PE&RS November 2015 - page 879

FAOSTAT, 2013. URL:
(last
date accessed: 24 September 2015).
Gaur, A., T.W. Biggs, M.K. Gumma, and H. Turral, 2008. Water
scarcity effects on equitable water distribution and land use
in Major Irrigation Project - A Case study in India,
Journal of
Irrigation and Drainage Engineering
, 134 (1):26–35.
Goetz, S.J., D. Varlyguin, A.J. Smith, R.K. Wright, S.D. Prince,
M.E. Mazzacato, J. Tringe, C. Jantz, and B. Melchoir, 2004.
Application of multitemporal Landsat data to map and monitor
land cover and land use change in the Chesapeake Bay
watershed,
Analysis of Multi-temporal Remote Sensing Images
(P. Smits and L. Bruzzone, editors), World Scientific Publishers,
Singapore, pp. 223–232.
Gumma, M.K., S. Mohanty, A. Nelson, R. Arnel, I.A. Mohammed,
and S.R. Das, 2015. Remote sensing based change analysis of
rice environments in Odisha, India,
Journal of Environmental
Management
, 148(0):31–41.
Gumma, M.K., P.S. Thenkabail, A. Maunahan, S. Islam, and A.
Nelson, 2014. Mapping seasonal rice cropland extent and area
in the high cropping intensity environment of Bangladesh
using MODIS 500m data for the year 2010,
ISPRS Journal of
Photogrammetry and Remote Sensing
, 91(5):98–113.
Gumma, M.K., D. Gauchan, A. Nelson, S. Pandey, and A. Rala, 2011a.
Temporal changes in rice-growing area and their impact on
livelihood over a decade: A case study of Nepal,
Agriculture,
Ecosystems & Environment
, 142(3-4):382–392.
Gumma, M.K., A. Nelson, P.S. Thenkabail, and A.N. Singh, 2011b.
Mapping rice areas of South Asia using MODIS multitemporal
data,
Journal of Applied Remote Sensing
, 5, 053547.
Gumma, M.K., P.S. Thenkabail, I.V. Muralikrishna, M.N. Velpuri, P.T.
Gangadhararao, V. Dheeravath, C.M. Biradar, S. Acharya Nalan,
and A. Gaur, 2011c. Changes in agricultural cropland areas
between a water-surplus year and a water-deficit year impacting
food security, determined using MODIS 250 m time-series data
and spectral matching techniques, in the Krishna River basin
(India),
International Journal of Remote Sensing
, 32(12):3495–
3520.
Hossain, M., 1998.
Sustaining Food Security in Asia: Economic,
Social, and Political Aspects - Sustainability of Rice in the
Global Food System
, Pacific Basin Study Center, Davis,
California, and International Rice Research Institute, Manila,
The Philippines, pp. 19–44.
Imhoff, M.L., and D.B. Gesch, 1990. The derivation of a sub-canopy
digital terrain model of a flooded forest using synthetic aperture
radar,
Photogrammetric Engineering & Remote Sensing
,
56(8):1155–1162.
Jensen, J.R., 1996.
Introductory Digital Image Processing: A Remote
Sensing Perspective
, Prentice Hall, Upper Saddle River, New
Jersey.
Kasischke, E.S., and L.L. Bourgeau-Chavez, 1997. Monitoring south
Florida wetlands using ERS-1 SAR imagery, Photogrammetric
Engineering & Remote Sensing 63(3):281–291.
Khush, G.S., 1995. Breaking the yield frontier of rice,
GeoJournal
,
35(3):329–332.
Knight, J.F., R.L. Lunetta, J. Ediriwickrema, and S. Khorram, 2006.
Regional scale land-cover characterization using MODIS-NDVI
250 m multi-temporal imagery: A phenology based approach,
GIScience and Remote Sensing
, 43(1):1–23.
Laur, H., P. Bally, P., Meadows, J. Sanchez, B. Schaettler, E. Lopinto,
and D. Esteban, 2002.
Derivation of the backscattering coefficient σ0 in ESA ERS SAR PRI
products, ESA, Noordjiwk, The Netherlands, ESA Document ES-
TN-RE-PM-HL09(2).
Le Toan, T., F. Ribbes, L.-F. Wang, N. Floury, K.-H. Ding, J.A. Kong, M.
Fujita, and T. Kurosu, 1997. Rice crop mapping and monitoring
using ERS-1 data based on experiment and modeling results,
IEEE
Transactions on Geoscience and Remote Sensing
, 35(1):41–56.
Leckie, D., 1990. Synergism of synthetic aperture radar and visible/
infrared data for forest type discrimination,
Photogrammetric
Engineering & Remote Sensing
, 56(9):1237–1246.
Leica, 2010.
ERDAS Field Guide
, Volume 4, October 2010.
Lobell, D.B., G.P. Asner, J.I. Ortiz-Monasterio, and T.L. Benning, 2003.
Remote sensing of regional crop production in the Yaqui Valley,
Mexico: Estimates and uncertainties, Agriculture, Ecosystems &
Environment 94(2):205–220.
Lopes, A., R. Touzi, and E. Nezry, 1990. Adaptive speckle filters
and scene heterogeneity,
IEEE Transactions on Geoscience and
Remote Sensing
, 28(6):992–1000.
Markham, B.L., and J.L. Barker, 1986.
Landsat MSS and TM Post -
Calibration Dynamic Ranges, Exoatmospheric Reflectances and
At-Satellite Temperatures
, Earth Observation Satellite Company,
Lanham, Maryland, Landsat Technical Notes, 1, August.
Naylor, R., 1992. Labour-saving technologies in the Javanese rice
economy: Recent developments and a look into the 1990s,
Bulletin of Indonesian Economic Studies
, 28(3):71–91.
Nelson, A., T. Setiyono, A.B. Rala, E.D. Quicho, J.V. Raviz, P.J.
Abonete, A.A. Maunahan, C.A. Garcia, H.Z.M. Bhatti, and
L.S. Villano, 2014. Towards an operational SAR-based rice
monitoring system in Asia: Examples from 13 demonstration
sites across Asia in the RIICE Project,
Remote Sensing
,
6(11):10773–10812.
Rao, A.N., D.E. Johnson, B. Sivaprasad, J.K. Ladha, and A.M.
Mortimer, 2007. Weed management in direct‐seeded rice,
Advances in Agronomy
(L.S.Donald, editor), Academic Press,
pp. 153–255.
Robinson, C., F. El-Baz, M. Ozdogan, M. Ledwith, D. Blanco, S.
Oakley, and J. Inzana, 2000.
Use of radar data to delineate palaeodrainage flow directions in
the Selima Sand Sheet, Eastern Sahara,
Photogrammetric
Engineering & Remote Sensing
, 66(6):745–753.
Sakamoto, T., M. Yokozawa, H. Toritani, M. Shibayama, N. Ishitsuka,
and H. Ohno, 2005. A crop phenology detection method using
time-series MODIS data,
Remote Sensing of Environment
, 96(3-
4):366–374.
Savary, S., N.P. Castilla, F. Elazegui, and P.S. Teng, 2005. Multiple
effects of two drivers of agricultural change, labour shortage and
water scarcity, on rice pest profiles in tropical Asia,
Field Crops
Research
, 91(2):263–271.
Shao, Y., X. Fan, H. Liu, J. Xiao, S. Ross, B. Brisco, R. Brown, and G.
Staples, 2001. Rice monitoring and production estimation using
multitemporal RADARSAT,
Remote Sensing of Environment
,
76(3):310–325.
Siddiq, E., 2000.
Bridging the Rice Yield Gap in India
, URL:
http://
(last date
accessed: 24 September 2015).
Thenkabail, P.S., 2010. Global croplands and their importance for
water and food security in the twenty-first century: Towards an
ever green revolution that combines a second green revolution
with a blue revolution,
Remote Sensing
, 2(9):2305–2312.
Thenkabail, P., C. Biradar, P. Noojipady, V. Dheeravath, Y. Li, M.
Velpuri, M. Gumma, G.
Reddy, H. Turral, X. Cai, J. Vithanage, M. Schull, and R. Dutta,
2009a. Global irrigated area map (GIAM) for the end of the last
millennium derived from remote sensing,
International Journal
of Remote Sensing,
30(14):3679–3733.
Thenkabail, P.S., C.M. Biradar, P. Noojipady, V. Dheeravath, Y. Li, M.
Velpuri, M., Gumma, O.R.P. Gangalakunta, H. Turral, X. Cai, J.
Vithanage, M.A. Schull, and R. Dutta, 2009b. Global irrigated
area map (GIAM), derived from remote sensing, for the end of
the last millennium,
International Journal of Remote Sensing
,
30(14):3679–3733.
Thenkabail, P., P. GangadharaRao, T. Biggs, M. Gumma, and H. Turral,
2007a. Spectral matching techniques to determine historical
land-use/land-cover (LULC) and irrigated areas using time-
series 0.1-degree AVHRR Pathfinder datasets,
Photogrammetric
Engineering & Remote Sensing
, 73(10):1029–1040.
Thenkabail, P.S., P. GangadharaRao, Y. Biggs, M.K. Gumma, and
H. Turral, 2007b. Spectral Matching techniques to determine
historical land use/land cover (LULC) and irrigated areas using
time-series AVHRR Pathfinder datasets in the Krishna River
Basin, India,
Photogrammetric Engineering and Remote Sensing
,
73(10):1029–1040.
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
November 2015
879
819...,869,870,871,872,873,874,875,876,877,878 880,881,882
Powered by FlippingBook