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ABSTRACT 
 
Advances in remote sensing such as increasing spatial/spectral resolutions have strengthened its ability of urban 
environmental analysis. Unfortunately, high spatial resolution imagery also increases internal variability in land-
cover / use unit, which can cause consequent classification result showing a “salt and pepper” effect. To overcome 
this problem, region-based classification has been used.  In such a classification, image-object (IO) is used rather 
than pixel as a classification unit.  Using IKONOS high spatial resolution imagery, in this study, we propose to test 
whether the IO technique can significantly improve classification accuracy when applied to urban environmental 
mapping with high spatial resolution imagery compared to pixel-based method in Tampa Bay, FL, USA.   We further 
evaluate the performance of artificial neural network (ANN) and Maximum Likelihood Classifier (MLC) in urban 
environmental classification with high resolution data and test the effect of number of extracted IO features on urban 
classification accuracy.  Experimental results indicate that, in this particular study, a statistically significant 
difference of classification accuracy is proved between using pixel-based and IO-based data; ANN outperforms 
MLC when both using 9 features pixel-based data; and using more features (30 vs. 9 features) can increase IO 
classification accuracy, but seems not statistically significant at the 0.9 confidence level at this study. 
 
 

INTRODUCTION 
 

Timely and accurate information on the status and trends of urban ecosystems and biophysical parameters is 
critical to developing strategies for sustainable development and to improving urban residential environment and 
living quality (Yang et al., 2003; Song, 2005).  Therefore, developing techniques and enhancing the ability for 
monitoring and mapping urban land use / land cover (LULC) are important for city modeling and planning.  One of 
the most common applications of remote sensing images is the extraction of LULC information for digital image 
base maps.  Such information is useful to city governments to seek better planning and management approaches to 
deal with numerous problems associated with increasing urbanization (e.g., LULC change / attribution and storm 
water planning / mitigation) (Shackelford and Davis, 2003).  During the last decade, satellite remote sensing has 
advanced in increasing spatial resolution (e.g., IKONOS multispectral images at 4-m resolution and panchromatic 
band at 1-m resolution) and spectral resolution (e.g., Hyperion hyperspectral sensor at 10 nm spectral resolution).  
High spatial resolution commercial satellite imagery (e.g., IKONOS) has been shown to be a cost-effective 
alternative to aerial photography for generating digital image base maps (Davis and Wang, 2003).  

With the advent of high spatial resolution satellite sensors, new challenges did arise for automatic classification 
of LULC on intra-urban areas.  Traditional pixel-based classifiers are quite limited for classification of images 
acquired with those sensor systems, which can capture details of very heterogeneous urban scenes with a large 
internal class variation.  The LULC information extracted by the multispectral pixel-based classification proves to 
have more complexity owing to the internal variation increase in the land cover unit (Carleer and Wolff, 2006;  Kux 
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and Pinho, 2006).  With the increase in spatial resolution, LULC classes tend to be represented by spatial units of 
heterogeneous spectral reflectance characteristics and their statistical separability is reduced when the traditional 
pixel-based classification approaches are used.  Consequently, classification accuracy is reduced and the results 
usually show a salt-and-paper effect due to individual pixels classified differently from their neighbors.  Previous 
studies have proved that a decrease in LULC classification accuracy is likely to occur as the spatial resolution of the 
image is improved, when other sensor characteristics are kept unchanged (Townshend and Justice, 1981; Latty et al., 
1985, Martin et al., 1988; Gong and Howarth, 1990; Treitz and Howarth, 2000).  Classification accuracy is 
particularly problematic in urban environments that typically consist of mosaics of small features made up of 
materials with different physical properties (Mathieu et al., 2007).  To overcome this problem region-based or 
image-object (IO)-based classification can be used.  Image segmentation, before classification, produces regions that 
are more homogeneous in themselves than with nearby regions and represent discrete objects or areas in the image 
(Carleer and Wolff, 2006).  Such a region or IO is then used rather than a pixel as a unit for classification. 

Reasons that IO-based classification strategy can potentially improve classification accuracy compared to pixel-
based classification may include: (1) partitioning an image into IOs is similar to the way humans conceptually 
organize the landscape to comprehend it (Hay and Castilla, 2006); (2) besides spectral features, IOs also enable the 
use of texture and contextual (relations with other objects) features and some shape/geometric features (e.g., form, 
size and geomorphology) (Hay and Castilla, 2006; Yu et al., 2006); and (3) the objects of interest to be extracted 
from a certain scene can be associated to different abstraction levels (i.e., different scales) and these levels can be 
represented in an analysis system (Kux and Pinho, 2006).  Many previous researchers have demonstrated such 
advantages of IO-based classification (Ton et al., 1991; Johnsson, 1994; Hill, 1999; Herold et al., 2003; Carleer and 
Wolff, 2006; Kong et al., 2006; Kux and Pinho, 2006; Marchesi et al., 2006; Yu et al., 2006; Mathieu et al., 2007).   

After reviewing the literature it is apparent that more work is needed to evaluate object-based classification 
approaches with high resolution imagery, especially the efficiency of such approaches on urban environmental land 
cover classification. Using IKONOS high spatial resolution imagery, we propose to further test the ability of  the IO 
technique to significantly improve classification accuracy compared to pixel-based methods when applied to urban 
detailed land cover mapping in Tampa Bay, FL, USA.  Therefore, the substantial objectives of this analysis consist 
of (1) testing whether the IO technique can significantly improve classification accuracy when applied to urban 
environmental classification with high spatial resolution imagery compared to pixel-based method; (2) comparing 
the performance of ANN and MLC in urban environmental classification with high resolution data; and (3) 
evaluating the effect of number of extracted IO features on urban classification accuracy. Some limitations of using 
the object-based classification approach will also be discussed. 
 
 

STUDY AREA AND DATA SETS 
 
Study Area 

The study area is a 100 km2 area within the City of Tampa.  Tampa is the largest city on the west coast of 
Florida consisting of approximately 285 km2.  During the last three decades, the city had experienced continuous 
growth in population and expansion in extent. The population is increasing and is currently estimated at 
approximately 335,000 people (www.tampagov.net accessed on Nov. 26, 2007).  The city is located at 
approximately 28° N and 82° W (Figure 1).  Tampa’s climate is considered subtropical with an annual average 
temperature of 22ºC. The city has two distinct seasons related to annual precipitation, wet (June-October) and dry 
(November-May) that can be punctuated by periods of wet weather during December- February (Campbell and 
Landry, 1999).  Historically, the natural plant communities of the Tampa Bay region included pine flatwoods, 
cypress domes, hardwood hammocks, high pine forests, freshwater marshes, and mangrove forests.  Based on the 
City of Tampa Urban Ecological Analysis (Andreu et al., 2008), current tree canopy cover is 28.1% with the ten 
most common tree species accounting for approximately 84% of all stems. Other green vegetation areas are 
occupied by shrubs, grass/lawns in varying sizes, golf courses, and crops.  Man-made materials for buildings and 
roofs in the city are concrete, metal plate and brick tile, etc.  Various impervious road surfaces are covered by 
asphalt, concrete and rail track.   
 
Data Sets 

IKONOS imagery.  High resolution IKONOS satellite imagery (GeoEye, Inc., USA) was acquired for the study 
area on April 6, 2006.  Georeferenced 1-m resolution panchromatic (Pan, 526 – 929 nm) and 4-m resolution 
multispectral (MS) images (four bands, blue (445 – 516 nm), green (506 – 595 nm), red (632 – 698 nm), and NIR 
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(757 – 853 nm)) were acquired.  The IKONOS imagery including Pan and MS images is major data set for this 
object-based classification analysis. 

Digital aerial photographs.  A set of true color digital aerial photographs was taken in January, 2006 
(SWFWMD, 2006).   The aerial photographs included three visible bands (blue, green and red) at 0.3-m spatial 
resolution.  They were used as reference to define training, test and validation areas / samples. 

Ground plot measurements.  Measurements from approximately 60 ground plots in the study area, including 
LULC cover type and percentage, plant species, dbh (diameter at breast height), crown width, etc were provided 
from the project of The City of Tampa Ecological Analysis 2006-2007 (Andreu et al., 2008).  Ground plot 
measurements were used as reference for determining training and test areas. 

The City of Tampa, FL

Scale
2 0 1 3 4 5 km

160  km

 
Figure 1.  Location map of the study area. 

 
 

METHODOLOGY 
 

Figure 2 presents a flowchart of this analysis procedure of the urban environmental classification using high 
resolution IKONOS imagery with both pixel-based and IO-based classification strategies.  In this analysis, after 
IKONOS imagery data were preprocessed, including radiometric correction and calibration and data fusion, nine 
basic pixel-based image layers were prepared, comprised by 4 pan-sharpening (PS) bands, 3 Hue-Intensity-
Saturation (HIS) indices, 1 soil adjusted vegetation index (SAVI) and 1 texture image (created from PS band 4 with 
co-occurrence and homogeneity parameters from ENVI (ITT, 2006)).  The 9 pixel-based image layers were then 
used for testing pixel-based classification approach and creating image objects (IOs) for testing IO-based urban 
surface component classification.  After IOs were generated from the 9-image layers (themselves form 9 features), 
27 more features were extracted from IOs used for object-based classification analysis. 
 
Image Segmentation  

The object-based image analysis software used in this research was Definiens eCognition 5.0.  eCognition uses 
a multi-resolution segmentation approach which is a bottom-up region merging technique starting with one-pixel 
objects.  In numerous iterative steps, smaller image objects are merged into larger ones (Baatz et al., 2004).  The 
merging criterion minimizes the average heterogeneity of image objects weighted by their size in pixels (Baatz and 
Schape, 2000; Benz et al., 2004). Quantitatively, the definition of heterogeneity takes into account both spectral 
variance and geometry of the objects (Yu et at., 2006).  The outcome of the segmentation algorithm is controlled by 
a scale factor and a heterogeneity criterion. The heterogeneity criterion controls the merging decision process, and is 
computed using spectral layers (e.g. multispectral images) or non-spectral layers (e.g. thematic data such as 
elevation) (Mathieu et al., 2007). The heterogeneity criterion includes two mutually exclusive properties: color and 
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shape.  Color refers to the spectral homogeneity whereas shape considers the geometric/geomorphologic 
characteristics of the objects.  Shape is further divided into two equally exclusive properties: smoothness and 
compactness (Baatz et al., 2004). 

The optimum segmentation parameters depend on the scale and nature of the features to be detected. These can 
be determined using a systematic trial and error approach validated by the visual inspection of the quality of the 
output image objects, i.e. how well the image objects matched feature boundaries in the image (Mathieu et al., 2007) 
for a particular application.  Once an appropriate scale factor was identified, the color and shape criterion are 
modified to refine the shape of the image objects.  Most previous studies had found that more meaningful objects are 
extracted with a higher weight for the color criterion (e.g., Laliberte et al., 2004; Mathieu et al., 2007).  In this 
application with input of nine data layers (4 PS bands, 3 HIS indices, 1 SAVI and 1 texture image) with each layer’s 
pixel values rescaled to [0, 10,000] for urban environmental LC mapping, the color criterion was assigned with a 
weight of 0.7, whereas the shape received the remaining weight of 0.3.  Further, the compactness was assigned with 
a weight of 0.3 and smoothness with remaining weight of 0.7.  After visually checking their matching degree of 
image objects to feature boundaries of LC types in the study area, we employed the image objects (IOs) created with 
a scale of 70 in following IO-based classification analysis. 

 

Training

IKONOS, Digital Photo image

Preprocessing: ELC to IKONOS MS/Pan

Vegetated/Nonvegetated Areas

Image Enhance/Feature Extraction:
Nine Features: Pan-Sharpening, HIS Indices, SAVI & Texture

Urban Surface Component maps

Classifiers: 
ANN & MLC

Pixel-based IO-based

Training/Test Areas 
defined from Ground 
Survey/Digital Photo

Classification results

Testing

Image Object (IO) Created: 
Scale, Shape and Compactness
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23 Spectral, 9 Texture, & 4 Shape/Geometric

ANN for 
IO Classi.
with 9 F.

Training/Test 
IOs from 

Ground Survey
/Digital Photo

ANN for 
IO Classi.
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Testing

ANOVA Selection
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Figure 2.  Flowchart of the analysis procedure of the urban land cover mapping, consisting of pixel-based and IO-

based classification strategies. In the figure, Veg/ NonVeg areas mean vegetated and non-vegetated areas; 
Classi. and F. are classification and features, respectively.  For all other abbreviations, see their full names in 
the text. 

 
Feature Extraction and Selection 

Besides the nine features used for creating IOs, 27 more feature variables were generated from each IO.  A total 
of 36 features (23 spectral features, 9 texture features and 4 shape/geometric features) were generated for this object-
based classification analysis and listed in Table 1.  The consideration and determination of these features were 
selected based on previous studies by Haralick et al., (1973), Carleer and Wolff, (2006), Kong et al., (2006), and Yu 
et al., (2006), etc. 

To reduce redundancy, it is necessary to select a subset of features from the total 36 spectral variables prior to 
object-based classification of urban enviornmental LC classes.  In this analysis, a one-way ANOVA analysis was 
performed.  This was done based on greater feature separability between any two LC classes (paired-class) of the 14 
LC classes (at Level III in Table 2) using the SPSS statistical package (www.spss.com 2007).  For any paired-class 
from the 14 classes, all training and test IOs for the paired-class were used to conduct the ANOVA analysis across 
the 36 feature variables (Table 1). Then based on the degree of feature separability of each feature variable between 
the paired-class, a statistical frequency was calculated at probability levels p≤0.01 and p≤0.05 for each feature 
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variable.  For this analysis, a maximum frequency at either p≤0.01 or p≤0.05 is 91 (because of 91
2

1314
214 =

×
=C , 

i.e., total possible combinations of picking any 2 classes from a total of 14 classes). 
 
Classification Strategies 

To improve the urban surface component classification accuracy, a hierarchical classification system (Table 2) 
was adopted for the study. One advantage of this methodology is that it matches the logical structure of most LULC 
classification schemes utilized by previous researchers (e.g., Townsend and Walsh, 2001; Pu et al., 2008). The 
hierarchical classification scheme was constructed in three levels (Table 2).  At Level 1, vegetated and non-vegetated 
are separated using a SAVI  threshold of 0.19.  SAVI values greater than 0.19 were assigned as vegetation.  With this 
threshold, the two sub-areas could be clearly separated within the study area. The vegetated and non-vegetated areas 
are further subdivided into five vegetated and four non-vegetated classes at Level II.  The five vegetated types 
include Broad-leaf trees (BT), Needle-leaf trees (NT), Palm trees (PT), Shrub (Sh) and Grass/lawn (GL). The four 
non-vegetated classes include Building/roof (BR), impervious area (IA), Sand/soil (SS) and Water (Wa).  Level II 
classes’ descriptions were presented in Table 2.  At Level III, only one vegetated class, Broad-leaf trees (BT), is 
further subdivided into two classes, High NIR reflectance (BT1) and Low NIR reflectance (BT2).  This processing 
was consideration of significant difference of NIR reflectance between sand live oak and most other BT species due 
to differences of their biological characteristics (e.g., deciduous vs. even green).  For four non-vegetated classes, 
Building/roof (BR) and Impervious area (IA) are future subdivided into High, Medium and Low albedo (BR1, BR2, 
and BR3; IA1, IA2, and IA3), respectively.  Classification operations were carried out at Level III separately for 
each Level I area (vegetated/non-vegetated) using pixel-based features or IO-based features with ANN and MLC 
algorithms (Figure 2).  The final classification results at Level II were obtained through merging BT1 and BT2 in 
BT, BR1 through BR3 into BR, and IA1 through IA3 into IA.  Some accuracy indices are calculated at Level II. 

Two supervised classification algorithms were employed for the urban environmental LC classification:  A  non-
parametric artificial neural network (ANN) and a parametric Maximum Likelihood Classifier (MLC). In this 
analysis, a feed-forward ANN algorithm was used for classifying the 14 classes at Level III.  The network training 
mechanism is an error-propagation algorithm (Rumelhart et al. 1986;  Pao, 1989).  An MLC classifier was also used 
to classify the 14 classes with input of 9 pixel-based feature variables to compare with the pixel-based classified 
results by ANN.  The ENVI software was used (ITT, 2006) for MLC classification.  MLC is a standard classifier that 
has been extensively used in LULC classification practice (e.g., Gong et al., 1997; Fung et al., 1998; van Aardt & 
Wynne, 2001). 
  
Assessment and Validation 

The training and test samples were determined from pixel-based and object-based image data by referencing 
0.3-m resolution digital aerial photographs and available ground plot measurements.  The pixel-based training/test 
samples were relatively easily defined whereas the IO-based training/test samples were not easy and were listed in 
Table 2, corresponding the 14 classes at Level III.  About 2/3 of the samples were used for training and about 1/3 of 
the samples were used as test samples.  This procedure was repeated three times (runs) to obtain three different sets 
of test samples (but training sets with a part overlaid between any two training sets).  Finally, an average accuracy 
(AA) or overall accuracy (OAA) and Kappa index were calculated from a confusion matrix constructed with the test 
samples using ANN and MLC at Level II.  To validate urban environmental classification results mapped with 
IKONOS image data, a system sampling approach with a 500-m grid was applied to both 0.3-m resolution aerial 
photographs and urban LC classification maps created with either pixel-based or IO-based IKONOS imagery.  A 
total of 441 points (cross points of the 500-m grids) each representing about 4 m2 were visually identified and 
interpreted from both the digital aerial photographs and resultant urban LC maps.  An OAA value and Kappa index 
can be calculated from the 441 paired-points and used for assessing the accuracy of urban environmental LC 
classification maps produced using either pixel-based or object-based IKONOS image data with either ANN or 
MLC algorithm. 
 
 

RESULTS AND ANALYSIS 
 
ANOVA 

After the nine input data layers were input to eCognition with scale = 70 and other parameters, according to the 
definitions for spectral variables listed in Table 1, a total of 36 feature variables were extracted.   A one-way ANOVA 
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analysis was first performed for all the extracted feature variables from which a subset of feature variables was 
selected.  Figure 3 shows the frequency distribution of ANOVA of all the feature variables separating any paired-
class (from left to right for greatest to least frequency).  By analyzing the frequency variation across all 36 variables, 
these variables can be divided into two groups with a frequency threshold of 60 at the significant level of 0.01.  
Hence, by the figure, a total of 30 feature variables were selected (SAVI through GLCMD from left to right). 

Among the 30 feature variables, all 22 spectral features were selected, which imply that those spectral features 
make a substantial contribution to separating most of the 14 classes.  The remaining 8 feature variables consist of 6 
textural features and 2 shape/geometric features.   From the selected spectral features, it is obvious that the ability to 
separate any paired-class mainly relies on the variation of pixel itself spectral information extracted from and 
characterizing IOs. 

 
Table 1.  Image-object (IO) features used in this analysis. 

 
Feature name Description

Band1 Mean of pan-sharpening IKONOS band1(blur), input pixel layer.
Band2 Mean of pan-sharpening IKONOS band2 (green), input pixel layer.
Band3 Mean of pan-sharpening IKONOS band3 (red), input pixel layer.
Band4 Mean of pan-sharpening IKONOS band4 (NIR), input pixel layer.
Hue Mean of Hue image processed from pan-sharpening IKONOS bands 3,2,1, input layer
Sat Mean of Saturation image processed from pan-sharpening IKONOS bands 3,2,1, input layer
Val Mean of Value (Intensity) image processed from pan-sharpening IKONOS bands 3,2,1, input layer
SAVI Mean of soil adjusted vegetation index: 1.5(band4-band3)/(band4+band3+0.5), input layer
Tex Mean of texture information of co-occurance homogeneity extracted from band4, input layer
SDB1 Standart deviation of Band1.
SDB2 Standart deviation of Band2.
SDB3 Standart deviation of Band3.
SDB4 Standart deviation of Band4.
SDH Standart deviation of Hue.
SDS Standart deviation of Sat.
SDV Standart deviation of Val.
SDVI Standart deviation of SAVI.
SDTX Standart deviation of Tex.
Ratio1 Band1 mean divided by sum of band1 through band4 means.
Ratio2 Band2 mean divided by sum of band1 through band4 means.
Ratio3 Band3 mean divided by sum of band1 through band4 means.
Ratio4 Band4 mean divided by sum of band1 through band4 means.
Bright Brightness, average of means of bands 1 through 4.

GLCMH GLCM homogenity from band4,

GLCMCON GLCM contrast from band4,

GLCMD GLCM dissimilarity from band4,

GLCME GLCM entropy from band4,

GLCMSD GLCM standard deviation from band4,

GLCMCOR GLCM correlation from band4,

GLDVA GLDV angular second moment from band4,

GLDVE GLDV entropy from band4,

GLDVC GLDV contrast from band4,

Compact Compactness, the product of the length and the width of the corresponding object and divided by the number 
of its inner pixels.

CompactP Compactness, the ratio of the area of a polygon to the area of a circle with the same perimeter.
ShapeI Shape index, the border length of the IO divided by four times the square root of its area, i.e., smoothness.
NumP Number of edges,the number of edge that form the polygon.
Note: i  is the row number and j is the the column number, V i,j is the value in the cell i,j  of the matrix, p i,j  its the normalized value 

in the cell i,j , N  is the number of rows or columns.
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Pixel-Based Classification 
After the 14 regions of interests (ROIs) were delineated from PS bands 4, 3 and 2 with a reference of 0.3-m 

digital aerial photographs and available ground plot measurements, the pixel-based classification results were 
produced using MLC and ANN algorithms.  As the aforementioned, 6 vegetated classes and 8 non-vegetated classes 
were first separately classified with the two algorithms.  The 14-class classification results were then merged to 9 
classes at Level II for the two sets of results, respectively.  Based on the high average accuracy (AA) and Kappa 
value calculated from test samples, a set of ideal structure parameters of ANN for pixel-based classification with 
nine features were adopted (learning rate (η) = 0.2, momentum coefficient (α) =  0.8 and number of nodes in a 
hidden layer (h1) =  12 or 10).  Their results were presented in Figure 4 (top).  After checking their 1:1 zoom-in 
maps, it is apparent that ANN has a higher ability to deal with the “salt-and-pepper” effect, a common phenomenon 
caused by using high spatial resolution and pixel-based image data with a traditional classification method MLC.   

Table 3 summarizes the pixel-based classification results produced by using the two algorithms with test 
samples.  In the table, by comparing all accuracy indices (AA, OAA, and Kappa) between the ANN and MLC, we 
can see that all accuracy indices except OAA are higher for ANN than for MLC.  So, in general, the performance of 
ANN is better than that of MLC by comparing AA and Kappa values between the two algorithms. 
 
Table 2. Unban land cover classes, definitions and number of training/test image-object (IO)s used in this analysis. 

Name Abbreviation Description Abbreviation Description
BT1 High NIR refletance 171
BT2 Low NIR refletance 169

Needle-leaf trees NT All conifer tree species canopies NT - 82
Palm trees PT All palm tree species canopies PT - 71

Shrub Sh All shrub, bush, including some bush in 
wetland, pond & lake side.

Sh - 86

Glass/lawn GL All grassland, golf course and lawns GL - 90
BR1 High albedo 181
BR2 Medium albedo 147
BR3 Low albedo 143
IA1 High albedo 135
IA2 Medium albedo 148
IA3 Low albedo 143

Sand/soil SS All bare sand/soil and/or very dry/dead 
glasslands.

SS - 99

Water Wa All different types of water bodies. Wa - 73
1738

All broadleaf tree species canopies

Level II Level III No of training 
/ test IOs

All different size building or roofs with 
different materils coverd

Impervious areas IA All impervious surface areas, e.g., road, 
park lots, etc.

Total of training IOs

Level I

Broad-leaf trees BTVegetated 
area

Building/roof BRNon-
vegetated 

area

 
 

Table 3.  Accuracy of urban environmental classification using different classification units (pixel-based and IO 
based) and different algorithms (MLC and ANN) with 9 or 30 features (bands). 

AA OAA AA OAA Kappa value Variance Kappa value Variance
9 73.58 73.82 76.69 78.48 0.6956 0.000030 0.7371 0.000454
30 n/a n/a 80.51 81.19 n/a n/a 0.7795 0.000415

MLC 9 68.25 74.01 n/a n/a 0.6819 0.000002 n/a n/a
Note: AA = average accuracy, OAA = overall average.

IO-based
Number of 
features

Algorithm Accuracy (%) Kappa value 
Pixel-based IO-based

ANN

Pixel-based

 
 
Object-Based Classification 

To find the better ANN structure parameters for the IO-based classification with inputs of either 9 or 30 
features, various combinations of learning rate (η), momentum coefficient (α) and number of nodes in a hidden 
layer (h1) were tested using the first training/test data set.  For the input of 9 features, the better ANN structure 
parameters are:η = 0.8 or 0.7,  α = 0.2 or 0.1, and h1 = 15 or 12.  For the input of 30 features, the better ANN 
structure parameters are:η = 0.7, α = 0.2 or 0.1, and h1 = 20 or 25.  The IO-based classification results with input of 
either 9 (Figure 4 bottom) or 30 features using ANN algorithm were created.  By checking Figure 4 1:1 zoom-in 
maps, we can see that the classification result created with the IO-based image data better than that with the pixel-
based, especially two vegetated classes: Broad-leaf trees (BT) and Needle-leaf trees (NT). 

The results shown in Table 3 were calculated by averaging the three sets of results produced from test samples.  
The results in Tables 3 indicate that the results using more feature variables are better than those using less feature 
variables. 
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Validation  
An OAA value and Kappa value were calculated from the 441 paired-points and used for validating the 

accuracy of urban detailed environmental classification maps produced using either pixel-based or object-based 
IKONOS image data with either ANN or MLC algorithm.  Due to a lack of NT (Needle leaf trees) identified at grid 
points (possibly due to a low frequency of NT in the study area), accuracy AA was not calculated for the validation. 
The validation results indicate that the IO-based result (OAA = 76.64%, Kappa = 0.70713) is better than that created 
with pixel-based features by either ANN (72.79%, 0.66865) or MLC (67.80, 0.60254) in terms of both accuracy 
indices using the 9-feature image data.  In comparing the pixel-based classifier with the same number of features, we 
can find the ANN outperforms MLC from the validation result.  When we compare the effectiveness of different 
numbers of feature variables on the IO-based classification accuracy by ANN, mapping urban environmental LC 
with more features (30) is better that with less features (9).  These validation results are basically consistent with 
those analyzed with accuracy indices derived from test samples from the previous section.  

 

Threshold 60

 
 
Figure 3. Frequency distribution of ANOVA of all 36 spectral variables for every two classes across the 14 classes.  

The possible maximum frequency is 91 and the bar represents number of pair-class between which a spectral 
variable difference is significant at 0.01 (empty bar) and 0.05 (filled bar) probability levels. The 1st 30 spectral 
variables (SAVI through GLCMD from left to right) were used as input to ANN for urban land cover 
classification. 

 
Comparison 

Based on the accuracy indices derived from test samples (averaged from the three sets of test samples) and 
validation results derived from the 441 grid points, the comparison analysis was conducted from the following three 
aspects.  Firstly, in considering the two types of classification units (pixel-based and object-based units), we can 
compare the result produced from test samples of 9-feature pixel-based with that from IO-based image data by ANN 
algorithm and compared their corresponding validation results derived from the 441 grid points.  Table 3 shows that 
all accuracy indices (AA, OAA, and Kappa) produced with IO-based data were consistently higher than those with 
pixel-based image data.  Secondly, in considering two algorithms’ performance with pixel-based image data only, 
from three accuracy indices in Table 3, ANN mostly outperforms MLC except OAA that was explained by MLC in a 
little bit of favor of classifying the 8 non-vegetated classes with relatively large test samples.  Thirdly, when 
comparing the effects of different numbers of features on the urban environmental classification, we can see that all 
accuracy indices, from Table 3 with 30 IO-based features are higher than those with 9 IO-based features. To test 
whether these differences (between the two classification units, between the two algorithms, and between the two 
numbers of features) are statistically significant, Table 4 lists Z-statistics calculated with Kappa and corresponding 
variance derived from test samples.  According to the Z-statistics in the table, the difference of results between ANN 
and MLC created with pixel-based image data is significant at 0.95 confidence level, and the difference of ANN 
results produced with different classification units (pixel-based and object-based) is significant at 0.90 confidence 
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level, whereas the difference of results created with different numbers of features (9 vs. 30) is not significant at 0.90 
confidence level although the absolute accuracy indices derived from 30-feature are all higher than those from 9-
feature.  This implies that there still exists a lot redundant information among the 30 feature variables, which does 
not proportionally improve classification result as the number of feature variables involved increase. 
 
 

DISCUSSION 
 

In this study, our experimental results demonstrated that the IO-based urban component classification 
outperformed the pixel-based classification.  When we used the same input feature variables (9 features), classifier 
(ANN) and same training/test data, the improvement of classification result with IO-based classification unit is 
statistically significant at 0.90 confidence level compared to pixel-based unit (AA increasing 3.1%, OAA increasing 
4.7% and Kappa increasing 0.04; from the validation result, OAA increasing 3.8% and kappa increasing 0.04).  
Unlike pixel-based techniques which only use the layer pixel values, the IO-based techniques can also use shape and 
contextual information of a scene covering the study area.  Therefore, if we consider more features (30 features), 
including some textural and shape/geometric features unique and only available to IOs, an improvement of 
classification result can be achieved compared to pixel-based and fewer features as input (AA increasing 6.9%, OAA 
increasing 7.4% and Kappa increasing 0.06; from the validation result, OAA increasing 10.7% and kappa increasing 
0.12).  Some features derived from IOs, in this analysis, were efficient to identify grass/lawn from tree canopies and 
to separate building/roof and impervious surface area.  Such a conclusion derived from our experiment, in fact, was 
not surprising when compared to the few previous studies conducted by other researchers.  For example, 
Shachelford and Davis (2003), Yu et al. (2006), and Guo et al. (2007) used object-based high spatial resolution 
imagery (airborne or satellite image data) to obtain similar conclusions, including: improving the identification of 
urban surface components; increasing accuracy of vegetation community classification; and mapping more accurate 
oak tree mortality.  In addition, when some researchers compared IO-based techniques with pixel-based techniques 
to change detection analysis, including deforestation analysis and other LULC change analysis, the analysis 
accuracies were improved significantly (Al-Khudhairy et al., 2005; Desclée et al., 2006; Zhou et al., 2008).  Thus all 
those previous studies and our experimental results did demonstrate the efficiency of using object-based 
classification techniques over that of using pixel-based approaches.  

 

Scale

1000 0 500 1500 m250

  
 

Figure 4.  Classification 
results of urban surface 
components, showing part of 
USF, using 9 features of pixel-
based (top) and IO-based 
(bottom) IKONOS imagery 
with ANN algorithm.  Right 
maps show corresponding 
USF gate area at 1:1 scale. 
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We also tested the performance of ANN (nonparametric algorithm) and MLC (parametric algorithm) with the 
nine pixel-based features for classifying the 9 urban LC classes.  The preliminary test result indicates that ANN 
outperforms MLC and the difference of accuracies between the two algorithms is statistically significant at 0.95 
confidence level.  In this analysis, the ANN is capable of handling spectral/textural confusions among Sand/soil 
(SS), Impervious surface area (IA) and Building/roof (BR) and among BT, NT and PT due to its ability to more 
efficiently deal with some possible nonparametric features than MLC.  We know that only four PS band features are 
parametric and therefore applicable to using MLC, but 3 HIS transfer indices and other SAVI and textural features 
are probably not full parametric features.  Compared to 0.3-m aerial photo interpretation, the mapped results for BR, 
IA, BT and PT produced with ANN apparently are better than those with MLC (maps not shown in the paper). A 
second reason to explain ANN generating better result is that it can efficiently make use of subtle spectral 
differences in the four PS band images due to its multilayer structure.  These two reasons may help explain why the 
ANN algorithm is more capable of mapping the urban environmental LC classes than MLC.  In fact, there have been 
many cases reported that ANN has produced better classification results with remote-sensing data when compared 
with traditional methods (e.g., linear discriminate analysis and MLC) (e.g., Gong et al., 1997; Erbek et al., 2004). 

Using the ANN algorithm, the difference of results created with different numbers of features (9 vs. 30 features) 
is not significant at 0.90 confidence level although the absolute accuracy indices derived from 30-feature are all 
higher than those from 9-feature.  This may be explained by two reasons.  Apparently, firstly, the variances with both 
9 and 30 features, relative to those with pixel-based, are large (e.g., 0.000030 and 0.000454 for the 9 features), 
which tends decreasing the significant level of difference of classification accuracy.  Secondly, although we had 
conducted an ANOVA analysis to select a subset from all candidate feature variables, it is possible that there still 
exists much redundant information among the 30 feature variables, which leads to not proportionally improving 
classification result with number of feature variables. This is because the ANOVA statistically tests the ability of 
individual features to differentiate every two classes rather than measuring the relationship between any two feature 
variables.  In addition, shadow might also influence the selection of features.  In this study, four ratio features (i.e., 
Ratio1 through Ratio4 selected into the subset of 30 features), based on their definition, should weaken the effect of 
the shadow on selection of features and classification results.  However, the effect of the shadow was evident from 
the mapped results. 
 

Table 4. Z-statistic tests calculated from Kappa-variance of classification results of test samples,  
generated with different classification units (pixel-based and IO-based) and using different algorithms 

(ANN and MLC) with 9 or 30 features. 

Scheme Pixel-based IO-based
Z(ANN(30 features vs. 9 features) n/a 1.4383
Z(ANN(pixel vs. IO each with 9 features))
Z(ANN vs. MLC each with 9 features) 2.4218** n/a

Note: *--difference between classification accuracies by two sets of input features is significant at 0.90 confidence level.
       **--difference between classification accuracies by two sets of input features is significant at 0.95 confidence level.
                      where, k1 and k2 are kappa vappa values of corresponding input feature 1 and input feature 2, 
                     respectively, and v1 and v2 are corresponding variances.

1.8864*
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CONCLUSIONS 
 

The experimental results indicate that in classifying urban surface components with the high spatial resolution 
IKONOS pan-sharpening data, the difference of accuracies produced with pixel-based and IO-based image data is 
statistically significant.  This is because object-based input features eliminate the effect of the “salt-and-pepper” on 
classification through image segmentation to create IOs, using features extracted from IOs including spectral, 
textural/contextual and shape/geometric features.  In evaluating the performance of the two algorithms, ANN 
outperformed MLC when using 9 features pixel-based image data, possibly because ANN can handle nonparametric 
image features such as SAVI, and textural features.  And in this particular test, using more features (30 vs. 9 
features) could increase IO classification accuracy, but was not statistically significant at 0.9 confidence level.  This 
might be attributed to redundant information existing among the selected features and possibly the impact of the 
shadow.  After this analysis, we can suggest some issues related to image segmentation worthy of greater attention, 
including: how to select the appropriate criteria to create ideal IOs to achieve accuracy for a particular application; 
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how to evaluate whether edge and shape of IOs overlap (coincide) the boundaries landscape (LULC type/patch) 
through justifying scales; and operationally what relationship exists between IOs and ecological basis. These issues 
should be continuously considered by us in developing object-based techniques with high spatial resolution imagery 
in the future. 
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