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ABSTRACT 

 

By now, modern photogrammetric workflows are fully automatized from image orientation to dense point cloud, 

mesh and DSM generation. However, extracting the semantic information of the images is still a challenge. 

Segmentation and segment classification are labor intensive, and therefore, the automation of this step of the 

photogrammetric workflow is of interest for researchers and practitioners. Recently, deep learning, in particular, 

convolutional neural networks (CNN) have become one of the promising approaches to tackle this problem. CNN 

has already achieved high accuracy for various image classification, segmentation and labeling tasks, however, 

current efforts are typically focused on segmentation of close-range, mobile or indoor imagery. The goal of this 

paper is to investigate the performance of an encoder-decoder convolutional neural network, called SegNet, on 

aerial images for image segmentation and classification. The encoder-decoder network structure allows for pixel-

wise segmentation of an image, where all pixels are annotated with a label by the network. The performance 

analysis is conducted on the ISPRS’s aerial benchmark dataset, and includes the investigation of various hyper 

parameters, such as learning rate, input image size, the effect of training set size and pretrained weights on the 

segmentation and classification accuracy.  
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INTRODUCTION 

 

In photogrammetric applications, the goal of image segmentation and classification is the task to annotate all 

pixels with land use categories, such as forests, buildings, infrastructures, etc. This task is a labor intensive and 

expensive, therefore the automatization of this process has been a long studied problem in photogrammetry. Many 

techniques have been developed in the last decades including simpler threshold based, edge based and region 

based methods, and more complex methods, such as Markov random fields, fuzzy models, watershed models, and 

neural networks (Dey, Zhang, and Zhong 2010; Pal and Pal 1993). The developments of deep learning and deep 

neural networks are boosted by the growing computation power and the availability of large datasets required for 

training these models. Recent advances in deep learning further pushed the accuracy of image segmentation 

methods. 

The first deep neural networks for image segmentation and classification are developed by the computer vision 

community. These algorithms are used on various types of indoor and outdoor images. Aerial images taken from 

UAS or airborne platforms are different than the images investigated in computer vision studies. First, in many 

cases, the objects, such as buildings, present as small patches on the images and the patterns of these patches are 

significantly different than other objects in close-range indoor or outdoor images. Second, the image resolution is 

higher than what it is typical in computer vision applications that requires multi-scale approaches to reduce the 

problem space. Third, airborne sensors might capture larger spectral bandwidth, and thus, the images might have 

multiple channels or have different channels, for instance, infra-red instead of red, as opposed to single RGB 

images. And finally, the number of object classes in photogrammetric applications is typically smaller. For these 

reasons, the investigation of deep neural models on aerial images are required. 

In this paper, we investigate the SegNet deep neural network (Badrinarayanan, Kendall, and Cipolla 2015). 

SegNet is one of the most successful and relatively simple deep model for image segmentation and classification. 

In general, deep neural network has several hyper-parameters, such as mini-batch size, learning rate, weight decay, 



that has relevant impact on the classification accuracy. The goal of this paper is to investigate the impact of the 

SegNet’s hyper-parameters on the classification accuracy using airborne images, and ultimately, to provide 

guideline for appropriately choose them.  

 

THEORY 

 

SegNet 

SegNet is a deep convolutional neural network (CNN) developed for image segmentation and classification. 

Deep learning libraries define the tensor data structure, which is basically a multi-dimension matrix. For CNNs, 

tensors typically have three dimensions: width, height and depth. The input of the investigated SegNet network is 

a RGB image represented as a 224x224x3 tensor. The output of the network is a tensor which has the same width 

and height as the input tensor, i.e. 224x224, and the depth channels indicate the scores for each label class. The 

label with the highest score along the channel dimension is chosen as the label for a pixel.  

The SegNet network consists of two parts. The first part is a VGG-16 network (Simonyan and Zisserman 2014), 

see Figure 1. VGG-16 is developed for image classification problem, where the task is to label the content of the 

whole image into subcategories. VGG-16 applies a series of convolution, ReLU, batch normalization, max-

pooling, and dropout layers. The height and width dimensions decrease while the depth dimension increases as 

the network gets deeper. The deeper depth channels are interpreted as different features of the scene. The tail of 

the VGG-16 network is a classifier head that transforms 512 features into label scores utilizing a fully connected 

and SoftMax layers. 

As opposed to VGG-16, SegNet annotates all pixels, and thus, the output of the network is not a single label for 

the entire image, but labels for all pixels. Therefore, SegNet replaces the classifier tail of VGG-16 with a 

“mirrored” VGG-16 network architecture, see Figure 1. The original VGG-16 network is called encoder, and the 

“mirrored” counterpart is the decoder. In this decoder network, the max-pooling operator is replaced by max-

unpooling. Unpooling is the inverse operator of pooling that increases the height and width of the layer’s input 

tensor and decreases the number of depth channels. Thus, this allows the network to transform the features 

produced by the VGG-16 network into the original image resolution. One of the main advantage of using VGG-

16 is that large datasets are available for image classification, and therefore, VGG-16 pre-trained model are more 

accurate. These pre-trained model, then, can be used in SegNet via transfer learning. Finally, the output of the 

SegNet is the label scores for all pixels of the image. 

In general, it is noteworthy that there exists other pixel-level labeling networks, such as U-Net (Ronneberger, 

Fischer, and Brox 2015), or DeepLab (Chen et al. 2018), that achieve better accuracy on notable benchmark 

datasets, however its relatively simple network structure allows for easy implementation. Note that almost all 

popular deep learning libraries, such as TensorFlow or PyTorch, provide pre-defined SegNet architecture for the 

user. 
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Figure 1 The network architecture of VGG-16 and SegNet. 

 



METHODS 

 

The performance of a neural network is directly dependent upon its hyper-parameters such as number of layers, 

activation functions, learning rate, loss function, and etc. Finding the optimal parameters for a network is a tedious 

task; therefore, we study several parameter tuning techniques including hand-tuning, grid search, randomization, 

and sequential model-based global optimization. 

 

Hand-Tuning 

Arguably, the simplest hyper-parameter tuning technique in neural networks is hand-tuning. Assume that the 

only influential hyperparameter is the learning rate, and all other parameters have a negligible effect on the 

performance of the network.  Intuitively, one can start with start with few different learning rate values and finally 

pick the one that results in the best performance of the network. However, a more effective technique is to observe 

the behavior of the measuring index for several epochs. Depending on what measuring index is chosen for 

performance evaluation, change of hyper-parameters, e.g. learning rate, will result in a different behavior/trend in 

the measuring index. For instance, Fig. 2 illustrates the trend in loss for a low/right/high/very high learning rate 

value. In hand-tuning technique, plotting the values provides valuable insights about the network. Hand-tuning 

requires some fundamental knowledge about the response of a neural network to change in hyper-parameters. The 

more complex the network is, the more difficult it is to picture how a measuring index will change, especially if 

the chosen measuring index is the hybrid of several other measuring indices such as f1-score. Another drawback 

in hand-tuning technique is values selected for a training round. For instance, humans might only select round 

numbers. The implicit bias in selecting values could lead to ignoring the right values for the network. 

 

 
Figure 2 Loss vs. Epoch: Colors (---), (---), (---), and (---) represent the trend of loss over several epochs for a very 

high, low, high, and appropriate learning rate. 

 

Grid Search 

A more elegant parameter tuning technique is to use a systematic way of selecting values within a certain 

interval. The grid search technique divides the domain of parameters into equal regions. Assume that learning rate 

values fall between 1e-6 and 1. The grid search technique takes as input, the number of grids, e.g. 11. A naïve 

gird search divides the given interval into 10 equal subintervals and outputs the following values: 1e-6, 0.1, 0.2, 

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. All the values between 1e-6 and 0.1 are neglected. A better approach is to 

uniformly divide the logarithm of the given interval. In such case, values between 1e-6 and 0.1 will also be 

sampled from.  

Once the interval is sampled, the network is trained for all the combination of sampled parameters. For 𝑛 hyper-

parameters, with 𝑚 sampled values for each, there are 𝑚𝑛 possible combinations. Since training deep neural 

networks could take several hours or days, blindly using all possible combinations of hyper-parameter values will 

take a long time. 

 



Randomization 

A major drawback of using grid search is the approach taken in sampling values for hyper-parameters. Randomly 

sampling a subset of all the possible combinations reduces the time required for training. Many distributions such 

as normal distribution can be used for this purpose. However, a subtlety about random sampling is that samples 

should not be drawn with replacement and should not be close to other values. The former is handled easily by 

ignoring duplicates. The latter is done through a systematic sampling method such as van der Corput sequence, 

which is a one-dimensional low discrepancy sequence. As opposed to a uniform distribution, which is unbiased 

and generates samples all with the same probability, a sample generated by low discrepancy sequence is aware of 

all the previous generated samples. Thus, the interval is sampled (filled) more uniformly compared to the same 

interval sampled by a regular uniform distribution. Other examples of low discrepancy sequence are Hammersley 

set, Halton sequence, and Sobol sequence. 

 

Sequential Model-based Global Optimization 

In this work, we use a sequential model-based global optimization approach (SMBO) algorithm (Bergstra et al., 

2011) since optimizing the actual problem is very expensive. SMBO is a model-based algorithm that evaluates an 

approximate function, which is cheaper than the true function. The parameters that optimize the approximate 

function are proposals used to evaluate the true function. Following the suggestion of Bergstra et al. (Bergstra et 

al., 2011), we use the criterion of Expected Improvement (EI) as the as optimization objective.  

Expected improvement is defined as the expectation of function 𝑓: 𝑋 →  ℝ𝑁 that 𝑓(𝑥) will exceed some 

threshold 𝜏: 

 

𝐸𝐼(𝑥) =  ∫ max(𝜏 − 𝑦, 0) 𝑝(𝑦|𝑥)𝑑𝑦.
∞

−∞

 (1) 

 

We use Tree-structed Parzen Estimator (TPE) approach in order to model 𝑝(𝑦|𝑥) via 𝑝(𝑥|𝑦) and 𝑝(𝑦). TPE 

collects parameters {𝑥(1), … , 𝑥(𝑘)},  then it decides which hyper-parameters it should use in the next iteration. The 

decision-making process requires a prior distribution to sample hyper-parameters from.  

The TPE algorithm categorizes hyper-parameters into two groups. The first group is composed of hyper-

parameters that correspond to 𝑓 exceeding the threshold 𝜏, and the second group which contains all other hyper-

parameters. With collecting these observations, we are able to construct a distribution for hyper-parameters that 

improve EI. Formally, TPE defines 𝑝(𝑥|𝑦) as: 

 

𝑝(𝑥|𝑦) = {
𝑙(𝑥) 𝑖𝑓 𝑦 ≤ 𝜏
𝑔(𝑥) 𝑖𝑓 𝑦 ≥ 𝜏,

 

 

(2) 

where 𝑙(𝑥) and 𝑔(𝑥) are density functions constructed based on parameters resulting in 𝑓(𝑥(𝑖)) = 𝑦 being less 

than and larger than 𝜏, respectively. We can incorporate the TPE algorithm into Equation 1 as: 

 

𝐸𝐼(𝑥) = ∫ max(𝜏 − 𝑦, 0) 𝑝(𝑦|𝑥)𝑑𝑦
∞

−∞

= ∫ max(𝜏 − 𝑦, 0) 𝑝(𝑦|𝑥)𝑑𝑦
𝜏

−∞

+ ∫ max(𝜏 − 𝑦, 0) 𝑝(𝑦|𝑥)𝑑𝑦
∞

𝜏

= ∫ max(𝜏 − 𝑦, 0) 𝑝(𝑦|𝑥)𝑑𝑦
𝜏

−∞

= ∫ max(𝜏 − 𝑦, 0)
𝑝(𝑥|𝑦)𝑝(𝑦)

𝑝(𝑥)
𝑑𝑦

𝜏

−∞

= ∫ (𝜏 − 𝑦)
𝑙(𝑥)𝑝(𝑦)

𝑝(𝑥)
𝑑𝑦

𝜏

−∞

= 𝑙(𝑥) ∫ (𝜏 − 𝑦)
𝑝(𝑦)

𝑝(𝑥)
𝑑𝑦

𝜏

−∞

. 

 

(3) 

We can further simplify Eq. 3 by denoting 𝑝(𝑦 < 𝜏) as 𝜆 and substituting 𝑝(𝑥) by its definition 

 

𝑝(𝑥) =  ∫ 𝑝(𝑥|𝑦)𝑝(𝑦)𝑑𝑦
∞

−∞

= 𝑙(𝑥) ∫ 𝑝(𝑦)𝑑𝑦
𝜏

−∞

+ 𝑔(𝑥) ∫ 𝑝(𝑦)𝑑𝑦
∞

𝜏

= 𝑙(𝑥)𝑝(𝑦 < 𝜏) + 𝑔(𝑥)(1 − 𝑝(𝑦 < 𝜏)) = 𝜆𝑙(𝑥) + 𝑔(𝑥)(1 − 𝜆), 
 

(4) 

 

 



into the following expression: 

 

𝐸𝐼(𝑥) =  𝑙(𝑥) ∫ (𝜏 − 𝑦)
𝑝(𝑦)

𝑝(𝑥)
𝑑𝑦

𝜏

−∞

=
𝑙(𝑥)

𝜆𝑙(𝑥) + 𝑔(𝑥)(1 − 𝜆)
(𝜏 ∫ 𝑝(𝑦)𝑑𝑦

𝜏

−∞

− ∫ 𝑦𝑝(𝑦)𝑑𝑦
𝜏

−∞

)

∝ (𝜆 +
𝑔(𝑥)

𝑙(𝑥)
(1 − 𝜆))

−1

. 

 

(5) 

It is clear that 𝐸𝐼(𝑥) is maximized when the probability of hyper-parameters belonging to 𝑔(𝑥) is low and high 

for 𝑙(𝑥). 

 

 

EXPERIMENT 

 

Hyper-parameter optimization 

The SegNet neural network is implemented in PyTorch. The weights of the encoder part of the network are 

transferred from a pre-trained VGG-16 network available from the PyTorch Model Zoo. The stochastic gradient 

descent optimizer was used during the training and the loss function is defined as cross entropy. For faster 

evaluation, we apply early stopping and finish the training of each instance after 75 epochs. 

Batch size, dropout probability, learning rate and weight decay hyper-parameters selected for the optimization 

process, see Table 1. Since we are investigating SegNet’s architecture, parameters such as the number of layers, 

activation functions, which define the architecture are not included in the optimization. Table 1 presents the 

searching boundaries of the hyper parameters.  

 

Table 1 Searching boundaries for the hyper-parameters. 

Hyper-parameter Searching boundaries Comments 

Learning rate [1e-6, 1] 
Controls how much we are adjusting the weights of the 

network with respect to the loss 

Weight decay [1e-6, 1] Plays important role in network regularization. 

Mini-batch size [1, 16] Controls the accuracy of the gradient step. 

Dropout probability [0, 1] 
It is a regularization technique that deactivates certain 

number of neurons during training 

 

Dataset 

We used the ISPRS Vaihingen dataset for the experiment. The images have a size of 2000 x 2500 pixels. This 

image size is too large to directly feed into the neural network, therefore all images in the datasets are cropped to 

224 x 224 with 60% overlap resulting in 12,664 images. In order for faster training, we used only the 25% of these 

images (3166 images) that were randomly chosen. 85% of these images are used for training and 15% was the 

validation dataset. The validation dataset is used to measure the segmentation accuracy during the stochastic 

gradient descent after each epoch and we chose the best model, accordingly. 

 

Evaluation Metrics 

In sematic segmentation tasks, there are many evaluation measures. In this study, we use global accuracy:  

 

 

1

𝑁
∑ 𝑇𝑃𝑖

𝐾

𝑖=1

 
(6) 

 

where 𝑇𝑃𝑖 is the number of true positive pixels in class 𝑖, 𝑁 is the number of all pixels in all  images and 𝐾 is the 

number of classes. Note that global accuracy measures only the overall success, but does not emphesize classess 

with smaller samples. For instance, images might contain larger number of pixels that represent vegetation, but 

lower number of building pixels. In this case, if a calssifier better extracts vegetation, it might outperform another 



calssifer that is able to better extract buildings but weaker for vegetations. Therefore, we use macro F1 score that 

amplifies segmentation success of label categories with lower number of examples in biased datasets:  

 

𝑝𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

, 

 

𝑟𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

, 

 

𝐹1 =
1

𝐾
∑ 2

𝑝𝑖𝑟𝑖

𝑝𝑖+𝑟𝑖

𝐾

𝑖=1

, 

 

(7) 

where 𝐹𝑃𝑖 , 𝐹𝑁𝑖 are the false positive and false negative pixels in class 𝑖, and 𝑝𝑖 , 𝑟𝑖 is called precision and recall, 

respectively.  

 

RESULTS AND DISCUSSIONS 

 

Figure 3 shows the results, where X, Y, and Z axes are the batch size, droput probability and learning rate on 

logarithmic scale. The dots are colorized based on F1-score. Note that the dots are not evenly distributed due to 

the the Bayes model based searching strategy. The best F1-scores are located at around 1e-4 learning rate, batch 

size with value 2 and dropout at around 22%. Figure 4 shows the results for global accuracy. Here, the best solution 

indicates two magnitudes of order higher learning rate and ~50% drouput probability, which is significantly 

different than parameters indicated by F1-score. Same results can be seen in Figure 5, where F1-score and global 

accuracy is presented as function of droput probability and learning rate. For F1- score, the best hyper-parameters 

are located at around ceratin spot, see Figure 5a. As opposed to F1-score, Figure 5b shows that above ~1e-3 

learning rate, good global accuracy can be achived that does not depend on the droput probablity. Therefore, the 

results indicate that the hyper-parameters are more flexible for maximizing the overall (global) accuracy, and 

careful hyper-parameter tuning is required to maximize the segmentation accuracy within the classes. The 

numerical results for the best parameters that miximized the F1-score as well as the global accuracy are presented 

in Table 2. 

 

 
Figure 3 Batch size, droput probaility and learning rate. The dots are colorized based on F1 score. 



 

 

 
Figure 4 Batch size, droput probaility and learning rate. The dots are colorized based on global accuracy. 
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Figure 5  Droput vs. learning rate for (a) F1-score  and (b) global accuracy. 

 

 

 

 

 



 

 

Table 2 Numerical results. 

 
@ Best F1-score @ Best Global Accuracy 

 

F1-score [%] 81.7 72.9 

Global Accuracy [%] 82.3 85.6 

Learning rate [-] 0.000085 (~= 1e-5) 0.015607 (~= 1e-2) 

Weight Decay [-] 0.000001 (~= 1e-5) 0.000003 (~= 1e-6) 

Batch Size [-] 2 2 

Dropout [%] 22.4 56.6 

 

 

CONCLUSION 

 

The paper presents our investigation on the hyper-parameters of the SegNet convolutional neural network on 

aerial images for image segmentation and classification. The encoder-decoder network structure allows for pixel-

wise segmentation of an image, where all pixels are annotated with a label by the network. The performance 

analysis is conducted on the ISPRS’s Vaihingen aerial dataset. We found that the hyper-parameters are more 

flexible for maximizing the overall (global) accuracy, and careful hyper-parameter tuning is required to maximize 

the segmentation accuracy within the classes. We reported the optimal learning-rate, weight decay, batch size and 

droput settings that maximized the F1-score on our dataset. 
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