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ABSTRACT 
This paper is focused on analyzing the performance of various matching methods that could be applied to multiple-
domain imagery matching for photogrammetric and remote sensing purpose. More precisely, the matching between 
the LiDAR intensity imagery and optical satellite/airborne image domains is of interest, which is a challenging task 
due to substantial differences such as dissimilarity in sensing methodology (e.g., wavelength, active/passive image 
acquisition), geometric and radiometric differences, etc. Reviewing previous attempts on multiple-domain imagery 
matching, SIFT key point matching is the primary candidate to tackle this problem, due to its scale and rotation 
invariant property. However, the matching results appear to be less reliable for different image domains. For 
instance, the key points generated from LiDAR intensity and optical images are rather different, and thus, no 
common features may be found, and consequently, SIFT matching fails. The objective of this paper is to identify a 
feature space that can better support multiple-domain image matching, including the evaluation of different 
matching techniques and comparing their performance. In this paper, three region descriptor-based matching 
techniques, namely, probability density function (PDF) matching, covariance matching, and edge normalized cross 
correlation (NCC) matching are applied to the LiDAR intensity and satellite/aerial image pairs. The performance of 
the three methods is compared and evaluated under the similar conditions, including the analysis of their advantages 
and disadvantages. Initial results reveal that PDF feature space has promising potential for multiple-domain imagery 
matching in the tested image domains.  
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INTRODUCTION 
 
Image matching is regarded as a pattern matching problem. Based on how patterns are described and compared, 

matching methods can be generally categorized into two classes: feature-based and area-based matching. It is 
common to combine techniques from both classes to achieve better and reliable matching results, such as in the 
digital photogrammetric approach, where aerial image matching accuracy can achieve sub-pixel level by starting 
from coarse feature-based matching and continuing to fine area-based matching (combined with blunder detection). 
Generally speaking, matching performance among images acquired from the same sensor or similar sensors is rather 
reliable, even for image pairs of the same scene taken from arbitrary positions. In particular, research in computer 
vision has improved performance in this area in past decade. One of these techniques is the Scale-Invariant Feature 
Transformation (SIFT), published by Lowe in 1999, a very robust feature-based matching method widely used in the 
computer vision community. Besides the impressive developments in matching techniques, image sensors have been 
rapid evolving too. Consequently, the availability of imagery from different domains covering the same ground 
region is increasingly becoming common, such as high-resolution satellite imagery, multispectral aerial imagery, 
and elevation/intensity imagery rasterized from point cloud acquired by LiDAR/IfSAR systems, etc. Therefore, 
interest is growing to co-register all these data to provide reliable information for remote sensing applications, such 
as change analysis. Multiple-domain imagery matching is still an undergoing research topic; in this study, matching 
between LiDAR data and aerial/satellite optical data domains is investigated.  

Since airborne LiDAR point cloud data is generally sparse, it is almost impossible to identify point features 
from the point cloud. Therefore, other primitives, such as 3D straight lines and/or surface patches are considered for 
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matching features (Habib, et al., 2007; Habib et al., 2004; Habib, et al., 2004; Kim and Habib, 2009). On the other 
hand, with increasing laser point density, better LiDAR intensity data is becoming available. This brings a new 
opportunity to match LiDAR data to other optical imagery. As a first approach, it is natural to consider applying 
SIFT to this task (Abedini, et al., 2008). According to our earlier experiences with a limited data set, SIFT was 
successfully applied to aerial and satellite imagery registration (Toth, et al., 2010). However, in our extended tests, 
SIFT failed to provide robust registration between LiDAR intensity and optical images. Therefore, other possible 
approaches are considered in this study, including three other region descriptors, the probability density function 
(PDF) descriptor (Comaniciu, et al., 2003), covariance descriptor (Porikli, et al., 2006a, 2006b) and the descriptor 
using edges. The purpose of this investigation is to identify which feature space is most suitable for the LiDAR 
intensity and optical multiple-domain image matching task.  

For the tests, the PDF matching and covariance matching are implemented in MATLAB and the normalized 
cross correlation edges matching is implemented in OpenCV-supported C++ environment. The performance 
comparison of different methods is based on using identical data.   

 
 

SIFT MATCHING CHALLENGES 
 
SIFT matching is a well-known robust, scale and rotation invariant and semi-affine invariant matching 

technique; a comprehensive description on SIFT can be found in (Lowe, 2004). Generally, it provides an excellent 
solution to identify the correspondences between the image pair with large perspective and scale changes as well as 
intensity variations. Since mismatches cannot be ruled out, blunder detection based on RANSAC (RANdom Sample 
Consensus) (Fischler and Bolles, 1981), is always a necessary follow-on task. Figure 1, shows an example where 
SIFT worked well on satellite/aerial multiple-domain imagery matching. However, based on our limited data sets, 
SIFT matching between intensity and optical imagery is not reliable. Using several LiDAR intensity and optical 
imagery data sets, SIFT failed in most cases. Figure 2 illustrates the best SIFT matching result between satellite and 
intensity images. Compared to the satellite/aerial image pair, the number of matched features is much smaller, and, 
the correct matches are all in the parking lot, where the special ground marks are recognizable in both images. 
Typical SIFT matching result between satellite and intensity images is illustrated in Figure 3; none of the matches is 
correct for that image pair.  

SIFT matching is challenged due to the substantial differences between the LiDAR intensity and satellite/aerial 
image domains, such as different sensing methodology (e.g., wavelength, passive/active image acquisition), 
geometric and radiometric differences, etc. These factors can cause the extracted key points to be quite different 
between intensity and aerial/satellite images; even for those key points extracted from similar locations, their 
descriptors could be still rather different. Note SIFT key point descriptor is based on the gradient magnitude and 
orientation in a region around the key point, and then weighted by a Gaussian window, which is, eventually, 
accumulated into orientation histograms. Usually, a 4×4 descriptor with 8 orientations, resulting in feature vector of 
128 dimensions, is used. While it is a very creative and efficient way to describe a feature point, it may not be the 
best choice for intensity and satellite/aerial image pairs.  
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Figure 1. Aerial and satellite image pair with matched SIFT features;  
aerial image (left) and satellite image (right). 

 

 
 

Figure 2. Satellite and LiDAR intensity image pair with matched SIFT features;  
satellite image (left) and intensity image (right). 
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Figure 3. Satellite and LiDAR intensity image pair with matched SIFT features;  
satellite image (left) and intensity image (right). 

 
 

TESTED METHODS 
 
In this study, image rectangle region is used as the feature, and different feature spaces and descriptors are 

tested to identify a suitable approach to perform matching between intensity and satellite/aerial images. The methods 
considered are PDF matching, covariance matching and NCC-based edge matching.  

 
PDF Matching 

PDF (Probability Density Function) matching is typically used in the mean-shift based target tracking. The 
target model is represented by its PDF in the feature space. Feature space could be the intensity value, RGB value, 
etc. In our case, only the intensity PDF is available for both domains. The intensity PDF of a region feature can be 
approximated by the normalized histogram (Comaniciu, et al., 2003), and represented in a 256-dimension feature 
descriptor. The similarity between two PDF descriptors is computed via the Bhattacharyya Coefficient, which is the 
cosine of angle correlation between the two PDF descriptors, defined as: 
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ρ is always non-negative, as the two normalized unit vectors p and q (PDFs) are both non-negative. The 
maximal similarity score is 1 which means the two feature descriptors are exactly the same. The minimal 
similarity score is 0 which means the two feature descriptors are orthogonal to each other; in other words, they 
don’t have any relation. To give an example, a reference patch is selected in the satellite image, and then its 
PDF descriptor is computed as the target model. Subsequently, a candidate patch with the same size of the 
reference one is shifted in the intensity image suing a simple brute force searching for the maximum similarity. 
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Figure 4 illustrates the matching result; the green rectangle region is matched, the region size is 100 100 
pixels. The lower left corner subfigure represents the similarity score surface and the lower right corner 
subfigure shows the two PDF descriptors together; blue one is from the reference patch, and red one is from the 
best matched patch in the intensity image.  
 

 
Figure 4. PDF matching example; aerial image (top left) and intensity image (top right). 

 
Covariance Matching 

Covariance matching is often used in target tracking; the target is enclosed in a rectangle region and the target 
model is computed based on the covariance in the feature space. The feature space could be intensity value, RGB 
value, the norm of first and second derivatives of intensity with respect to row and column directions, etc. For our 
case, the feature space is [row, column, intensity], and the feature descriptor of the region is the 3 3 covariance 
matrix of the 3-dimensional measurements. The similarity between two feature descriptors is computed by the 
distance between the two matrices, defined in a Riemannian Manifold (Porikli, et al., 2006a, 2006b):  
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where λi() is the generalized eigenvalues. The minimum distance indicates the best match. For example, a reference 
patch is selected in the aerial image, and then its feature covariance matrix is computed. Subsequently, the candidate 
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patch with the same size of the reference one is shifted in the intensity image, and a brute force searching for the 
minimum distance in the searching region is performed. Figure 5 shows the covariance matching example; the green 
rectangle region is matched, the region size is 100 100 pixels. The right subfigure shows the distance surface, the 
minimum distance is 0.32.  
 

 
Figure 5. Covariance matching example, aerial image (left),  

intensity image (middle), distance surface (right). 
 

NCC Edge Matching 
As mentioned earlier, it is almost 

impossible to identify and extract point 
features from the point cloud. Even when 
the point cloud is rasterized into intensity 
image, point features are generally not 
good primitives due to the rather high 
level of noise. Consequently, linear 
features are often used to co-register the 
LiDAR data and other optical data. This 
idea is adapted to develop NCC edge 
matching. In this case, the feature space 
is the binary edges in the selected region. 
For example, a reference patch is 
selected in the satellite image with edges 
extracted by the Canny algorithm. 
Subsequently, the intensity image is 
converted to a binary edge image and a 
brute force searching for the maximal 
NCC value in the whole intensity image 
is performed.   

Figure 6 represents the NCC edge 
matching example; the yellow and red 
rectangle regions are matched. Their 

corresponding NCC maps are showed in 
the bottom row of the figure. This 
method has an obvious limitation in flat 
regions where no edges exist. In order to 
avoid those patches, a check on the 
entropy and number of white pixels may be performed.  

 
 

  
 

Figure 6. NCC edge matching example result; edge image from 
intensity image (top left), from satellite image (top right), NCC map 

for yellow patch (bottom left), and for red patch (bottom right). 
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TEST RESULTS AND ANALYSIS 
 

Data Preparation 
LAS format LiDAR data acquired by Fugro-EarthData in 2009 is used to generate 1m GSD intensity raster 

image. The maximum intensity value of all points that fall into the 1m by 1m region is taken as the pixel intensity 
value. If there is no laser point in the region, the pixel intensity is set 0 (black). Black holes are usually seen in the 
rasterized LiDAR intensity image, which can be reduced by using a median filter.    

As for the optical sensor imagery, IKONOS satellite imagery acquired by GeoEye in 2010 and aerial imagery 
scanned from aerial photos from the National Aerial Photography Program (NAPP) by the U.S. Geological Survey 
(USGS) are used. The satellite image is orthorectified with 1m GSD. The aerial imagery has about a 3.3m GSD.   

For our tests, all satellite and aerial images are rescaled to the 8-bit intensity range. Each test image pair is 
resampled to the same spatial resolution and has the same main orientation. In other words, there is no significant 
scale and rotation difference between image pair. Since the aerial image has the coarsest resolution, intensity images 
have to be down-sampled, and the size of intensity/aerial image pair is smaller than intensity/satellite image pair. 
Five intensity/satellite image pairs and five intensity/aerial image pairs are used in our tests. 

 
Evaluation Method 

This study is aimed to identify which region descriptor is appropriate for the intensity and optical image 
matching, by comparing the performance of the three methods under the same conditions. Removing the scale and 
rotation difference between intensity and optical data sets assures that all three methods will work. For evaluating 
the performance, the reference patches are generated in the reference image; those reference patches seem like a grid 
in the reference image. This is ideal for evaluating the performance of the different region descriptor matching 
methods, since they all use the same reference patches. Then, for each reference patch, the best match is found in the 
searching image. Ideally, the best match patch should have the same position as the reference patch position, since 

the image pair is already aligned. The position error is then computed as 22 yxp   . The search window is 

the region size with a 10-pixel extended boundary in width and height. For example, if the patch size is 50 pixels, 
and then the searching window has the size of 70 pixels. This way, the maximum position error detected is 

14.141010 22
max p pixels. Figure 7 illustrates a sample reference grid (left) with best matches (right). 

Using such a test configuration, the accuracy of these three methods can be computed and compared under the same 
conditions. Each matching method has its own matching precision measure; e.g., the similarity score or minimum 
distance.  

For the PDF matching, the similarity score, Ssim is between 0 and 1; the larger the better. The position error is 
from 0 to 14.14-pixel, the smaller the better. The position error is linearly transferred to the [0-1] range; i.e., 

14.141 pS pos
 , small is better. The matching score is defined as SPDF = 0.5·(Spos + Ssim); Spos and Ssim have the 

same weight. The matching score SPDF is in the range of 0 and 1; the larger the better. If SPDF of a match is larger 
than the mean SPDF of all matches, it is regarded as a good match.   

For the covariance matching, the similarity score Ssim is the distance between the two covariance matrices; 
smaller is better. Similarly, position error is included in the matching score; a good match should have both small 
Ssim and Spos. For each match, if both of them are smaller than the mean Ssim and Spos of all matches, the match is 
regarded as a good one. If either one is bad, then the match is regarded bad.  

For the NCC edge matching, the similarity score Ssim is in the [0-1] range; the same definition of PDF matching 
score is taken here too, which means SNCC = 0.5·(Spos + Ssim) where 

14.141 pS pos
 . If SNCC of a match is larger 

than the mean SNCC of all matches, it is regarded as a good match.   
Using the above patch criteria, both position error (accuracy) and the similarity quantity (precision) are 

considered. Left subfigure in Figure 8 plots the position errors for the good matched patches of a LiDAR intensity 
and satellite image pair, while right subfigure in Figure 8 plots the position errors and the PDF similarity scores of 
the same image pair. Note that the plotted similarity score is enlarged 10 times for better visualization. The matches 
with large position errors have rather good similarity scores, which make them still good matches.  
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Figure 7. Evaluation gird, reference patches in satellite image (left),  
matched patches in intensity image (right). 

 

 
 

Figure 8. Position errors for good matched patches (left), 
position errors and PDF similarity scores for good matched patches (right). 

 
Matching Results and Analysis 

Five LiDAR intensity/satellite image pairs and intensity/aerial image pairs covering both residential and non-
residential areas are selected for this performance evaluation. After several experiments on optimizing the patch size 
and searching window size, 50-pixel patch size and 70-pixel searching window size are used for all image pairs. The 
matching results from LiDAR intensity/satellite image pairs are listed in Table 1, and results from LiDAR 
intensity/aerial image pairs are listed in Table 2.  
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Table 1. Matching Results (LiDAR intensity and satellite images) 
 

Image Pair A B C D E 
# of Patches 68 40 78 175 115 

Image Size (W H) [pixel] 877 225 427 295 694 370 1299 375 1197 287 

# of Good Matches (%) 

PDF 
31 

(45.6%) 
18 

(45.0%) 
39 

(48.7%) 
88 

(50.3%) 
55 

(47.8%) 

COV 
21 

(30.9%) 
15 

(37.5%) 
17 

(21.8%) 
66 

(37.7%) 
51 

(44.4%) 

NCC 
19 

(27.9%) 
17 

(42.5%) 
39 

(50.0%) 
77 

(44.0%) 
49 

(42.6%) 

Mean Similarity Score (PDF) 0.59 0.45 0.60 0.60 0.54 

Mean Matrices’ Distance (COV) 0.08 0.07 0.07 0.27 0.20 

Mean NCC Score 0.30 0.28 0.29 0.25 0.26 

Mean Pos. Error [pixel] 

PDF 7.38 5.85 7.58 7.33 6.75 

COV 6.99 8.61 6.12 7.64 8.11 

NCC 5.83 6.33 4.09 4.52 5.37 

 
 
Obviously, mismatches cannot be avoided for all three methods, because the reference patch could be from a 

rather flat region (LiDAR intensity); in other words, this region feature is not a good primitive in the image, see 
Figure 9. Since the evaluation of different feature descriptors for matching, and not how to extract strong primitives 
in image, is emphasized in this paper, such weak region features are acceptable. More importantly, same reference 
patches are used, which guarantee all three methods are compared under the same conditions.  
 

Table 2. Matching Results (LiDAR intensity and satellite images) 
 

Image Pair A B C D E 
# of Patches 64 30 24 24 26 

Image Size (W H) [pixel] 375 140 669 85 279 98 294 104 585 79 

# of Good Matches (%) 

PDF 
29 

(45.3%) 
11 

(36.7%) 
12 

(50%) 
9 

(37.5%) 
12 

(46.2%) 

COV 
26 

(40.6%) 
12 

(40%) 
5 

(20.8%) 
6 

(25%) 
9 

(34.6%) 

NCC 
40 

(62.5%) 
16 

(53.3%) 
11 

(45.8%) 
15 

(62.5%) 
15 

(57.7%) 

Mean Similarity Score (PDF) 0.46 0.44 0.45 0.43 0.42 

Mean Matrices’ Distance (COV) 0.15 0.15 0.14 0.17 0.54 

Mean NCC Score 0.38 0.37 0.45 0.42 0.40 

Mean Pos. Error [pixel] 

PDF 6.88 5.45 6.14 5.74 7.04 

COV 8.32 5.95 6.81 7.12 8.92 

NCC 2.53 3.39 1.31 2.67 3.33 
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Figure 9. Example of mismatched patch (LiDAR intensity/aerial image pair). 
 
An overview of the matching performance is listed in the Table 3. Position errors are generally large for all 

methods. First, the reference patch may not be an ideal feature region. Second, although image pair is manually 
aligned to remove translation, scale and rotation differences, the geometric deformation between the image pair may 
still exist. PDF and covariance matching have similar performance, since their feature spaces are related; i.e. the 
intensity value. Position errors have no significant difference between the two domain combinations for PDF and 
covariance matching. NCC Edge matching is a quite different approach; its feature space is not directly related to 
PDF and covariance feature space. Its performance is the best among all methods. However, the NCC method is 
known to be limited to no scale and rotation variation in the image pair. On the other hand, both PDF and covariance 
descriptors can be easily adapted to a rotation-invariant descriptor, as PDF and covariance descriptor of a symmetric 
circular region feature is rotation invariant. Comparing the similarity score, PDF matching is the best in all cases, 
which indicates that PDF descriptor is an appropriate choice for the intensity and optical image matching.    

 
Table 3. Overview of the Matching Performance 

 

 

PDF 
Mean 

Similarity 
Score 

Covariance 
Mean 

Similarity 
Distance 

Edge 
NCC 
Mean 
Score 

PDF Mean 
Position 
Error 
[pixel] 

Covariance 
Matching Mean 
Position Error 

[pixel] 

Edge NCC 
Matching 

Mean Position 
Error [pixel] 

Intensity/Satellite 
Image Pair 

0.55 0.14 0.28 6.98 7.49 5.23 

Intensity/Aerial 
Image Pair 

0.44 0.23 0.40 6.25 7.42 2.65 

 
 

CONCLUSION AND FURTHER WORK 
 
In this paper, the challenge the LiDAR intensity and optical imagery domain matching is discussed. Our earlier 

experiences with SIFT inspired us to investigate three other region feature descriptors for multiple-domain image 
matching. All these methods are evaluated and compared with their performance based on the five LiDAR 
intensity/satellite and LiDAR intensity/aerial image pairs. Initial results show that PDF descriptor is an appropriate 
choice, as it outperformed all the other techniques. Current research work is to adapt the PDF descriptor to a scale 
and rotation invariant variant to improve matching between LiDAR intensity and satellite image domains.  
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