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ABSTRACT 
 

A cross-sensor (hyperspectral and high-resolution data sets) hybrid approach was used to map grass species in the 
coastal lowland area of the Hawaii Volcanoes National Park. AVIRIS imagery was selected for hyperspectral data 
and its 20-meter resolution was compensated with IKONOS 1-meter resolution data. Three main native and 
nonnative grass species were focused in the study, including broomsedge (Andropogon virginicus), natal redtop 
(Melinis repens), and pili grass (Heteropogon contortus). A 3-step, hybrid approach, combining an unsupervised and 
a supervised classification schemes, was applied to grass mapping. First, the IKONOS 1-m high-resolution data 
were classified to create a binary image (vegetated vs. non-vegetated) and converted to 20-meter resolution percent 
cover vegetation data to match AVIRIS data pixels. Second, the minimum noise fraction (MNF) transformation was 
used to extract a coherent dimensionality from the original AVIRIS data. Since the grasses were sparsely distributed 
and most image pixels were intermingled with lava surfaces, the reflectance component of lava was filtered out with 
a binary fractional cover analysis assuming that the total reflectance of a pixel was a linear combination of the 
reflectance spectra of vegetation and the lava surface. Finally, a supervised approach was used to classify the grass 
species based on the maximum likelihood algorithm. The classification result showed that there was much confusion 
between the grasses, especially between broomsedge natal redtop. Knowing that there was co-occurrence of one or 
more grass species, more accurate sampling schemes and additional phenology characteristics of the species would 
be needed to better define training sites.  
 
 

INTRODUCTION 
 
Vegetation mapping and classification have been conducted successfully using various types of remotely sensed 

data (Schmidt and Skidmore 2003; Schmidtlein and Sassin 2004; Ustin and Xiao 2001). Multi-spectral remote 
sensing has been the most common approach in estimating land cover types. Although most vegetation mapping 
studies reported reasonably high classification accuracy at general plant-type levels, such as biomes, life zones, and 
life forms, species-level mapping effort has been challenging due to limitations of sensor characteristics. Limitations 
in the number of bands and the number of temporal data sets and their spatial resolving power, or spatial resolution 
have restricted the level of vegetation classification. 

In addition, could contamination makes it difficult for remote sensing communities to map vegetation in 
Hawaii. It is not unusual to have less than 3 different temporal scenes for a given area throughout the entire year. 
This problem significantly reduces the multi-temporal capability of most multi-spectral remote sensors. As a result, 
knowing that species-level vegetation mapping needs spectral information from as many spectral bands as possible, 
it requires hyperspectral remote sensing data to statistically separate plant species from one another. The NASA 
Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) is one of a few hyperspectral remote sensing systems 
available to the scientific community.  This system acquires optical radiance data in 224 contiguous wavelengths 
ranging from 400 to 2500nm and provides high quality signature measurement of solar radiation reflected from the 
surface (Green et al. 1998). Since the first measurement of the system in 1987, its applications have been widely 
spread into diverse scientific fields (Asner et al. 2005; Goetz et al. 1985; Li et al. 2005; Okin et al. 2001)  

Recently, groups of researchers have used aircraft-based hyperspectral approaches in species-level vegetation 
mapping (Gong et al. 1997; Hirano et al. 2003; Schmidt and Skidmore 2001; Schmidt and Skidmore 2003; 
Underwood et al. 2003). Previous study results showed that hyperspectral applications could be promising in 
detailed vegetation classification and our ability to map the extent of invasive species and their spatial distribution 
would be improved. A sub-pixel fractional cover analysis, called linear spectral unmixing or spectral mixture 
analysis (SMA), has been commonly used in image classification (Adams et al. 1995; Roberts et al. 1993; Smith et 
al. 1990). Although SMA is a useful and theoretically appealing approach for sub-pixel image classification 



 

ASPRS 2006 Annual Conference 
Reno, Nevada  May 1-5, 2006 

Figure 1. Study area. It is located in the Hawaii Volcanoes 
National Park (HAVO). 

breaking down mixture pixels into the major components, its usage can be questionable if the surface is extremely 
heterogeneous, atmospheric conditions change frequently, topography is highly rugged, image endmembers do not 
exist, or pure reference samples cannot be collected at the same time of image acquisition. In fact, it is often difficult 
to identify necessary, pure endmembers in an image, especially on sparsely vegetated surfaces. One or more of these 
conditions has made it difficult to perform detailed vegetation classification in Hawaii. Integrating image data from 
two different sensors, AVIRIS and IKONOS, this study investigated the potential of a binary fractional cover 
analysis for mapping nonnative grass species vegetated on lava surfaces.  

 
 

METHODOLOGY 
 
Study Area 

The study area is located at the southeastern edge of Big Island of Hawaii, which is the youngest island of the 
Hawaiian archipelago. This area is part of the eastern coastal lowlands within the Hawaii Volcanoes National Park 
(HAVO), and it occupies an area between the coastline and the base of the major fault scarps (Figure 1). Elevations 
of the study area range approximately from 20 to 90 meters above the sea level. The climate is seasonal with hot, dry 
summers and wet winters. Mean annual temperature is 23-26 °C and annual precipitation is usually less than 1,000 
mm (Giambelluca and Schroeder 1998; Wegner et al. 1990). Most native and nonnative grasses are found on thin 
soils and old lava flows. The substrates of the Big Island are derived from one of five volcanoes: Kohala, Mauna 
Kea, Hualalai, Mauna Loa, and Kilauea. The entire island is dissected by a various lava flows of different ages, and 
this mosaic of diverse substrates spawned wide gradients of soil and ecosystem development (Vitousek et al. 1992).  

The study area is surrounded by lava flows in 1967-74 and 1992-2002 and sparsely vegetated primarily by 
native and nonnative grasses, shrubs, ferns, and occasional Ohia trees. Pili grass (Heteropogon contortus) is the 
most common native grass, and major nonnative grasses include broomsedge (Andropogon virginicus), and natal 
redtop (Melinis repens). The range of broomsedge has increased significantly in HAVO as a result of volcanoes-
derived or human-caused fires (Wegner et al. 1990). Among the most common herbs and shrubs are sleeping grass 
(Mimosa pidica), lantana (Lantana camara), pukiawe (Styphelia tameiameiae), a’alii (Dodonaea vicosa), and uhaloa 
(Watherria indica). A’alii, pukeawe, and uhaloa are native species while sleeping grass and lantana are introduced 
species.   
 
Data Sets and Pre-processing 

AVIRIS data covering the study area were 
obtained from Jet Propulsion Laboratory (JPL), 
NASA and the image was acquired on October 
30, 2001. The sensor was flown aboard the 
NASA ER-2 aircraft at 20 km above ground 
level and the typical instantaneous field of view 
(IFOV) of 1.0 mrad had a 20 20 m ground 
resolution. AVIRIS acquires images in 224 
contiguous bands from 400nm to 2500nm with 
10 nm intervals (Green et al. 1998). Very-high-
resolution IKONOS data (Space Imaging, Inc.) 
were provided by the Hawaii IKONOS 
Consortium formed by the Hawaii Natural 
Heritage Program (HNHP) at the University of 
Hawaii. The data consisted of a 1-meter pan-
sharpened color and 4-meter multispectral 
imagery bundle. 

For radiometric calibration, a dark-object 
subtraction method was used to the IKONOS 
data. This method was believed to be ideal 
because the study area’s substrates are virtually 
dark objects and patches of the lava flows were 

shadowed by cloud cover. Therefore, the pixel value of the shadow area was simply subtracted from the other 
pixels’ values for each band. Atmospheric correction is even more important for hyperspectral data. The Fast Line-
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of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) was applied to the AVIRIS data. This algorithm 
is based on the MODTRAN code and available as a plug-in to the ENVI image processing software (Research 
systems, Inc.). The correction process calculates the amount of molecular scattering and absorption present, which is 
primarily caused by seven gases including water vapor (H2O), carbon dioxide (CO2), ozone (O3), nitrous oxide 
(N2O), methane (CH4), carbon monoxide (CO), and oxygen (O2), and remove the effects of the gases from each 
pixel. Since the AVIRIS product was geometrically distorted, it needed to be rectified using the georectified 
IKONOS image. For this process, ground control points were selected throughout the imagery for mathematical 
transformation, and the input image pixels were transformed to UTM Zone 5 projection with the root-mean-square 
error (RMSE) of 0.38.  
 
Image Classification 

Field sample collection. For ground-truth sampling, a comprehensive field survey was conducted during the 
summer (June 8-17) in 2005. A systematic transect sampling method was used. Fifteen sampling paths were used 
and these paths were spaced with a fixed interval of 250 m except two paths (500 m). Three to fifteen transects were 
surveyed along each sampling path with an interval of 200 m, depending on the lengths of the sampling paths. This 
sampling design generated 133 individual transects in total throughout the study area. Each transect was 10 meters 
long, and plant species or a substrate type that touched a transect line was recorded every 20 cm along the transect. 
Supplementary information such as soil pH, soil color, and soil moisture content (%) was also obtained if it was 
available. For accurate species identification, the field crew consulted local botanists, visiting a herbarium of the 
USGS Biological Resources Division in the Hawaii Volcanoes National Park before and after the survey. Locational 
information for the transects was acquired using handheld GPS units (Garmin Rino 130 handheld/2-way radio and 
GPS). In situ reflectance spectra of the major plant species described above were also acquired in the field using a 
portable spectroradiometer (Fieldspec Pro Jr., ASD). Data were acquired separately on November, 2 in 2005, which 
was an approximate anniversary date of the AVIRIS imagery acquisition date. The spectroradiometer measures 
reflectance values from 350 to 2,500 nm. Reflectance spectra were repetitively collected 10 times and averaged for 
each species.  

Unsupervised classification. Visual examination of the IKONOS imagery showed that 4-meter multispectral 
data were still too coarse to identify clumps of plants distributed across the study area. Therefore, only 1-meter pan-
sharpened color imagery was used to conduct an unsupervised classification using the Erdas Imagine 8.7 software 
package (Leica Geosystems, GIS and Mapping, LLC). Vegetated- and non-vegetated pixels were separated from 
each other successfully after the classification. These resulting binary (vegetated or non-vegetated pixels) 1-meter 
data were degraded to 20-meter data so that spatial resolution of the classified imagery could match that of the 
AVIRIS imagery. Since 20 20 pixels of the 1-meter classified data were collapsed to one 20 20 meter pixel, the 
percentage of vegetated area per each 20-meter pixel was conveniently computed.  

Minimum noise fraction transformation. The minimum noise fraction (MNF) transformation is two cascaded 
principal components analysis to separate noise from the sensor signal, to compress the spectral information into a 
few components, and determine the inherent dimensionality of image data for subsequent processing (Green et al. 
1998). MNF transformation is implemented in ENVI software package, and a standard processing technique was 
applied to the AVIRIS imagery. An eigenvalue is a statistical measure that evaluates the dimensionality of the data, 
and normally the first few MNF components explain most of the variance of the data. In the case of AVIRIS data, 
the process significantly reduces the number of bands or components that need to be further processed typically to < 
20 useful MNF bands. MNF bands that contain meaningful information have an eigenvalue an order of magnitude 
greater than those that contain mostly noise. ENVI provides both eigenvalues and output MNF eigenimages for 
determination of data dimensionality. Generally, the more spatially coherent (or continuous) the image, the less 
noise and greater the information content (Jensen 2005). For MNF band selection, the eigenvalues of MNF bands 
were plotted and examined in this study. The eigenvalues dramatically as MNF band number increased, and no 
significant change was observed after MNF band 6. Therefore, the first 6 MNF bands were used for following image 
classification (Figure 2). 

Binary fractional cover analysis and supervised classification. Most of the AVIRIS image pixels contained 
reflectance signals from more than one material on the ground. To extract only the reflectance component of 
vegetation from the mixed signal of each pixel, it was assumed that the hyperspectral reflectance of a pixel was a 
linear combination of the reflectance spectra of vegetation and the lava surface. To define and filter out the 
reflectance component of lava, “pure” lava pixels were identified from the unsupervised classification result and 
their digital values from each of the 6 MNF bands were computed. To simply state, the proportion of lava’s 
contribution to a MNF band was subtracted from each pixel (DNT) of that MNF band to extract the component of 
vegetation in each MNF band. The proportion of lava’s contribution per pixel for each MNF band was calculated by 
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multiplying per cent cover lava (1 - % vegetation) and the mean of the pure lava pixels (DNL) of each MNF band. 
Since the term calculated so far (DNL (1 - % vegetation)) was biased by the area of vegetation cover in each pixel, 
the vegetation component of each pixel of MNF bands needed to be normalized for the pixel area (20 * 20 = 400 m2) 
by inversely weighting the per cent vegetation cover. Therefore, a vegetation component in each pixel was obtained 

applying the following formula to each MNF band:  
 
 
 
 
 

These vegetation component MNF bands were used as input to supervised classification. Randomly selected, 
half of the ground samples were used for training sites, and these samples were categorized into one of plant classes, 
which were determined by a dominant plant species. As a result, each ground sample was classified as broomsedge, 
natal redtop, pili, shrub, or mixed class based on the plant species identification survey result. To reduce 
classification errors, only the area that is dominated by grasses was subset from the vegetation component MNF data 
before supervised classification was performed. The maximum likelihood classifier algorithm was used for image 
classification based on the training samples.  
 
 

RESULTS & DISCUSSION 
 

Classification accuracy evaluation was conducted using randomly selected field samples. A typical error matrix 
was created based on 5 major classes.  

 
Spatial Distribution of Grasses 

Per cent cover vegetation derived from IKONOS 1-m resolution data showed the overall distribution of plants 
well in the study area. Vegetated and lava surfaces were easily distinguishable from each other, and detailed 
examination of the classification result with comparison to the IKONOS imagery confirmed that the separation of 
vegetated pixels from lava pixels was successful. This binary data were converted to per cent cover vegetation data 

MNF band 1 MNF band 3MNF band 2

MNF band 4 MNF band 5 MNF band 6

Figure 4. The first 6 MNF eigenimages created by ENVI. These images are spatially coherent and have the 
highest eigenvalues of all with the least noise. 
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degrading the spatial resolution to with 20-m (Figure 3). The per cent cover vegetation increased as it went from the 
southern coastal line to higher elevation. Most of the area was dominated by per cent cover of 60% or less (Table 1). 
Only 9% of the pixels had per cent cover of 60% or more. Generally, per cent cover increased with elevation, but the 
direction of per cent cover did not precisely correspond with the direction of elevation. The direction of per cent 
cover change was north-south, while elevation contour lines were roughly parallel to the coast line, which runs 
southwest to northeast. Ages of the substrates and strong wind effects might have influenced this spatial pattern.   

The final classification result is shown in Figure 4. Overall, broomsedge was the most dominant species with 
widely spread pattern across the area. Although there was no particular spatial structure of the species’ distribution, 
higher concentration of pili grass, the native species, was observed in the northeastern part of the area. Another 
noticeable feature was that shrubs occupied central portion of the area while natal redtop relatively heavily 
populated along the boundary area or closer to the road. Possible reasons for this outcome stay unexplained, and it is 
difficult to analyze the observed patterns because the resulting map is not accurate enough for further spatial 
analyses. However, it is reasonable to state that the two nonnative species, broomsedge and natal redtop, were the 
prevalent species in the coastal lowlands area in the park based on the preliminary image classification and the error 
matrix figures. 

 

 
Table 1. Categorization of per cent cover vegetation derived from IKONOS 1-m resolution. 

 
Per cent cover (%) Number of pixels Area (ha) Proportion (%) Cumulative (%) 

0-20 4,298 171.9 20.5 20.5 
20-40 7,363 294.5 35.1 55.6 
40-60 7,449 298.0 35.5 91.1 
60-80 1,837 73.5 8.8 99.9 
80-100 28 1.1 0.1 100.0 
Total 20,975 839.0 100.0  

 
 
Classification Accuracy  

An error matrix is a simple array of numbers laid out in rows and columns that express the number of image 
pixels assigned to a particular classification category relative to the actual category as verified in the field. The 
agreement between the field sample data and the classified image is shown as a co-occurrence table (Table 2). As 
reported in the table, the three different grass species were not clearly differentiated from each other in the 
classification process. Especially, broomsedge was significantly confused with Natal redtop. Heterogeneous classes 
such as shrubs and mixed plants were substantially confused with grass species. As a result, classification accuracy 

Figure 4. The result of unsupervised 
classification. Each class was defined by a 

dominant plant species 

Figure 3. Per cent cover vegetation. Lavas are the 
main background substrates in the area. Vegetated 

and non-vegetated surfaces were separated by 
unsupervised classification of high-resolution 

IKONOS data. 

Broomsedge
Natal redtop
Pili
Shrubs
Mixed

> 80% 
60-80% 
40-60% 
20-40% 
< 20% 



 

ASPRS 2006 Annual Conference 
Reno, Nevada  May 1-5, 2006 

for any of the grass species was no higher than 57%, and those of shrubs and mixed classes were lower than 30%.  
 

Table 2. Producer’s, user’s, and overall accuracy measures for the five classification categories. 
 

 Broomsedge Natal redtop Pili Shrub Mixed Sum Producer’s accuracy 
Broomsedge 104 36 11 31 1 183 56.8 
Natal redtop 45 74 9 16 0 144 51.4 
Pili 36 11 20 5 0 72 27.8 
Shrub 30 24 1 19 1 75 25.3 
Mixed 9 9 4 9 3 34 8.8 
Sum 224 154 45 80 5 508  
User’s accuracy 46.4 48.1 44.4 23.8 60.0 Overall accuracy=43.3 

 
Field survey archived in the herbarium at HAVO and our field identification both indicated that the native grass 

(pili grass, Heteropogon contortus) grew with the nonnative grasses (broomsedge, Andropogon virginicus and natal 
redtop, Melinis repens) throughout the study area. Observing that there was significant amount of confusion between 
the three grass species, it is believed that the likeliness of co-occurrence of two or more different species has made 
the separation of the three species difficult.  

Pure, dark lavas might have had a strong effect on the classification process because it is believed that the 
contribution of lava surfaces to pixel reflectance values must have dampened unique signals from the grass species. 
Especially, for those pixels that were dominated by lava, the reflectance components of the grasses might have been 
weakened or removed when the component of the lava surface was subtracted from each pixel. For this study, 
training sites were selected from pixels that had per cent cover of 25% or more. Better-defined training site selection 
with higher percent cover may improve accuracy of the classification reducing the potential influence of lavas. 

Another factor for low classification accuracy may be the lack of uniqueness of the reflectance characteristics 
among the grass species. The field-measured reflectance curves of the three grass species were not dramatically 
different from each other. Although any detailed study of the phenology of these grass species has not been 
conducted in this area, local botanists advised that seasonal changes of their lives might be more noticeable than 
annual changes (personal communication). The structures of leaf blades and stems are unique for grass species, but 
their inflorescences and flowers are more characteristic. Therefore, seasonal reflectance characteristics of the species 
are expected to provide phonological information to image classification process.   
 
Other Physical Factors 

There was no substantial variation of soil acidity throughout the area. The range of soil pH was from 5.4 to 6.8, 
and most observations were between 6.0 and 6.8. This result indicates that soil acidity was fairly close to neutral and 
did not play a major role in the species’ establishment and spread. Most soils were underdeveloped and did not 
represent any variation in soil color. Soil color determination based on Munsell soil color charts was primarily 
2.5Y/2.5/1 (hue/value/chroma).  

Soil moisture content showed differences between broomsedge, natal redtop, and pili grass-occupied areas. It is 
known that native species, such as pili grass, can establish more successfully on thin soils or harsh old lava flows 
because they have been adapted to the local environment. Sampling sites, where pili grass dominated, had the lowest 
mean soil moisture content, 30%.  The two nonnative species dominated on two contrasting moisture environments. 
Soil moisture content of broomsedge-dominating sites was higher (35.7%), while that of natal redtop-dominating 
sites was lower (26.3%), respectively. The relationship between soil moisture and the distribution of these species is 
uncertain in this study because most alien species are strongly fire-adapted, or fire-tolerant and seem to replace the 
native species in this dry environment.  
 
 

CONCLUSIONS 
 
Species-level plant classification is still very challenging work even with hyperspectral data. Reflectance signals 

of sparsely vegetated short grasses with dark background substrates such as lavas may not be strong enough to 
overcome the impurity of mixed pixels with 20-meter spatial resolution of AVIRIS data. Although mixed plants or 
shrubs were not the focus of this study, their classification accuracy result showed that pixels occupied by multiple 
plant species intermingled with lava background, such as shrubs and mixed classes, were not classifiable with the 
approach used in the study. It is encouraging, however, to know that grass classes dominated by a native or a 
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nonnative species were classified with much higher accuracy even though the accuracy figure was still low only 
reaching up to 57%. Higher-quality field sampling with more transects, or multi-directional transects, and more 
precise locational data attached to field sampling sites will reduce classification errors and improve grassland 
classification. Obviously, the usage of multi-seasonal data will better define the reflectance characteristics of 
different species, and therefore increase the capability of image classification. If this classification approach turns 
out to be useful and more successful in the future, sparsely distributed plants with relatively pure background, such 
as species on dry soils or hydrophytes floating on water bodies, can be targeted for species-level image 
classification. 
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