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ABSTRACT 
 

Fire severity is an increasingly critical issue for forest managers. A long history of fire suppression has led to 
millions of acres of dry western forests and a buildup of fuels. Satellite imagery offers a cost-effective and feasible 
tool for fire severity assessment and can provide near real-time data for mitigation measures. This study focused on 
the Tripod Complex Fire that burned more than 175,000 acres of the Okanogan-Wenatchee Forest in Washington in 
2006. Field data were collected in order to calculate the Composite Burn Index (CBI), a ground-based measurement 
of burn severity which can directly correlate with satellite measurements. These in-situ data were used to calibrate 
the satellite data from the Landsat TM5 and the MODIS sensor on board the NASA Terra satellite. The satellite data 
were used to calculate the differenced Normalized Burn Ratio (dNBR) and the Relative dNBR (RdNBR). These 
algorithms use the relationship between the near infrared and the shortwave infrared to quantify burn severity. After 
comparing these two algorithms, it was determined that there was no significant difference between dNBR and 
RdNBR. Using the burn severity map created with the dNBR data, an analysis was performed to examine the 
relationship between burn severity and variables such as slope, aspect, and vegetation type. The relationships 
between several measures of burn severity are discussed. 
 
 

INTRODUCTION 
 

Decades of fire suppression have resulted in extensive fuel loading which has lead to an increase in wildfire 
size, severity, and frequency (McKenzie et al., 2004).The fire regime of the western United States has been 
characterized historically by haphazard fires typically peaking during the dry summer season (Westerling et al., 
2003). However, fire suppression and large crown fires are departures from those regimes that have prevailed for the 
past 10,000 years. Just in June 2008 alone, there were over 2,000 wildfires burning in California. These wildfires 
have costly effects in both millions of dollars and on biodiversity (Ryan, 2002). This trend is expected to continue 
under future scenarios of global warming. It has been demonstrated that under the high global warming scenario, the 
predicted precipitation loss in the Pacific Northwest would change the mean area burned by greater than a factor of 
5. Under a low climate change scenario, the area burned is predicted to double (McKenzie et al., 2004) That is why 
forest managers need accurate burn severity maps in order to implement new fuel reduction strategies and prevent 
future catastrophic wildfires.  

The Pacific Northwest has a long fire return interval of one century, often involving crown fires. The Tripod 
Complex Fire in the Northern Cascades of Washington State was a high intensity crown fire and is the subject of 
study in this project. This study has three objectives: (a) to demonstrate the efficacy of using field and satellite 
measures of burn severity for quantifying change caused by fire and for creating burn severity maps, (b) to evaluate 
the characteristics of high burn severity areas using three burn assessment variables: CBI, dNBR, and RdNBR, (c) to 
quantify the change in biomass and the associated carbon released from the Tripod Complex Fire and (d) assess the 
relationship between burn severity and the variables slope, solar radiation, and vegetation types within the fire 
perimeter. Estimates of burn severity are important for understanding the effects that fire has on vegetation 
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succession and provide a useful tool for carbon modeling (Epting et al., 2005). The work presented in this paper 
represents a one-year post-fire extended assessment with field data sampled one and two years post-fire, and satellite 
images from one-year post-fire.  

Field data were sampled using the Composite Burn Index (CBI) developed by Key and Benson (2006). CBI is a 
field method used to evaluate burn severity and has an extended application to remote sensing measures of burn 
severity such as the differenced Normalized Burn Ratio (dNBR) and the Relative differenced Normalized Burn 
Ratio (RdNBR) (Key & Benson, 2006) . The dNBR is derived using a time-differenced (i.e. pre-and post-fire) ratio 
of near infrared and shortwave infrared spectral bands. RdNBR is a relative index used to obtain more accurate 
results in heterogeneous fires. Assessments in this study will use CBI field data from 2008 (2 years post-fire) and 
dNBR data to predict dNBR thresholds for map classification. This study also determines if RdNBR increases the 
accuracy of map classification. 

 
 

METHODOLOGY 
 
Study Area 

The Okanogan-Wenatchee Forest is located in Washington State covering more than 4 million acres.  The forest 
stretches from the Canadian border down 290 km near the southern border of the state (US Forest Service). The 
angular crest of the Cascade Mountains creates an intense rain shadow affect resulting in rapid climatic changes and 
variations in precipitation and humidity. The rain shadow effect is especially noticeable in the northern region with 
prolonged periods of no rain during the summer months. This is due to the geology of the northern section where 
mountains were shaped by glaciation and continental uplifting, resulting in higher and wider mountains with steeper 
slopes and jagged summits that encourage steep climatic gradients (Lillybridge et al., 1995). The area of 
concentration is a fire perimeter within this rugged section of the forest (Fig. 1).  

The year 2006 was a particularly dry, hot year in the Okanogan-Wenatchee Forest, marking a painstaking 
drought (www.ncdc.noaa.gov). Nine fires burned within the forest from July through September (Levinson & 
Lawrimore, 2006). On July 24, 2006, a lightning storm ignited three independent fires that grew and joined into one 
large fire. This fire was called the Tripod Complex Fire, and it burned over 175,000 acres in the northern section of 
the forest. The area burned supported three dominant species of trees including Lodgepole Pine (Pinus contota), 
Subalpine Fir (Abies lasiocarpa), and Douglas Fir (Pseudotsuga menziesii). Other species with considerable 
populations within the perimeter were Ponderosa Pine (Pinus ponderosa) and Engelmann Spruce (Picea engelmanii) 
(Lillybridge et al., 1995). The intensity of the fire was severe, leaving behind dramatic fire effects. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Field Data 

Ground measurements of burn severity were taken to assess fire effects within the Tripod Complex Fire 
perimeter. Ground measurements were taken two years post-fire, since vegetative survivorship and net primary 
productivity between one-year assessments and two-year assessments were not different when assessing long term 
severity (Key & Benson, 2006). CBI is measured on a consistent numeric scale that gauges the amount of change. 
Because the scale is consistent, and post-fire regeneration occurs slowly, CBI values from consecutive years are 

Figure 1. Tripod Complex Fire perimeter inside the Okanogan-Wenatchee forest. 
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relatively the same. The field work measures how much change occurred relative to pre-fire conditions and relies on 
expert knowledge and judgment about pre-fire vegetative cover.   

Sample plots were selected randomly with consideration to accessibility and topography (Key & Benson, 2006). 
All plots fell within a quarter mile buffer of Forest Service and timber harvesting roads and had a slope no greater 
than 40%. The sample selection was stratified based on the level of burn severity (unburned, low, moderate, or 
high). Each plot site was tested for burn homogeneity with a map created using the dNBR algorithm. A grid filter 
was used to ensure each surrounding pixel matched the same burn severity classification as the center pixel 
containing the point and to verify that differences in dNBR values between pixels were not greater than 150. 

A total of 46 plots were visited with GPS units to the 
closest meter (Fig. 2). The center of each plot was recorded 
in UTM coordinates and a radius of 15 m was measured in 
each direction. Photographs were taken uphill and downhill 
from each plot center.  Team members then explored the 30 
x 30 m plots to visually determine the severity of the burn. 
Observations were made and recorded on Landscape 
Assessment (LA) data forms provided in Key and Benson 
2006 Appendix 1.  The LA data form divided the different 
strata of the vegetation community into five categories: 
Substrates- including soil, duff, and downed woody fuels; 
Herbs, Low Shrubs and Trees- including all grasses, shrubs 
and small trees less than 1 meter in height; Tall Shrubs and 
Trees- shrubbery and trees measuring between 1 to 5 meters; 
Intermediate Trees- subcanopy, pole-sized trees measuring 
between 10-25 cm in diameter and 8-20 m in height; and Big 
Trees- dominant and codominant trees that are larger than 
intermediate trees. These dominant trees generally crown in 
the upper canopy, but some individuals may extend above 
that (Key & Benson, 2006). Each category was evaluated 
separately, assessing individual elements within each 
stratum. Team members examined fuel beds of each stratum 
and assessed the amount of fuels that were charred, 

scorched, and consumed. Once a consensus was reached, the LA data form was filled out in order to calculate the 
CBI. Elements and strata that were missing in a plot were recorded as non-applicable and not counted in the 
calculations. The data were converted to CBI values ranging from 0.0 (unburned) to 3.0 (high change). Once a CBI 
value was acquired for each category, the five data sets were averaged to give the plot an overall value. A brief 
description of each plot was noted in the comments section of the LA data form, recording site specific information. 

The remote sensing measure of burn severity, NBR, is an algorithm used to empirically quantify and isolate 
burned areas from surrounding areas. The NBR for the pre-fire image and the post-fire images were first calculated 
using equation 1 (Key and Benson, 2006): 
 
       NBR = (Band 4-Band 7) / (Band 4+Band7) (1) 
 
The band values are the at-satellite reflectance values for band 4 and band 7. Band 4 (0.76-0.90 mm) is the near-
infrared (NIR) band and band 7 (2.08-2.35 mm) is the short-wave infrared (SWIR), and they respond in opposite 
ways to burning by isolating the reflectance differences between the bands (Key & Benson, 2006). These two 
bandwidths work similarly to the Normalized Difference Vegetation Index (NDVI). NDVI can accurately detect 
burn severity; however, NDVI is inaccurate in areas with sparse pre-fire vegetation (Cocke et al., 2005). Most 
studies have concluded that using the short-wave infrared bands provides higher accuracy in burn analysis and 
negates atmospheric effects (Miller & Yool, 2002). Epting et al. (2005) also showed that NBR was the best of 
thirteen different remotely sensed indices in assessing burn severity. The Normalized Burn Ratio NBR was 
temporally differenced using the equation 2, also from Key and Benson (2006): 
 
 NBR = NBRpre-fire - NBRpostfire (2) 

 
Equation 2 measures burn severity which is a scaled index accounting for the ecological change caused by fire (Key 
& Benson, 2006). 

Low Severity 

Figure 2. Sites visited within the fire perimeter 
with a representative of each Composite Burn 
Index category. 

CBI = 0.75 

Moderate Severity 

CBI = 2.68 

High Severity 

CBI = 2.17 



 

ASPRS 2009 Annual Conference 
Baltimore, Maryland ♦ March 8 – 13th, 2009 

Since the CBI values and dNBR results were both used to assess burn severity of the region, they were 
compared and found to be closely related. The results of CBI and dNBR were similar because values were reliant on 
pre-fire conditions to gauge a magnitude of change.  Both methods produced non-absolute values that can be 
compared to the pre-fire environment regardless of how much time has passed since the fire (Key & Benson, 2006).  
Results show distinctive change in the region regardless of fire intensity. CBI is used for gauging the amount of 
change detected by satellites (Key & Benson, 2006). 

 The use of dNBR is particularly sensitive to pre-fire vegetation (Miller & Thode, 2007; Miller & Yool, 2002). 
For example, a densely vegetated area experiencing a stand replacing fire will be classified by dNBR as a high 
severity burn. RdNBR (developed by Miller and Thode) would also classify the area as a high burn. However, if a 
sparsely populated plot completely burns, it will have a low dNBR value because the lack of vegetation before the 
disturbance. Relative to the sparsely vegetated plot, the burn is of high severity because everything burned, but 
compared to very densely populated areas, the fire was only a weak burn. However, using the relative index would 
classify the plot as a high severity burn. To limit the effects of pre-fire NBR, the RdNBR creates a relative index by 
dividing the change with the pre-fire value. The RdNBR would correctly classify the sparsely vegetated area as high 
severity; because there was little vegetation to start with, a fire killing all the biomass would be classified high 
relative to that specific plot. The equation presented by Miller and Thode is: 
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Miller and Thode showed that RdNBR resulted in higher classification accuracy for the high severity category. 
Also, a relative index allows researchers to use a more consistent definition of burn severity across spatial and 
temporal scales (Miller & Thode, 2007). Numerous studies have been done to test the effectiveness of the relative 
index compared to dNBR (Miller & Thode, 2007; Safford et al., 2008) However, researchers have found both 
advantages and disadvantages when using the RdNBR. In their study, Miller and Thode found that although 
classification accuracy improved in the high burn severity category, the accuracy actually decreased in the low and 
unburned areas. The overall accuracy was not improved, as they believed that the plots that became misclassified 
through the use of RdNBR offset any improvements made. In recent years, RdNBR has become the new standard in 
burn severity classification (Safford et al., 2008). RdNBR removes the correlation between dNBR and pre-fire 
biomass by dividing the dNBR with the pre-fire NBR value. All stand-replacing fires are categorized as high 
severity by RdNBR; the amount of vegetation before the disturbance is not a factor. 
 
Satellite Image Processing 

One of the challenges of measuring burn severity is the spatial size that fires encompass. Standardization 
procedures such as those offered by Key and Benson (2006) allow fire managers to compare fires over large spatial 
and temporal scales using ground measures and satellite images. An extended assessment strategy offers a more 
accurate pattern of burn heterogeneity and takes into consideration delayed mortality (Key & Benson, 2006). Using 
this assessment strategy, a burn severity detection image was created to assess the severity of the Tripod fire.  

The two Landsat 5 30-meter resolution scenes from August 7, 2005 and July 28, 2007 were acquired from 
MTBS/MRLC using the Landsat Science Archive and the MTBS/MRLC Reflectance Collection from the USGS 
website (http://glovis.usgs.gov/). Landsat images from 2008 were not used because MTBS images are in a specific 
projection; because fire severity varies from pixel to pixel, a re-projected Landsat image would include more error 
than can be accounted for. All the Landsat Reflectance images were geometrically and radiometrically corrected 
according the MRLC 2001 image processing procedures (http://www.mrlc.gov/pdf/image_processing.pdf). ERDAS 
Imagine was the primary software used for calculating dNBR.  
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At-satellite reflectance images with scene IDs 5045026000521910_REFL for August 7, 2005 and 

5045026000720910_REFL for July 28, 2007 (Fig. 3) shown with bands 7, 4, and 3 were imported into Imagine and 
were chosen as the best possible dates for representing phenology and moisture content (Key & Benson, 2006). A 
dNBR model from Casey Teske* was used along with some modifications from Jess Clark† of the Forest Service to 
create a dNBR image. As discussed earlier, the NBR for the pre-fire image and the post-fire images were first 
calculated using the Equation 1. The NBR images were then temporally differenced using the dNBR algorithm 
(Equation 2). 

The extended assessment strategy used in this study demonstrates the delayed mortality that is not necessarily 
evident in initial assessments, and extended assessments more clearly delineate heterogeneous burn areas (Key & 
Benson, 2006). After creating a dNBR image for the Tripod Complex fire, severity thresholds from MTBS were 
used to stratify the continuous dNBR raster into severity categories of unburned, low severity, moderate severity, 
and high severity (Table 1a). The dNBR raster contains values from -2000 to +2000, and the classified images were 
then used for field site selection in order to stratify the sample plots by severity category. In order to more accurately 
create a classified burn severity map, CBI was plotted against dNBR (Fig. 6a) and the regression equation was used 
to predict Tripod specific severity thresholds based on the Key and Benson CBI severity thresholds (Table 1b). 
Based on the given CBI thresholds, severity thresholds for dNBR and RdNBR (Table 1b) were created and were 
used for the final classification map (Fig. 4a). The final map classification shows that the majority of the Tripod 
Complex fire was consumed by a high intensity burn. A frequency chart created for Landsat dNBR pixels (Fig. 4b) 
shows 302 square kilometers were located in high severity burn areas, whereas 63 square kilometers were left 
unburned. A total of 641 square kilometers were burned within the entire fire perimeter. 

                                                 
* Casey Teske is a Remote Sensing Image Analyst at the National Center for Landscape Fire Analysis, College of Forestry and 

Conservation, University of Montana. 
† Jess Clark is a Remote Sensing Specialist with the Forest Service 

MODIS dNBR Landsat dNBR 

Figure 4. 4a) Burn Severity maps created using continuous dNBR rasters. 4b) Frequency chart of dNBR. 

Figure 3. Landsat Pre-fire scene from August 7, 2005 (left) 
and Post-Fire scene from July 28, 2007 (right). Shown with 
bands 3, 4, and 7.  

1a 
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The MODIS sensor collects spectral information in similar portions of the electromagnetic spectrum as Landsat. 
MODIS has the potential to record long-term fire impacts and has a high temporal resolution covering the same spot 
every day. Spatially, MODIS has a resolution between 250 meters and 1km. The MODIS surface reflectance product 
provides an estimate of the surface reflectance in the absence of atmospheric effects (Fig. 5a) shown with a band 
combination using the same portions of the electromagnetic spectrum as Landsat with bands 7, 2, and 1 
(http://edcdaac.usgs.gov/modis/mod09gav5.asp). The pre-fire MODIS image from August 7, 2005, and the post-fire 
image from July 28, 2007, both of which correspond with the Landsat imagery dates, were obtained from the 
MODIS Land Processes Distributed Data Archive (LP DAAC) through the Earth Observing System Data Gateway 
(EOS Data Gateway http://edcimswww.cr.usgs.gov/pub/imswelcome/). The dNBR algorithm was applied to the 
MODIS Surface Reflectance daily 2G 500m V005 image (MOD09GA).  For MODIS, the following algorithm was 
used for calculating NBR and then equation 2 was used to determine the dNBR (Loboda et al., 2007): 
 
 NBR = (Band 2 –Band7)/ (Band 2 + Band7) (4) 
 
Band 2 for MODIS is part of the NIR wavelength, and Band 7 is in the SWIR wavelength range. Using the same 
CBI thresholds given in Table 2, a burn severity map was created (Fig. 4a).  

 
 

RESULTS AND DISCUSSION 
 

Gross Primary Productivity  
MODIS/Terra Gross Primary Productivity 8-day L3 Global 1km V005 (MOD17A2) is a cumulative composite 

for 8 days and measures Gross Primary Production (GPP) and Net Primary Production (NPP) in kg of carbon/m2 as 
a sum over the eight days (MODIS user’s guide) and was also obtained through the LP DAAC. GPP estimates the 
rate at which light energy is converted to plant biomass; GPP is the sum of these processes over a specific area 
(Heinsh et al., 2003). This product was used to assess the amount of sequestration and respiration that the 
Okanogan-Wenatchee Forest experienced before and after the fire for a specific time period during the summer 
months. The MODIS GPP product estimates that the entire forest before the fire sequestered 31.7 tons of carbon per 
day during the summer, whereas after the fire, the entire forest now only sequesters 11.7 tons of carbon per day 
during the summer, representing a 63% loss in gross primary productivity (Fig. 5b).  
 
Carbon Emissions 

In order to estimate the carbon emissions for the Tripod Complex Fire the following equation was applied: 
  

 Emission = A* B* CE *ei  (5) 
 

Figure 5. 5a) MODIS pre-fire scene from August 7, 2005 shown with bands 1,2 and 7. 5b) MODIS 8-day Gross 
Primary Production composite product.  
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In this equation, A is the area burned, B is the mass of biomass per area, CE is the combustion efficiency and the ei 
is the emission factor for species (Wiedinmyer et al., 2006). The burn severity map created earlier was used to focus 
only on the high severity areas of the fire since those are the only areas inside the fire perimeter where the trees 
burned completely. Using a vegetation layer created by the Utah State University from Thematic Mapper (TM) 
Landsat 5 for 2004, the area of vegetation (A) of each high burn severity was extracted.  Then the vegetation types 
inside the high burn severity were matched with the GLC2000 land cover classes presented in Wiedinmyer et al. 
(2006) to obtain the corresponding total fuel loading (B), combustion efficiency (Alleaume et al., 2005) and 
emission factors (ei) for CO2 and CO.  This analysis showed that 4.75 million metric tons of CO2 and 0.268 million 
metric tons of CO were emitted from the Tripod Complex fire in 2006. The total carbon emissions of the fire (Table 
2) represent approximately 5.8% of the total carbon emissions of the state of Washington for the previous year 
(provided by the EPA). 
 
 
 
 
 
 
 
 
 
 
 

The estimated value of CO2 emissions proposed in this paper for the Tripod Complex Fire was lower when 
compared with other values published (Wiedinmyer & Neff, 2007) since this paper took into account the different 
severity classes and focused only on the high burned areas. A recent article published the monthly CO2 emissions 
from fires for the state of Washington (Wiedinmyer & Neff, 2007) and the sum of the emissions for the three months 
that the Tripod complex fire lasted showed a total of 31 million metric tons of CO2. There are several reasons for 
such a high CO2 emission value. First of all, that value includes the whole state of Washington for the months of 
July, August, and September 2006 which showed high fire activity with at least two other wildfires burning at the 
same time. It is also important to acknowledge that this value assumes that the whole area burned in the same 
manner while this study’s results take into account the difference in burn severity inside the Tripod Complex fire 
perimeter. 
 
Analysis 

The dNBR and CBI regression showed consistency in categorizing burn severity, as seen in different studies 
(Cocke et al., 2005; Miller & Thode, 2007). A regression of these two variables (Fig. 6a) showed a moderately high 
coefficient of determination of 0.6994. A regression between dNBR and the overstory CBI (Fig. 6b) showed a slight 
increase of the R2 to 0.7373. This increase could be attributed to the fact that satellite imagery captured mainly the 
overstory of the forest; changes in the overstory would be most apparent. Since CBI and dNBR were both used to 
assess burn severity and were closely related by gauging the magnitude of change based on pre-fire conditions, 
dNBR was used as the basis for the rest of the statistical analysis. 

In an earlier study, S. Prichard sampled 253 permanent plots in 2007 and converted the field data into CBI 
values. In order to confirm that the conversion to CBI matched the field data collected in the summer of 2008, a 
scatter plot was made of those data and the team’s data of six of the permanent plots with a one-to-one line. The 
RMSE of 0.14 was very low, showing that the data were consistent. However, some possible sources of error 
included the low number of plots for comparison and the clustering of CBI values around 2. Without more plots of 
lower and higher severity, the accuracy of the temporally spaced plots was not certain. The data from the 2007 
permanent plots were used to confirm the accuracy of the regression line. Values for dNBR were predicted using the 
CBI values, and actual dNBR values were taken from satellite imagery. A scatter plot was made (Fig. 6d), along 
with a one-to-one line. The RMSE value of 171.9 was 4.3% of the dNBR range, showing good agreement. However, 
the regression line appeared to over predict for the lower values and under predict for the high values. The predicted 
dNBR values reached a limit because at the maximum CBI value of 3.0 the predicted dNBR value was 674. 

To ascertain if RdNBR showed a stronger relationship with CBI than dNBR as done in Miller and Thode 
(2007), the RdNBR values were then used to create a regression line (Fig. 6c). Compared to dNBR, the R2 value 
increased to 0.7915. The use of a relative index accounted for the increase in coefficient of determination, as was 
discussed earlier. Using the regression lines, severity thresholds were created for dNBR and RdNBR map  

CO2 emissions for Washington State 2005 (Million Metric tons)

Tripod Complex 
Fire (2006)

Commercial Industrial Residential Transportation Electrical 
Power

4.75 3.31 19.50 5.03 43.84 13.94

Table 2. Comparison between CO2 emissions from the Tripod Complex Fire and the annual CO2 emissions from 
anthropogenic sources for the state of Washington in 2005. 
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classification (Table 1b). The thresholds for CBI were taken from Miller and Thode (2007). Confusion matrices 
were created for dNBR and RdNBR, showing most of the accuracies were similar (Table 3). The user’s accuracy for 
the low category increased, while both the user’s and producer’s accuracy in the moderate category increased when 
using the relative index. The producer’s accuracy for the high class also increased. The overall classification 
accuracy increased by 4.7% with RdNBR. However, the evidence was not significant enough to state that RdNBR 
produces better accuracy in burn severity classification. Based on the Kappa values that were calculated, the dNBR 
classification was 55.4% better than that expected if a severity class was randomly assigned to each image pixel, 
while the RdNBR was 61.8% better. In addition to the Landsat imagery, MODIS was also used to calculate dNBR 
values. In order to check the validity of the coarser MODIS data, the Landsat imagery was first re-sampled to 500 m 
resolution. Then, a scatter plot was made with a one-to-one line, showing an RMSE value of 156.77, which is 3.9% 
of the dNBR range (Fig. 7). This confirms that dNBR data taken from MODIS corresponds well with Landsat data. 

Analysis was then done with slope, solar radiation, aspect, and vegetation to determine if there was a 
relationship between these variables and dNBR values, specifically in the high severity areas of the Tripod Complex 
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Figure 6 a, b, c, d. Regressions between field CBI 
measures and satellite measures of burn severity. 

Confusion matrix of CBI (columns) vs dNBR classified data 
Kappa = 0.5542             
Class Name Unchanged Low Moderate High Total User's Accuracy 
Unchanged 6 1   7 0.857 
Low 3 8 2 1 14 0.571 
Moderate  2 5 4 11 0.455 
High   1 9 10 0.900 
Total 9 11 8 14 42  
Producer's Accuracy 0.667 0.727 0.625 0.643   0.667 
       
Confusion matrix of CBI (columns) vs RdNBR classified data 
Kappa = 0.6179       
Class Name Unchanged Low Moderate High Total User's Accuracy 
Unchanged 6 1   7 0.857 
Low 3 8 1  12 0.667 
Moderate  2 6 4 12 0.500 
High   1 10 11 0.909 
Total 9 11 8 14 42  
Producer's Accuracy 0.667 0.727 0.750 0.714   0.714 

Table 3. Confusion matrices from dNBR and RdNBR
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Landsat image and MODIS.  
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Fire. Initial regressions between these variables and dNBR show that in the Tripod Fire there is not a significant 
relationship (Table 4). However in previous studies, slope and aspect were found to be intermediate influences on 
burn severity (Wimberly & Reilly, 2007). One possible reason that these variables might not be significant was 
because of the high intensity of the fire. Vegetation was the next variable of interest. Both dNBR and RdNBR show 
highest averages in the Subalpine Forest type. However after creating conditional plots holding Subalpine Forest 
constant, there was still not a significant relationship between dNBR and the variables slope, aspect, and solar 
radiation. 

 
 
 

 
 
 
 
 
Permanent Plots  

Different methods for assessing the relationship between slope, aspect, and vegetation have been proposed. 
Wimberly et al. (2007) used satellite-derived dNBR as a predictor of CBI, and then used CBI to assess the variation 
of burn severity based on vegetation, slope, aspect, and elevation. Miller and Thode (2006), however, used CBI as 
predictors of dNBR for map classification and to determine whether RdNBR produces a better relationship than 
dNBR. After following the methods of Miller and Thode (2006) for map classification in the present study, the 
methods of Wimberly et al. (2007) were used for analysis of vegetation, slope, aspect, and solar radiation 

Following the methods of Wimberly et al. (2007), CBI predictions were used for the analysis of the variables 
solar radiation, slope, and aspect; however, this analysis uses RdNBR instead of dNBR because of the potential 
increase in accuracy. Field data from a total of 46 plots from 2008 and 253 from 2007 were used, the latter of which 
were permanent plots. Based on the low RMSE of 0.14 between the 2008 plots and the 2007 permanent plots (Fig. 
8), the permanent plots were used in the statistical analysis for predicting CBI for the rest of the Tripod Fire. Instead 
of using dNBR to predict CBI, RdNBR was used because of the potential slight increase in accuracy. The RdNBR 
and CBI values from the permanent sites were plotted, and the relationship between the two was non-linear. Based 
on a 2nd order polynomial function similar to the one used in a recent article (Van Wagtendonk et al., 2004), 
equation 6 was used to predict CBI as a function of satellite derived RdNBR: 
 
 CBI = 1E-08x2 + 0.0014x + 0.9341 (6) 
 
 
 
 
 

R2 Values of Regression  R2 Values of Regression Holding 
subalpine Forest Constant 

Variable dNBR RdNBR  Variable dNBR RdNBR 

Solar Radiation 0.0288 0.0577  Solar Radiation 0.0003 0.0065 

Aspect 0.0332 0.0020  Aspect 0.0288 0.0501 

Slope 0.0004 0.0267  Slope 0.0003 0.0026 

Table 4. Coefficients of determination for dNBR and the variables: solar radiation, aspect and slope. 
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The model shows an R2 of 0.4621 (Fig. 8a), and the model was then applied to the RdNBR image to generate a 

predicted CBI map (Fig. 8b) for the entire area within the Tripod complex perimeter. After using the permanent plot 
CBI data, and predicting CBI as a function of RdNBR, a regression analysis (Fig. 8c) between the predicted CBI and 
the variables slope, aspect, and solar radiation shows no relationship, similar to the findings from the regression with 
dNBR (Table 4). An analysis of vegetation type and the resulting average CBI for each vegetation type shows that 
subalpine forest types have a higher average CBI than the other forest types, the same result seen when dNBR was 
used. Previous studies show that there is a positive relationship between CBI, slope, elevation, aspect, and 
vegetation type, demonstrating that topography and vegetation both have strong effects on the spatial pattern of fire 
severity (Wimberly & Reilly, 2007). However, this study shows that within the Tripod fire perimeter, a relationship 
was not found using both dNBR and CBI measures of burn severity. High severity and homogeneous fires such as 
the Tripod complex fire could be accounting for the non-spatial relationship found in this study (Ryan, 2002). Using 
CBI to assess these variables reaffirms the conclusions that were made after assessing dNBR with slope, aspect, 
solar radiation, and vegetation. 

 
 

DISCUSSION 
 

Fire Behavior 
Once a wildfire has been ignited, the fire’s inception, growth, and behavior are influenced by the complex of 

fuel, topography, and air mass components present in the environment. These non-static factors are interrelated, 
influencing a fire’s intensity and severity. The topographic factors of slope and aspect influence both the fuel 
loading and weather of the region (Contryman, 2004). 

Slope has the greatest influence of all on fire intensity, encouraging fire to grow and spread. Fire moves faster 
on an incline than on level ground; the steeper the gradient, the faster the fire spreads over a forested terrain 
(www.bcwilfire.ca, 2007). The aspect of the mountain face is also very important in wildfire behavior. Due to 
exposure to the sun and weather patterns, fire behavior varies on different faces of the mountain. The amount of 
solar radiation that warms surface fuels is partially dependant on aspect (Ryan, 2002). 

Typically a trend of high burn severity can be seen on steep slopes and aspects that support drier and warmer 
surface fuels. However, these trends were not apparent in the Tripod Complex Fire of 2006. High burn severity was 
found regardless of slope gradient and direction of aspect; burn severity of the Tripod Fire was characterized by 

Fig.8: a) Permanent plot RdNBR and CBI regression. b) Predicted CBI 
map. c) Coefficient of determination for CBI and the variables solar 
radiation, aspect and slope.  
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other factors. Interruptions of natural disturbances result in a loss of biodiversity while heterogeneity in vegetation 
structure and microenvironment lead to heterogeneity in fire behavior and effects (Ryan, 2002). The Okanogan-
Wenatchee Forest has experienced the effects of prolonged forest fire suppression for more than 100 years, resulting 
in the emergence of three dominant tree species. Along with a homogeneous vegetation community, the 
environment, which burned, had a consistently steep rugged terrain resulting in a larger and more uniform fire.   

Our study showed that the Tripod Complex Fire emitted in four month more carbon than the total of carbon 
emissions produced by the commercial sector of the whole state of Washington in a year. This puts in perspective 
the amount of greenhouse gases release into the atmosphere by high severity wildfires. Every summer wildfires 
sweep through the forests of western part of the United States, but in recent years the severity and extent of these 
fires has increase to the point where these fire emissions are having an effect in climate (Wiedinmyer & Neff, 2007). 

 
 

CONCLUSION 
 

The Composite Burn Index values from 46 plots evaluated within the Tripod Complex Fire showed a strong 
correlation with both dNBR and RdNBR. Although the study did not show a great difference in the accuracy 
between dNBR and RdNBR, RdNBR should be used in future studies to assess its potential for improving accuracy. 
The fire effects of the Tripod fire did not show a direct relationship between dNBR and the variables slope, aspect, 
solar radiation, and vegetation type.  These results are due to the homogeneous, steep-sloped landscape as well as 
the low level of biodiversity in the vegetation community.  The assessment of fire severity using field and satellite 
measurements in this study can provide enhanced burn severity maps, enabling forest managers to improve fuel 
reduction treatments.  Fuel reduction treatments, if done correctly, can reduce the frequency and magnitude of 
severe wild land fires.  
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