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ABSTRACT 

 
Current remote sensing analysis methods typically treat imagery as a regular grid of rectangular pixels representing 
regions with uniform information. In reality, a pixel represents a non-uniform integration of spatial information 
described by the sensor’s point spread function (PSF). This conceptual simplification of the sensor’s support 
facilitates the presentation of single images, but often prevents statistically rigorous analyses of imagery. This paper 
presents a methodology for merging multiple (source) images from sensors with dissimilar PSFs into a new (target) 
image, using a geostatistical inverse modeling framework. The inverse model takes into account the sensor PSFs, 
the spatial correlation of the information being modeled, and the measurement error of the source images. The 
inverse model yields both a best estimate of the target image and the estimation (co)variance of the target data. The 
inverse model approach is quite general and can be used to address many issues in remote sensing image analysis 
such as upscaling or downscaling imagery to different spatial supports, or merging variable-resolution images with 
different grid orientations. The methodology is can be applied to irregularly spaced data (such as images with 
geometric distortion due to rugged topography) or images with missing values (such as partially cloud-obscured 
optical images). 
 
 

INTRODUCTION 
 

Current remote sensing analysis methods typically treat electro-optical imagery as a regular grid of rectangular 
pixels with uniform information, where in reality a pixel represents a non-uniform integration of spatial support 
described by the sensor’s point spread function (PSF).  The difference between an idealized PSF and a realistic model 
of an actual sensor PSF is illustrated in Figures 1 and 2.  Figure 1 illustrates an idealized PSF of a sensor that is 
uniformly sensitive to signal within a rectangular region, corresponding to the boundaries of a remote sensing image 
pixel.  Figure 2 illustrates a realistic PSF of a sensor modeled by a two-dimensional Gaussian distribution (Townshend, 
2000). 

This conceptual simplification of a sensor’s response facilitates the presentation of images of remote sensing data, 
but hinders statistically rigorous analyses of the sensor data.  A sensor's PSF causes measurement values to be a 
weighted average of the signal both inside and outside of the pixel boundary.  For example, approximately 50% of the 
signal for a pixel in a MODIS image originates from outside the pixel boundary (Townshend, 2000). 
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Figure 1.  An idealized PSF which uniformly weights 

the sensor signal within the boundaries of a 
rectangular area corresponding to the pixel 

boundaries. 

Figure 2.  A two-dimensional Gaussian PSF.  The 
Gaussian PSF models the non-uniform sensitivity of 

a measurement to signal from both inside and 
outside the pixel boundary. 

 
This paper presents a methodology of incorporating a realistic model of the sensor’s PSF to improve estimates of 

the surface properties being observed.  The methodology can be applied to a single remote sensing dataset, or can be 
used to merge multiple (source) datasets from sensors with dissimilar PSFs into a new (target) image.  The 
methodology is based on the geostatistical inverse modeling framework.  The inverse model takes into account the 
sensor PSFs, the spatial correlation of the information being modeled, and errors of the source measurements.  The 
inverse model yields both a best estimate of data in the target image and the estimation (co)variance of the target data 
points.  An overview of the geostatistical inverse model methodology is shown in Figure 3.  The methodology, inputs, 
and outputs are further described in the following sections. 
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Figure 3.  Overview of the geostatistical inverse model methodology for remote sensing images.  One or more 
remote sensing measurement datasets with model-data mismatch errors and PSF models are fed into the 

geostatistical inverse model.  For the locations specified in the estimation grid, the model produces both best 
estimates and a measure of the uncertainty (posterior error covariance). 
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METHODOLOGY 
General Setup 

The standard estimation problem is to estimate the surface properties from remote sensing data with finite support, 
which we will formulate as a geostatistical inverse problem. Only the key equations are presented, and the reader is 
referred to Michalak et al. (2004) for a more in-depth discussion of the geostatistical methodology. 

The estimation problem may be expressed as: 
 
 

z h s,r  
 
 

where z is an n   1 vector of observations obtained by remote sensing and s is an  m   1 state vector obtained from the 
discretization of the surface properties that we wish to estimate. The vector r contains other parameters needed by the 
transformation model function h(s,r). The model-data mismatch (error) is represented by the vector υ.  This error 
encompasses both the measurement error associated with collecting the data and any random numerical or conceptual 
inaccuracies associated with the evaluation of the function h(s,r).  When the function h(s,r) is linear with respect to the 
unknown s, it can be written as:  
 
 

h s,r Hs  
 
 

where H is a known n   m  matrix, the Jacobian representing the sensitivity of the observations z  to the surface 
properties s (i.e. Hij =  zi/ sj where i is the index of observations and j is the index of estimation locations).  The 
sensitivity matrix is calculated in the same way whether one or multiple measurement datasets are considered.  In the 
case of multiple measurement datasets, the sensitivity matrix can be partitioned into 
 
 

H
H1

HG
 

 
 

where G is the number of measurement datasets. 
The state vector is modeled as a random function with a constant (unknown) mean 
 
 

E s X  
 
 

where E[ ] is the expectation operator, X is a known m   1 matrix of ones, and β is the unknown mean of the random 
function. 

The prior covariance matrix is used to describe the spatial correlation of the state values 
 
 

Q E s X s X T
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The best estimate and posterior variance of the surface properties are found by solving the following system of 
linear equations 

HQHT R HX

HX T 0

T

M

HQ

XT

 
where R is model-data mismatch.  The best estimate of the surface properties is given by 
 
 

ŝ z  
 
 

and the posterior covariance matrix of the surface properties is 
 
 

Vŝ XM Q QHT T
 

 
 

The diagonal elements of the posterior covariance matrix represent the posterior variances of the properties at the 
individual surface locations. The square root of the posterior variance is the standard error of estimation. 
 
 

MODEL SELECTION 
 
Sensor Point Spread Functions (PSFs) 

The sensitivity of the observations to the surface properties is primarily controlled by the sensor’s optics, although 
other factors such as viewing geometry and atmospheric effects may be significant.  The sensor's optics are generally 
described by a PSF), which describes the response of a single image pixel to the surface properties under ideal 
conditions.  An appropriate model of the PSF for many electro-optical sensors is the two-dimensional symmetrical 
Gaussian distribution (Huang et al., 2002) 

 
 

Hi,j PSF zi, sj exp x u 2 y v 2

2 psf
2

 
 
 

where x and y are the coordinates of estimate locations in the image space, u and v are the local coordinates relative the 
center of the measurement, and σpsf is the scaling factor which describes the spread of the PSF.  The scaling factor and 
pixel spacing are generally related, with the pixel spacing being approximately double the scaling factor.  For example, 
MODIS 250-m bands can be modeled with a scaling factor of 123.5 m (Barker and Burelhach, 1992). 
 
Covariance Model 

The prior covariance matrix is used to describe the expected spatial correlation of the surface properties. We model 
this using an exponential covariance function: 

 
 

Qij sill
2 exp

hij

l  
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where σ2
sill is the sill semi-variance, hij is the separation distance between surface property locations and l is the integral 

scale (which is approximately a third of the effective correlation range).  
The measurement error covariance matrix is used to model the expected covariance of the model-data mismatch.  

For this work, we will assume all measurement errors are independent and have a uniform variance.  Under these 
assumptions, the measurement error covariance matrix is modeled as 

 
 

R R
2 I  

 
 

where σ2
R is the variance of the measurement error, and I is an n   n identity matrix. 

 
 

SAMPLE APPLICATION 
 

The following section presents a sample application of merging two remote sensing datasets of differing 
resolutions, grid orientations, and spatial extent.  The two datasets were derived from a source image of finer resolution, 
which will be considered to be the 'truth,' and to which the measurement datasets and inversion estimates will be 
compared. 

 
Source Image 

The source image (Figure 4) is a 100 by 100 pixel true-color image of the Boston harbor area, corresponding to a 
400 by 400 m ground extent.  To illustrate the method, the red band of the image was extracted and colored according 
to its digital number (DN), which ranges from 0 to 255 (Figure 5).  Several features can be identified within the image, 
such as a bridge and its shadow, two lanes extending over the waterfront, and several watercrafts. 

 

  
 

 
Figure 4. The RGB source image of a waterfront 

area, with a total extent of 400 by 400 meters. 
(Image copyright Space Imaging LLC) 

Figure 5. The red channel of the source image used 
to generate the measurement datasets. The 
reflectance is specified in units of digital 

numbers (DN). 
 

Simulation of Measurements 
Two datasets were simulated from the source image using the PSF model.  Dataset #1 is a 20 by 20 grid at a 5 pixel 

spacing, and uses a PSF scaling factor of 2.5 pixels.  From a map of these measurements (Figure 6a), the difference 
between water and land is evident, and the prominent linear features of the bridge and its shadow can be identified, but 
it is difficult to identify small features present in the source image. 

Dataset #2 is a 40 by 10 grid at a 2.5 pixel spacing, and uses a PSF scaling factor of 1.25 pixels.  This dataset of 
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measurements only covers 25% of the area of the source image.  Within the extent of this dataset (Figure 6d), additional 
features can be identified, such as the separate road lanes extending over the waterfront. 

 
Inverse Model Results 

From the measurement datasets, we seek to obtain a best estimate and standard error for each cell in a 50 by 50 
grid covering the entire extent of the source image.  Each grid cell covers the area of 2 by 2 pixels of the source image.  
We assumed reasonable values to parameterize the inverse model components, but did not optimize the parameters to 
the datasets.  The variance of the measurement error was assumed to be 2 DN2 for all measurements, while a sill 
variance of σ2

sill=10 DN2 and an integral length of l=2 pixel units were used for the exponential covariance model of 
the surface properties.  

The results of the geostatistical inverse model based on the sensor datasets are shown in Figure 6.  The first column 
of images displays the location and values of the sensor measurements, the second column presents the best estimate 
produced by the geostatistical inverse model, and the third column presents the estimation standard error produced by 
the geostatistical inverse model.  The estimation standard error image quantifies the uncertainty of the estimate for each 
grid cell of the estimation image, and is controlled by the relative locations of the measurements and grid estimation 
cells, as well as other model parameters.  Cool colors (blue) indicate relatively low uncertainty of the estimated value, 
while warm colors (red) indicate relatively high uncertainty.  The first row contains the images for Dataset #1 (coarse 
resolution, full extent), the second row contains the measurements and results of Dataset #2 (fine resolution, limited 
extent), and the third row contains the measurements and results when both Dataset #1 and Dataset #2 are considered 
simultaneously. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ASPRS 2006 Annual Conference 
Reno, Nevada  May 1-5, 2006 

 

 Measurements [DN] Best Estimate [DN] Estimation Standard Error [DN] 
 

   

M
ea

su
re

m
en

t D
at

as
et

 #
1 

(a) 

 

(b) 

 

(c) 

 

M
ea

su
re

m
en

t D
at

as
et

 #
2 

(d) 

 

(e) 

 

(f) 

 

M
ea

su
re

m
en

t D
at

as
et

 #
1 

&
 #

2 

(g) 

 

(h) 

 

(i) 

 
Figure 6.  Images of the sensor measurements, inverse model best estimates, and estimation standard errors 

for measurement Dataset #1, Dataset #2, and both datasets simultaneously.  The axis units are in pixels of the source 
image (Figure 5). 

 
 
The benefit of incorporating a realistic PSF of the sensor is illustrated by comparing the sensor measurement image 

(Figure 6a) to the best estimate image (Figure 6b) for Dataset #1.  The best estimate image is more detailed because the 
inverse model deconvolves the spreading effect of the sensor, and is therefore able to reproduce more of the contrast 
and the high and low values of the source image (Figure 5).  The estimation standard error values (Figure 6c) are 
influenced by the distance between the PSF centroid and the estimation grid, and the image appears as a regular pattern 
due to the alignment of the measurement and estimation grids.  The estimation standard error image is relatively 
uniform, due to the uniform distribution of the measurements. 

The results for Dataset #2 illustrate how a relatively high resolution dataset can improve the results of the inverse 
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model.  Within the extent of the measurements (Figure 6d), the best estimate (Figure 6e) displays higher contrast and 
more features (relative to Figure 6b) of the original source image (Figure 5).  Outside the extent of the high-resolution 
measurements, the best estimate is uniform.  The estimation standard error (Figure 6f) illustrates that the uncertainty is 
relatively low in the vicinity of the high-resolution measurements, and is uniformly high outside the extent of the 
measurements. 

The third row of Figure 6 illustrates the results when both the low-resolution (Dataset #1) and high-resolution 
(Dataset #2) datasets are merged within the geostatistical inverse model.  Figure 6g shows the relative placement of the 
two datasets.  Within the extent of the high-resolution measurements, the best estimate image (Figure 6h) exhibits 
relatively high contrast and the estimation uncertainty is low (Figure 6i), relative to the area where only low-resolution 
measurements are available. 

 
 

DISCUSSION 
 

The sample application presented in this paper demonstrates the ability of geostatistical inverse modeling to 
1) recover the source image by taking into account the sensor’s PSF, and 2) combine information from two remote 
sensing images with different pixel resolutions, grid orientations, and geographic extents.  The presented methodology 
could also be used to merge information from more than two datasets, such as merging the four or more daily MODIS 
images obtained from the ascending and descending paths of the NASA’s AQUA and TERRA satellites. 

The sample application also demonstrates the methodology’s ability to produce estimates at a finer resolution than 
that of the measurements.  Similarly, by choosing a coarse estimation grid, the methodology could be used to produce 
estimates on an upscaled resolution grid (larger grid cells).  The methodology could be applied to multiple bands of a 
image, and bands could be assumed to be independent or correlation between bands could be modeled. 

The methodology could be applied to a collection of images to limit or remove the effect of clouds, by merging 
datasets with differing cloud cover.  Cloud-affected measurements could be incorporated by one of two methods.  The 
first method would be to remove cloud-obscured measurements from the vector of observations (z), so that these 
measurements would not be considered in the inversion.  The second method would be to prescribe a higher  model-
data mismatch error (υ) variance for cloud-affected measurements, such that this measurement information would be 
included but would be treated as less precise than the cloud-free measurements. 

The methodology does not require the measurements to be aligned in a regular grid.  For example, the presented 
approach could be used to produce orthogonally gridded products from the Landsat 7 Enhanced Thematic Mapper Plus 
sensor, which suffered the loss of the scan line corrector mechanism resulting in a zig-zag pattern across the satellite 
ground track.  This could either be performed on a single Landsat scene, or could be performed on a series of Landsat 
images to reduce the estimation uncertainty in the ‘gap’ regions of the zig-zag pattern. 

The presented sample application uses a two-dimensional Gaussian function to model the PSF of electro-optical 
sensors.  More realistic models could be easily incorporated, such as models that incorporate the sensor optics, detector, 
filters, atmospheric transmission, and motion blur.  Improvements in the PSF would decrease the model-data mismatch, 
and thereby lower the estimation variance. 

By relaxing some of the assumptions utilized in the present description, the methodology could be extended to 
apply to other issues related to merging datasets.  Currently, the sensitivity matrix is only based on the sensor PSF 
model and assumes a nadir looking sensor, viewing flat terrain.  The sensitivity matrix could be adapted to take into 
account the changes in the geometric field of view when viewing areas of rugged topography.  This adaptation would 
be particularly useful when integrating multiple non-nadir looking sensors, because the dissimilar measurement 
footprints would provide additional information to the inverse model. 

Finally, the current methodology was presented assuming a constant (unknown) mean. This assumption could be 
relaxed to allow for a piecewise or smoothly varying mean, which could be used to incorporate additional information 
known about the estimated properties, such as land cover information.  Incorporating additional information into the 
mean model has been demonstrated to produce improved estimates in geostatistical interpolation (Erickson et al., 2005) 
as well as geostatistical inverse modeling (Michalak et al., 2004 and 2005ab; Mueller et al., 2005; Gourdji et al., 2005). 
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CONCLUSIONS 
 

A methodology for integrating the information contained in multiple remote sensing images was described.  A 
sample application was presented which integrated two datasets with different measurement spacings, grid orientations, 
and spatial extents.  The methodology is quite flexible, and can be extended to address current issues in electro-optical 
remote sensing such as upscaling/downscaling of images at varying resolutions, cloud removal, and integration of off-
nadir viewing sensors. 
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