

THE UNIVERSITY OF

NEW SOUTH WALES $SYDNEY AUSTRALIA$

A Machine Learning Approach for Automatic Road Extraction

Xiongcai Cai 1, Arcot Sowmya 1, and John Trinder 2 ¹ School of Computer Science and Engineering, University of New South Wales and National ICT Australia ² School of Surveying and Spatial Information Systems, University of New South Wales Sydney, NSW 2052, Australia, {xcai, sowmya}@cse.unsw.edu.au, j.trinder@unsw.edu.au

Introduction

s en var af e var en af e var en af e var en va

Automatic Road Extraction

- concerned with development of computer vision algorithms for pattern recognition and vector delineation of roads from remotely sensed scenes - fundamental step in acquisition and maintenance of geographical databases

Machine Learning and Parameter Tuning

- many extraction algorithms exist, but heuristic or with manually tuned parameters

- parameter tuning is key to success of fully automated methods

Novel Automatic Method

- based on fast marching level set method
- machine learning for parameter tuning
- information fusion for refinement of object delineation

System Overview

Figure 1 Overview of the proposed system

23-Mar-06

Fast Marching Level Set Method

Similar to, but has advantages over, classic "snakes"

- consists of a moving contour, and
- user defined terms for introducing speed constraints
- **Smartly handles sharp corners and topological changes**

Fast Marching Level Set Method (ctd)

Assume $\phi(x,t)$, $x \in R^2$, is a scalar function such that at time t the zero-level set of $\phi(x,t)$ is the curve Let Y_0 be a closed, nonintersecting initial curve. at time t the zero-level set of $\phi(x,t)$ is the curve Y_1 , which consists of all pixel x satisfied $\phi(x,t) = 0$.

Level Set Function π $z=\phi(x,y,t=0)$

Let $\phi(x, 0) = \pm d(x)$, where d (x) is the distance from x to the curve Y_0 .

Let such level set of $\phi(x, t) = z$ evolve along its gradient field with speed F. The particle speed əx/ə^t in the direction n normal to the level set is given by the speed function F.

$$
\frac{\partial x}{\partial t} \cdot n = F \implies \frac{\partial x}{\partial t} \cdot \frac{|\nabla \phi|}{\nabla \phi} = F \implies \frac{\partial x}{\partial t} = F \cdot \frac{\nabla \phi}{|\nabla \phi|}
$$

By the chain rule, $\phi(x,t) = z \Rightarrow \phi_t + \frac{\partial x}{\partial t} \cdot \nabla \phi = 0 \Rightarrow \phi_t + F \cdot |\nabla \phi| = 0$

23-Mar-06

Fast Marching Level Set Method (ctd)

the company of the company

Assume that $F > 0$, $\Phi(x, y, t) = 0$ becomes single-valued in *t*, i.e. each pixel is visited once. This leads to the fast marching level set method:

 $F[\nabla \mu(\mathbf{x}, \mathbf{y})] = 1$, where

µ - arrival time of the contour F - the speed function

Combined with an optimal sorting technique, this leads to a very fast solution.

Road Recognition

s en en stie sie en en stie en en

- **K** Two Problems with fast marching level set method
	- **- Seed selection**
	- **- Parameter tuning for speed function**
- **WE Our Primary Contribution**
	- **- Automatic Seed selection (1)**
	- **- Automatic parameter tuning (2)**
- Further Performance Improvement
	- **- Information Fusion at decision level (3)**

(1) Seed Selection

Figure 2 Seeds learning

(1) Seed Selection (ctd)

- **EXAM** Candidate seeds extracted from junction centre points
- Feature subset selection for the seeds
- **K** Feature fusion for combining texture features from candidate seeds and segments
- C4.5 & SVM as learning algorithms
- $%$ **Stacking for decision fusion**
- **EXTER FEATURE:** (see next slide)

(1) Seed Selection (ctd)

Table 1. Feature List

(2) Parameter Tuning

Speed function formulation due to Keaton and Brokish (2003):

First attempt:

$$
F(x, y) = \left\{ \left(e^{-\frac{1}{2}(\hat{c}(x, y) - \overline{\mu}_0)} + e^{-|T(x, y) - T_0|} \right) \times \frac{1}{1 + |\nabla I(x, y)|} \right\} - 10^{-t} . (1)
$$

$$
\overline{\mu}_0 = \frac{1}{n} \sum_{i=1}^n I_i, T_0 = \frac{1}{n} \sum_{i=1}^n T_i
$$

- Add a term 10^t to enable learning the speed according to characteristics of the image
- Texture feature vector T is based on the 'best' feature subset of a larger feature set

Second attempt :

$$
F(x, y) = \left(e^{-\frac{1}{2}(\hat{c}(x, y) - \overline{\mu}_0) \Sigma^{-1}(\hat{c}(x, y) - \overline{\mu}_0)^T} + e^{-|T(x, y) - T_0|}\right) \times \frac{1}{1 + |\nabla I(x, y)|^P}.(2)
$$

• Term Σ and P are parameters that will be automatically tuned

Figure 3 Parameter learning

s en mariño en en año en en el seu

Sequential Search - for Speed Function (1)

- Sequential Search

Sequentially test a range of parameter values

- Evaluate and Compare

The extractor itself is used as part of the evaluation function Compare the performance for each parameter value attempted

- Select the best parameter value that produces the best performance of the extractor

- SVM regression to learn the relationship between image characteristics and best parameter value

r en en alleren en aller en en aller

Genetic search - for Speed Function (2)

- Genetic Algorithm

Random search method rather than analytical methods or exhaustive search Avoid constructing a complicated model using *a priori* knowledge Reduce the computation burden

- Evaluate and Compare same as sequential search
- Select the best parameter value
- SVM regression for learning

r en en alian en en alian en en alian en i

initialize θ , P_{cos} P_{must} L n-bit chromosomes do determine fitness of each chromosome rank the chromosomes do random select two chromosomes if Rand[0, 1) < P_{co} then crossover the pair at a randomly chosen bit else change each bit with probability P_{mut} remove the parent chromosomes

until L offspring have been created until reach the maximum iteration limitation θ return highest fitness chromosome

Figure 4 Genetic Algorithm

23-Mar-06

r en en atalen en en atalen en atalen en atalen

Training: initialize training images and references for each training image find optimal parameters by GA create features build parameter selection rules by learning return parameter selection rules Testing: initialize parameter selection rules, new images for each new image calculate features find parameters using selection rules return parameters

Figure 5 Parameter Tuning Using Genetic Algorithm

(3) Decision Fusion

Figure 6 Decision fusion

Majority Vote Rule:

 ∇ R₁ and ∇ R₂ are the decisions of the individual classifiers. Assign ROAD to class ω_{j} if $\nabla \text{R}_{\text{1}} \cap \nabla \text{R}_{\text{2}}$, otherwise NONROAD to class ω_{j} .

23-Mar-06

Experimental Setup

s en en eller en en eller en en ell

Dataset

•Dataset consists of 11 grey-scale high resolution remotely sensed images from a rural area.

•Size of each image is 1024*1024 pixels cropped from a larger image of ground resolution 1.3 meters per pixel.

•For experiments using genetic search, each image is further split into 9 patches to construct a 99 image patch training set.

•Leave-one-out cross validation is used in order to learn from the largest available dataset and obtain effective test sets.

Experimental Setup (ctd)

Evaluation Metrics

•We use the centerline vector reference model (Wiedemann et al. 1998).

•Manually delineated references are provided as line vectors.

- -- - (- -- -- - (- -- -- - -) - -- -- - (- -- -- -) - -- -- - - (- -- -- -) - -- - - (- --

• Evaluation is performed by comparing the recognized road centerline vectors against manual reference.

The evaluation measures are given by:

, , *classified TP reference TP length* $length_{TP}$, *correctness* = $\frac{length_{TP}}{length_{cla}}$ $completeness = \frac{length_{TP}}{1}$, *correctness* =

 $length_{TP} = length_{(reference \cap classified)}.$

•The two measures above are combined into a general measure of quality: $\text{CXC} = \text{completeness} \times \text{correctness}^2$ CXC is also used as the fitness for the genetic algorithm.

> A Machine Learning Approach for Automatic Road Extraction 19

23-Mar-06

Experimental Results - Seed selection

s en se se sie se se se sie sie se

K Achieved 89% correctness by leave-one-out cross validation

WE Only 4% false positives, causes incorrect object contours and centrelines

Final centreline was improved by decision fusion

Experimental Results – Sequential Search

s en en eller en en eller en en el

Table 2. Results of parameter learning by algorithm one

23-Mar-06

Experimental Results - Sequential Search (ctd)

in an ann an cheangar ann an cheangar an cheangar ann an cheangar an chea

Figure 7 Some experimental results using our method on remotely sensed images by algorithm one

Experimental Results – Genetic search

- - - - - - - - - - -

Table 3. Comparative results for shown images (CXC values) — High CXC is better.

Experimental Results - Genetic search (ctd)

Figure 8

Left: Image A (1024*1024 pixels) by learning approach (CXC 0.64 average).

Right: Patches results: a1, b1 and c1 by learning approach; a2, b2 and c2 by standard approach.

23-Mar-06

Experimental Results - Genetic search (ctd)

Original Image

Figure 10-1 Experimental Results of One image Over 4 Steps in the Learning Approach

23-Mar-06

Edges & Seeds

Figure 10-2 Experimental Results of One image Over 4 Steps in the Learning Approach

23-Mar-06

Contours

Figure 10-3 Experimental Results of One image Over 4 Steps in the Learning Approach

23-Mar-06

i_ _ _ _

Figure 10-4 Experimental Results of One image Over 4 Steps in the Learning Approach

23-Mar-06

Mapping Back

Figure 10-5 Experimental Results of One image Over 4 Steps in the Learning Approach

23-Mar-06

Conclusion

- **Region growing approach based on fast marching** level set method for road recognition
- $*$ **Automatic seed selection and parameter tuning using** machine learning
	- relationships: seeds class, seed characteristics and image characteristics
- relationships: parameters and image characteristics **■** Information fusion to refine road centreline