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Abstract 
A process for integrating remote sensing and spatial data 
analysis to accurately map and monitor agricultural crops 
and other land cover in the Lower Colorado River Basin is 
described. These maps were then used as  input into a model 
that accounts for consumptive use throughout the basin. Wa- 
ter is an important and incredibly valuable resource in this 
area. International treaties and court decrees dictate water 
allocation to the states of Arizona, Nevada, and California, 
and to Mexico. Maps of the agricultural crops with a re- 
quired overall accuracy of 93 percent for use in the water 
model were generated from Landsat Thematic Mapper data 
four times per year. An automated signature extraction pro- 
cess and data exploration techniques were developed to aid 
in achieving these required accuracies. A11 maps were sub- 
jected to quantitative accuracy assessment, and error matrices 
were produced to evaluate overall and per-class accuracies. 

Introduction 
In the western United States, as in many other parts of the 
world, fresh water is an important resource. West of the one- 
hundredth meridian one of the greatest sources of fresh water 
is the Colorado River, which drains 1/12 of the North Ameri- 
can continent. Continuously growing residential, commercial, 
and agricultural demands have caused fresh water to become 
an increasingly limited and valuable resource in this area. 

As the water masters of the Colorado River, the U.S. Bu- 
reau of Reclamation (USBR) is in charge of the dams that con- 
trol the river as well as allocating the river's water to various 
users. A 1964 Decree by the U.S. Supreme Court (Arizona vs. 
California) states that the Secretary of the Interior must pro- 
vide complete, detailed, and accurate records of consumptive 
use and distribution of water by each diverter from the Colo- 
rado River. The Decree more specifically requires that the 
records of consumptive use of water be reported separately 
for each diverter from the mainstream and each point of di- 
version, from the states of Arizona, California, and Nevada. 
During an average year, the Secretary of Interior is obligated 
through various compacts, international treaties, Supreme 
Court decrees, and statutes to deliver 7.5 million acre-feet 
(MAF) of water in the Colorado River to the three lower states 
in the basin; Nevada, Arizona, and California. In addition, 
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1.5 MAF must be delivered to Mexico. This water is critical 
not only for human consumption and agriculture, but also to 
sustain important wildlife habitat. Failure to deliver suffi- 
cient water to Mexico can endanger many species of plant 
and animal and have international implications. 

The U.S. Geological Survey (usGS) and the Bureau of 
Reclamation have cooperatively developed a model called 
the Lower Colorado River Accounting System (LCRAS) for ac- 
counting for the water (Bureau of Reclamation, 1997). The 
USBR is currently evaluating the use of the LCRAS model as a 
tool to help enable the Secretary of the Interior to comply 
with these agreements. 

The LCRAS model estimates annual consumptive use of 
water and distributes that use among the water users. Previ- 
ous accounting procedures were incomplete because they did 
not credit agricultural water users for unmeasured sub-sur- 
face return flow. The LCRAS model provides a method to de- 
termine diverter consumptive use that accounts for return to 
the river. The model uses results and data provided by re- 
mote sensing technology and geographic information systems 
(GIS) as inputs. Among these inputs are the type and acreage 
of the various agricultural crops and other vegetation (i.e., 
phreatophytes) in the river basin throughout the year. 

This paper describes the methodology developed for and 
the results of mapping agricultural crops and other vegeta- 
tion from remotely sensed data for input to the L C R A ~  model. 
The specific objectives of the project were (1) to develop a 
digital GIS database of biological and physical attributes of ir- 
rigatable land (i.e., crops) and phreatophytic vegetation along 
the lower Colorado River using remotely sensed data, and (2) 
to train and transfer the technology to create this database to 
USBR personnel. A final and very unique requirement of this 
project dictated that the accuracy of the agricultural crop 
classification be at least 93 percent accurate in  order to meet 
the requirements of the LCRAs model. 

Literature Review 

Lower Colorado River Accounting System 
The Lower Colorado River Accounting System (LCRAS) is a 
model developed by the U ~ B R  and UsGs  to estimate con- 
sumptive use and distribution among the water users. The 
LCRAS model has two components (Bureau of Reclamation, 
1997). The first component is a water budget that is used to 
calculate the annual consumptive use of the river water. 
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Consumptive use of water from the river is a combination of 
(I)  evapotranspiration [ET) by the vegetation (i.e., crops and 
phreatophytes), (2) pumpage from wells for local domestic 
and municipal needs, and (3) pumpage from the river for ex- 
port to areas in California, Arizona, and Nevada outside of 
the river basin. The second component incorporates the dis- 
tribution of the water to the agricultural water users in pro- 
portion to the ET of the vegetation grown by that grower. The 
ET of each vegetation type is estimated using the Penman- 
Monteith method (Monteith, 1965). 

Image Classification 
Early in the Landsat era, it was found that general vegeta- 
tionlland-cover types could be mapped from digital satellite 
imagery faster and often with lower costs than using more 
traditional methods such as basic photointerpretation (Hame, 
1984). Using satellite imagery as the primary information 
base has four advantages (Green, 1992): 

Substantially less time and cost is needed to produce the G I ~  
layers. Aerial photography has long been used to delineate 
and classify forest vegetation and landuse type. To turn it 
into a GIS layer, however, this information must be trans- 
ferred to a planimetric base and entered into a computer. 
These four steps, [a) classification, [b) delineation, (c) trans- 
fer, and (d) data entry, can be extremely time-intensive and 
costly. 
A much "richer" G I ~  layer is produced because it can contain 
both traditional land-uselland-cover polygon labels and infor- 
mation about each spatial unit (i.e., pixel) in the satellite im- 
agery. 
Inter-ownership analyses can be performed. The great econo- 
mies of scale provided by digital image processing make it 
relatively inexpensive to map large expanses of land, making 
it easier and more cost effective to perform cumulative effect 
analvses. 
Landsat TM satellite data are captured for the same ground 
area every 16 days. Thus, fast and inexpensive updating is 
possible, because satellite images used to create the land- 
scape delineation can be directly compared with those taken 
at a later date. 

However, producing detailed land-uselland-cover type 
maps, especially of individual crop types or tree species with 
satellite imagery, has been problematic (e.g., Ulaby et al., 
1982; Pedley and Curran, 1991; Thenkabail el al., 1994). Im- 
age processing software and hardware were inefficient and 
expensive, and the spatial and spectral resolution of the im- 
agery was inadequate for detailed land-uselland-cover type 
mapping. 

More recently, vegetation classification studies imple- 
menting digital satellite data have utilized higher spatial, 
spectral, and radiometric resolution Landsat Thematic Map- 
per (TM) data with much more powerful computer hardware 
and software. These studies have shown that the higher in- 
formation content of TM data combined with the improve- 
ments in image processing power result in significant im- 
provements in classification accuracy for more distinctive 
classes. Teply and Green (1991), Bernath et al. (1992), Gon- 
zales et al. (1992), Miller et al. (1992), Brisco and Brown 
(1995), and others have shown that digital processing of sat- 
ellite imagery, combined with field visits and aerial photog- 
raphy as ancillary data, can accurately produce both detailed 
and broad GIS coverage of vegetationlland-cover type. 

Methods 

Study Area 
The lower Colorado River, between the east end of Lake Mead 
and the international border with Mexico, is the principal 
source of water for agricultural, domestic, municipal, indus- 
trial, hydroelectric power generation, and recreation purposes 

in the region. The study area covers the flood plain of the Col- 
orado River from Hoover Dam to the Arizona-Sonora Interna- 
tional Boundary (United States and Mexico), adjacent lands of 
Palo Verde Mesa, Yuma Mesa, the piedmont area, and the 
flood plain of the Bill Williams River upstream from its con- 
fluence with the Colorado River to Alamo Dam. The Colorado 
River flood plain, within the study area, includes Mojave, Par- 
ker, Palo Verde, Cibola, North and South Gila, Bard, and 
Yuma Valleys (Figure 1). 

The region is known for its temperate weather. Average 
minimum January temperatures range from 2.8"C (37°F) in 
Blvthe, California to 8.2"C (47°F) in Yuma, Arizona. Average 
maximum July temperatures range from 42.3"C (108'F) in - 
Blythe and Needles, California to 41.3"C (106°F) in Yuma, 
Arizona. The area is also characterized by rich, loamy soils 
which, combined with the excellent weather conditions, cre- 
ate prime agricultural land. The area grows a tremendous vari- 
ety of crops and has multiple growing seasons, producing two 
or three different crops per year on the same plot of ground. 

Water is stored in surface reservoirs and in the river aq- 
uifer-permeable sediments and sedimentary rocks that fill the 
lower Colorado and adjacent tributary valleys. Crops are 
grown mostly on the flood plains and, in some areas, on the 
adjacent terraces. Crops cover approximately 70 percent of 
the total vegetated area. Phreatophytes, natural vegetation 
that uses water from the river aquifer, cover the remaining 
vegetated areas on the uncultivated flood plain. Most of the 
consumptive use of water from the river occurs downstream 
of Davis Dam where water is diverted or pumped from the 
river and used to irrigate crops or is exported to Arizona or 
California. 

To cover the entire study area, two full and one quarter 
Landsat Thematic Mapper (TM) scenes were required. Also, 
because different crops are planted and grown at different 
times on the same plot, the USBR required that crops be 
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mapped at four time periods throughout the year. Therefore, TABLE 1. THE CROP CLASSIFICATION LABELS 
eight full scenes and four quarter scenes were required to I. Alfalfa 
complete the mapping for each year. 

2. Cotton 

Classification System 
The first step in any mapping project is the definition of a 
classification system which categorizes the features of the 
Earth to be mapped. Specifications of the system are driven 
by (1) the anticipated uses of the map information and (2) 
the features of the Earth that can be discerned with the data 
(e.g., aerial photography, satellite imagery) being used to cre- 
ate the map. 

A classification system has two critical components: (1) 
a set of labels (alfalfa, water, urban, deciduous forest, etc.) 
and (2) a set of rules- or a system- for assigning labels 
(e.g., "a deciduous forest must have at least 75 percent 
crown closure in deciduous trees"). Without a clear set of 
rules, the assignment of labels to types can be arbitrary and 
lack consistency. In addition, a classification system should 
meet the following two criteria: (1) be mutually exclusive 
and (2) be totally exhaustive. A system is mutually exclusive 
if any point on the maplground falls into one and only one 
land-cover category. A system is totally exhaustive if every 
place on the ground has a label. A final classification system 
characteristic that is particularly useful is if the system is hi- 
erarchical. A hierarchical system is one which contains vari- 
ous levels of detail or complexity. For example, vegetation is 
a Level 1 class that can be broken into many Level 2 classes 
such as forest and then forest can be divided into Level 3 
classes such as conifer and hardwood, etc. A hierarchical 
system increases the flexibility of the analyst for meeting the 
needs of the user. 

Table 1 presents the crop classification labels used in this 
project. The labels were determined by the anticipated use of 
the map (i.e., input into the LCRAS model to determine con- 
sumptive water use). Table 1 lists 47 unique vegetationlland- 
cover classes. However, it would have been extremely difficult 
as well as inefficient to classify every one of these classes for 
this project. Because the objective of the mapping was con- 
sumptive water use, it followed that the classes be grouped 
into similar water using categories. For example, the individ- 
ual grain types need not be mapped separately because they 
all have similar consumptive water use characteristics. In- 
stead, all the grain types were grouped into a class called 
Small Grains. Therefore, instead of mapping 47 separate clas- 
ses, only 15 were required. Actually, the Other Vegetables 
class contains a number of classes that do not have similar 
consumptive water use. While the variation of crop types and 
water consumption was high in this class, the total acreage of 
all these crops was very small (less than 3 percent of the total 
acreage) and they were combined in this project. The classifi- 
cation rules were based upon the same guidelines as were 
used to identify crops while in the field. 

Analysis 
The analysis performed for this project can be divided into 
the following sections: fieldwork, image processing, and ac- 
curacy assessment. 

Fieldwork 
Fieldwork was an integral part of this project and required 
careful planning to produce the requisite information to accu- 
rately map the vegetationlland cover. Prior to going into the 
field, an ArcIInfo coverage of the crop field boundaries was 
created by the USBR. These field boundaries were entered us- 
ing on-screen digitizing from SPOT 10-m panchromatic im- 
agery and each field was given a unique identification num- 

3. Small Grains 
3.1 oats 
3.2 rye 
3.3 barley 

4. Corn 

5. Lettuce 
5.1 head lettuce 
5.2 green leaf lettuce 

6. Melons 
6.1 watermelons 
6.2 honeydew 

7. Bermuda Grass 

8. Citrus 

9. Tomatoes 

10. Sudan Grass 

11. Other Vegetables 
11.1 beans 
11.2 peas 
11.3 millet 
11.4 peppers 
11.5 carrots 
11.6 onions 
11.7 garlic 
11.8 potatoes 

12. Crucifers 
12.1 broccoli 
12.2 cauliflower 

3.4 milo 
3.5 sorghum 
3.6 wheat 

5.3 red leaf lettuce 
5.4 other 

6.3 cantaloupes 

11.9 okra 
11.10 radishes 
11.11 comm. flowers 
11.12 artichokes 
11.13 asparagus 
11.14 peanuts 
11.15 jojoba beans 
11.16 garbanzo beans 

12.3 cabbage 
12.4 bok-choy 

13. Fallow 
13.1 idle with weeds - green 
13.2 idle with weeds - senescent 
13.3 cultivated bare soil 
13.4 not cultivated - bare soil 

14. Dates 

15. Safflowers 

ber. A total of 12,764 agricultural fields were digitized within 
the study area. 

The USBR and Pacific Meridian Resources personnel then 
chose the fields to be visited based upon knowledge from 
previous USBR work. Fields were chosen to represent the full 
variety of crop types across the entire study area. A total of 
1800 fields were chosen to be visited on the ground. 

Field maps, at a scale of 1:24,000, were created by over- 
laying the digitized field boundaries onto the SPOT panchro- 
matic imagery. These maps were a tremendous aid in locat- 
ing the fields to be visited. Each field contained a unique 
number printed within its boundaries, and the fields to be 
ground visited were highlighted in bright solid colors. 

Each round of field work consisted of three teams of at 
least two people per team. Fieldwork lasted for two consecu- 
tive weeks and occurred at four different times (i.e., March, 
May, August, and December) to coincide with the different 
crops planted throughout the year. At each visit, the follow- 
ing information was collected for each field: crop type, crop 
height, moisture conditions, percent cover, crop condition, 
and any other important attributes such as the presence of 
bare soil conditions, weeds, etc.. This information was neces- 
sary to explain all the possible variation in crop classes. 
Each round of fieldwork occurred simultaneously with the 
date of the satellite image collection. If the imagery acquired 
during the field work could not be used because of extensive 
cloud cover, then the image acquired immediately before or 
immediately after the field work would be chosen. The same 
fields were visited during each round of field work. 
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Image Processing ability within that field. Duplicate sites within a single field 
PRELIMINARY DATA PROCESSING could be eliminated. 
USBR and Pacific Meridian Resources personnel agreed that Once all the final training site statistics were generated, a 
photointerpreting citrus and dates was more accurate than supervised maximum-likelihood classification was performed 
mapping them from the Landsat TM imagery. This decision in Imagine to label all the agricultural crops. Once the classifi- 
was based upon the high spectral variability within these cation was complete, the classification was converted to the 
two crop types, and the relative ease with which these two Image Segmentation Algorithm software where each agricul- 
crop types could be discriminated using photointerpretation. tural field was given a label based on a plurality rule. To ac- 

All Landsat TM data were purchased in a geocoded and complish this, the segmentation software was used to overlay 
terrain-corrected format registered to within 0.5 pixels on the the field boundary coverage onto the classification and look at 
ground. No additional atmospheric or radiometric corrections all of the classified pixels within each field. The process then 
were applied to these data. gave each field a crop label based upon which crop type had 

The digitized field boundary coverage was provided to the most classified pixels within that field (i.e., plurality rule). 
Pacific Meridian once it had been through quality control at The labeled field polygons were then converted to ARC/INFO 
the USBR. Pacific Meridian personnel performed a final qual- and a frequency table was produced. This table showed the 
ity control, making sure that all fields were properly coded. comparison between crop-type reference label (the label given 
The database was then populated with the data that was col- to the fields during fieldwork) and the map crop label (the la- 
lected in the field. be1 given to the fields from the classification). Only those 

One-third of the ground-visited fields were "set aside" to fields that were used for training sites were included in this 
be used later as an independent sample for conducting an frequency computation; the accuracy assessment sites were 
accuracy assessment. The other two-thirds of the ground-vis- still set aside and not analyzed at this time. This frequency ta- 
ited fields were used as training sites to create the map of ble was then a measure of how well the classification process 
crop types. These fields were selected using a random pro- classified the training data. Because we were contractually ob- 
cess (i.e., using a random number generator on the unique ligated to meet an overall 93 percent accuracy based on acre- 
field identification number) while assuring a good distribu- age, if the frequency table was below 93 percent agreement, it 
tion of all the crop types in their various stages of growth. was assumed that the independent accuracy assessment would 

also not be at the required accuracy level. Therefore, an itera- 

CLASSIFICATION tive classification approach was employed to identify and I 

All Landsat TM data processing was performed on bands eliminate bad signatures (i.e., training areas) in order to in- 
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2, 3, 4, 5, and 7. Two-thirds of the ground-visited fields were crease the accuracy. 

used as training sites to perform a supervised classification. 
Initially, a training site was created within each field using BAD SIGNATURES 

I 

the SEED routine in ERDAS Imagine image processing soft- The next round(s) of classification centered upon finding the 
ware. SEED grows a training site from a given starting point signatures that were responsible for mislabeling fields. To de- 
using user-defined parameters (ERDAS Imagine Field Guide, termine which signatures were responsible for misclassifica- 
1995). Given the large number of training sites, this process tion, a two-pronged approach was developed. The first step 
proved extremely time consuming and required considerable utilized a data exploration cluster analysis technique which 
analyst manipulation to achieve the desired level of crop dis- identified which signatures were statistically similar to one 
crimination accuracy. another (Chuvieco and Congalton, 1988). For instance, if the 

A new process, called AUTOSIG, was created to make the cluster analysis showed that an alfalfa signature and a small 
training site extraction process easier, quicker, and more reli- grains signature clustered together, then those signatures 
able. AUTOSIG reduced the training sitelsignature extraction were too spectrally similar and one or both of the signatures 
process by half and provides a wealth of signatures for use in could be eliminated. 
the classification process. AUToSIG uses a combination of Arc1 The second step was to run a summary of the per-pixel 
Info (ESRI, 1994), ERDAS Imagine, and Image Segmentation Al- classification and the misclassified fields. The resulting sum- 
gorithms (Woodcock and Harward, 1992) to produce the train- mary table showed which signatures were responsible for 
ing sites (Frew, 1990). First, a 25-m buffer is placed inside classifying each of the crop types. For instance, if there were 
each field to eliminate any edge effects. This ArcIInfo cover- five fields that were known to be alfalfa but were classified 
age is then used to extract the area of interest on the image, as small grain; that meant that there were small grain signa- 
allowing the full range of spectral variation within each agri- tures that were misclassifying alfalfa. One could then look 
cultural field to be analyzed. Next, the Image Segmentation through the summary table in search of small grain signa- 
Algorithm software is used to generate polygons of spectrally tures, and delete the ones that were spectrally confused 
homogeneous pixels within the field. In this way, a single ag- enough to result in a field being mislabeled. The selection of 
ricultural field can be partitioned into various polygons based signatures to be deleted was decided by analyzing both the 
on all the spectral variation within that field (e.g., soil differ- cluster analysis and summary outputs. Once bad signatures 
ences, moisture gradients, fertilizer applications, etc.). A com- were identified and deleted from the signature set, another 
bination of Landsat TM bands 3, 4, and 5 and a texture band supervised classification was performed. Again, once the 
derived from band 4 was used to generate these polygons. The classification was completed, a frequency table was created. 
Image Segmentation output is converted to an ArcIInfo cover- Independent accuracy assessment did not begin until after 
age and overlaid with the original six-band (minus the ther- the frequency table results were greater than or equal to 93 
rnd band) Landsat TM image, and the training site statistics percent. ~ 
are generated using ERDAS Imagine. 

The process generates a plethora of training sites which 
were then refined using specific criteria. In this case, we Accuracy Assessment 

specified that a valid site must consist of at least 14 pixels The purpose of quantitative accuracy assessment is the iden- 

with a deviation of less than or equal to three in all tification and measurement of map errors. There are two pri- 

six bands. Finally, the training sites were sorted by field mary motivations for accuracy assessment: 

identification number so that the analyst could see how To understand the errors in the map (so they can be 
many sites fell within a single field and ascertain the vari- corrected), and 
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C~trus 
Tomatoes 
Sudan Grass 
Other Vegetables 
Crucifers 
Fallow A 

2 o 2 4 6 Kllometm - 
To provide an overall assessment of the reliability of the map 
(Gopal and Woodcock, 1994). 

The following factors are critical to successful design 
and implementation of map accuracy assessment: 

The sample design must be cost efficient. Because accuracy 
assessment can require a large number of sample sites, cost 
efficient design is imperative. 
The classification rules used to label the map being assessed 
must be rigorous and well-defined. 
Accuracy assessment procedures should be statistically rigor- 
ous. Sample selection should be unbiased and data collection 
should be consistent. Sites used to train the photointerpreter 
or image processing system cannot be used for accuracy as- 
sessment. Existing ground or photo data can be used only if 
it is reinterpreted under accuracy assessment procedures. 
The accuracy of the reference data must be evaluated. In the 
past, reference data have been assumed to be 100 percent ac- 
curate. Pacific Meridian's experience has shown that differ- 
ences betwean reference data and mapped data are often 
caused by factors other than map error (Congalton and Green, 
1993). It is important, therefore, that variation in reference 
data be quantified before assessing map accuracy. 
The information used to assess the accuracy of the maps 
must be of the same general vintage as those originally used 
in map classification. The greater the time period between 
the media used in map classification and that used in assess- 
ing map accuracy, the greater the likelihood that differences 
are due to change in vegetation (from harvest land-use 
change, etc.) rather than from mis-classification. 

The error matrix, the established standard for reporting 
remotely sensed data classification accuracies, was used in 
this project to report all quantitative map accuracies (Congal- 
ton, 1991). An error matrix is a square array of numbers set 
out in rows and columns which express the number of pixels 

assigned to a particular category in one classification relative 
to the number of pixels assigned to a particular category in 
another classification. In most cases, one of the classifications 
is considered to be correct and may be generated from aerial 
photography, airborne video, ground observation, or ground 
measurement. The columns usually represent this reference 
data while the rows indicate the classification generated from 
the remotely sensed data. An error matrix is an effective way 
to represent accuracy in that the individual accuracies of each 
category are plainly described along with both the errors of in- 
clusion (commission errors) and errors of exclusion (omission 
errors) present in the classification. A commission error occurs 
when an area is included into a category when it does not be- 
long. An omission error is excluding that area from the cate- 
gory in which it does belong. Every error is an omission from 
the correct category and a commission to a wrong category. 

In addition to clearly showing errors of omission and 
commission, the error matrix can be used to compute overall 
accuracy, producer's accuracy, and user's accuracy (Story 
and Congalton, 1986). Overall accuracy is simply the sum 
of the major diagonal (i.e., the correctly classified pixels or 
samples) divided by the total number of pixels or samples in 
the error matrix. This value is the most commonly reported 
accuracy assessment statistic. Producer's and user's accura- 
cies are ways of representing individual category accuracies 
instead of just the overall classification accuracy. 

Results 
Plate 1 presents an example of the classified crop map gener- 
ated for May 1997. Maps like this one were produced for the 
entire study area for each date of analysis for input into the 
L C R A ~  model. Each crop map was independently assessed 
for accuracy to test if the required 93 percent accuracy was 
achieved. 

Table 2 presents the error matrix for the May 1997 map 
on a per-sample basis. Each tally in the matrix represents a 
sample unit (i.e., field). Table 3 presents the same error ma- 
trix, but on an acreage basis. In this matrix, acreage is used 
to weight the accuracy calculations. Both tables show overall 
accuracy, as well as producer's and user's accuracies. In ad- 
dition, some corrections/adjustments were allowed to com- 
pensate for confusion among classes. The first adjustment is 
called the "fallow correction" and recognizes that any field 
that is in the early stages of growth could easily be confused 
with a fallow field on the imagery and vice versa. Therefore, 
fields that were misclassified as fallow were removed from 
the error matrix and the accuracies were updated. A second 
adjustment recognizes that bermuda grass and alfalfa can be 
confused because they are often spectrally indistinguishable 
and because bermuda grass often grows within alfalfa fields. 
This confusion was also removed from the error matrix and 
the accuracies were once again updated. Both of these cor- 
rections were minimal and only adjust the accuracy meas- 
ures a few percentage points. However, they were legitimate 
limitations of the classification and must be documented. 
Both Tables 2 and 3 clearly show the original accuracy cal- 
culations and then the updates for each correction. 

The individual crop and overall accuracies for each of 
the 1 2  maps created between May 1994 and May of 1997 
are given in Table 4. For some dates, no field data were col- 
lected for certain crops because these crops were not grown 
at that time. Also, some individual accuracies are quite low. 
Typically, these low accuracies are indicative of crops occu- 
pying only a small percentage of ground area and are miti- 
gated in the calculation of overall accuracy because this 
measure was weighted on an acreage basis. 

In addition, the USBR runs an annual crop summary pro- 
gram that evaluates the multi-temporal (four times per year) 
combination of crop types for each field. This program takes 
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Alfalfa 
Cotton 
Small grain 
Corn 
Lettuce 
Melons 
Bermuda Grass 
Citrus 
Tomatoes 
Sudan Grass 
Other Veg 
Crucifers 
Fallow 
Dates 
Safflower 

Overall 93% 93% 93% 93% 93% 93% 94% 93% 93% 94% 95% 93% 
- - - 

**Field data was not collected 

into account the  expected crop planting practices a n d  accu- 
racy assessment information, thereby further reducing error 
i n  the  classification process. 

Conclusions 
This  project combined remote sensing, GIS, a n d  detailed 
ground information to m a p  agricultural crops a n d  other l and  
cover i n  the Lower Colorado River Basin. Very high accura- 
cies were required and achieved by  incorporating detailed 
ground observations wi th  automated signature extraction and 
data  exploration routines. Water is  a n  extremely valuable re- 
source in this area a n d  every effort i s  made  to document  a n d  
anticipate its use. Treaties w i t h  Mexico a n d  court decrees be- 
tween  states dictate the  need  for accounting for every drop of 
water. The  LCRAS model  requires accurate data  for input.  
Perhaps the  best indicator of success of this project is  that  
our  land-cover m a p s  have been successfully used  to r u n  the  
model  a n d  have achieved very good results. 
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