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Introduction

Automatic Road Extraction
- concerned with development of computer vision algorithms for pattern 
recognition and vector delineation of roads from remotely sensed scenes
- fundamental step in acquisition and maintenance of geographical databases 

Machine Learning and Parameter Tuning
- many extraction algorithms exist, but heuristic or with manually tuned 
parameters 
- parameter tuning is key to success of fully automated methods

Novel Automatic Method
- based on fast marching level set method
- machine learning for parameter tuning
- information fusion for refinement of object delineation
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System Overview

Figure 1 Overview of the proposed system
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Fast Marching Level Set Method

Similar to, but has advantages over, classic “snakes”
- consists of a moving contour, and
- user defined terms for introducing speed constraints
Smartly handles sharp corners and topological changes
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Fast Marching Level Set Method (ctd)
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Let γ0 be a closed, nonintersecting initial curve. 
Assume                      , is a scalar function such that 
at time t the zero-level set of              is the curve 
γ1, which consists of all pixel x satisfied                .

( ) ( )xdx ±=0,φLet                       , where  d (x)  is the distance 
from x to the curve γ0.

( ) 0, =txφ

Let such level set of φ(x, t) = z evolve along its gradient field with speed F. 
The particle speed əx/ət in the direction n normal to the level set is given by 
the speed function F.
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Fast Marching Level Set Method (ctd)

Assume that F > 0, Φ(x,y,t) = 0 becomes single-valued in t, i.e. each pixel is 
visited once. This leads to the fast marching level set method: 

( )  where1, y x, =∇µF
µ - arrival time of the contour
F - the speed function

Combined with an optimal sorting technique, this leads to a very fast solution.
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Road Recognition
Two Problems with fast marching level set method
- Seed selection
- Parameter tuning for speed function

Our Primary Contribution
- Automatic Seed selection  (1)
- Automatic parameter tuning (2)

Further Performance Improvement
- Information Fusion at decision level (3)
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(1) Seed Selection

Figure 2 Seeds learning
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(1) Seed Selection (ctd)

Candidate seeds extracted from junction centre points
Feature subset selection for the seeds
Feature fusion for combining texture features from candidate 
seeds and segments
C4.5 & SVM as learning algorithms
Stacking for decision fusion
Texture features (see next slide)
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(1) Seed Selection (ctd)

Table 1.  Feature List
Co-occurrence Matrix Based Histogram Based

energy mean

correlation variance

contrast skewness

dissimilarity kurtosis

homogeneity energy

entropy entropy

maximum

sum
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(2)  Parameter Tuning

Speed function formulation due to Keaton and Brokish (2003):

First attempt:
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t−10• Add a term to enable learning the speed according to characteristics of the image 

• Texture feature vector T is based on the `best’ feature subset of a larger feature set 
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(2)  Parameter Tuning (ctd)

Second attempt :
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• Term Σand P are parameters that will be automatically tuned
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(2)  Parameter Tuning (ctd)

Figure 3 Parameter learning
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(2) Parameter Tuning (ctd)

Sequential Search - for Speed Function (1)

- Sequential Search
Sequentially test a range of parameter values

- Evaluate and Compare
The extractor itself is used as part of the evaluation function
Compare the performance for each parameter value attempted

- Select the best parameter value that produces the best performance of the extractor

- SVM regression to learn the relationship between image characteristics and best 
parameter value
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(2) Parameter Tuning (ctd)

Genetic search - for Speed Function (2)

- Genetic Algorithm
Random search method rather than analytical methods or exhaustive search
Avoid constructing a complicated model using a priori knowledge
Reduce the computation burden

- Evaluate and Compare – same as sequential search

- Select the best parameter value 

- SVM regression for learning
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(2) Parameter Tuning (ctd)

Figure 4 Genetic Algorithm
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(2) Parameter Tuning (ctd)

Figure 5 Parameter Tuning Using Genetic Algorithm
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(3) Decision Fusion

Figure 6 Decision fusion
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Experimental Setup

Dataset

•Dataset consists of 11 grey-scale high  resolution remotely sensed images 
from a rural area.

•Size of each image is 1024*1024 pixels cropped from a larger image of 
ground resolution 1.3 meters per pixel. 

•For experiments using genetic search, each image is further split into 9 
patches to construct a 99 image patch training set.

•Leave-one-out cross validation is used in order to learn from the largest 
available dataset and obtain effective test sets.
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Experimental Setup (ctd)
Evaluation Metrics

•We use the centerline vector reference model (Wiedemann et al. 1998). 

•Manually delineated references are provided as line vectors.

• Evaluation is performed by comparing the recognized road centerline vectors 
against manual reference.

•The evaluation measures are given by:

•The two measures above are combined into a general measure of quality:
CXC = completeness × correctness2

CXC is also used as the fitness for the genetic algorithm.
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Experimental Results - Seed selection

Achieved 89% correctness by leave-one-out cross 
validation
Only 4% false positives, causes incorrect object 
contours and centrelines
Final centreline was improved by decision fusion
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Experimental Results – Sequential Search

Table 2.  Results of parameter learning by algorithm one

Based on learned t Based on optimal t

Image Learned 
t

Optimal t Complet
e

Correct CXC Complete Correct CXC

1 293 320 42% 100% 42% 42% 100% 42%

2 270 270 61% 93% 52% -

3 270 270 49% 82% 33% -

4 287 220 18% 100% 18% 9% 100% 9%

5 320 320 52% 100% 52% -

6 270 270 23% 85% 17% -

7 290 300 2% 78% 1% 2% 78% 1%

8 290 290 49% 68% 23% -

9 236 220 85% 92% 71% 81% 91% 68%

10 279 270 11% 75% 6% 11% 75% 6%

11 303 320 13% 100% 13% 16% 100% 16%

Same parameter value

Close parameter value,
Same results

Close parameter value,
Close results
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Experimental Results - Sequential Search (ctd)

Figure 7 Some experimental results using our 
method on remotely sensed images by algorithm one
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Experimental Results – Genetic search

All (average) Image A (average) Patch a Patch b Patch c

Learning approach 34% 64% 90% 98% 87%

Standard approach 20% 55% 67% 31% 53%

Improvement 14% 9% 23% 67% 34%

Table 3. Comparative results for shown images (CXC values) ─ High CXC is better.
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Experimental Results - Genetic search (ctd)

Figure 8

Left: Image A 
(1024*1024 pixels) 
by learning 
approach (CXC 
0.64 average). 

Right: Patches 
results: a1, b1 and 
c1 by learning 
approach; a2, b2 
and c2 by standard 
approach.
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Experimental Results - Genetic search (ctd)

Figure 9 Comparative Results
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Experiment Results (ctd)
Original Image

Figure 10-1 Experimental Results of One image Over 4 Steps in the Learning Approach 
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Experiment Results (ctd)
Edges & Seeds

Figure 10-2 Experimental Results of One image Over 4 Steps in the Learning Approach 



23-Mar-06
A Machine Learning Approach for 

Automatic Road Extraction 28

Experiment Results (ctd)
Contours

Figure 10-3 Experimental Results of One image Over 4 Steps in the Learning Approach 
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Experiment Results (ctd)
Centrelines

Figure 10-4 Experimental Results of One image Over 4 Steps in the Learning Approach 
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Experiment Results (ctd)
Mapping Back

Figure 10-5 Experimental Results of One image Over 4 Steps in the Learning Approach 
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Conclusion

Region growing approach based on fast marching 
level set method for road recognition
Automatic seed selection and parameter tuning using 
machine learning
- relationships: seeds class, seed characteristics and 
image characteristics
- relationships: parameters and image characteristics
Information fusion to refine road centreline
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