0.5 4.3 5.0 775 73
Maximum 3.1 8.4 24.7 34.8 3025 213

Mean 1.6 1.6 14.6 18.8 1200 155
S.D. 0.6 0.8 3.2 5.1 400 46
Minimum 0.3 0.4 7.9 8.1 725 67
Maximum 3.4 4.3 22.9 37.2 1850 243

Lodgepole 
Pine             
Plots = 21 
Trees = 1221

Trembling 
Aspen             
Plots = 15 
Trees = 667

 
AGB and biomass density models 
 Using the tree biomass data and crown surface area calculated from r and b, new tree-biomass 
allometric equations were fit based on the observed linear relationship for both lodgepole pine (Fig. 2a) and 
trembling aspen (Fig. 2b) species. The crown SA data were related to tree biomass with an r2 = 0.63 and 
RMSE = 32.7 t/ha for lodgepole pine trees and an r2 = 0.52 and RMSE = 69.8 t/ha for trembling aspen trees 
(Table 3). The RMSE values observed in these new crown SA models were higher than the RMSE reported 
for the same species based on dbh models (Case and Hall, in review) or height and dbh models (Singh, 
1982), however, the crown SA models were most appropriate for use with the output from the MFM-
GOMS inversion due to the accurate b and r predictions (Soenen et al., 2007b). 
 
 



Table 3 - Regression parameters, predictive strength (r2) and standard error (S.E.) for crown surface area vs. 
calculated individual tree biomass for lodgepole pine and trembling aspen.  p-value < 0.05. 

n b0 b1 r2
S.E.

Lodgepole pine 350 21.000 2.337 0.63 32.7 t/ha
Trembling Aspen 350 17.121 4.388 0.52 69.8 t/ha

 
Forest stand structure estimates from MFM inversion 
 Estimates of density obtained through MFM inversion were most accurate when a look-up table 
constrained by field observations (Table 1) and a smaller discrete increment through the structural 
parameter range was used (i.e. constrained LUT). Using these finer constrained look-up tables, average 
prediction error determined by absolute RMSE for density estimates was 590 stems/ha for lodegepole pine 
validation plots and 310 stems/ha for trembling aspen dominant validation plots. The relative absolute error 
was 40% for lodgepole pine and 27% for trembling aspen. In comparison, Wu and Strahler (1994) 
predicted stem density for nine lower-density conifer dominant stands over less variable terrain at 18% 
relative absolute error. The average prediction error for density estimates obtained from the unconstrained 
LUT, created using general structural inputs, was 1050 stems/ha for lodgepole pine validation plots and 530 
stems/ha for trembling aspen. The trembling aspen estimate error was similar in magnitude to the precision, 
or discrete increment size of density within the look-up tables used for retrieval. This was expected since it 
was unlikely that the minimum average error would surpass the precision or increment size of the LUTs 
used in the estimation technique. Lodgepole pine estimate error, however, was approximately double the 
increment size indicating that the precision of the LUT was not the limiting factor on the minimum average 
error. 
 Average prediction error for conifer r and b was 0.4m and 0.8m RMSE, respectively, using the 
constrained LUT.  Using the unconstrained LUT, prediction error increased to 1.1m for r and 1.2m for b. 
Prediction error for deciduous r and b was 0.4 and 0.9m RMSE, respectively, using the constrained LUTs 
and 0.9m and 1.0m RMSE using the unconstrained LUTs. Thus, LUTs using a priori knowledge of field 
conditions and smaller increment sizes were most effective at accurately predicting crown structure and 
reducing input error in subsequent biomass modeling.  
 
Mapping forest AGB using MFM inversion 

Results from using structural estimates from the MFM inversion within the biomass prediction 
model (Table 4) showed the lowest overall error (RMSE = 33.2 t/ha) for lodgepole pine plots was similar to 
SMA (RMSE = 32.9 t/ha) and lower than NDVI (RMSE = 34.6 t/ha). The absolute average prediction error 
was also similar between the prediction methods, with the MFM inversion method producing the most 
accurate estimates. The error results for trembling aspen validation plots were similar to the lodgepole pine 
plots, with the MFM inversion method resulting in RMSE and absolute error values similar to the empirical 
methods (Table 4).  
 

Table 4 – Root mean square error (RMSE) and absolute average prediction error (x) for biomass 
estimates within the validation plots.  

 

RMSE x RMSE x RMSE x
Lodgepole Pine 33.2 t/ha 24.6 t/ha 34.6 t/ha 28.1 t/ha 32.9 t/ha 25.1 t/ha
Trembling Aspen 52.5 t/ha 43.6 t/ha 53.1 t/ha 41.3 t/ha 50.0 t/ha 40.5 t/ha

MFM Inversion NDVI Shadow Fraction

 
The prediction error for these methods was within 40 t/ha for conifer validation plots. Although 

direct comparisons with other studies elsewhere cannot be made definitively, we note that this level of error 
is similar to validation RMSE of 37.6 t/ha reported by Hall et al. (2006) for a Boreal study area, less 
accurate than the 20t/ha difference reported by Hall et al. (1995) in another Boreal application and the 18 
t/ha in an mixed forest application reported by Peddle et al. (2003). In our study, the absolute RMSE for all 
methods was higher than the error at the majority of the validation plots. This would indicate that there 



were a small number of plots with large differences between estimated and measured biomass density that 
increased the overall average. 

 Error levels for a minority of plots were considerably higher than average in both conifer and 
deciduous validaton sets. In particular, the prediction errors for three of the lodgepole pine validation plots 
were consistently high (> 60 t/ha) regardless of prediction method. The majority of the remaining lodgepole 
pine validation plots had error values less than 40 t/ha. The maximum difference between estimated and 
measured biomass using the MFM inversion method was 164 t/ha while the minimum was 0 t/ha. The 
overall error was affected by a few plots with error levels considerably larger than the majority. Of the 21 
validation plots, 13 fell within a difference of 20t/ha, and 18 fell within a difference of 40t/ha. There were 
also plots within the deciduous validation set where the difference between measured and estimated values 
was considerably larger than the average. The maximum difference was 96t/ha and minimum difference 
was 4t/ha. There were 3 validation plots of the 15 within 20t/ha while 8 were within 40t/ha. There was no 
observed trend in error (e.g. overestimation, underestimation) in either the conifer or deciduous results. 

 It is interesting to note that the magnitude of error for many of the validation plots was similar 
regardless of biomass estimation method.  There were, however, a few exceptions. In two other validation 
plots, for example, the error for the MFM spectral domain method was significantly lower than the NDVI 
and SMA methods. These validation plots both had relatively low measured biomass densities, suggesting 
that the NDVI and SMA methods were unsuitable for forest stands with lower biomass densities (Fig. 2, 3). 
The canopy reflectance model based methods appeared to perform well across a greater range of forest 
stand types and conditions. 
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Figure 2 - Conifer biomass estimated through MFM inversion (a), NDVI (b), and mixture analysis shadow 

fraction (c), plotted against biomass calculated from field data. 
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Figure 3 - Deciduous biomass estimated through MFM inversion (a), NDVI (b), and mixture analysis 

shadow fraction (c), plotted against biomass calculated from field data. 



 
 
Mapping of AGB with MFM Inversion 

The spatial patterns of biomass density (Fig. 4) were, as expected, with low values found near 
roads, trails, cut-lines and cut-blocks, and higher biomass density values found primarily on north-
northwest facing slopes and in high density lodgepole pine stands. The biomass mapping algorithm was 
effective in masking areas with little or no biomass including rivers, roads, rocky slopes and Barrier lake, 
however, the algorithm also masked areas of deep topographic shadowing. This erroneous masking, while 
not significant in extent, would have some effect on any subsequent biomass accounting.   
 

 
Figure 4 – SPOT image (right: bands 3,2,1) and map of forest biomass density from MFM inversion, with 

results aggregated to 50 t/ha classes, black represents areas with no inversion results. 
 
 

DISCUSSION 
 

Advancements and advantages of the MFM inversion method 
The MFM inversion method for biomass density has advanced the MFM biophysical parameter 

estimation methodology by extending the capabilities toward prediction of second-order forest stand 
attributes that are not able to be directly derived from satellite imagery. The results show that the MFM 
method was suitable for making estimates of forest stand biomass density from multispectral image data, 
and the level of accuracy was equivalent to, or surpassed other procedures that employ empirical methods 
(SMA, NDVI). Furthermore, the MFM inversion method has several key advantages such as use of more 
refined parameter classes with flexible class ranges and increments, the explicit physical parameterisation 
of sun-surface-sensor geometry as well as forest stand attributes, the suitability to multi-image studies 
(different seasons and solar/view geometries are handled explicitly), and, perhaps most importantly, the 
ability to function fully with minimal or no field or a priori information (Peddle et al., 2007).  

With the canopy reflectance model inversion procedure, it is possible to operate with little or no 
field data providing that the physical relationship between first-order canopy variables and the parameter of 
interest (e.g. biomass) is defined. Conversely, to construct an empirical model, the linear regression 
methods require that a spatially representative sample of the structural parameter of interest be acquired 
from the field. For large-areas, particularly those that include remote, inaccessible terrain (Turner et al., 
2004), the required resources are likely excessive and impractical, yet the increased variation for a given 
parameter makes a larger sample size essential for valid statistical testing. 

 The minimum requirement for operation of the canopy reflectance model inversion method is 
spectral information for the primary overstory species, understory background, and shadowed vegetation. 
These spectral signatures can be measured in the field, extracted directly from the imagery, obtained from 



spectral libraries, or modeled, with hybrid approaches also feasible (e.g. Peddle et al., 1999).  If, however, 
spectral signatures for endmembers are not available, MFM can determine these inputs internally based on 
progressively increasing the precision of spectral ranges, similar to any other parameter. It should also be 
noted that, when a priori structural or other information is available, there are no constraints imposed, and 
even general structural information can increase estimation accuracy by constraining input ranges within 
the canopy reflectance model inversion method. This also results in faster computing times.  
 The minimal field data requirements of the MFM inversion procedure also have forest 
management implications since it is possible to characterize and map large swaths of forested area with 
limited field measurements. The MFM method is scalable to coarser resolution data which allows larger 
areas of interest to be considered and may provide information about spatial distribution of AGB and how it 
relates to topography and forest stand characteristics.  
 Within the study, unknown error introduced through error in tree measurements and inherent error 
within the dbh-based biomass model is likely to have propagated through to the MFM inversion estimates. 
While determining the source and extent of this error is beyond the scope of this study, it is important to 
acknowledge the existence of these potential errors that are external to the MFM modeling domain. 
 
 

CONCLUSIONS 
 

A new method was presented for estimating forest biomass which extends the capabilities of the 
existing MFM canopy reflectance model inversion toward deriving second-order parameters that cannot be 
directly estimated from satellite imagery.  The method uses indirect look-up table based canopy reflectance 
model inversion to obtain estimates of canopy dimensions and stand density. These first-order parameters 
are then related to biomass through empirical modeling. This method has significant advantages over 
traditional empirical estimation methods since it does not require extensive field sampling and provides 
additional important structural information. Conceptually, the approach developed here provides flexibility 
and power within a canopy reflectance model inversion context for deriving detailed biophysical 
information.  

In terms of the study hypothesis that MFM inversion would generate more accurate predictions of 
forest biomass, this was partially achieved in terms of validation against independent field data. The MFM 
biomass density estimation error provided a marginal improvement or was similar to the empirical NDVI 
and SMA methods, but offered considerable unique advantages in terms of flexibility, reduced field 
requirements, suitability for larger areas involving multi-image/multi-temporal/multi-sensor data, and 
unparalleled robustness of processing and analysis.    
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