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ABSTRACT 
 

Image classification is an important task in the remote sensing field. In a previous study, the authors presented a 
semi-automated supervised level set-based hyperspectral image segmentation algorithm (LSHSA) (Ball and Bruce, 
2005). The LSHSA method used specialized speed functions created using pixel similarity and class discriminator 
functions. The pixel similarity function was based on an exponential term using three of the data bands with equal 
contributions from each band. The class discriminator functions had experimentally determined thresholds that were 
based on the training data, and were used to stop the segmentation at natural boundaries. This procedure is modified 
by using stepwise Fisher’s linear discriminant analysis (FLDA) with a receiver operating characteristics (ROC) 
decision metric to determine the best bands for class separation. Four new speed functions are proposed and 
investigated, based on an identity matrix, the covariance matrix, FLDA weighting coefficients, and the Fisher’s 
between-class covariance matrix. A HYDICE 191 band hyperspectral image of the Washington D.C. Mall area is 
used to validate the algorithm (Ball and Bruce, 2005). The classes segmented are grass, water, trees, paths, shadows 
and buildings. The results of the proposed algorithm are compared to the results from the previous study using the 
LSHSA and the maximum likelihood (ML) classifier. The results show that the new method provides better results 
than the previous LSHSA and ML. The main contribution of this paper is a new best bands-based speed function for 
segmenting hyperspectral imagery using the level set methodology with improved results over the original LSHSA.  

 
 

INTRODUCTION 
 

In a previous study, the authors presented LSHSA (Ball and Bruce, 2005). To our knowledge, this was the first 
study using level sets to segment hyperspectral imagery. This paper provides a further enhancement of the previous 
methods for using level sets for semi-automated endmember segmentation in remotely sensed hyperspectral imagery. 
The paper is organized as follows. First, current methods of dimensionality reduction and hyperspectral image 
segmentation are discussed. Level set segmentation methods, FLDA and ROC methods are summarized, and the level 
set discriminator, spectral similarity and speed functions are explained.  The band selection and level set segmentation 
procedures are explained. Finally, the experiments are discussed, and the results analyzed. 

 
 

CURRENT METHODS 
 

Dimensionality Reduction Methods 
Hyperspectral data typically have highly correlated bands (Lillesand et al., 2003), and for many processing 

algorithms, dimensionality reduction (DR) is required since the Hughes phenomenon can cause poor performance for 
high dimensional data (Duda et al., 2001). DR, also known as best bands analysis (BBA), is a common practice in 
hyperspectral remote sensing applications (Lillesand et al., 2003).  There are many methods for band selection, but all 
of the algorithms share the common goal of maximizing classifier or segmentation accuracy while keeping only the 
bands that best discriminate endmembers. Many of the DR methods utilize a discrimination metric such as ROC area 
under the curve (AZ), Bhattacharyya Distance (BD), Jeffries Matsuhita distance (JMD), etc. Many of these algorithms 
also use a linear or non-linear transformation in order to analyze and separate the classes. Some of the more common 
methods are: wavelet analysis; principal components analysis (PCA); independent component analysis (ICA); 
statistical moment analysis (SMA); kernel-based nonlinear projection (KBNLP); spectral angle mapping (SAM); 
modified Gram-Schmidt (MGS); linear projection pursuits (PP); canonical analysis (CA); and localized discriminant 
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bases (LDB). 
Bruce, Koger, and Li used wavelet based features and ROC curve based feature selection for classification of pure 

and mixed pixels. The dataset was a 2151 band dataset taken with Analytical Spectral Devices (ASD) Fieldspec Pro FR 
spectroradiometer. They achieved from 80% to 95% overall accuracy (Bruce et al. 2002).  Kaewpijit, Le Moigne, and 
El-Ghazawi also used wavelet based analysis and found that with the same level of data reduction, that wavelet based 
methods provided the same or better classification accuracies compared to PCA (Kaewpijit et al., 2003). Li, Bruce and 
Mathur prove theoretically and experimentally an abundance estimation using a least squares estimation can be 
improved by using wavelet based analysis and band reduction. They used 2151 band ASD Fieldspec Pro hyperspectral 
data. The primary advantage of using a wavelet based analysis is the ability to examine multiple bands using the 
wavelet coefficients (Li et al., 2002). Chang et al. presented a joint band selection and decorrelation method, using 
PCA and classification-based criteria on 210 band HYDICE datasets. They examined minimum variance PCA and 
maximum SNR PCA, FLDA, and subspace-based projections in conjunction with band prioritization based on 
eigenanalysis and band decorrelation based on a band divergence criteria. They determined that even with only keeping 
10% of the bands, good classification results could be obtained (Chang et al., 1999). Cheriyiadat and Bruce examined 
PCA for DR and showed that although it is a very popular method, it may yield suboptimal results when the end result 
is target classification (Cheriyadat and Bruce, 2003). They analyzed synthetic cases and 2151 band hyperspectral data 
from a Fieldspec Pro spectroradiometer. Du et al. used a modified ICA method and PCA for DR and showed that the 
proposed ICA-based method was superior to PCA for dimensionality reduction of six band multispectral data from a 
custom Pulnix digital multispectral camera (Du et al., 2003). Du used high order moments SMA analysis, using 158 
band AVIRIS images of a volcanic crater. A Neymen-Pearson eigen-thresholding detection theory approach was used 
to select the number of bands. This was a preliminary study, but the results were promising (Du, 2003). 

Gu et al. used KBNLP which required three processing steps: subspace partitioning of the data space, kernel PCA 
based feature extraction, and band selection based on a separability metric. Their results were found to be better than 
PCA for classification accuracy. The data used were 192 band AVIRIS images and 32 band airborne imaging 
spectroradiometer for applications (AISA) data (Gu et al., 2002). Kuybeda et al. used a modified Gram-Schmidt 
algorithm that finds the most distant pixels according to an orthogonal complement norm metric and derived a 
termination procedure for the algorithm. They used a hyperspectral 95 band image (Kuybeda et al., 2004). Lin and 
Bruce utilized PP to perform band analysis. ROC AZ and Bhattacharyya distance were metrics used in the band 
selection. Their results showed that serial parametric projection pursuits (SPPP) provided the best results in 
distinguishing two weeds from a crop using approximately 2000 band hyperspectral data from an ASD Fieldspec Pro. 
The accuracies obtained using SPPP were > 95% (Lin and Bruce, 2004). Riedmann and Milton used HYMAP and 
CASI data and provided an algorithm for band selection which was implemented in IDL/ENVI. It achieved good 
classification using the ML classifier (above 97% using 2 to 12 bands) (Riedmann and Milton, 2003). Tu et al. 
proposed a two-stage classifier based on a first band reduction stage using CA and a recursive ML (RML) classifier 
using a 60 band dataset from Purdue University. Their method showed similar performance to ML classification and a 
considerable speedup in processing time, from 4x to 150x speedup, depending on the final number of bands (Tu et al. 
1998). Venkataraman et al. utilized LDB with decision metrics to distinguish Cogongrass from Johnsongrass, which 
are two invasive species that look very similar spectrally. Data separation metrics were ROC curve AZ, BD, JMD, and 
band correlation, and various combinations of these metrics. Data fusion is also performed in the classification stage 
using multiple classifiers. The data was 2000 band data collected with an ASD Fieldspec Pro. They achieved 
classification accuracies of 80% – 90% using LDA and qualified majority voting (Venkataraman et al. 2005). 

 
Image Segmentation Methods 

There are many different approaches to hyperspectral image segmentation. Some of the more popular methods are 
maximum likelihood (ML); clustering; kernel-based methods such as support vector machines (SVM), kernel Fisher’s 
discriminant (KFD) analysis, and radial basis neural networks (RBNN); and more recently, active contour (AC) and 
level set methods. 

The ML classification algorithm is the most common method for remote sensing image segmentation. ML uses 
estimates of each classes mean and covariance to decide the most likely class membership. The method is well 
understood and implemented in many commercial remote sensing software packages such as ERDAS Imagine, 
IDL/ENVI and Multispec. Drawbacks of ML classification are that an adequate number of training samples are 
required, and performance generally degrades as the number of training samples decreases. ML requires inversion of 
the covariance matrix, which can become ill-conditioned if the number of training samples is inadequate. ML is subject 
to the Hughes phenomenon (Duda et al., 2001), which means as the data dimensionality increases, the classification 
accuracy will generally decrease. Also, most ML applications assume a normally distributed dataset, which must be 
verified (Lillesand et al., 2003). 
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Clustering is described in (Duda et al., 2001). Typical clustering algorithms use statistical measures to group 
pixels. Some clustering algorithms require seed point selection by a user and others determine seed points on their own. 
Clustering can be used as a segmentation method and as an initial method to select training samples, especially when 
the true number of endmembers in the image is unknown (Lillesand et al., 2003). Kernel-based methods have been 
employed in the past few years for hyperspectral image classification. Camps-Valls and Bruzonne analyzed several 
methods including SVM, KFD, RAB, and RBNN. They found that all methods had high output accuracies, and that 
KFD and SVM had a medium and high robustness to high data dimensionality. The data was AVIRIS data with 16 
classes (Camps-Valls and Bruzonne, 2005). Halldorsson et al. examined SVM with data fusion using decision 
boundary feature extraction and nonparametric weighted feature extraction. The class conditional probabilities from 
each class were used in the decision fusion stage. They found that splitting the data into three independent sources 
followed by feature extraction from each source and then SVM classification resulted in from 80% to 95% 
classification accuracy. In general, accuracy increased as the number of features grew (Halldorsson et al. 2004).  

There has been extensive research and development into level set and active contour image segmentation in 
general, and this method is just beginning to be used in multispectral and hyperspectral image analysis. The methods 
typically use PDE-based solutions with functions that control the segmentation by expanding it outwards and penalty 
functions that may control the curvature or attempt to stop the segmentation growth at natural boundaries (Osher et al., 
2003) and (Suri et al., 2002). Numerous examples of examples of level set-based edge detection, segmentation, and 
medical image analysis are given in (Osher et al., 2003) and (Suri et al., 2002).  Suri employed level sets for brain 
segmentation (Sumengen et al., 2001). Krissian, Ellsmere, Vosburgh, Kikinis, and Westin used level sets for 
segmentation of the aorta in 3D ultrasound images (Krissian et al., 2001). Sumengen, Manjunath and Kenney used 
level sets to segment 2D Cardiac Magnetic Resonance Images (MRI) and 3D prostrate MRI (Sumengen et al., 2001). 
In multispectral and hyperspectral image analysis, Keaton and Brokish used level sets to segment roads in pan 
sharpened IKONOS multispectral images (Keaton and Brokish, 2002), Dell'Acqua, Gamba and Prevedini extracted and 
tracked moving clouds in GOES and Meteosat IR satellite image sequences (Gamba et al., 2000), and Harper and 
Reilly used level sets to segment faces in RGB video (Harper and Reilly, 2000).  Lee, Snyder and Wang used active 
contours to segment real and synthetic RGB images. Their method used the level set methodology and used a 
multivariate mixture density model to analyze dissimilarities between regions in the image (Lee et al. 2005). Ball and 
Bruce segmented hyperspectral multi-class images with level sets. The data used was 191 band HYDICE images and 
compared the results for a six class problem to a ML classification. Both algorithms performance was similar (Ball and 
Bruce, 2005). 

 
Level Sets Methods 

For 2D image segmentation, the level set boundary is the zero level set of a 3D implicit function  . The level set 
methodology tracks the motion of the zero level set boundary according to forces acting normally to the zero level set 
curve. In the level set methodology, 2D level sets can be visualized as the level surfaces of a 3D function, and a simple 
partial differential equation (PDE) controls the changes to the level surface (Sethian, 1999). In order to achieve fast 
processing of the level set propagation, the function   is defined on a discrete set of points in 2D space (Sethian, 1999). 
The level set equation for front propagation with a 2D speed function, F(x,y), acting normal to the level set curve, is 
given by the PDE 0tφ φ+ ∇ =F , where 

tφ  is the partial derivative of φ  with respect to time, ( ),x yφ∇  is the gradient 
of φ  and .  is the magnitude operator (Sethian, 1999). The level set evolves according to the speed function, F, and it 
will continue to propagate as long as the speed function is positive.  Therefore, when level sets are used for image 
segmentation, the segmentation problem becomes one of determining the appropriate speed function and initializing the 
implicit function zero level set points at the seed points. The speed function can be created using two opposing forces: 
one to grow the segmentation, and the other to stop the segmentation at natural boundaries, such as the distinct line 
between a body of water and grass on the shore. For the interested reader, the basics of the level set methodology are 
found in Sethian’s book (Sethian, 1999), and many diverse applications and methods are discussed in (Sethian, 1999), 
(Suri et al., 2002) and (Osher et al., 2003). 

 
FLDA and ROC AZ 

FLDA  FLDA is a method commonly used for data dimensionality reduction (Fukanaga, 1990). The basic idea is 
that FLDA will create a linear transformation that simultaneously maximizes the between class variance and minimizes 
the within class variance, thus separating the classes as much as possible. FLDA assumes normally distributed data and 
provides a method to determine an optimal separation of the feature vectors for a C class problem into a separated 
feature vector with dimensionality C-1. Therefore, for a two class problem, FLDA returns a scalar feature. FLDA 
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maximizes the functional ( )( ) 1−T T
B WJ(w) = w S w w S w , where  BS  and WS  are the between-class and within-class scatter 

matrices, respectively (Fukanaga, 1990), (Welling, 2006). For a two class problem, BS  is  
 
 ( )( )= T

B T N T NS m - m m - m  , (1) 

 
where mT and mN are the mean vectors of the target and non-target class, respectively (Welling, 2006). FLDA generates 
an optimal solution (a set of weights applied to the data) that will best separate the target and non-target distributions 
(for a two class problem). It has been shown (Welling, 2006) that the optimal solution weighting matrix, OPTw , is  
 
 1 2−=OPT Bw S v  (2) 

 
where 1 2−

BS  satisfies 1 2 1 2=B B BS S S , and 1 2= Bv S w . Both w  and v  must also satisfy 1 λ− =W BS S w w . The solution to 
equation (2) is the eigenvector w  corresponding to the largest eigenvalue, λ  (Welling, 2006). 

 ROC AZ  ROC AZ (the area under the ROC curve), varies from 0.5 for the worst case scenario, where there is no 
data separating power, to 1.0 in the best case, where there is perfect data separating power. Higher values of AZ  
generally indicate increasing data separation capability of the system (Hanley and McNeil, 1982). An exhaustive search 
of all band combinations is intractable for hyperspectral images due to the large image size and number of bands. 
SLDA provides a good compromise in a search for a near optimal subset of bands. 
 
Level Set Segmentation 

This section describes the hyperspectral level set segmentation methodology used in (Ball and Bruce, 2005).  
Class Discrimination Functions.  Class discrimination functions, cD , for a class c, are 2D functions which 

attempt to distinguish the different classes based on the unique spectral characteristics of each class. First, vegetation 
(grass, trees) and non-vegetation (paths, buildings, shadows, and water) are separated. To further discriminate the 
vegetation classes (trees and grass), a tree-discriminator is employed, which is based on the tree and grass training 
signatures. The other classes are discriminated in a similar manner. The Normalized Difference Vegetation Index 
(NDVI) is used to separate vegetation from non-vegetation. NDVI is the most common method of differentiating 
vegetation from non vegetation (Lillesand et al., 2003). Once vegetation and non-vegetation are separated by the NDVI 
discriminator, the vegetation classes need separation. Note that all discriminator functions are evaluated for every pixel 
in the image. The discriminator functions used in this study are exactly the same as those listed in the original level set 
segmentation methodology (Ball and Bruce, 2005). 

Speed Function. The speed function should allow the level set to propagate the segmentation if the boundary 
pixel signatures are similar to the seed signature. For each class, the seed pixel will be set to the mean value of the 
training signatures. The spectral similarity to each pixel is calculated using a set of best bands for each class. The 
level set must be stopped at proper boundaries, which is accomplished by multiplying the similarity function by the 
class discrimination function at each image pixel. These two functions are discussed next. 

Spectral Similarity Function.   The spectral similarity function compares the similarity of each pixel to a given 
seed pixel signature. In (Keaton and Brokish, 2002), Keaton and Brokish define a spectral similarity function, 

cS  for a 
class c. Let c be the class number, B be a subset of the image bands, 

cs  be a vector containing the normalized mean 
value of a set of seed pixels for class c, ( , )I x y  be the normalized signature of the pixel in the image at location (x,y), 
and cD  be the class discriminator function defined in (Ball and Bruce, 2005). The image and seed pixel normalization 
is performed by dividing the signature by the largest DN value for all pixels and all bands in the image. Then the 
spectral similarity function, based on the band subset B, is given by  
 
 ( ) ( )( ) ( )( )1, exp , ,

2c c cx y x y x y⎧ ⎫= − − −⎨ ⎬
⎩ ⎭

T

B B
S I s Σ I s  , (3) 

 
where the matrix transpose operator is T, and  

B
x  means the argument x is evaluated only for the bands in B. Note that 

in (Keaton and Brokish, 2002), Σ  was originally defined as 1−Σ . Equation (3) is evaluated for each pixel (x,y) in the 
image and for each class c = 1, …, C, where C is the total number of classes. Thus if there are C = 6 classes, then there 
will be six speed functions generated. For a given class c, the pixels that most closely match the seed pixel signature 
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will have larger values of 
cS , while pixels that don’t match closely will have small values of 

cS . The level set 
algorithm will not allow the segmentation area to propagate to the pixels where 

cS  has a near zero value. 
 
 

METHODOLOGY 
 
Keaton and Brokish suggest that Σ  can be altered based on the image statistics, but do not provide a method for 

performing this step (Keaton and Brokish, 2002). The focus of this study is centered on investigating the differences in 
accuracy by using different matrices Σ . The following four methods are proposed: (method 1) an appropriate identity 
matrix; (method 2) the inverse of the covariance matrix of the training data; (method 3) the inverse of the between class 
covariance matrix from FLDA analysis; and (method 4) a matrix composed from the FLDA weight coefficients. 
Method 5 uses a 3 x 3 identity matrix, and method 6 is based on ML classification. These methods are summarized in 
Table 1, below. Methods 1-4 are the new methods examined, and methods 5 and 6 are the original methods described 
in (Ball and Bruce, 2005), and are used for baseline comparison purposes.  

  

 
Method 4 uses the FLDA weights, and Σ  is calculated as follows. Assume that there are b bands selected. If w  is 

the vector of FLDA weights from the band selection algorithm, with [ ]1 bw w=w " , then Σ  is given by the following 

equation for { }, 1, ,i j b∈ "  : 

 
, 0

i
i j

w i j
otherwise

=⎧
= ⎨

⎩
Σ  . (4) 

 
For this study, equation (3) is modified by changing the matrix Σ  and using a new scalar multiplier based on the 

method. Let the best bands selected for class c be 
c1 N= {b , , b }cB … .  The speed function 

,k c
�S  for method k and class c is 

 

 ( ) ( ) ( )( ) ( )( )
, ,

, ,, , exp , ,
c k c k

k c c k c k c cx y x y x y x yα
⎧ ⎫⎡ ⎤ ⎡ ⎤= ⋅ − − −⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

�
T

B B
S D I s Σ I s  , (5) 

 
where { }1, ,5k ∈ "  is the method, c is the class number, C is the total number of classes, 

ms  is the normalized mean 
value of the signature of class c training pixels, 

,k cΣ  is the weight matrix for method k and target class c, kα  is a 
weighting constant, and 

cD  is the class discriminator function defined in (Ball and Bruce, 2005). The notation T means 
the matrix transpose, and 

cB
x  means the argument x  is evaluated only for the bands in cB . The weighting constant kα  

was experimentally determined. The final level set speed function for each class c is given by the following equation, 
which is evaluated at all points (x, y) in the image: 
 
 ( ) ( ) ( ), ,, , ,k c c k cx y x y x y= ⋅ ��F D S  . (6) 
 

Level Set Multiple Class Segmentation. To discriminate classes, the hyperspectral properties of each class are 
exploited (Lillesand et al., 2003), (Landgrebe, 2003). There are several methods of segmenting images into multiple 

Method 
Number 

Classification 
Method Description Bands Used 

Method 1 Level Set Identity matrix of appropriate size based on selected bands. Best bands selected. 

Method 2 Level Set Covariance matrix of training data. Best bands selected. 

Method 3 Level Set FLDA between-class covariance matrix – reference equation (1). Best bands selected. 

Method 4 Level Set Matrix of FLDA weights – reference equation (4). Best bands selected. 

Method 5 Level Set 3x3 identity matrix. This method provides a baseline. Bands 36, 52 and 63. 

Method 6 ML This method provides a baseline. Bands 36, 52 and 63. 

Table 1.  Description of experimental methods. 
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classes using level sets: one method is to let each class have a unique disjoint level set and have rules prohibiting 
overlap (Brox and Weickert, 2004); another method is to use a keep-out region which prohibits a propagating front 
from moving into the region (Mitchell 2005). This study uses a method in which each class will be sequentially 
segmented, and each class can overwrite the previous classes’ segmentation. The image is segmented in the following 
order: water, paths, grass, trees, buildings, and then shadows.  

 
Band Selection Algorithm 

Stepwise LDA (SLDA) using FLDA, forward selection, and backwards rejection will be used for band selection, 
with ROC curve area AZ as the decision metric. The following section describes the band selection algorithm, which is 
similar to the algorithm discussed in (Venkataraman, 2005), with the addition of backwards rejection. The forward 
selection procedure starts by calculating AZ values for each band separately, using one class as the target and all others 
as the non-target. The AZ values are then sorted in descending order. The band with the highest AZ value gets placed 
into a feature vector and ROC area is AZ1 = AZ. The second best band is then appended to the feature vector and AZ2 is 
computed. The second best band is only retained if AZ2 > AZ1. Then the third best band is then appended to the feature 
vector and AZ3 is computed. The third best band is only retained if AZ3 > AZ2. This process is continued until all bands 
are examined, or until the maximum number of bands allowed is reached. The maximum number of bands is 
determined by the minimum number of training signatures for a class (Fukanaga, 1990). As a rule of thumb, for every 
ten training signatures, one feature can be added. Therefore to keep five bands, there needs to be at least 50 training 
signatures for each class. 

Next, backwards rejection is then performed. Assume at this stage that there are b bands selected in the feature 
vector and the best ROC area is AZ_BEST. If b > 1, then the first feature is removed and the ROC area AZ1’ is calculated. If 
AZ1’ > AZ_BEST , then the first feature is removed and AZ_BEST  is set to AZ1’. This process continues until all bands have 
been removed and the ROC area recalculated. At the end of the procedure, there is a feature vector which contains the 
set of selected bands, the best AZ value found, and the weighting coefficients (reference equation (1) ). 

 
Segmentation Methods 

Four different level set segmentation methods will be examined (methods 1-4), and the results compared to the 
original level set segmentation method (method 5) and ML (method 6).  Methods 5 and 6 are the same as proposed in 
(Ball and Bruce, 2005) and use the original three bands: 36, 52, and 63. The following sections discuss the various 
segmentation methods. The methods summarized in Table 1 will be used to examine the effects of different matrices Σ  
in equation (5) on classification accuracy.  

 
Segmentation Algorithm 

The following algorithm is used to perform the level set segmentation. The discriminator functions used in (Ball 
and Bruce, 2005) did not allow the level sets to propagate to all pixels in the image, and therefore pixels were left 
unclassified. For this study, since the discriminator functions were not changed from the original study, all unlabeled 
pixels will be classified as grass, since this is the most prevalent endmember. The segmentation algorithm is shown in 
Figure 1 below. 
 

 
Begin LSHSA Algorithm 
 
 Set the initial segmentation to all pixels unlabeled. 
Perform band selection using SLDA (for k=5, use bands shown in Table 1). 

 For each class c=1 to 6 
  Calculate the discriminator functions 

cD . 

  For each method k=1 to 5 
   Calculate  

,k cΣ  according to the methods in Table 1. 

   Calculate the speed function using equations (5) and (6). 
   Using the level set method, segment class c from the image. 
  End For 
 End For 
 Force unlabeled pixels to grass. 
 
End LSHSA Algorithm 

 
Figure 1.  LSHSA algorithm for methods 1-5 (Reference Table 1). 
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General Details 
The work in this study is done using MATLAB, except for selection of training signatures, which is done in 

ERDAS Imagine. MATLAB was Matlab student version 7.0.1.15 (R14) Service Pack 1. The ERDAS Imagine software 
suite is version 8.6, dated November 12, 2002, from Leica Geosystems Inc. (http:gis.leica-geosystems.com/ 
product_units/geographic_imaging/, 2005). The level set code used is the Matlab Toolbox for Level Sets version 1.1 
beta, dated March 6, 2005, which can be downloaded without charge from the author’s website (Mitchell, 2005). 

To select training pixels, areas of interest are created using the region growing functionality functions in Erdas 
Imagine (http:gis.leica-geosystems.com/product_units/geographic_imaging/, 2005), which will generate statistically 
homogeneous sets of pixels for each class. Validation points were chosen by hand for each class. The classification 
results are compared to the hand labeled ground truth data by using a confusion matrix and the user’s, producer’s and 
overall accuracies. The confusion matrix compares the classification results to known ground truth data on a class by 
class basis. Producer’s accuracy describes how well pixels of a given class are classified, and user’s accuracy is a 
measure of the probability that a classified pixel matches what class is actually on the ground (Lillesand et al., 2003), 
(Congalton, 1998).  

 
 

DATA 
 
The hyperspectral data is a 191 band raw digital number (DN) hyperspectral image of the Washington D.C. Mall 

area in the U.S.A. The D.C. Mall image is provided on a compact disk which accompanies the book by Landgrebe 
(Landgrebe, 2003). The D.C. Mall image was taken by the Hyperspectral Digital Imagery Collection Experiment 
(HYDICE) sensor on August 23, 1995. For more information, reference   (http://www.lars.purdue.edu/home/image_ 
data/ hydice_dc_wavelengths.html, 2005). HYDICE is a push broom aircraft sensor system which operates in the 
spectral range of 400 to 2500 nm and provides 320 columns across-track by 210 spectral bands with approximately 10 
nm spectral resolution (http://aviris.jpl.nasa.gov/, 2005).  After several noisy bands were removed, the final image has 
191 spectral bands. In this paper, the term band refers to the image band, which is not necessarily the sensor band, since 
some of the sensor bands were eliminated. All band wavelengths are the band center wavelengths. A smaller sub-image 
was created from the larger original image, which has dimensions of 129 by 235. The image is shown in Figure 2 (a) as 
a false color images created from bands 63, 52, and 36 (red, green, and blue, respectively), and is the DC_1 image in 
(Ball and Bruce, 2005). 

 
 

RESULTS 
 
The segmentation algorithm in Figure 1 was applied to the test image. The first step was to select the best bands by 

comparing each class to all of the other classes using SLDA. Table 2 shows the resulting AZ values and bands selected. 
Note that in the cases of shadows and trees, only one band was selected. All endmembers had AZ values higher than 0.9 
except for paths and trees.  Tree signatures can easily look like grass signatures, since the trees had leaves at the time of 
the image. Figure 2(a) shows plots of the AZ values vs. band number from best bands analysis for the grass endmember, 
and Figure 2(b) shows plots of the PDF of the signature values after transformation using the FLDA weights from 
equation (2). Notice how the grass signatures are clustered on the right side of the feature space, while the water, 
buildings, and paths endmembers are mostly well separated, as expected. There is a small overlap of paths and grass, 
and trees and grass. The path and grass overlap could be due to a grassy area that is trodden down, which appears to the 
sensor as a path-like area. The trees and grass have very similar looking spectral characteristics, so it is not surprising 
that there is some overlap here. Also, there is most likely some pixel mixing occurring, and this could account for the 
crossover of these classes. Grass was best separated using bands 91 and 96 which have center wavelengths of 1190 and 
1264 nm, which is in the near infrared region of the spectrum. If the image was taken at another time of the year, these 
bands would most likely change. 

 
 
  

CLASS Az  BANDS CLASS Az  BANDS CLASS Az  BANDS 

Water 0.972 66, 131 Buildings 0.997 8, 11 Trees 0.833 62 

Shadow 0.943 118 Paths 0.808 2, 3, 10 Grass 0.936 91, 96 

Table 2. Best Bands and ROC AZ values.
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(a) (b) 
Figure 2.  FLDA weighting coefficients applied to grass signatures. (a) Plots of ROC AZ  values vs. band number 
from best bands analysis. (b) Plot of PDF of each class after projection into the FLDA feature space by using the 

FLDA weight coefficients. 
 
After determining the best bands, the resulting matrices were examined and the scaling parameters were selected in 

order to produce a reasonable speed function, since each method had a different procedure for creating Σ .  If the 
parameter was set too low or too high, then the image would be severely over or under-segmented. The weighting 
constants were experimentally determined: 

kα  is 0.20, 0.05, 2.00, 0.02, and 0.50 for k = 1 … 5, respectively. 
Figure 3(a) shows the original hyperspectral image in false color. Figure 3(b) and 3(c) shows the locations of 

testing regions, which are color coded based on the endmember, superimposed on and grayscale version of the image, 
and the color scheme for each endmember, respectively. Figure 3(d)-(i) shows the segmentation results (thematic map) 
for methods 1 – 6, respectively. From Figure 3, it appears that the test area for buildings is too large, and this will show 
as poor producer’s accuracies for this class.  

A visual inspection of Figure 3 shows that all methods did a fairly good job. Method 3 was the only one that 
correctly segmented the water in the upper left hand side of the image. Method 6 appears to have over segmented grass 
over trees. Method 6 picked up small trees in the upper right hand corner that methods 1-5 missed. Method 6 had 
sporadic building pixels, which was prevented by the strong discriminant function used in methods 1-5. Method 2 
slightly over segmented the water boundary (the Potomac) near the bottom of the triangular area in the top left-hand 
corner of the image. Method 6 did not find as many shadows as the other methods. A quantitative comparison of the 
results is shown in Table 3 and Figure 4. Table 3 shows the confusion matrices for each method, and the user’s, 
producer’s and overall accuracies are shown in Figure 4(a)–(c), respectively. In general, shadows and buildings had 
some confusion in all methods. Method 6 confused trees with buildings and paths. The results for methods 1-4 are quite 
similar, based on user’s, producer’s and overall accuracies. 

Overall, water and buildings were segmented with the most user’s accuracy. All user’s accuracies were above 
90%. The producer’s accuracies for buildings are misleading, since the ground truth data overestimated the building 
size. Methods 1-4 provided the best overall results, with method 5 nearly as good, and method 6 much worse. This 
could be due to using the particular three bands chosen, although methods 5 and 6 used the same bands. The striking 
similarities between methods 1-4 may indicate that the similarity function has provided near optimal results, and that 
the discriminator functions were very critical because they stopped the level set propagation for all of these methods. 
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(a) Original Image (b) Testing Locations (c) Class color codes 

   

(d) Method 1 segmentation results (e) Method 2 segmentation results (f) Method 3 segmentation results 

   

(g) Method 4 segmentation results (h) Method 5 segmentation results (i) Method 6 segmentation results 

Figure 3.  (a) Original image (false color RGB). (b) Black and white image with testing areas overlaid in color. 
(c) Color codes for the classes. (d) – (i) are the segmentation results for methods 1-6, respectively. 

 
 

CONCLUSIONS 
 
The overall classification accuracies for the four proposed methods were very good and outperformed methods 5 

and 6. Methods 3 and 4 seemed to be the best performing. The importance of the discriminator functions is critical, and 
these were not modified from the previous research. Also, it was surprising how well methods 1-4 performed with the 
low AZ values for paths and trees, as well as the small number of bands selected by the band selection algorithm. 
Methods 1-4 had accuracies on par or better than with many of the segmentation schemes discussed earlier. 

Future work could include: (i) a more automated method of generating the discriminator functions; (i) automated 
selection of proper weighting parameters for the spectral similarity functions; (iii) investigating non-linear methods for 
band selection, such as KDA or SVM based methods; and (iv) applying the method to other images of different 
dimensionalities and in other settings (i.e. a rural image). 
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 W  S B P T G    W  S B P T G 
W 94 0 0 0 0 0   W 94 0 0 0 0 0 
S 0 2640 187 0 5 0   S 0 2640 181 0 5 0 
B 75 68 1487 0 4 9   B 75 68 1493 0 4 9 
P 0 0 0 22 1 0   P 0 0 0 22 1 0 
T 0 0 13 0 432 0   T 0 13 0 0 432 0 
G 0 0 0 0 4 1759   G 0 0 0 0 4 1759

(a) Method 1.   (b) Method 2. 
                
 W S B P T G    W S B P T G 

W 94 0 0 0 0 0   W 94 0 0 0 0 0 
S 0 2640 204 0 0 9   S 0 2640 187 0 5 0 
B 75 68 1470 0 0 0   B 75 68 1487 0 4 9 
P 0 0 0 22 1 0   P 0 0 0 22 1 0 
T 0 0 13 0 433 0   T 0 13 0 0 432 0 
G 0 0 0 0 3 1768   G 0 0 0 0 4 1759

(c) Method 3.   (d) Method 4. 
                
 W S B P T G    W S B P T G 

W 94 0 0 0 0 0   W 101 0 8 0 0 0 
S 0 2681 290 0 5 0   S 2 2412 299 12 194 36 
B 75 29 1384 0 4 9   B 66 51 1316 0 0 0 
P 0 0 0 22 1 0   P 0 0 0 10 0 0 
T 0 0 11 0 434 0   T 0 0 258 51 252 0 
G 0 0 0 0 2 1759   G 0 0 0 0 0 1732

(e) Method 5. 
   (f) Method 6. 

 
CLASS LEGEND:  W=Water   S=Shadow   B=Buildings   P=Paths    T=Trees   G=Grass 
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(a) User’s Accuracies (b) Producer’s Accuracies (c) Overall Accuracies 
 

Figure 4. Graphs of accuracies.  (a) User’s accuracies. (b) Producer’s accuracies. (c) Overall accuracies. 
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