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INDUSTRYNEWSTo have your press release published in PE&RS, 
contact Rae Kelley, rkelley@asprs.org.

ANNOUNCEMENTS

NV5 Global, Inc., a provider of technology, conformity 
assessment, and consulting solutions, announced today that 
it has been awarded a $9 million contract by the National 
Oceanic and Atmospheric Administration’s (NOAA) National 
Geodetic Survey to provide topobathymetric lidar, 4-band 
imagery, and mapping of the Maine shoreline.

Under the two-year contract, NV5 will deliver accurate 
and consistent measurement of the shoreline to support 
marine navigation safety, nautical charting, marine debris 
surveys, and marine resource management assessments. 
Geospatial data for the project will be obtained through 
topobathymetric lidar collection and processing and 4-band 
imagery of 3,115 sq miles of coastal Maine to provide views 
of both the shoreline and shallow water coastal area.

“We are pleased to continue our work with NOAA to 
support the accurate measurement of the nation’s shore-
line,” said Dickerson Wright, PE, Chairman and CEO of 
NV5. “Our innovative work with topobathymetric lidar has 
made shoreline data acquisition possible in some of the most 
difficult coastal terrains and will support the work of marine 
industries and multiple government organizations.”

For more information, visit https://www.nv5.com/
geospatial/.

 ¼½¼½ 

At the 2022 Technology Impact Awards in British Colombia, 
the Vancouver International Airport (YVR) recently received 
the Excellence in Industry Innovation Award by the BC Tech 
Association. The award-winning project involved a Digital 
Twin that was produced by GEO1 using RIEGL LiDAR and 
in partnership with GeoSim and Talon Helicopters.

A Digital Twin is a virtual representation that serves 
as the real-time digital counterpart of a physical object or 
process. Digital Twin models are being used at an increasing 
rate by airports to anticipate passenger movement and de-
ploy resources, such as staff and vehicles, accordingly. They 
can also be used to develop simulations for training ground 
personnel and first responders, as well as to model emergen-
cy events or visualize future infrastructure development.

Once the data for YVR had been acquired by GEO1 with 

two RIEGL VUX-1LR Long Range Laser Scanners at an 
oblique angle to get improved coverage, the data could be 
stitched together by GeoSim to produce the final 3D model.

As the second largest airport in Canada, this Digital Twin 
allows YVR to be positioned at the forefront of innovation in 
the industry.

With an array of Phase One 150-megapixel cameras and 
RIEGL VUX-1LR Long Range Laser Scanners, the GEO1 
team collected data at the rate of almost 1,000 megabytes 
per second.

For more information, visit https://newsroom.riegl.
international/.

 ¼½¼½ 

The U.S. Department of Agriculture (USDA) has consolidat-
ed several of its major geospatial programs under one new 
Blanket Purchase Agreement (BPA) called the PINE Aerial 
Imagery contract. As one of the award recipients, Surdex 
Corporation will provide geospatial services under five Farm 
Production and Conservation (FPAC) programs:
• National Agriculture Imagery Program (NAIP), a state-

based orthoimagery program acquiring imagery during 
peak agricultural growing seasons.

• National Resource Inventory (NRI), a multi-agency, state-
based program of high-resolution orthoimagery for the 
National Resource Conservation Service (NRCS).

• Stewardship Lands Inventory (SLI), an easement-based 
collection program for high-resolution orthoimagery sup-
porting NRCS conservation easement programs.

• Resource, for collection of high-resolution orthoimagery 
for the USFS.

• Ad hoc and Disaster Support, which covers small to medi-
um-sized areas identified for various USDA projects.

The 5-year PINE contract is being administered through 
the General Services Administration’s (GSA) Multiple Award 
contract vehicle and will operate through mid-November of 
2026.

For more information, visit https://www.surdex.com/blog/
category/news/.

 

CALENDAR

• 27 January, ASPRS GeoByte — Allen Coral Atlas: A New Technology for Coral Reef Conservation. For more infor-
mation, visit https://www.asprs.org/geobytes.html.

• 15-17 February, ASPRS Annual Conference at Geo Week, Denver, Colorado. For more information, visit https://my.as-
prs.org/2023conference.

• 5 May,  ASPRS GeoByte — SeaSketch 2.0: A New, Free and Open Source software Service for Map-based Sur-
veys and Collaborative Geodesign. For more information, visit https://www.asprs.org/geobytes.html.
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ASPRS is changing the subscription model of our monthly journal, 
PE&RS. ASPRS is waiving open-access fees for primary authors 
from subscribing institutions. Additionally, primary authors who are 
Individual Members of ASPRS will be able to publish one open-access 
article per year at no cost and will receive a 50% discount on open-
access fees for additional articles. 

• Open Access matters! By providing 
unrestricted access to research 
we can advance the geospatial 
industry and provide research 
that is available to everyone.

• Institutions and authors receive more 
recognition! Giving permission to 
everyone to read, share, reuse the 
research without asking for permission, 
as long as the author is credited.  

• Reputation matters! Known for its 
high standards, PE&RS is the industry 
leading peer-review journal. Adding 
open access increases authors' visibility 
and reputation for quality research.

• Fostering the geospatial industry! 
Open access allows for sharing without 
restriction.  Research is freely available 
to everyone without an embargo period. 

Under the previous subscription model, authors and institutions paid $1500 
or more in open-access fees per article. This will represent a significant cost 
savings. Open-access publications benefit authors through greater visibility of 
their work and conformance with open science mandates of funding agencies.

Subscriptions asprs.org/subscribe
Membership asprs.org/membership
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19 Exploring the Addition of Airborne Lidar-DEM and Derived TPI for Urban Land 
Cover and Land Use Classification and Mapping
Clement E. Akumu and Sam Dennis

The classification and mapping accuracy of urban land cover and land use has always been a critical 
topic and several auxiliary data have been used to improve the classification accuracy. However, to 
the best of our knowledge, there is limited knowledge of the addition of airborne Light Detection and 
Ranging (lidar)-Digital Elevation Model (DEM) and Topographic Position Index (TPI) for urban land cover 
and land use classification and mapping. The aim of this article was to explore the addition of airborne 
lidar-DEM and derived TPI to reflect data of Landsat Operational Land Imager (OLI) in improving the 
classification accuracy of urban land cover and land use mapping.

27 A Machine Learning Method for Building Height Estimation Based on 
Sentinel-2 Bi-Temporal Images
Zhigang Deng, Xiwei Fan, and Jian Chen

Building height information is essential for many applications such as urban planning and population 
density estimation. The building shadow length varies according to seasons, which is shown as different 
digital number values in multi-temporal images. This article shows the feasibility of using satellite mid-
resolution optical image to estimate the building height and provides an important reference for regional 
building height estimation in the future.

37 Generation of High-Resolution Orthomosaics from Historical Aerial 
Photographs Using Structure-from-Motion and Lidar Data
Ji Won Suh and William Ouimet

This article presents a method to generate historical orthomosaics using Structure-from-Motion (SfM) 
photogrammetry, historical aerial photographs, and lidar data, and then analyzes the horizontal accuracy 
and factors that can affect the quality of historical orthoimagery products made with these approaches.

47 The Cellular Automata Approach in Dynamic Modelling of Land Use Change 
Detection and Future Simulations Based on Remote Sensing Data in Lahore 
Pakistan
Muhammad Nasar Ahmad, Zhenfeng Shao, Akib Javed, Fakhrul Islam, Hafiz Haroon Ahmad, 
and Rana Waqar Aslam

Rapid urbanization has become an immense problem in Lahore, Pakistan, causing various socio-
economic and environmental problems. Therefore, it is noteworthy to monitor land use/land cover 
(LULC) change detection and future LULC patterns. This article focuses on evaluating the current extent 
and modeling the future LULC developments in Lahore, Pakistan. 
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Along the coast of Senegal in West Africa, just a kilometer of beach separates 
the bright pink waters of Lake Retba from the dark blue-green waters of the 
Atlantic Ocean. But conditions at the lake (also called Lac Rose) are not always 
so rosy.

Located about 40 kilometers (25 miles) northeast of Dakar, Lake Retba attracts 
visitors who want to see its unique color and float in its salty, buoyant waters. 
With a concentration of salt that surpasses the Dead Sea, Lake Retba is also 
important to the local economy. Harvesters collect thousands of tons of salt 
from its waters each year, which is used locally for cooking and preserving food 
and is also exported to nearby countries.

The water’s pink hue comes from Dunaliella salina—a single-celled algae that 
can tolerate salty environments. D. salina are a type of green algae, but under 
stressful conditions, such as high salinity or intense sunlight, they produce 
protective carotenoids, including orange-red beta carotene.

The lake is typically at its pinkest during the dry season (November to June) 
when there is persistent sunlight and high concentrations of salt. The top image, 
acquired by the Operational Land Imager (OLI) on Landsat 8, shows the lake on 
May 19, 2022, when waters appeared rosy.

The pink color fades during the region’s wet season (July to October) when more 
clouds mean less sunlight and the waters become fresher due to rainwater. The 
bottom image, acquired with the Operational Land Imager-2 (OLI-2) on Landsat 
9, shows the lake on September 16, 2022, when its color nearly matched the 
Atlantic Ocean.

The wet season in 2022 was especially wet. Bouts of torrential rain in early 
August and early September led to deadly flooding in Dakar and surrounding 
areas. The extreme rainfall impacted more than the lake’s color; for example, 
floodwaters in September breached the lake’s bank and washed away salt 
mounds that harvesters had collected there.

Lake Retba is the only pink lake in Africa, but the phenomenon occurs elsewhere 
around the planet. For example, Torrevieja Lagoon in Spain and Lonar Lake in 
India both take on rosy hues from the same single-celled algae.

NASA Earth Observatory images by Lauren Dauphin, using Landsat data from 
the U.S. Geological Survey. Story by Kathryn Hansen.

For more information, visit https://landsat.visibleearth.nasa.gov/view.
php?id=150419.

http://www.asprs.org
www.facebook.com/ASPRS.org
www.twitter.com/ASPRSorg
www.youtube.com/user/ASPRS
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A Different Point-of-View
Using Aerial Imagery to Build Stronger Cities

By Shelly Carroll, Vice President and General Manager, Public Sector, Nearmap
When it comes to aerial imagery, city governments often 
make do with sporadically updated captures that fail to 
provide the most up-to-date information about the changing 
landscape of their urban areas. While they understand and 
appreciate the value of collecting this data, the update ca-
dence is often too infrequent to reveal vital changes. As a re-
sult, information that is essential to successful planning and 
ongoing operations can go unrecorded and unanticipated.

This era of cities having to “make do” with self-collected aerial 
data may be coming to an end, thanks to new and enhanced 
photogrammetric products and possibilities. Increasingly, 
municipalities are realizing that frequently refreshed and 
consistent aerial imagery is a requirement if they are to keep 
pace with fast-growing and quickly evolving communities.

Sioux Falls Streamlines Assessments with Aerial 
Imagery
One recent example of this technology in action is happen-
ing in Sioux Falls, South Dakota, an Upper Midwestern city 
with a population of more than 200000. The most populous 
city in South Dakota, Sioux Falls accounts for more than 
30% of the state’s population.

Working with Nearmap, a leading aerial imagery and location 
intelligence company, Sioux Falls was able to streamline cur-
rent assessment processes, leading to more accurate and easi-
er-to-obtain data for their entire team of property assessors. 

The company’s premium geospatial content, combined with 
world-class mapping software and integrations, provided city 

assessors a consistent “source of truth” throughout the year. 
Armed with frequently refreshed images, the assessors were 
no longer constrained by the usual clutch of springtime im-
age captures. Now they were able to review and assess based 
on late-season captures, as well, a time when many construc-
tions projects near completion. 

All data was openly accessible to anyone in the assessor’s de-
partment with cloud-based access, allowing staffers to instant-
ly stream imagery across devices. Easy integrations with CAD 
and GIS applications like Esri ArcGIS Pro were also essential 
for decision-makers from every municipal area, from public 
works employees to elected officials. The Sioux Falls team 
especially appreciated the ability to view current and histor-
ical imagery side-by-side, which is a feature of the Nearmap 
system that augments long-range planning activities.

City staff found that Nearmap’s 3D Textured Mesh, a fully 
textured and colorized model, provided an enhanced under-
standing of actual conditions, which contributed to better in-
formed decisions. Lauri Sohl, Civic Analytics Manager for the 
City of Sioux Falls, says, “While 3D urban models of proposed 
buildings are useful, combining them with Nearmap Textured 
Mesh gives people a true understanding of a project.”

Photogrammetric Engineering & Remote Sensing
Vol. 89, No. 1, January 2023, pp. 5-8.

0099-1112/22/5-8
© 2023 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.89.1.5

FEATURE

Aerial image provided by Nearmap of La Jolla, CA taken on 9/25/2021.
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Breaking Down Silos for Smarter Cities
Many cities are finding that frequently updated imagery 
can break through existing departmental silos and support 
more efficient planning and operations throughout City Hall 
and beyond. Instead of relying on often-costly and inefficient 
bespoke aerial acquisitions, local governments are making 
the move to aerial capture programs, like the one in place 
in Sioux Falls. This way, users receive frequently refreshed 
high-resolution imagery and derived datasets that help them 
understand change at scale. Here’s how municipal depart-
ments use these images:

	Assessors are able to conveniently and accurately 
inspect land, building structures, ground surfaces, and 
other taxable items for correct property valuations. They 
are able to remotely inspect parcels to identify new tax-
able activity and successfully defend against appeals. 

	Inspectors rely on date-stamped aerial imagery to iden-
tify properties on which to focus attention. This reduces 
wasted trips to sites where, for example, construction 
has not yet begun or has slowed down mid-project.

	Emergencies require products like Nearmap’s rapid 
ImpactResponse flights for the latest high-resolution 
basemaps to safely route police, fire, and response 
teams. Current aerial imagery is critical for coordinating 
actions on the ground, providing emergency staff a Com-
mon Operating Picture critical to developing strategy 
and coordinating tactics. And once the immediate dan-
ger of an emergency is over, teams can use the data to 
assess roof repairs, street blockages and other damage, 
accelerating the insurance claim process. 

	Transportation and road crews can view even the 
smallest pavement irregularities – including potholes – 
with high-resolution, up-to-date aerial imagery. They can 
keep track of vegetation removal and planting projects, 
repairs, and they benefit from a bird’s eye view of con-

ditions as the seasons change. Officials can also use the 
imagery and 3D data to expand visibility into the materi-
al condition of assets like roads, vehicle depots, stations, 
rail tracks, bridges, pavement markings, and signage.

	Public works, parks and recreation and environ-
mental services teams are able to work together seam-
lessly with a clear, current and consistent source of truth. 
For example, aerial imagery and derived datasets enable  
measurement and assessment of trees and greenspaces 
over time. For areas under water restrictions, officials can 
identify and monitor areas of concern that may indicate 
unauthorized use of scarce water resources.

	Water, electricity, waste, and environmental 
utilities use high-resolution aerial basemaps to track 
infrastructure, deploy crews efficiently, and respond 
quickly to interruptions. Large utility inventories can be 
quickly tracked through feature extraction and measure-
ment of assets like electric distribution lines and poles, 
manholes, and water features. Potential risks to power 
lines or other vulnerable infrastructure from vegetation 
can be highlighted through historical image reviews.

	City council, mayor, and other elected officials 
value the presentation of planning materials that use 
GIS-integrated, high resolution recent aerial imagery to 
showcase environmental, social, and governance (ESG) 
trends. Policy development may be malinformed without 
the insights of location-based intelligence. And the com-
mon vision provided by recent aerial imagery is critical 
to a successful public input process.

	Residents are likely to be more engaged when better 
equipped with information that is easy to access and un-
derstand. Updates about the progress of road construction, 
new sidewalks, or park improvements can make planning 
their days easier. Cities are finding that communicating 
more accurate projections about projects helps gain public 
acceptance and green-light planned future efforts.

Aerial image provided by Nearmap of Sun Lakes, AZ taken on 5/23/22
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How it Works 
Nearmap proactively acquires and processes aerial imagery 
and positional data, providing subscription-based access to 
an ever-growing library of geospatial content. Over 80% of 
the U.S. parcel base is captured annually at a frequency of 
up to three times per year. The Nearmap ImpactResponse 
Program focuses on areas of natural disaster, preposition-
ing resources and acquiring imagery immediately following 
flood, wind, fire, and other events. Rounding out the acqui-
sition offerings is the NearmapNow Program, which allows 
customers to obtain custom flights. In 2022, these three pro-
grams captured data for over 1.7 million square kilometers 
across North America.

Nearmap has built and owns its entire technology stack, 
from sensing systems to processing pipelines through deliv-
ery solutions. This patented digital “ecosystem” optimizes 
the quality, consistency, and speed of deliverables while 
minimizing the operational risk associated with capturing 
petabytes of data globally. 

HyperCamera 2, the current generation of camera system, 
captures vertical imagery at a Ground Sample Distance 
(GSD) of 5.5cm (2.2”) and horizontal accuracy of 19.8cm 
(7.8”). Oblique imagery and positional data are acquired con-
currently. A full compliment of 3D content and Artificial-In-
telligence (AI)-derived data layers result from each capture: 
textured mesh, Digital Surface Models (DSMs), point clouds, 

Aerial image provided by Nearmap of the Texas State Capitol taken on 10/30/2021.

Aerial image provided by Nearmap of Santa Monica Pier, CA taken on 9/11/2021.
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and over 75 thematic vector datasets. HyperCamera 3 will 
debut in spring of 2023, with technological advances that 
significantly enhance spatial and spectral resolution, as well 
as the processed deliverables. 

Nearmap’s cloud-based photogrammetry pipeline generates 
these products for streamed access to customers within days 
of capture. Integration with GIS, CAD, Asset Management, 
and other decision support systems is seamless, enriching 
their content and context. The imagery, 3D, and AI content 
serves as source of truth to power a government’s common 
operating picture (COP), allowing cities to maximize the 
value of all their location intelligence assets. 

City Officials Weigh In 
For cities that have made the move to frequently captured 
high-quality aerial imagery, the improvement is notable. 
They have been able to embrace change and build a more 
sustainable future by relying on the more current geospatial 
information.

For Trisha Favulli, Director of Assessing for Falmouth, 
Massachusetts, the move to more frequent aerial data has al-
lowed her town to get ahead of a serious assessment backlog. 
“Before Nearmap, we were already two years behind on our 
imagery capture through our county commission. With Near-
map, my view has never been clearer or more up-to-date.”

Timothy Zimmer, the GIS Administrator for Shelby County 
911 in the Memphis metropolitan area, is impressed with 
the overall improvement of the accuracy of the information 
he can now access any time, from any connected device. “I 
really like how Nearmap is integrated into the GIS stack,” he 
says. “We are able to stay on top of new developments, roads, 
and addresses. And being able to have Nearmap imagery 
integrated into our GIS systems helps us to be much more 
accurate.”

The frequency of information updates has made a difference 
for Matthew W. Bradbury, GIS Administrator for the City 
of Redlands, California. “Nearmap affords us the ability of 
a bird’s-eye view of our city not just once a year, but several 
times per year, at a resolution that is rarely obtainable with-
in our budget,” he says.

The Future is Now
Cities of the past often operated within clearly defined de-
partmental silos that limited knowledge-sharing and mutu-
ally beneficial planning opportunities. Street crews might dig 
up and resurface a major road, unaware that the water utility 
teams had a pipe-replacement project planned for the area 
six months later. The street closures required for a city fes-
tival might not be effectively communicated to traffic, public 
works, or sanitation crews. And citizens might feel confused 
about the purpose and status of city improvement projects, or 
blindsided by changes proposed for their neighborhood.

Today, cities supported by frequently updated imagery are 
able to operate with a more data-driven mindset. High resolu-
tion imagery and derived data encourage a Common Operat-
ing Picture, from which everyone can share knowledge, and in 
which cities can grow and thrive, fueled by an understanding 
of the history and the changes within their boundaries.

About the Author
Shelly Carroll, shelly.carroll@nearmap.com, is the Vice 
President and General Manager, Public Sector of Nearmap. 
She has served the geospatial profession for over 25 years 
in both the public and private sector. Her expertise includes 
planning, emergency response, and resiliency. She holds the 
accreditation in Agile Certified Practitioner (ACP), Certified 
Business Analyst Professional (CBAP), Project Management 
Professional (PMP). Nearmap, 10897 S River Front Pkwy, 
South Jordan, UT 84095.

Aerial image provided by Nearmap of Red River Showdown in TX, taken on 10/9/2021.
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GIS &Tips     Tricks By

When is Sharing not Sharing?

Al Karlin, Ph.D. CMS-L, GISP

If you have been following this column, you know that I often draw my tips and tricks from student questions in my GIS class.  
This month’s tips originate in what I thought would be a simple assignment at the beginning of the semester. 

Background
My class is comprised typically of students from various 
backgrounds, academic-level (Sophomores through Seniors 
although an occasion Freshman sneaks in), and disciplines, 
some technical (think marine science or environmental 
science), some from the social sciences (think sociology or 
history) and some from the business school (think busi-
ness management.)  Most, are familiar with their personal 
computers, but, that computer happens to be some flavor of 
a MacBook running some version of MacOS X.  The “gottcha” 
is that in the GIS laboratory, the university is running Es-
ri-ArcGIS Pro (v2.9) on Windows 10x64 computers.  So, what 
would appear to be a simple task for a Windows 10x64 user, 
turns out to be a pretty complex assignment for most of my 
beginning GIS students.

The Assignment
At your choice of GIS-data rich websites  (I provided six 
URLs to websites in the state), download 3 (or more) data-
sets, add each to a Map Frame, symbolize each in whatever 
makes sense to you, construct a layer package, and upload 
that package the class DropBox folder (all students have 
access to class DropBox folders.)

After being deluged by student e-mails asking for help, here 
are my tips:

Tip #1 — When downloading GIS data files, the most 
common data exchange format is an Esri Shapefile (we 
actually discuss this in class and the need for four computer 
files.)  The files; a .shp, .shx, .dbf, .prj, etc. are usually 
archived into a single ZIPped (.zip) file for downloading.  
The Esri ArcGIS Pro file browser recognizes the .zip format 
BUT when attempting to open a ZIPped file archive, it 
appears empty to the Esri file browser.   The ZIPped 
archive must be unzipped using the Windows Operating 
System (or a dedicated, third-party software program) 
before ArcGIS can read the files and construct a layer.  Of 
course, unZIPping a file is as easy as clicking on the file 
and selecting the “Extract All” function on the Windows 10 
ribbon.  Functionality not commonly used in the MacOS 
environment.

Tip#2—Adding a shapefile to a Map Frame is as easy as 
selecting the .shp file from a Windows file browser (left-
clicking on it) and dragging (holding down the left mouse-
button) the selected file onto the Map Frame. 

However, quickly looking at the Windows File Browser will 
show two .shp files as shown in Figure 1.  Careful inspection 
reveals that one is a SHP file while the other is an XML 
Document   Selecting and dragging the XML Document file 
(immediately below the SHP file in Figure 1) onto a Map 
Frame will result in an “Add data” error (Figure 2.)

Alternatively, 
you can attach to 
a folder in either 
Catalog or the Map 
Frame (Insert | Add 
Folder) and navigate 
through the ArcGIS 
Pro file browser 
interface.   Again, 
navigation through a file structure is not common in the Ma-
cOS environment.  (Note:  If the feature classes are already 
contained in a GeoDatabase, then just dragging the feature 
class onto the Map Frame adds it to the Contents pane.)

Photogrammetric Engineering & Remote Sensing
Vol. 89, No. 1, January 2023, pp. 9-11.
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Figure 1.  The SHP file for this GIS dataset is highlighted.  It can be 
selected and dragged onto an ArcGIS Pro Map Frame.  Dragging the 
XML Document file, also with the .shp extension, as shown immediately 
below the highlighted file, onto the Map Frame will result in an error 
(Figure 2.)

Figure 2.  This error will result when the XML 
Document file is selected and dragged onto 
an ArcGIS Pro Map Frame.
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Tip #3 — Creating a Group is as easy as selecting the all the 
desired layers (holding the <CTRL> down and left clicking on 
the layers) in the Contents Pane and then right-clicking and 
selecting “Group” from the options menu (Figure 3.)

Alternatively, Selecting the Map in the Contents Frame, and 
right-clicking activates the options menu where you can select 
“New Group Layer”.  In either case, name the New Group 
Layer and drag the layers into the group as needed.  Another 
function not found in the MacOS environment.

Tip #4 — In the Esri-world, making (and saving) a Layer 
Package is called “Sharing”.  This was a source of endless 
confusion, as I told the students to make, save the package, 
and send it to our DropBox for me to review.  Most were 
trying to “save” something, but they did not know what (or 
how) to save.

Right-clicking on the Group Layer presents several options 
including the “Share As Layer Package” as in Figure 5.

Selecting the “Share As a Layer Package” will start the 
“Sharing As A Layer Package” wizard (Figure 6).  In the 
Start Packaging section, make sure to select the “Save pack-
age to file” radio button; then, in the Item Details |Name 
field use the folder to open the file browser and navigate to a 
writable folder to specify an output file path and name.  To 
prevent errors and warnings, also include a Summary and 

some Tags.  In the Finish 
Packaging section, use 
the “Analyze” button to 
check the file before using 
the “Package” button to 
SHARE (=Save) the Layer 
Package.  Of course, if 
there are any errors, you 
will need to fix them be-
fore you can Package the 
Layer Package.

Once everything is 
error-free, it may take a 
few moments to write the 
package and finally the 
Layer Package (Figure 7) 
will be ready for others 
to use. This file can be 
sent to other ArcGIS Pro 
users for inclusion in their 
maps. It contains the GIS 
data, as well as, assigned 
symbology.

For those of you who use QGIS, similar functionality can be 
achieved using the following workflow:

1. Symbolize the layers in the QGIS Layers Pane,
2. Select the desired layers (left-click while holding down 

the <CTRL> Key),
3. Right-click in the Layers Pane to activate the options 

and choose “Group Selected” as in Figure 8,
4. Rename the Group Layer,
5. Select and Export the Group Layer | Save as Layer 

Definition File.  This will start a file browser; browse to 
a writable directory and write the .qlr file.

Figure 3.  Selecting multiple layers in the Contents Pane and constructing 
a Group Layer.

Figure 4.  Constructing an empty Group Layer from the Map options.

Figure 5.  The options menu for a Group Layer shows the “Sharing” 
options.  There is no “save” choice on the options menu. 

Figure 6.  The Package Layers | 
Sharing as a Layer Package wizard.  If 
wanting to “save” the Layer Package, 
it is necessary to activate the “Save 
Package to File” radio button. 

Figure 7.  A Layer Package as viewed with the Windows file browser.
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As with the Esri-derived layer package (.lpkx) file, this 
QGIS-derived layer package (.qlr) file contains the geometry, 
symbology and can be ported into another QGIS map frame.  
It is important to note that these files are NOT interchange-
able; ArcGIS Pro cannot draw the QGIS layer package and 
vice versa.

Send your questions, comments, and tips to GISTT@
ASPRS.org.

Al Karlin, Ph.D., CMS-L, GISP is with Dewberry’s Geospatial 
and Technology Services group in Tampa, FL.  As a senior 
geospatial scientist, Al works with all aspects of Lidar, remote 
sensing, photogrammetry, and GIS-related projects.  He also 
teaches beginning map making at the University of Tampa.

Figure 8.  Selecting four layers in the QGIS Layer Pane for grouping.

Figure 9.  Exporting (saving) the Grouped Layers as a Layer Definition File 
in QGIS.

ASPRS GeoByte
Allen Coral Atlas: A New Technology 

for Coral Reef Conservation
September 23rd at 12 Noon ET

Presenter: Brianna Bambic, Arizona State University

Coral reef managers and decision makers at multiple 
scales need information, in near real time, to react to the 
increasing threats facing reefs. However, more than three 
quarters of the world’s coral reefs have never been mapped 
and lack monitoring. To address this knowledge gap and 
to support, inform, and inspire critical actions to manage 
and protect coral reefs, the Allen Coral Atlas combines high 
resolution satellite imagery, machine learning, and field 
data to produce globally consistent benthic and geomorphic 
maps and monitoring systems of the world’s coral reefs. The 
initiative’s goal is to help stakeholders ranging from local 
communities to regional and national governments reach 
their conservation targets and improve their coastal resil-
ience. The multi-disciplinary partnership is led by Arizona 
State University, in collaboration with Planet, University of 
Queensland, and the Coral Reef Alliance.

Baseline maps have multiple uses, including: sustainable 
coastal development, site selection of marine protected 
areas, planning of restoration activities, and reef fisheries 
management. In this presentation, we will demonstrate how 
the Allen Coral Atlas supports data-driven management, 
conservation, and restoration of coral reefs at local, nation-
al, regional, and global scales. We have developed online 
courses to facilitate increased use and impact of the Atlas, 
and are collaborating with networks of individuals and insti-
tutions who can be alerted when changes are detected (e.g., 
large-scale bleaching or sedimentation events).

Brianna Bambic leads the Allen Coral Atlas Field Engage-
ment team at the Arizona State University. With a coral 
reef biology and resource management background, she was 
an Independent Researcher for 7 years that culminated in a 
virtual reality experience of Half Moon Caye National Mon-
ument, Belize with a National Geographic Explorer Grant, 
helping communicate science to the public. Brianna received 
her MS in natural resource management from the Univer-
sity of Akureyri, Iceland in 2019. Her expertise includes 
coastal and marine management, global science communi-
cation, and developing capacity around remote sensing and 
mapping. With countless hours underwater and >700 logged 
dives, she loves spending time exploring the ocean..

To register, visit 
https://www.asprs.org/geobytes.html
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STAND OUT FROM THE REST
earn aSprS certification

ASPRS congratulates these recently Certified and Re-certified individuals:

CERTIFIED LIDAR TECHNOLOGIST
Christina Gray, Certification #LT076

Effective October 26, 2022, expires October 26, 2025

Thomas Rokita, Certification #LT077
Effective September 14, 2022, expires September 14, 2025 

CERTIFIED MAPPING SCIENTIST GIS/LIS
Gabriel Ladd, Certification #GS313

Effective November 2, 2022, expires November 2, 2027

CERTIFIED MAPPING SCIENTIST – REMOTE SENSING
Su Zhang, Certification #RS240

Effective October 20, 2022, expires October 20, 2027    

Gabriel Ladd, Certification #RS241
Effective November 1, 2022, expires November 1, 2027

CERTIFIED PHOTOGRAMMETRIST
Gabriel Ladd, Certification #CP1670

Effective October 26, 2022, expires October 26, 2027

Gregory Saunders, Certification #CP1671
Effective November 16, 2022, expires November 16, 2027

RECERTIFIED LIDAR TECHNOLOGIST
Ciaran Manning, Certification #R047LT

Effective November 7, 2022, expires November 7, 2025

Greg Jackson, Certification #R004LT
Effective February 1, 2022, expires February 1, 2025

RECERTIFIED PHOTOGRAMMETRIST
David Walls, Certification #R1338CP

Effective November 17, 2022, expires November 17, 2027      

Mohannad Al-Durgham, Certification #R1621CP
Effective August 11, 2022, expires August 12, 2027

Douglas Lee Smith, Certification #R1090CP
Effective March 21, 2022, expires March 21, 2027

Edward Kaster, Certification #R1624CP
Effective October 10, 2022, expires October 10, 2027

Paul J. Emilius, Jr., Certification #R994CP
Effective March 1, 2022, expires March 1, 2027

Jessica S. Parsons, Certification #R1536CP
Effective November 25, 2022, expires November 25, 2027

Michael J. Lalla, Certification #R1511CP
Effective October 21, 2022, expires October 21, 2026

Timothy M. Bohn, Certification #R1207CP
Effective October 18, 2022, expires October 18, 2027

Jon Dewald, Certification #R1535CP
Effective November 18, 2022, expires November 18, 2027

Michael Rodger, Certification #R1330CP
Effective May 23, 2022, expires May 23, 2027

 RECERTIFIED MAPPING SCIENTIST UAS
Cody Condron, Certification #R001UAS

Effective November 3, 2022, expires November 3, 2027

Gabriel Ladd, Certification #UAS039
Effective November 17, 2022, expires November 17, 2027

Josh Kowalski, Certification #UAS040
Effective October 19, 2022, expires October 19, 2027

RECERTIFIED MAPPING SCIENTIST REMOTE SENSING
Chuan-Shin Chong, Certification #R235RS

Effective May 19, 2022, expires May 19, 2027

RECERTIFIED MAPPING SCIENTIST GIS/LIS
Robert E. Davis, Certification #R292GS

Effective September 27, 2022, September 27, 2027 

Stephen Ellis, Certification #R258GS
Effective October 19, 2022, expires October 19, 2027

RECERTIFIED MAPPING SCIENTIST UAS
Zachary Radel, Certification #R009UAS

Effective November 3, 2022, expires November 3, 2027

Stefan Claesson, Certification #R003UAS
Effective November 3, 2022, expires November 3, 2027

   ASPRS Certification validates your professional practice and experience. It 
differentiates you from others in the profession. For more information on the 

ASPRS Certification program: contact certification@asprs.org, visit https://www.
asprs.org/general/asprs-certification-program.html.  
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by Clifford J. Mugnier, CP, CMS, FASPRS

The Democratic Republic of the Congo (Kin-
shasa), formerly called Zaire and prior to 
that, the Belgian Congo, lies on the equa-

tor and has borders with the Republic of Congo 
(Brazzaville) 2,410 km, the Central African Re-
public 1,577 km, Sudan 628 km, Uganda 765 km, 
Rwanda 217 km, Burundi 233 km, Tanzania 459 
km, Zambia 1,930 km (PE&RS, October 2004), 
Angola 2,511 km (PE&RS, March 2001), and a 
small coastline on the Atlantic. The central region 
has an equatorial climate with high temperatures 
and heavy rainfall, with different climatic cycles 
in the northern and the southern regions. French 
is the offcial language, and Christianity is the 
majority religion. Archaeological evidence of past 
societies in the Congo are scanty due to the rain 
forest and tropical climate covering the northern 
half of the country and much of the Congo River 
Basin. Equatorial Africa has been inhabited since 
at least the Middle Stone Age. Late Stone Age 
cultures flourished in the southern savanna from 
approximately 10,000 B.C. and remained until 
the arrival of Bantu-speaking peoples during the 
first millennium B.C.

Comprising an area of slightly less than one-fourth of the 
United States, the country has a 37 km coastline with a 12 
nm territorial sea. The terrain is a vast central basin on a 
low-lying plateau with mountains in the east. The lowest 
point is the Atlantic Ocean (0 m), and the highest point is Pic 
Marguerite on Mont Ngaliema or Mount Stanley (5,110 m).

From the Office of the Geographer, U.S. Department of 
State in International Boundary Study No. 127, 

“Initially France established claims in the Congo 

basin through penetration of the territory from 
bases in Gabon and by treaties with local rulers. In a 
series of expeditions between 1875 and 1882, Pierre 
Savorgnan de Brazza, an officer of the French navy, 
explored much of the territory between the Ogooué 
and Congo rivers including the Niari valley. In 1880 
de Brazza negotiated a treaty with the ruler of the 
Teke kingdom, which secured part of the north bank 
of the Congo for France, but because of quiet anchor-
age, he constructed a station on Kintamo Island near 
the south bank.

During this period with an expedition from East 
Africa, the explorer Henry M. Stanley descended 
the Congo River to its mouth in 1877. King Leopold 

The Grids & Datums column has completed an exploration of 
every country on the Earth. For those who did not get to enjoy 
this world tour the first time, PE&RS is reprinting prior articles 
from the column. This month’s article on the Democratic 
Republic of the Congo was originally printed in 2005 but 
contains updates to their coordinate system since then.

DEMOCRATIC REPUBLIC OF THE

CONGO

Photogrammetric Engineering & Remote Sensing
Vol. 89, No. 1, January 2023, pp. 13-15.
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II of Belgium later retained his services to establish 
stations and to make treaties with the people of the 
Congo basin. In 1881 de Brazza met Stanley who was 
advancing eastward thorough the cataract area of 
the lower Congo River. Stanley arrived in the vicinity 
of Stanley Pool (Pool Malebo) on July 27 of the same 
year and founded Léopoldville on the south bank 
of the Congo at the site of present-day Kinshasa. 
Shortly thereafter, the French post on Kintamo Island 
was moved to the north bank of the Congo, where it 
became known as Brazzaville. …”

“In the meantime, King Leopold had shown great 
interest in the development of Africa. He invited 
explorers, geographers, and philanthropists of various 
states to a conference on central Africa at Brussels on 
September 12, 1876. An African International Asso-
ciation was organized at the conference with head-
quarters at Brussels. It was agreed that branches of 
the association in various states would be known as 
national committees, and King Leopold headed the 
Belgian National Committee.

Following the historic trip of Stanley down the Congo 
in 1877, King Leopold shifted his primary interests 
in tropical Africa from the east to the west coast. 
Therefore, in 1878 another committee was organized 
under the title of the Committee for Upper Congo 
Studies, which later was known as the International 
Association of the Congo. The association was in effect 
a development company with King Leopold being the 
principal stockholder, and Stanley was commissioned 
by the King for service under the International Asso-
ciation of the Congo. Between 1879 and 1882, Stanley 
established stations and made treaties with numerous 
African chiefs, many of which were in the upper part 
of the Congo basin.

Early in 1884 several states recognized the Associa-
tion as a governing power on the Congo River. In an 
exchange of notes between France and the Association 
of the Congo, April-May 1884, France was accorded 
the right of preemption of preferential right to the 
region of the Congo and in the valley of Niadi-Quillou 
(Niara-Kouilou) should the Association of the Congo 
dispose of its territorial possessions.

The Berlin Conference of 1884-1885 recognized King 
Leopold as the sovereign head of state for the Inter-
national Association of the Congo. On July 1, 1885 
the name of the entity was changed to the Congo 
Free State, which was retained until it became a 
Belgian colony in 1908. A treaty for the cession of the 
Congo Free State to Belgium was signed at Brussels 
on January 9, 1895, and submitted to the Belgian 
Chamber of Deputies for approval shortly thereafter; 
however, it was withdrawn without any formal action 

being taken. An arrangement made between Belgium 
and France relative to the French right of preemption 
of a Belgian colony of the Congo was signed at Paris 
on February 5, 1895, but it was not ratified in conse-
quence of the withdrawal of the treaty of cession. A 
second treaty for the cession of the Congo Free State 
to Belgium was signed on November 28, 1907, and 
approved by a Belgian Law of October 18, 1908. The 
treaty of cession was followed by an arrangement 
between Belgium and France governing the French 
preferential right to the Belgian Congo on December 
23, 1908.”

The first geodetic surveys in the Congo were part of the 
1911-1914 boundary survey between Northern Rhode-
sia (now Zambia) and the southern Congolese province of 
Katanga. The fundamental (origin) point of the Katanga 
Triangulation is Station “A” of the Tshinsenda baseline (in 
Zambia) [Chain I], where: Φo = 12º 20´ 31.508˝ S and Λo = 
28º 01´ 02.465˝ E. The altitude of the point was 1,331.31 m, 
as determined by trigonometric leveling from the 30th Arc 
triangulation performed in 1912. The ellipsoid of reference 
used by the Belgians for the computation of the triangula-
tion in Katanga Province was the Clarke 1866 where: a = 
6,378,206.4 m, and b = 6,356,583.8 m. They also referenced 
the Clarke 1866 Tables as published by the U.S. Coast & 
Geodetic Survey. In 1954, Comité Spécial du Katanga, Les 
Travaux Géodésiques du Service Géographique et Géologique 
was published. The Tshinsenda Baseline [Chain I], was mea-
sured in 1912 with a length of 4,152.9912 m with the final 
value being adjusted with the 1923 base at Nyanza, both 
surveyed by the Katanga-Rhodesia Boundary Commission. 
The deflection of the vertical was constrained to zero at point 
“A.” Subsequent geodetic survey connections to the Katanga 
triangulation by the Arc 1950 Datum provided a couple of 
common points. I computed the transformation from the 
Katanga Datum of 1912 to the Arc 1950 Datum as: ΔX = 
+44 m, ΔY = +46 m, ΔZ = +34 m, and I would guess that for 
southern Katanga these parameters are good to ±25 m. The 
projection adopted for the general map of Katanga was the 
Lambert Conical Orthomorphic with two standard parallels 
at jN = 6º 30´ S and jS = 11º 30´ S and a central meridian, lo 
= 26º E. However, the reason why such emphasis was placed 
on the province to begin with was the presence of large 
deposits of copper ore. With mining property values being 
high, a cadastral coordinate system was implemented at the 
same time such that a Gauss-Krüger Transverse Mercator 
grid was defined with a central meridian, lo = 26º E and a 
False Northing Latitude of Origin = 9º S and the Scale Fac-
tor at Origin = 0.9998.

The classical triangulation of Katanga required a number 
of baselines to be measured in order to provide a uniform 
reference scale to the datum. Those baselines, in addi-
tion to the 1912 Tshinsenda distance included: Kitanga 
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(1922) [Chain II], 3,695.0250 m, Mutene (1922)[Chain III], 
1,554.9333 m, Nyanza (1923) [Chain XI], 4,881.8892 m, Kil-
ambo (1929) [Chain VI], 6,601.2811 m, Pweto (1929) [Chain 
IX], 5,018.0550 m, Bululwe (1923) [Chain VIII], 10,516.9679 
m, Gandajika (1947) [Chain XIII], 12,955.3016 m, and Kita 
Mulambo (1951) [Chain XIV], 9,187.7147 m.

An interesting “faux pas” in geodetic lore is the “Gan Datum” 
of the Congo. The Gandajika baseline was noticed by some-
one in the DMA and was confused with the Maldives Island 
of “Gan.” As a result, the actual datum transformation for 
the island of Gan was incorrectly attributed to the Katanga 
region of Congo (Kinshasa), which has since been rectified. 
There is no “Gan Datum” in the Congo. I wonder what is left 
of the true Indian Ocean Gan Datum after the catastrophic 
tsunami of December 26, 2004!

The published relation between Arc 1950 Datum and WGS84 
Datum in the Congo (Kinshasa) by the NGA is as follows: ΔX 
= –169 m±25 m, ΔY = –19m ±25 m, ΔZ = –278 m ±25m, and 
this solution was based on 2 points in 1991. The current grid 
system used for the People’s Republic of the Congo (Kin-
shasa) is the UTM.

Thanks to Melita Kennedy of ESRI for prodding me for 
answers on the legendary “Gandajika Datum,” to John W. 
Hager for the answers on the history of the same legend, 
and to Mal Jones of Perth, Australia for the source material 
on the triangulation of Katanga. I am informed that a GPS 
Survey of the Congo (Kinshasa) is currently in the planning 
stages by private concerns.

MANUAL OF REMOTE SENSING
Fourth Edition

edited by: Stanley A. Morain,
Michael S. Renslow and Amelia M. Budge

The 4th Edition of the Manual of Remote Sensing!
The Manual of Remote Sensing, 4th Ed. (MRS-4) is an “enhanced” electronic publica-
tion available online from ASPRS. This edition expands its scope from previous editions, 
focusing on new and updated material since the turn of the 21st Century. Stanley Morain 
(Editor-in-Chief), and co-editors Michael Renslow and Amelia Budge have compiled ma-
terial provided by numerous contributors who are experts in various aspects of remote 
sensing technologies, data preservation practices, data access mechanisms, data pro-
cessing and modeling techniques, societal benefits, and legal aspects such as space pol-
icies and space law. These topics are organized into nine chapters. MRS4 is unique from 
previous editions in that it is a “living” document that can be updated easily in years to 
come as new technologies and practices evolve. It also is designed to include animated 
illustrations and videos to further enhance the reader’s experience.

MRS-4 is available to ASPRS Members as a member benefit or can be purchased
by non-members. To access MRS-4, visit https://my.asprs.org/mrs4. 

ASPRS MEMBER BENEFIT!

Democratic Republic of the Congo 
(Kinshasa) Update
In 2009, the Kinshasa government published a law 
delimiting the maritime area of the Democratic 
Republic of the Congo. (https://www.un.org/depts/los/
LEGISLATIONANDTREATIES/PDFFILES/cod_2009_law09.
pdf )  “On the basis, in particular, of article 9, paragraph 
1, of the Constitution of 18 February 2006 which asserts 
the permanent sovereignty of the Democratic Republic of 
the Congo over its maritime areas, and on the basis of the 
relevant provisions of the United Nations Convention on 
the Law of the Sea of 1982, the present law establishes the 
maritime borders and enshrines the country’s fundamental 
right to those maritime areas.”  The charts used for the 
development of the defining points are navigation charts 
which presumably are cast on the Normal Mercator 
projection, and therefore by definition the straight lines are 
ellipsoidal loxodromes on the WGS84 Datum.  

The enumeration of the various points were computed in 
compliance with International Laws of the Seas (LOTS) 
using public-domain software written by Teledyne Geo-
spatial.  The software is called “CARIS” and is apparently 
available from: https://www.teledynecaris.com/en/products/
easy-view/. 

The contents of this column reflect the views of the author, who is 
responsible for the facts and accuracy of the data presented herein. 
The contents do not necessarily reflect the official views or policies of 
the American Society for Photogrammetry and Remote Sensing and/
or the Louisiana State University Center for GeoInformatics (C4G).

This column was previously published in PE&RS.
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Look for 
ASPRS Ten-Year Industry Remote Sensing 

Industry Forecast Highlights 
in future PE&RS issues

 ▶ ASPRS Ten-Year Industry Remote Sensing Industry Forecast Survey continues 
and builds on the practice started in the late 1990s to understand the trends and 
directions of the industry

 ▶ ASPRS established the 10-year forecast with the civil government and  
its broad-based remote sensing membership 

 ▶ Your remote sensing inputs are very important in shaping the future
 ▷ To document remote sensing needs and trends
 ▷ To drive current and future requirements and funding

 ▶ Take the survey today: https://calval.cr.usgs.gov/apps/asprs_survey
 ▶ Publication and online financial sponsors will be acknowledged  
in the publication

 ▶ Any questions, support, or sponsor requests can be provided to:   
PDAD email, divisiondirectorspdad@asprs.org
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Exploring the Addition of Airborne Lidar-DEM and 
Derived TPI for Urban Land Cover and Land Use 

Classification and Mapping
Clement E. Akumu and Sam Dennis

Abstract
The classification and mapping accuracy of urban land cover and 
land use has always been a critical topic and several auxiliary data 
have been used to improve the classification accuracy. However, to 
the best of our knowledge, there is limited knowledge of the addition 
of airborne Light Detection and Ranging (lidar)-Digital Elevation 
Model (DEM) and Topographic Position Index (TPI) for urban land 
cover and land use classification and mapping. The aim of this study 
was to explore the addition of airborne lidar-DEM and derived TPI to 
reflect data of Landsat Operational Land Imager (OLI) in improving 
the classification accuracy of urban land cover and land use map-
ping. Specifically, this study explored the mapping accuracies of urban 
land cover and land use classifications derived using: 1) standalone 
Landsat OLI satellite data; 2) Landsat OLI with acquired airborne 
lidar-DEM; 3) Landsat OLI with TPI; and 4) Landsat OLI with airborne 
lidar-DEM and derived TPI. The results showed that the addition of 
airborne lidar-DEM and TPI yielded the best overall urban land cover 
and land use classification accuracy of about 88%. The findings in 
this study demonstrated that both lidar-DEM and TPI had a positive 
impact in improving urban land cover and land use classification.

Introduction
Land cover generally refers to the physical characteristics of the 
Earth’s surface, captured in the distribution of vegetation, soil, water, 
and other physical features of the Earth, whereas land use is the way 
in which land has been used by humans and their habitat, usually with 
an emphasis on the functional role of land for economic activities 
(Liping et al. 2018; McConnell 2015). The understanding of urban 
land cover and land use is relevant to help project future change in land 
cover. Furthermore, it provides a pathway to understand the effects of 
different land management options and feedback to the environment to 
better manage land resources. Urban land cover and land use maps are 
generally used to support landscape analyses in the areas of natural and 
resource management, biodiversity conservation, hydrology and cli-
mate modeling, environmental protection, and urban planning (Akumu 
et al. 2018; Parent et al. 2015; Yu et al. 2014).

Urban land cover and land use information can be easily derived 
from airborne and satellite data. However, data from Landsat satellite 
series have been used in more than 40% of research publications relat-
ing to land cover classification (Yu et al. 2014). The spectral informa-
tion of satellite remotely sensed data such as Landsat Operational Land 
Imager (OLI) makes it possible to extract land cover and land use infor-
mation. This is because different land cover and land use types interact 
differently with the electromagnetic radiation from sunlight. However, 
because of the limitation that causes many individual, remotely 
sensed images to either have high spatial resolution or high spectral 

resolution, there is a need to explore multi-source data to improve land 
cover and land use classification.

With the advent and development of airborne Light Detection and 
Ranging (lidar) data in recent years, there is a need to explore the 
potential of airborne lidar products and derived topographic metrics 
such as Digital Elevation Model (DEM) and Topographic Position 
Index (TPI) in urban land cover and land use classification and map-
ping. Airborne lidar is a laser probing and scanning technique for 
bathymetric and topographic applications (Yan et al. 2015). It transmits 
pulses of laser light toward the ground using a scanner mirror. Some 
of this energy is scattered back towards the aircraft and recorded by 
the receiving unit. Onboard Global Positioning System and inertial 
measurement unit document the location X, Y, and elevation Z at 
the instant the laser pulse is sent and received. Hence, airborne lidar 
data provides three-dimensional records of the features on the Earth’s 
surface. With a cloud of laser range measurements used to calculate 
the three-dimensional coordinates of a survey area, a DEM can be ef-
fectively generated from airborne lidar data (Sharma et al. 2021; Stular 
et al. 2021). Furthermore, the DEM can be used to derive topographic 
attributes including topographic position index by analyzing change 
in elevation values within a neighborhood size window. A TPI reflects 
the difference in elevation between a particular cell and all cells in a 
neighborhood window (Weiss 2001) A positive value of TPI implies the 
cell is higher than its surroundings, whereas a negative value infers it is 
lower than its surroundings. TPI values near zero imply flat areas where 
the slope is near zero or mid-slope areas (Jenness et al. 2013). Hence, 
TPI compares the elevation of each pixel in a digital elevation model to 
the mean elevation of the neighborhood and defines landform position 
class of each pixel. It could be used to delineate landforms such as val-
leys, plains, and ridges with associated land cover categories.

In recent studies, airborne lidar data have shown some potential in 
delineating land cover and land use information when used alone or 
integrated with other multispectral data (Arroyo et al. 2010; Im et al. 
2008; Koetz et al. 2008; Miliaresis and Kokkas 2007). For example, 
Singh et al. (2012) explored the integration of airborne lidar struc-
tural and intensity surface models with Landsat Thematic Mapper 
(TM) in urban land cover and land use mapping. They found that the 
integration of canopy height and digital surface model with Landsat 
TM increased the total mapping accuracy by about 32% compared 
to standalone airborne lidar data. Likewise, the mapping accuracy 
increased by 8% compared to Landsat TM alone at 30 m spatial resolu-
tion. Olmanson and Bauer (2017) integrated airborne lidar-DEM with 
canopy height and Landsat satellite data to map and monitor land cover 
change between 1990 and 2010. They found about 2% increase in 
overall land cover classification accuracy when airborne lidar-DEM and 
canopy height was integrated with Landsat satellite data compared to 
using Landsat satellite data alone. Furthermore, Matasci et al. (2018) 
combined reflectance data from Landsat TM and Enhanced Thematic 
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Mapper Plus (ETM+) with airborne lidar-derived measurements of 
forest vertical structure (lidar plots) to predict Canadian boreal for-
est cover. They found an improved prediction of forest cover when 
airborne lidar was integrated with Landsat derived reflectance products 
relative to Landsat satellite data alone.

Although, airborne lidar and satellite data have been integrated in 
recent land cover and land use classification, there is limited knowl-
edge of the integration of Landsat OLI with airborne lidar-DEM and de-
rived TPI for urban land cover and land use classification and mapping. 
The addition of airborne lidar-DEM and derived TPI could improve 
the overall detection and classification accuracy of urban land cover 
and land use maps. This is because land cover and land use change 
occur along topographic gradients and landform position (Birhane et 
al. 2019; Liu et al. 2020). For example, forests are commonly found 
upland on dry soils, whereas wetlands are formed in low lying and 
depressional areas with wet soils. Bare ground is commonly found 
on high elevation mountain tops, whereas water bodies accumulate 
downslopes in valleys. Therefore, there is a need to explore the addi-
tion of terrain components such as elevation and landform position in 
land cover classification and mapping. These could help extract differ-
ent types of features on the landscape that will otherwise not detected 
with spectral information alone.

The aim of this study is to explore the addition of airborne lidar-
DEM and derived TPI to reflectance data from Landsat OLI in improving 
the classification accuracy of urban land cover and land use mapping. 
Specifically, the urban land cover and land use classification and 
mapping will be performed using 1) Standalone Landsat OLI satellite 
data; 2) Landsat OLI with acquired airborne lidar-DEM; 3) Landsat OLI 
with TPI; and 4) Landsat OLI with airborne lidar-DEM and derived TPI. 
These four combination approaches of Airborne lidar-DEM, TPI, and 
Landsat OLI have been selected because they provide an opportunity 
to understand the independent and combined contributions of eleva-
tion and landform position in delineating land cover and land use types 
with spectral information.

Materials and Methods
Study Area
The study area is Davidson County, Tennessee and located around lati-
tude 35°58'15" to 36°22'49" N and longitude 86°36'45" to 86°54'43" 
W. (Figure 1). It is an urban county that consists of the city Nashville 
and surrounding suburbs with population of about 678 889 in 2015 
(United States Census Bureau 2018). Davidson County is the second 
largest County in Tennessee by population and among the counties 
in the United States with rapid growth (United States Census Bureau 
2018; Sellers 2018).

Geology and Hydrology
The topography of Davidson County consists of a combination of 
gentle and highland terrains (Akumu et al. 2018; Hodges et al. 2018). 
The highlands usually have acidic soils that are heavily leached, 
whereas the surrounding central basin is underlain by Ordovician lime-
stone and has alkaline soils (Mitsch et al. 2009). Both the gentle and 
highland terrains are occasionally cut across by major rivers including 
the Cumberland River, which flows southwards in the county (Mitsch 
et al. 2009). There are reservoirs that have been developed around the 
Cumberland River to manage flooding during periods of high rainfall. 
Many streams in the region have also been redirected to support agri-
cultural irrigation activities (Meador 1996).

Climate
The region experiences a modest climatic condition with cool winters 
and warm summers (Hodges et al. 2018). The mean annual tempera-
ture of the area is about 78 °F (26 °C) in summer and around 41 °F 
(5 °C) in winter. The yearly precipitation is generally about 51 inches 
(1300 mm) and the precipitation is usually distributed uniformly 
throughout the seasons (Hodges et al. 2018). The month of May usu-
ally receives the maximum amount of precipitation with average of 

around 5.51 inches, whereas the month October receives the minimum 
amount of precipitation with monthly average of approximately 3.03 
inches (United States Climate Data 2018).

Methodology
The methodology involved the classification and mapping of ur-
ban land cover and land use categories using Landsat OLI satellite 
data alone and with addition of airborne lidar-DEM and derived TPI 
(Figure 2). The Landsat OLI satellite data and airborne lidar-DEM were 
acquired, preprocessed and used in the urban land cover and land use 
classification and mapping (Figure 2). The urban land cover and land 
use classification was performed using the following data sets: 1) 
standalone Landsat OLI satellite data; 2) Landsat OLI with acquired air-
borne lidar-DEM; 3) Landsat OLI with acquired lidar-DEM derived TPI; 
and 4) Landsat OLI with acquired airborne lidar-DEM and derived TPI. 
Validation and accuracy assessments were performed on the classified 
urban land cover and use maps generated from the different classifica-
tion methods (Figure 2). The use of groundthruthing and Google Earth 
Pro information was used to validate the classified urban land cover 
and land use map categories.

Landsat OLI Satellite Data
A cloud-free Landsat OLI scene covering Davidson County with 
acquisition data of June 2016 was downloaded from the United States 
Geological Society Science Data repository. The cloud-free Landsat 
OLI scene was downloaded as a Level-1 image for preprocessing. 

Figure 1. Study area—Davidson County in Tennessee, United States.
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The preprocessing of the Landsat OLI satellite data involved subset-
ting, geometric correction, and radiometric correction. The geometric 
correction was carried out using greater than 50 ground control points 
derived from field and orthophotos with a root-mean-square value of 
lower than 1 pixel. The radiometric calibration was carried out by the 
conversion of digital number to at-surface reflectance. The Landsat 
OLI scene was converted from digital numbers to at-surface reflectance 
by using reflectance rescaling coefficients (Equation 1) derived from 
National Aeronautics and Space Administration (2018).

 ρλ' = MpQcal + Ap (1)

where:
ρλ' = Top of Atmosphere (TOA) planetary reflectance without cor-

rection for solar angle
Mp = Band-specific multiplicative rescaling factor (Reflectance_

Mult_Band_x, where x is the band number)
Ap = Band-specific additive rescaling factor (Reflectance_Add_

Band_x where x is the band number)
Qcal = digital numbers
The band-specific multiplicative rescaling factor (Reflectance_

Mult_Band_x), and additive rescaling factor (Reflectance_Add_
Band_x) were obtained in the header file of the imagery.

Furthermore, the correction of TOA planetary reflectance for sun 
angle was performed using Equation 2 (National Aeronautics and 
Space Administration 2018).

 ρλ = ρλ'/sin(θSE) (2)

where:
ρλ = TOA planetary reflectance corrected for sun angle
ρλ' = TOA planetary reflectance without correction for solar angle
θSE = Local sun elevation angle in degrees provided in the metadata 

(Sun_Elevation)

Airborne Lidar-DEM Data
The acquired airborne lidar-DEM data was downloaded from Tennessee 
Geographic Information System clearinghouse as individual tiles. The 
individual tiles were mosaicked, resampled to a 30 m DEM and used in 
this study (Figure 3). The DEM was generated from lidar point cloud 
data collected for Davidson County in Spring of 2016. The lidar data 
was collected at a nominal pulse spacing of 0.7 meter. A 2.5 ft hydro-
flattened Raster DEM was created by interpolation using probable 
ground returns in conjunction with hydro breaklines as well as bridge 
breaklines.

Topographic Position Index Data
The TPI data was derived from the 30 m airborne lidar-DEM using two 
circular neighborhood windows. The TPI was generated using 500 m 
radius and 1000 m radius neighborhood windows (Figures 4 and 5). 
The TPI was created using two circular neighborhood sizes to explore 
and delineate topographic position at varied scales.

The TPI was computed using Equation 3 (Weiss 2001).

TPI<scalefactor> = int((dem – focalmean (dem, annulus, irad, orad)) + 0.5 (3)

where: scalefactor = outer radius in map units
irad = inner radius of annulus in cells
orad = outer radius of annulus in cells
The Landsat OLI satellite data was used as standalone data set in the 

classification and mapping of urban land cover and land use in Davison 
County. The reflectance visible and infrared spectral bands of Landsat 
OLI were used in the urban land cover and land use classification. 
Furthermore, the airborne lidar-DEM and derived 500 m radius TPI and 
1000 m radius TPI were added to the reflectance Landsat OLI satellite 
data as separate bands and used in the urban land cover and land use 
classification.

Supervised classification was performed to classify urban land cov-
er and land use in Davidson County. The supervised classification was 
carried out using the following data sets: 1) standalone Landsat OLI 
satellite data; 2) Landsat OLI with airborne lidar-DEM; 3) Landsat OLI 
with TPI; and 4) Landsat OLI with airborne lidar-DEM and derived TPI. 
Digitized polygons of urban land cover and land use categories derived 
from Google Earth Pro were used as training data in the supervised 
classification. This is because Google Earth Pro provided updated 
high spatial resolution images of land cover categories and digitizing 
capabilities for training data acquisition. The training data for each 
land cover and land use class used in the supervised classification had 
at least 50 pixels. The supervised classification was performed using 
a machine-learning Random Forest classification algorithm (Breiman 

Figure 2. A schematic representation of the methodology.

Figure 3. Mosaicked airborne Light Detection and Ranging-Digital 
Elevation Model (lidar-DEM) for Davidson County.
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2001). It is an ensemble classification algorithm that produces multiple 
decision trees using a randomly selected subset of training samples and 
variables (Belgiu and Dragut 2016). It is expressed using Equation 4 
(Breiman 2001).

 {DT(x, θk)}k T
=1 (4)

where x is the input vector, and θk represents a random vector, which is 
sampled independently but with the same distribution as the previous 
θk, …, θk–1. T bootstrap samples are initially derived from the training 
data. A no-pruned classification and regression tree (CART) is drawn 
from each bootstrap sample β where only one of M randomly selected 
feature is chosen for the split at each node of CART (Breiman 2001; 
Magidi et al. 2021). Each of the decision tree casts a unit vote for the 
most popular class to classify an input vector (Breiman 1999).The 
number of features used at each node to generate a tree and the number 
of trees to be grown are two user-defined parameters that are required 
to generate a random forest classifier.

The number of trees and training samples in the Random Forest 
classification prediction model were selected through a resampling-
based procedure to search for optimal tuning parameters. The optimal 
settings were selected based on the mean overall accuracy across 

five-fold cross validation, repeated twice (Costa et al. 2018; Sharma et 
al. 2017). The default number of training samples was set at 5000 and 
the number of trees was set at 10.

The urban land cover and land use classification maps generated 
were validated to examine how well the classified land cover and 
land use categories represented land cover and land use classes on the 
ground. The validation effort was performed by randomly selecting one 
thousand and two hundred (1200) polygons from each classified urban 
land cover and land use map and overlaying them to groundthruthing 
field and Google Earth data. The 1200 polygons used in validation 
were different from the polygons used as training data. The overall 
classification accuracy was computed for each classified urban land 
cover and land use map by dividing the total correct (i.e., the sum of 
the major diagonal in the error matrix table) by the total number of pix-
els in the error matrix table (Mather and Koch 2011). The kappa coeffi-
cient was also measured as described by Mather and Koch (2011). The 
urban land cover and land use classification maps were later exported 
into Geographic Information System for extent analyses.

Results and Discussion
The classified urban land cover and land use classes represented 
agriculture, bare land, developed/built-up areas, forest, grassland, 
shrubland, water, and wetland (Figures 6–9). The urban land cover 
and land use categories were successfully classified when Landsat 
OLI was used alone and with the addition of airborne lidar-DEM and 
derived TPI. The distribution of agriculture, bare land, developed/built-
up areas, forest, grassland, shrubland, water, and wetland were similar 
when Landsat OLI was used alone and with the addition of airborne 
lidar-DEM and derived TPI in the classification. There was intense forest 
cover in the western parts of the study area relative to the eastern parts. 
Furthermore, the developed/built-up areas were found mostly in the 
central parts of the study area. In addition, there was less detection of 
grassland, bare land, and wetland relative to agriculture, developed/
built-up, forest, and shrubland.

In the standalone Landsat OLI classification method, the area 
covered by agriculture was about 27 786 ha, bare land was around 
3383 ha, developed/built-up area was approximately 17 974 ha, forest 
was about 36 818 ha, grassland was around 1944 ha, shrubland was 
approximately 42 062 ha, water was about 6845 ha, and wetland was 
around 196 ha (Table 1).

When airborne lidar-DEM was added to the classification, the area 
covered by agriculture was about 26 478 ha, bare land was around 
3531 ha, developed/built-up area was approximately 17 697 ha, forest 
was about 37 068 ha, grassland was around 1967 ha, shrubland was 
approximately 42 299 ha, water was about 6868 ha, and wetland was 
around 210 ha (Table 1).

In the classification method in which Landsat OLI was integrated 
with TPI to classify and map urban land cover and land use categories, 
agriculture occupied about 28 185 ha, bare land around 2709 ha, devel-
oped/ built-up areas approximately 16 562 ha, forest about 39 788 ha, 
grassland around 1239 ha, shrubland approximately 41 926 ha, water 
about 6369 ha, and wetland around 229 ha (Table 1).

Furthermore, when acquired airborne lidar-DEM and derived TPI 
were added to the classification, the area of agriculture was about 26 
380 ha, bare land was around 2841 ha, developed/built-up area was 
approximately 18 670 ha, forest was about 37 689 ha, grassland was 
around 2102 ha, shrubland was approximately 41 280 ha, water was 
about 6454 ha, and wetland was around 592 ha (Table 1). The area 
covered by wetland increased by about 180% when lidar-DEM and de-
rived TPI were added to the classification relative to standalone Landsat 
OLI. This is possibly because wetlands are generally associated with 
elevation and landform positions such as flat plains and valleys. The 
addition of landform position and elevation data in the classification 
likely improved the landform characterization for wetland extraction 
and delineation.

The overall mapping accuracy was about 81% and kappa coefficient 
of 0.78 when standalone Landsat OLI satellite data set was used in the 

Figure 4. Topographic Position Index derived from airborne Light 
Detection and Ranging-Digital Elevation Model (lidar-DEM) using 
500 m radius neighborhood size.

Figure 5. Topographic Position Index derived from airborne Light 
Detection and Ranging-Digital Elevation Model (lidar-DEM) using 
1000 m radius neighborhood size.
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urban land clover and land use classification (Table 2). In the urban 
land cover and land use classification method with standalone Landsat 
OLI, the user’s accuracy was maximum (98%) for water and mini-
mum (68%) for shrubland. Similarly, water had the highest (100%) 

producer’s accuracy and wetland had the lowest (66.4%) producer’s 
accuracy (Table 2).

When Landsat OLI was integrated with airborne lidar-DEM and 
used in the urban land cover and land use classification, the overall 

Figure 6. The urban land cover and land use classification derived 
from standalone Landsat Operational Land Imager (OLI) satellite data.

Figure 7. The urban land cover and land use classification derived 
from Landsat Operational Land Imager (OLI) satellite data and 
airborne Light Detection and Ranging-Digital Elevation Model 
(lidar-DEM).

Figure 8. The urban land cover and land use classification derived 
from Landsat Operational Land Imager (OLI) satellite data and 
Topographic Position Index (TPI).

Figure 9. The urban land cover and land use classification derived 
from Landsat Operational Land Imager (OLI) satellite data with 
airborne Light Detection and Ranging-Digital Elevation Model 
(lidar-DEM) and derived Topographic Position Index (TPI).

Table 1. The urban land cover and land use classes and cover derived from the addition of airborne lidar-DEM and derived TPI to Landsat OLI satellite data.
Landsat OLI Alone Landsat OLI and Lidar-DEM Landsat OLI and TPI Landsat OLI with Lidar-DEM and TPI

Urban Land Cover  
and Land Use Classes

Area Cover 
(ha)

% 
Cover

Area Cover 
(ha)

% 
Cover

Area Cover 
(ha)

% 
Cover

Area 
Cover (ha)

% 
Cover

Agriculture 27 786 20.3 26 478 19.5 28 185 20.6 26 380 19.4

Bare Land 3383 2.5 3531 2.6 2709 2.0 2841 2.1

Developed/Built-Up 17 974 13.1 17 697 13.0 16 562 12.1 18 670 13.7

Forest 36 818 26.9 37 068 27.2 39 788 29.0 37 689 27.7

Grassland 1944 1.4 1967 1.4 1239 0.9 2102 1.5

Shrubland 42 062 30.7 42 299 31.1 41 926 30.6 41 280 30.4

Water 6845 5.0 6868 5.0 6369 4.6 6454 4.7

Wetland 196 0.1 210 0.2 229 0.2 592 0.4

Lidar-DEM = Light Detection and Ranging-Digital Elevation Model; TPI = Topographic Position Index; Landsat OLI = Operational Land Imager.
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mapping accuracy was around 83% and kappa coefficient was about 
0.80 (Table 3). The overall mapping accuracy increased by about 2% 
when airborne lidar-DEM was added to Landsat OLI in the urban land 
cover and land use classification relative to standalone Landsat OLI. 
Similarly, other studies have found a stronger performance of adding 
DEM to Landsat satellite data in land cover and land use classification 
(Olmanson and Bauer 2017; Sang et al. 2021; Singh et al. 2012). The 
user’s accuracy among land cover and land use categories in this clas-
sification method was highest (98%) for water and lowest (69%) for 
grassland. Likewise, the producer’s accuracy was maximum (100%) 
for water and minimum (69.7%) for wetland. The mean user’s ac-
curacy among all urban land cover and land use categories increased 
by about 2% when airborne lidar-DEM was added to Landsat OLI in the 

classification relative to standalone Landsat OLI. Both bare land and 
shrubland had the maximum gain (3%) in user’s accuracy whereas, 
and water had the minimum gain (0%) in user’s accuracy. In contrast, 
wetland had the highest gain (3%) in producer’s accuracy and water 
had the lowest gain in producer’s accuracy when lidar-DEM was added 
to the classification. This implies the addition DEM data was useful to 
better characterize bare land and shrubland.

In the urban land cover and land use classification method in which 
TPI was added to Landsat OLI satellite data, the overall mapping ac-
curacy was about 86% and kappa coefficient of approximately 0.84 
(Table 4). The overall urban land cover and land use classification 
accuracy improved by about 6% when TPI was added to Landsat OLI 
reflectance scene relative to standalone Landsat OLI satellite data. The 

Table 2. Error matrix table of the urban land cover and land use classification derived using standalone Landsat Operational Land Imager satellite data.

Classes Agriculture
Bare 
Land

Developed/
Built-Up Forest Grassland

Shrub 
Land Water Wetland Total

User’s 
accuracy 

(%)

Producer’s 
accuracy 

(%)

Overall 
accuracy 

(%) Kappa
Reference
Agriculture 174 5 0 3 6 10 0 2 200 87 83.3
Bare Land 3 81 8 0 3 0 0 5 100 81 86.2
Developed/
Built-Up 0 5 185 0 10 0 0 0 200 92.5 95.9

Forest 2 0 0 148 0 40 0 10 200 74 79.1
Grassland 22 2 0 0 69 4 0 3 100 69 71.9
Shrubland 8 0 0 30 6 136 0 20 200 68 68.7
Water 0 0 0 0 0 0 98 2 100 98 100.0
Wetland 0 1 0 6 2 8 0 83 100 83 66.4
Total 209 94 193 187 96 198 98 125 1200
Overall and Kappa 81 0.78

Table 3. Error matrix table of the urban land cover and land use classification derived using Landsat Operational Land Imager satellite data and 
airborne Light Detection and Ranging-Digital Elevation Model (lidar-DEM).

Classes Agriculture
Bare 
Land

Developed/
Built-Up Forest Grassland

Shrub 
Land Water Wetland Total

User’s 
accuracy 

(%)

Producer’s 
accuracy 

(%)

Overall 
accuracy 

(%) Kappa
Reference
Agriculture 176 5 0 3 4 10 0 2 200 88 85.0
Bare Land 3 84 5 0 3 0 0 5 100 84 86.6
Developed/
Built-Up 0 5 185 0 10 0 0 0 200 92.5 97.4

Forest 0 0 0 151 0 40 0 9 200 75.5 79.5
Grassland 22 2 0 0 69 4 0 3 100 69 73.4
Shrubland 6 0 0 30 6 142 0 16 200 71 70.3
Water 0 0 0 0 0 0 98 2 100 98 100.0
Wetland 0 1 0 6 2 6 0 85 100 85 69.7
Total 207 97 190 190 94 202 98 122 1200
Overall and Kappa 83 0.80

Table 4. Error matrix table of the urban land cover and land use classification derived using Landsat Operational Land Imager satellite data and TPI.

Classes Agriculture
Bare 
Land

Developed/
Built-Up Forest Grassland

Shrub 
Land Water Wetland Total

User’s 
accuracy 

(%)

Producer’s 
accuracy 

(%)

Overall 
accuracy 

(%) Kappa
Reference
Agriculture 179 2 0 3 4 10 0 2 200 89.5 85.2
Bare Land 3 84 5 0 3 0 0 5 100 84 87.5
Developed/
Built-Up 0 7 183 0 10 0 0 0 200 91.5 97.3

Forest 0 0 0 174 0 20 0 6 200 87 85.7
Grassland 22 2 0 0 69 4 0 3 100 69 73.4
Shrubland 6 0 0 20 6 156 0 12 200 78 80.4
Water 0 0 0 0 0 0 98 2 100 98 100.0
Wetland 0 1 0 6 2 4 0 87 100 87 74.4
Total 210 96 188 203 94 194 98 117 1200
Overall and Kappa 86 0.84
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Table 5. Error matrix table of the urban land cover and land use classification derived using Landsat OLI satellite data with airborne lidar-DEM and 
derived Topographic Position Index (TPI).

Classes Agriculture
Bare 
Land

Developed/
Built-Up Forest Grassland

Shrub 
Land Water Wetland Total

User’s 
accuracy 

(%)

Producer’s 
accuracy 

(%)

Overall 
accuracy 

(%) Kappa
Reference
Agriculture 177 2 0 3 6 10 0 2 200 88.5 86.3
Bare Land 3 84 5 0 3 0 0 5 100 84 91.3
Developed/
Built-Up 0 4 190 0 6 0 0 0 200 95 97.4

Forest 0 0 0 174 0 20 0 6 200 87 86.6
Grassland 19 2 0 0 74 2 0 3 100 74 76.3
Shrubland 6 0 0 20 6 162 0 6 200 81 83.5
Water 0 0 0 0 0 0 98 2 100 98 100.0
Wetland 0 0 0 4 2 0 0 94 100 94 79.7
Total 205 92 195 201 97 194 98 118 1200
Overall and Kappa 88 0.86

addition of TPI successfully delineated the land cover and land use 
types more accurately thus making a novel contribution. This con-
firms the proposition in this study that the addition of TPI will likely 
improve the extraction of land cover and land use features. The user’s 
accuracy in this classification method was maximum (98%) for water 
and minimum (69%) for grassland. Likewise, the producer’s accuracy 
of this classification method in which TPI was added to Landsat OLI 
reflectance scene was highest (100%) for water and lowest (73.4%) for 
grassland (Table 4). The mean user’s accuracy among all urban land 
cover and land use categories also increased by about 5% when TPI 
was added to Landsat OLI satellite data relative to standalone Landsat 
OLI. Forest had the maximum gain (13%) in user’s accuracy, whereas 
water had the minimum gain (0%) in user’s accuracy. In contrast, 
shrubland had the highest gain (12%) in producer’s accuracy and water 
had the lowest gain in producer’s accuracy when TPI was added to the 
classification. This implies the addition TPI data was useful to better 
characterize forest.

In the classification method in which airborne lidar-DEM and de-
rived TPI were added to the classification, the overall urban land cover 
and land use classification accuracy was approximately 88% and kappa 
coefficient was about 0.86 (Table 5). The overall mapping accuracy 
of urban land cover and land use classification increased by about 9% 
when airborne lidar-DEM and derived TPI were added to the classifica-
tion relative to standalone Landsat OLI satellite data. Similarly, the 
mean user’s accuracy among all urban land cover and land use catego-
ries also increased by around 8% when airborne lidar-DEM and derived 
TPI were added to the classification relative to standalone Landsat OLI 
satellite data. Both forest and shrubland had the most gain (13%) in 
user’s accuracy, whereas water had the least gain (0%) in user’s accu-
racy. Similarly, shrubland had the maximum gain (15%) in producer’s 
accuracy and water had the minimum gain in producer’s accuracy 
when lidar-DEM and TPI were added to the classification. This implies 
the addition of lidar-DEM and TPI were useful to better characterize 
forest and shrubland. This classification method in which airborne 
lidar-DEM and derived TPI were added to the classification yielded the 
best overall accuracy. In contrast, the use of standalone Landsat OLI 
produced the weakest accuracy results of urban land cover and land 
use classification and mapping. The addition of elevation and landform 
position data from airborne lidar-DEM and derived TPI respectively 
helped to better classify the land cover and land use categories more 
accurately thus making a novel contribution. This further confirms 
the suggestion in this study that the addition of lidar-DEM and TPI will 
likely improve the detection and delineation of land cover and land use 
features. Compared to other studies that have examined the addition of 
TPI and Landsat TM in wetland mapping (Sun et al. 2020; Hribljan et 
al. 2017), this study has further explored the addition of DEM and TPI in 
mapping urban land cover and land use categories.

Although lidar-DEM and TPI contributed significantly in improving 
the classification of urban land cover and land use categories, these 
variables are inherently scale dependent. For example, this study was 
carried out with a resampled 30 m DEM for a several kilometers scale 
of Davidson County, Tennessee. In addition, the TPI was generated at 
500 m radius and 1000 m radius window sizes for a several kilome-
ters scale of Davidson County. Changes in the window sizes of TPI as 
well as DEM spatial resolution will likely affect the urban land cover 
and land use classifications. This is because for example, a flat plain 
detected in a small window size TPI is likely a valley in a large window 
size TPI. The variability in TPI window sizes, DEM spatial resolutions 
and their effect on land cover and land use classifications are areas of 
further research.

Conclusion
This study has successfully explored the addition of airborne lidar-DEM 
and derived TPI in urban land cover and land use classification and 
mapping. The urban land cover and land use categories derived from 
the classifications were agriculture, bare land, developed/built-up, 
forest, grassland, shrubland, water, and wetland. This study found that 
the addition of airborne lidar-DEM and derived TPI improved the overall 
accuracy of urban land cover and land use classification by around 
6% relative to standalone Landsat OLI satellite data. This confirms 
the suggestion in this study that the addition of landform position 
and elevation related variables will likely improve the extraction and 
delineation of land cover and land use categories. When lidar-DEM 
and TPI were added to the classification, the user’s accuracies of both 
forest and shrubland increased by about 13%, and the user’s accuracy 
of wetland increased by around 11%. This implies the addition lidar-
DEM and TPI were useful to better characterize forest, shrubland, and 
wetland. However, the addition of lidar-DEM and TPI were not useful 
to better characterize the land cover water because it had no change in 
user’s accuracy.

Although both DEM and TPI have been found relevant in improv-
ing the classification and mapping of urban land cover and land use 
categories, they are characteristically scale dependent. A change in the 
spatial resolution of the DEM and neighborhood sizes of the TPI will 
likely affect the detection and mapping accuracies of the land cover 
and land use classifications.

However, to attain the best urban land cover and land use prediction 
and mapping, the addition of airborne lidar-DEM and derived TPI in the 
classification is relevant.

Acknowledgments
Many thanks to United States Department of Agriculture (USDA) for 
providing support through Evans Allen funding program.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING January 2023 25



References
Akumu, C. E., S. Dennis and C. Reddy. 2018. Land cover land use mapping 

and change detection analysis using geographic information system 
and remote sensing. International Journal of Human Capital in Urban 
Management 3(3):167–178.

Arroyo, L. A., K. Johansen, J. Armston and S. Phinn. 2010. Integration 
of LiDAR and QuickBird imagery for mapping riparian biophysical 
parameters and land cover types in Australian tropical savannas. Forest 
Ecology and Management 259(3):598–606.

Belgiu, M. and L. Dragut. 2016. Random forest in remote sensing: A review of 
applications and future directions. ISPRS Journal of Photogrammetry and 
Remote Sensing 114:24–31.

Birhane, E., H. Ashfare, A. A. Fenta, H. Hishe, M. A. Gebremedhin, H. 
G. Wahed and N. Solomon. 2019. Land use land cover changes 
along topographic gradients in Hugumburda national forest priority 
area, Northern Ethiopia. Remote Sensing Applications: Society and 
Environment 13:61–68.

Breiman, L. 1999. Random Forests—Random Features. Technical Report 567. 
Berkeley, Calif.: Statistics Department, University of California, Berkeley. 
<ftp://ftp.stat.berkeley.edu/pub/users/breiman>.

Breiman, L. 2001. Random forests. Machine Learning 45:5–32.
Costa, H., D. Almeida, F. Vala, F. Marcelino and M. Caetano. 2018. Land cover 

mapping from remotely sensed and auxiliary data for harmonized official 
statistics. International Journal of Geo-Information 7(157). https://doi.
org/10.3390/ijgi7040157.

Hodges, J. A., R. J. Norrell and M. H. Sarah. 2018. Tennessee. Chicago, Ill.: 
Encyclopedia Britannica, Inc.

Hribljan, J. A., E. Suarez, L. Bourgeau-Chavez, S. Endres, E. A. Lilleskov, 
S. Chimbolema, C. Wayson, E. Serocki and R. A. Chimner. 2017. 
Multidate, multisensor remote sensing reveals high density of carbon-rich 
mountain peatlands in the paramo of Ecuador. Global Change Biology 
23:5412–5425.

Im, J., J. R. Jensen and M. E. Hodgson. 2008. Object-based land cover 
classification using high-posting-density LiDAR data. GIScience and 
Remote Sensing 45(2):209–228.

Jenness, J., B. Brost and P. Beier. 2013. Land Facet Corridor Designer. USDA 
Forest Service Rocky Mountain Research Station, McIntire-Stennis 
Cooperative Forestry Program, Arizona Board of Forest Research.

Koetz, B., F. Morsdorf, S. van der Linden, T. Curt and B. Allgöwer. 2008. 
Multi-source land cover classification for forest fire management based on 
imaging spectrometry and LiDAR data. Forest Ecology and Management 
256 (3):263–271.

Liping, C., S. Yujun and S. Saeed. 2018. Monitoring and predicting land use 
and land cover changes using remote sensing and GIS techniques—A case 
study of a hilly area, Jiangle, China. PLoSONE 13(7):e0200493.

Liu, C., W. Li, H. Zhou, H. Yan and P. Xue. 2020. Land use/land cover changes 
and their driving factors in the northeastern Tibetan Plateau based on 
geographical detectors and Google Earth engine: A case study in Gannan 
prefecture. Remote Sensing 12:3139.

Magidi, J., L. Nhamo, S. Mpandeli and T. Mabhaudhi. 2021. Application of the 
random forest classifier to map irrigated areas using Google Earth engine. 
Remote Sensing 13(876). https://doi.org/10.3390/rs13050876.

Matasci, G., T. Hermosilla, M. A. Wulder, J. C. White, N. C. Coops, G. W. 
Hobart and H.S.J. Zald. 2018. Large-area mapping of Canadian boreal 
forest cover, height, biomass and other structural attributes using Landsat 
composites and lidar plots. Remote Sensing of Environment 209:90–106.

Mather, P. M. and M. Koch. 2011. Computer Processing of Remotely-Sensed 
Images: An Introduction. Chichester, England: John Wiley and Sons.

McConnell, W. J. 2015. Land change: The merger of land cover and land use 
dynamics A2. In International Encyclopedia of the Social & Behavioral 
Sciences, edited by J. D. Wright. Oxford: Elsevier.

Meador, M. R. 1996. Tennessee wetland resources. In National Water Summary 
on Wetland Resources, edited by J. D. Fretwell, J. S. Williams, and P. J. 
Redman. Reston, Va.: U.S. Geological Survey Water-Supply Paper 2425.

Miliaresis, G. and N. Kokkas. 2007. Segmentation and object-based 
classification for the extraction of the building class from LIDAR DEMs. 
Computers & Geosciences 33(8):1076–1087.

Mitsch, W. J., J. G. Gosselink, L. Zhang and C. J. Anderson. 2009. Wetland 
Ecosystems. Hoboken, N.J.: Wiley.

National Aeronautics and Space Administration. 2018. Landsat 8 Science Data 
Users Handbook. Washington, DC: National Aeronautics and Space 
Administration, United States Geological Society.

Olmanson, L. G. and M. E. Bauer. 2017. Land cover classification of the 
Lake of the Woods/Rainy River Basin by object-based image analysis of 
Landsat and lidar data. Lake and Reservoir Management 33(4):335–346.

Parent, J. R., J. C. Volin and D. L. Civco. 2015. A fully-automated approach 
to land cover mapping with airborne LiDAR and high resolution 
multispectral imagery in a forested suburban landscape. ISPRS Journal of 
Photogrammetry and Remote Sensing 104:18–29.

Sang, X., Q. Guo, X. Wu, T. Xie, C. He, J. Zang, Y. Qiao, H. Wu and Y. Li. 
2021. The effect of DEM on the land use/cover classification accuracy 
of Landsat OLI images. Journal of Indian Society of Remote Sensing 
49:1507–1518.

Sellers, J. B. 2018. Nashville is One of the Fastest Growing U.S. Cities. 
Crossville, Tenn.: Crossville Chronicle.

Sharma, M., R. DevGarg, V. Badenko, A. Fedotov, L. Min and A. Yao. 2021. 
Potential of airborne LiDAR data for terrain parameters extraction. 
Quaternary International 575–576:317–327.

Sharma, R. C., K. Hara and H. Hirayama. 2017. A machine learning and cross-
validation approach for the discrimination of vegetation physiognomic 
types using satellite based multispectral and multitemporal data. Hindawi 
Scientific. https://doi.org/10.1155/2017/9806479.

Singh, K. K., J. B. Vogler, D. A. Shoemaker and R. K. Meentemeyer. 2012. 
LiDAR-Landsat data fusion for large-area assessment of urban land cover: 
Balancing spatial resolution, data volume and mapping accuracy. ISPRS 
Journal of Photogrammetry and Remote Sensing 74:110–121.

Stular, B., E. Lozić and S. Eichert. 2021. Airborne LiDAR-derived digital 
elevation model for archaeology. Remote Sensing 13(9):1855.

Sun, S., Y. Zhang, Z. Song, B. Chen, Y. Zhang, W. Yuan, C. Chen, W. Chen, X. 
Ran and Y. Wang. 2020. Mapping coastal wetlands of the Bohai Rim at 
a spatial resolution of 10 m using multiple open-access satellite data and 
terrain indices. Remote Sensing 12:4114.

United States Census Bureau. 2018. Davidson County, Tennessee. Washington, 
DC: U.S. Department of Commerce.

United States Climate Data. 2018. Climate Nashville-Tennessee. College Park, 
Md.: Your Weather Service-World Climate.

Weiss, A. 2001. Topographic Position and Landforms Analysis. San Diego, 
Calif.: ESRI User Conference. <http://www.jennessent.com/arcview/
TPI_Weiss_poster.htm>.

Yan, W. Y., A. Shaker and N. El-Ashmawy. 2015. Urban land cover 
classification using airborne LiDAR data: A review. Remote Sensing of 
Environment 158:295–310.

Yu, L., L. Liang, J. Wang, Y. Zhao, Q. Cheng, L. Hu and S. Liu. 2014. Meta-
discoveries from a synthesis of satellite-based land-cover mapping 
research. International Journal of Remote Sensing 35(13):4573–4588.

26 Januar y 2023 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



A Machine Learning Method for Building  
Height Estimation Based on Sentinel-2  

Bi-Temporal Images
Zhigang Deng, Xiwei Fan, and Jian Chen

Abstract
Building height information is essential for many applications such 
as urban planning and population density estimation. The build-
ing shadow length varies according to seasons, which is shown as 
different digital number values in multi-temporal images. Thus, the 
bi-temporal satellite remote sensing images of Sentinel-2 are used 
to estimate the buildings height in this study. An area of 15 km × 
15 km in Beijing, China is taken as the study area. By preprocess-
ing the data, the remaining pixels are split into two parts: 70% as 
the training data set and the rest as the testing data set. Then, one 
classification model and three regression models are proposed with 
using Random Forest (RF) method. Based on the testing data, it 
shows that the accuracy rate of the classification model has reached 
98.4% with the kappa coefficient of 0.93. And the regression models’ 
root-mean-square error (RMSE) is 0.61 floor for 1–6 floors group, 
0.41 floor for 7–12 floor group, and 0.98 floor for above 12 floor 
group. The final RMSE is 1.62 floor with RF models. In general, this 
study shows the feasibility of using satellite mid-resolution opti-
cal image to estimate the building height and provides an important 
reference for regional building height estimation in the future.

Introduction
With the rapid development of urbanization, more than half of the 
world’s population lives in cities (Manning 2011). In China, the 
Seventh National Census data shows that the urbanization rate of the 
permanent population has reached 63.89% in 2020, an increase of 
14.21% from 2010. Moreover, the urbanization process of the perma-
nent population at the developing country such as China has acceler-
ated in the past 10 years. With the continuous progress of urbanization, 
the cities tend to become taller beside grow larger. Thus, we not only 
need to obtain two-dimensional information of the city areas, but also 
the three-dimensional (3D) spatial information. Apart from this, build-
ing height information is related to the urban heat island effect (Li et 
al. 2022; Wang et al. 2020), city climate at the local scale (Cao et al. 
2021), population distribution at the spatial and temporal dimensions 
(Alahmadi et al. 2013; Leichtle et al. 2019), and so on. More impor-
tantly, it is also a key reference for urban functional zone planning and 
disaster emergency rescue.

Compared with the traditional field investment method, the re-
mote sensing technology is a more efficient way to acquire building 
height information at large scales. To acquire buildings height based 

on remote sensing data, one typical group of methods is using the 
geometric relationship between building height and the corresponding 
shadow cast on ground in very-high-resolution (VHR) optical images 
(Cheng et al. 2007; Shao et al. 2011; Wang et al. 2014). However, in 
actual applications, those methods were restricted due to the overlap-
ping of shadows from different buildings, and the complex shapes 
of the buildings, and topographic relief, etc. (Biljecki et al. 2017). In 
addition, the relatively high cost of VHR optical images is also limiting 
the popularization of those method. Especially for most developing 
countries, where buildings updated more frequently, low cost, or open 
access remote sensing images are more practical (Gong et al. 2011; 
Li et al. 2016). With the development of interferometric synthetic ap-
erture radar (InSAR) technology, the digital surface model (DSM) data 
can be acquired based on satellite InSAR data. Then the building height 
information is extracted based on the mask algorithm on DSM (Dubois 
et al. 2016; Gamba et al. 2000; Stilla et al. 2003; Wegner et al. 2014). 
However, the noise characteristics (Stilla et al. 2003) and the signal is 
easily affected (Thiele et al. 2007) in InSAR technology.

In addition to the traditional visible and synthetic aperture radar 
(SAR) satellite remote sensing images, some new method, such as 
photogrammetric method based on stereo image pairs, light detection 
and ranging (lidar) data acquired on manned or unmanned airborne 
platforms were used to determine the building height and construct the 
3D model of city areas. The vertical or slant view images commonly 
acquired by drone with a relatively high overlap rate can be used to 
obtain city scale 3D models based on some photogrammetric software 
(Martinez-Carricondo et al. 2020; Svennevig et al. 2015; Trekin et al. 
2020). While the lidar instrument uses the principle of laser ranging to 
obtain the 3D coordinates, reflectivity and texture information of the 
building surface is used to construct the building’s 3D model (Ergun 
2007; Yu et al. 2018; Zhu and Ma 2014). Using these technical, it is 
possible to obtain building height information with a high accuracy, 
but the processing of images takes a long time, and it is difficult to re-
construct the building height at regional or global scale using airborne 
remote sensing data.

Apart from the data sources, with the development of machine 
learning technique in recent years, some Artificial Neural Networks 
(ANN), Random Forests (RF), and Support Vector Machines (SVM) 
have been widely used for building height estimation. For example, 
based on the dual-polarization information index in the Sentinel-1 SAR 
data (Torres et al. 2012), and Li et al. (2020) used the RF method to 
study the height of buildings at 500 m resolution in seven major cities 
in the United States. Further, Frantza et al. (2021) combined Sentinel-
1A/B and Sentinel-2A/B time series to map building heights for entire 
Germany based on SVM and RF models. Recently, deep learning made 
major advances in solving problems in many domains (LeCun et al. 
2015). In building height extraction, Cao et al. (2021) propose a mul-
tispectral, multi-view, and multi-task deep network (called M3Net) for 
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building height estimation, where ZY-3 multispectral and multi-view 
images are fused in a multi-task learning framework.

Note that the machine learning models of SVM or RF require fewer 
samples for model training compared with deep learning models. 
Considering the mid-resolution satellite images have the advantages 
of easier access compared with VHR images and have a globe coverage 
compared with local coverage of airborne data; this study tries to use 
RF model to estimate the building height based on the mid-resolution 
satellite images of Sentinel-2. The paper is structured as follows: In 
the next section, a description of the study area and data used in this 
study is provided. The data preprocessing and RF model construction 
are given in the “Method” section. The results are presented in the 
“Results” section. The “Discussion” section discusses the results, and 
the last section contains the conclusions of this study.

Study Area and Data
Study Area
Our region of interest is in the southeast of Beijing, China, cover-
ing an area of approximately 15 × 15 km2. The study area is between 
39°43'–39°54'N, 116°23'–116°34'E. The region of interest is shown in 
the red rectangle of Figure 1a, and the corresponding buildings’ floors 
of the study area from reference data are shown in Figure 1b.

As the Sentinel-2 multispectral instrument (MSI) image with a spa-
tial resolution of 10 m is used in this study, 1460 × 1457 pixels are ac-
quired in the study area. The study area contains all the major building 
structure types, such as brick and wood structure buildings with one 
floor, unreinforced brick and concrete structure building in multi-floors 
with the maximum of seven floors, and the high-raised reinforced con-
crete structure or steel structure buildings. As the buildings with nearly 
all common height range are included, this part of Beijing is selected 
as the study area. Figure 2 is the histogram of building height of the 
study area. It shows that about 89.06% of the area is covered by 1–6 
floor buildings, 5.55% covered by 7–12 floor buildings, and the rest is 
over 12 floors. The buildings with floor number less than six account 
for a vast majority, which is consistent with actual conditions.

Data
Actual Building Height Data
An open access building height data of Beijing (https://data.yunshudu.
com/detail.html?id=10051) is taken as reference to construct the ma-
chine learning model in this study. The height information of 297 221 
buildings is saved in “shp” format. To match with the satellite images 
used in this study, the actual building height data in vector format is 
converted into raster with a spatial resolution of 10 m. Note that some 
of the buildings in original vector format may only occupy part of the 
10 × 10m pixel area. The pixels are taken as buildings with occupy 
more than half of the 10 × 10 area. At the same time of conversion, the 

height value of the pixel used in the study are called “maximun_com-
bined_area”, which means that buildings with the largest area in the 
pixel determine the attributes assigned to the pixel. It can ensure that 
the building outlines and the determined building pixels are consistent 
to the greatest extent.

After that, 708 646 pixels with the value of corresponding floors are 
acquired and are used for further analysis. Note that, due to the build-
ing height data used in this study are saved in floors, the raster building 
heights calculated based on RF model are also given in floors.

Satellite Images
Generally, there are two types of widely used open access satellite opti-
cal remote sensing images with a spatial resolution of tens of meters: 
Landsat/TM series and Sentinel-2/MSI. Considering the advantages in 
the revisit period, spatial and radiometric resolution of Sentinel-2 data 
compared with Landsat series such as Landsat-8, the Sentinel-2 is 
selected in this study.

The Sentinel-2 constellation includes two identical satellites 2A and 
2B operating in sun-synchronous orbit, with a five-day revisit period 
at the Equator and an even shorter time toward the poles (Drusch 
et al. 2012). Sentinel-2 MSI has 13 bands from 0.44 μm to 2.19 μm: 
four visible and near-infrared (NIR) bands at 10 m, six bands at 20 m, 
and three bands at 60 m spatial resolutions, respectively (ESA 2015). 
Sentinel-2 MSI has broad application prospects for land use and land 
cover classification (Wang et al. 2016), ground vegetation monitor-
ing or identification (Transon et al. 2018), surface water information 
extraction (van der Meer et al. 2014; Xu 2007), geological disaster 
surveying and mapping (Lu et al. 2019; Lu et al. 2021), urban land 

Figure 1. Red, green, blue (RGB) image of the study area (a) and corresponding building height map in spatial resolution of 10 m (b).

Figure 2. Histogram of building height (floor) of the study area.

28 Januar y 2023 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



cover classification (Qiu et al. 2020a) or human settlement extent map-
ping (Qiu et al. 2020b).

To estimate the building height, two Sentinel-2 MSI images with the 
acquisition dates close to winter solstice and summer solstice, respec-
tively, and have a low cloud coverage are selected. Since the actual 
building height data is acquired in 2017, two Sentinel-2 Level 1C prod-
ucts acquired on 4 June (L1C_T50TMK_A010182_20170604T030632) 
and 24 December (L1C_T50TMK_A013085_20171224T031230) in 
2017 with cloud coverage less than 10% are downloaded from the ESA 
API Hub (https://scihub.copernicus.eu/).

Method
Theoretical Background
For the ground pixels of urban area close to buildings, the correspond-
ing digital number (DN) values observed by remote sensors can be dif-
ferent in different solar zenith angles. Namely, during the summertime 
with a relatively higher solar zenith angle, the DN values can be larger 
as less shade is cast on the ground, compared with winter in a lower 
solar zenith angles. As the Sentinel-2 is observing the same location at 
nearly the same local time in approximately vertical view condition, 
the DN values differences may be detected by MSI images acquired at 
different days of the year. Once the DN values difference is larger than 
the radiometric resolutions of MSI, this method can be used for build-
ings height extraction.

The formula shows the relationship between building height, solar 
zenith angle and shadow length:

 L = H • tan(θ)  (1)

where L is the length of the building shadow, H is the building height, 
and θ is the solar zenith angle. The solar zenith angle on the winter 
solstice (December 21st) is about 26° while 73° on the summer solstice 
(June 21st) for the study area. As the difference of the solar zenith 
angle is the largest near the winter solstice and the summer solstice, the 
coverage of the shadows has the largest difference, and the correspond-
ing image DN values differs greatly. Thus, the Sentinel-2 images close 
to winter solstice and summer solstice are used in this study.

To study the DN values’ difference between winter and summer 
images, the mean, minimum, and maximum of DN values in B7 of 
no-vegetation pixels (based on the quality-scene-classification file after 
atmospheric correction) in the study area are shown in Table 1. In ad-
dition, the solar zenith and azimuth angles of the corresponding images 
of 4 June 2017 and 24 December 2017 are also shown in Table 1. The 
difference between the means of summer and winter images’ DN values 
is approximately 860. And there are also significant differences be-
tween summer and winter images’ minimum and maximum values. As 
there are obvious differences of DN values between winter and summer 
Sentinel-2 MSI images at the same location as Table 1 shows and the 
MSI images are saved in 12-bit with an absolute radiometric uncertainty 
of about 3% (https://sentinels.copernicus.eu/web/sentinel/technical-
guides/sentinel-2-msi/performance), the DN values of those two images 
are applied to estimate the buildings’ height in this study.

Image Preprocess
As the DN values of the urban pixels in bi-temporal 
images of winter and summer are used to estimate the 
building heights, the influences of atmosphere need to 
be eliminated. The solar irradiance can be abstracted 
and scattered in the path from top of atmosphere to the 
ground, as well as in the reflectance path. These can 
significantly change the DN values. As the bi-temporal 
images of winter and summer may have entirely differ-
ent atmosphere properties such as water vapor content 
and aerosols, the atmosphere correction process of MSI 
images is necessary.

Note that the L1C products have been orthorecti-
fied and geometrically corrected; we used the code of 
Sen2Cor (Mueller-Wilm 2020) to carry out atmospheric 
correction based on L1C to acquire the corresponding 

L2A product, namely the bottom-of-atmospheric reflectance products. 
In addition, the aerosol of thickness, water vapor, and scene classifica-
tion obtained after atmospheric correction are also acquired to extract 
the effective pixel.

Besides the influences of aerosol, the clouds can block the ground 
in the satellite field of view and cast shadows on the ground. The snow 
can also change the DN values of actual urban land surface. Thus, 
based on those supplement outputs of the atmospheric correction pro-
cess, all the pixels in a 130 m box with the cloud pixel as the center are 
deleted. This side length was chosen as a compromise to capture the 
most shadows (at least 80% of the building pixels are effective data) 
while not losing too much spatial detail. After that, 17.67% pixels of 
the total samples of the study area is taken as clouds, cloud shadows, 
ice, and snow; and all are eliminated according to the quality-scene-
classification file. Namely, the rest of the 574 350 pixels are taken as 
available pixels and finally used for model construction.

After the L2A level data is produced, the resolution of each band of 
MSI needs to be unified. The six bands of 20 m resolution are resa-
mpled into 10 m with the nearest neighbor sample method. As we try 
to estimate the building height with a spatial resolution of 10 m, the six 
bands with the resolution of 60 m are not considered in this study.

Features Extraction
Spectral Indexes
Six spectral indexes are considered in this study for RF model 
construction: Normalized Difference Built-Up Index (NDBI) (Zha et 
al. 2003) is chosen due to its sensitivity to urban area; Normalized 
Difference Vegetation Index (NDVI) (Tucker 1978) and Tasseled Cap 
Greenness (TCG) are account for urban vegetation. The Tasseled Cap 
Brightness (TCB) to capture brightness gradients of roofing materials, 
the modified Normalized Difference Water Index (mNDWI) (Xu 2007) 
and the Tasseled Cap Wetness (TCW) (Crist 1985; Shi and Xu 2019) are 
account for water intermingled within the building pixels with an area 
of 10 m.

Based on the 10 bands of MSI with a spatial resolution of 10 m after 
a resample, those six spectral indexes are calculated according to Table 
2. After combing the MSI 10 bands and six spectral indexes based on 
the bi-temporal winter and summer images, we can get a collection of 
32 ((10 + 6) · 2) spectral-temporal features for the model construction.

Mathematical Morphology Indexes
Mathematical morphology is an image analysis subject based on 
lattice theory and topology. It’s not only the basic theory of optical 
image processing (Goutsias et al. 2000), but also a method to obtain 
spatial information within a certain range (Dalla Mura et al. 2010). By 
choosing the size and shape of the structural element, we can construct 

Table 2. Formulas of six spectral indexes.
Spectral 
Indexes Formula

NDBI RNDBI ＝ (B11 − B8)/(B11 + B8)

mNDWI RmNDWI ＝ (B3 − B11)/(B3 + B11) 

NDVI RNDVI ＝ (B8 − B4)/(B8 + B4) 

TCB TCB = 0.3510·B2 + 0.3813·B3 + 0.3437·B4 + 0.7196·B8 + 0.2396·B11 + 0.1949·B12

TCG TCG = −0.3599·B2 − 0.3533·B3 − 0.4737·B4 + 0.6633·B8 + 0.0087·B11 − 0.2856·B12

TCW TCW = 0.2578·B2 + 0.2305·B3 + 0.0883·B4 + 0.1071·B8 − 0.7611·B11 − 0.5308·B12

NDBI = Normalized Difference Built-Up Index; mNDWI = modified Normalized Difference 
Water Index; NDVI = Normalized Difference Vegetation Index; TCB = Tasseled Cap Brightness; 
TCG = Tasseled Cap Greenness; TCW = Tasseled Cap Wetness.

Table 1. Statistical values of summer and winter Sentinel-2 
multispectral instrument (MSI) B7 images at the study area.
Imaging 

Time
Solar Zenith 

Angle
Solar Azimuth 

Angle
DNmean 
Value

DNmin 
Value

DNmax 
Value

20170604 67.57° 136° 2765 963 5051

20171224 25.22° 165° 1906 576 4194
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morphological operations that are sensitive to specific shapes. 
Therefore, we computed erosion, dilation, opening, closing, morpho-
logical gradient, top hat, and black hat (Mesev 2001) using a square 
structuring element with a 130 m area based on the 10 bands and the 
six spectral indexes in bi-temporal images. After that we produces a 
total of 32 × 7 = 224 features.

The mathematical morphology used in this study contains four 
basic operations (erosion, dilation, opening, closing) and three deriva-
tive operations (morphological gradient, top hat, and black hat). These 
transforms for one dimensional (1D) signals are addressed as follows 
(Dong et al. 2011).

Let f(n) be the original 1D discrete signal, which is the function 
over a domain F = (0, 1, 2, …, N – 1). And let g(n) be the SE, which is 
the discrete function over a domain G = (0, 1, 2, …, M – 1) (N < M). 
The above operations’ formulas were defined in Table 3.

Table 3. Formulas of seven mathematical morphology indexes.
Morphology Indices Formulaa

Dilation (f 5g)(n) = max[f(n – m) + g(m)]
Erosion (f Θ g)(n) = min[f(n + m) – g(m)]
Opening (f ° g)(n) = (f Θg5g)(n)
Closing (f • g)(n) = (f 5gΘg)(n)
Morphological Gradient MG(f (n)) = (f 5g)(n) – (f Θ g)(n)
Top Hat TH(f (n)) = f(n) – (f ° g)(n)
Black Hat BH(f (n)) = (f • g)(n) – (f ° g)(n)
a 5, Θ, ° and • denote the operators for dilation, erosion, opening, and closing, 
respectively.

Gray Level Co-Occurrence Matrix
Gray level co-occurrence matrix (GLCM) refers to a common method of 
describing image texture by studying the spatial correlation character-
istics of gray (Haralick 1973). To be consistent with calculation of the 
morphological features, the window size of 130 m is also considered 
in the GLCM calculation. In addition, the offset includes four directions 
(0°, 45°, 90°, 135°) with an offset of D. The following eight texture 
features calculated based on GLCM are selected: Mean, Variance, 
Homogeneity, Contrast, Dissimilarity, Entropy, Angular Second 
Moment, and Correlation. The calculation equation of those eight 
features used in this study can refer to Chen and Yang (2012).

Note that, once considering all the input features of those four 
directions and eight texture features, there is a redundancy situation. 
Therefore, in the case of the same amount of data, the RF is used to 
choose the direction and offset with the lowest RMSE. After compar-
ing with other values of offset and directions, it shows that the GLCM 
features with an offset of 1 and in the direction of 90° have a largest 
correlation coefficient with the building height. From the head files of 
Sentinel-2 MSI, it can be seen that the solar azimuth angles are 135° 
and 165°, respectively, of the winter and summer images, when the 
Sentinel-2 observing the study area of Beijing. Thus, the offset direc-
tion of 90° is used in this study. Therefore, the eight texture feature 
values with the direction of 90° and offset of (–1, 0) are used in RF 
model construction. Therefore, the total number of features generated 
by this process is 32 × 8 = 256.

Figure 3. The theory of gray level co-occurrence matrix.

Effects of Different Input Features
As mentioned above, a total of 10 MSI bands and six spectral indexes 
were selected, and seven morphological characteristics and eight 
secondary statistics of GLCM were studied. With gradual increases, the 
types of input features in the RF model with a leaf number of 1, the 
corresponding Out-of-Bag (O-O-B) RMSE between predicted build-
ing floors and reference building floors with respect to the number of 
grown trees are shown in the Figure 4.

Figure 4. Out-of-Bag (O-O-B) root-mean-square error (RMSE) with 
respective to tree numbers using different types of input features. 
GLCM = gray level co-occurrence matrix.

It can be seen the RF model’s RMSE is much larger than other 
results with only using 10 MSI bands and six spectral indexes, reaching 
the 3.08 floor. The reason is it only considers the building pixels and 
does not take into account the change characteristics within a certain 
range of the surrounding area. With the addition of the GLCM features, 
the changes of building pixels in the specific direction of the build-
ing are fully considered, so that the accuracy of the model has been 
greatly improved with the RMSE reduced to the 2.17 floor. Finally, the 
RMSE of the RF model is reduced to the 1.75 floor (without feature 
and parameter selection) with the combination of spectral, GLCM, and 
morphological features. It means that the morphological characteris-
tics have increased the accuracy of the model and reflected the spatial 
characteristics of the building pixels.

Machine Learning Modeling
There are some representative machine learning methods such as RF, 
SVM, and ANN used for remote sensing model construction with a prop-
erty accuracy. Compared with other methods, the RF model have been 
proven advance in recognition accuracy, stability, robustness to fea-
tures, and not easily influenced by environmental noise. Furthermore, 
the user-friendly parameters in RF offer great convenience for practical 
application (Han et al. 2018). Thus, the machine learning model of RF 
is used in this study to construct the building height estimation model. 
It should be noted that the classification and regression models of RF 
have been applied in this study.

Feature and Parameter Selection
To objectively evaluate the performance of the RF model proposed 
in this study, the O-O-B prediction results is used in the feature and 
parameter selection process. Then, the predicted building height and 
reference building height are used to calculate the coefficient of deter-
mination (R2) and RMSE.

In RF model construction, the numbers of leaves and decision trees 
can significantly influence the regression accuracy and need to be de-
termined. In this study, the number of decision trees is increased from 
50 to 1000 at intervals of 50, and the number of leaves is selected as 1, 
5, 10, 20, 50, and 100, respectively. Finally, the optimal parameters of 
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RF were determined, with the tree numbers of 500 and leave numbers 
of 1, corresponding to minimum RMSE in O-O-B prediction results.

In addition, there are totally 512 features acquired by the previ-
ous steps, which is too much for RF model construction because the 
“Hughes phenomenon” (Hughes 1968). Thus, to reduce the dimensions 
of the input features, all the 512 features are ranked in decent order 
according to the corresponding importance in RF model. At the same 
time, the number of features is increased from 1 to 512 at intervals 
of 10 for improving computing efficiency. Figure 5 shows the R2 and 
RMSE between the predicted building height and reference building 
height versus different numbers of input features. It shows that the 
RF models using the first 371 features have the lowest RMSE between 
reference building floors and predicted floors. Thus, those features are 
used for model construction with the rest features are discarded.

Figure 5. The relation of R2 and root-mean-square error (RMSE) with 
the number of input features.

Model Construction
Based on the parameters selected in the previous section, the RF model 
for building height estimation is constructed. The basic principle and 
construction process are shown as follows:
(1) All the 574 350 effective samples selected in previous step are 

divide into two data sets, with 70% as the training data set and 
rest 30% as the testing data set. Then, the training data set are 
split into three sub-groups of Group-1, Group-2, and Group-3, 
respectively, according to the actual floors of 1–6 floors, 7–12 
floors, and over 12 floors.

(2) Four RF models are construed based on different input corre-
sponding training-data set samples. The first RF classification 
model (RFc) is constructed using all training data set; and the rest 
three RF regression models (RFr) of RF1-6, RF7-12, and RF>12 are 
constructed based on training data set of Group-1, Group-2, and 
Group-3, respectively.

(3) The height of the testing data set samples is firstly estimated 
based on the constructed RFc model. Then, all the testing samples 
are classified into three sub-groups according to the prediction 
results.

(4) Based on the corresponding groups’ RF regression models, the 
prediction results are taken as the final estimation result of the 
testing data set samples. For example, once a sample pixel of 
actual four floors is estimated in Group-1 by RFc. The prediction 
result of regression model RF1-6 is taken as the final result of this 
sample pixel.

(5) The differences between training-data set’ actual floors and the 
RFc–RFr models prediction result is taken as the estimation error 
of the model proposed in this study.

To make a robust estimation of the proposed model, the upward 
process of steps (1)–(5) is repeated 10 times. After that, the mean of 

those 10 times’ result is taken as the final result in this study. The pro-
cedure for the estimation of the building height is shown in Figure 6.

Figure 6. Procedure for the estimation of the building height. MSI = 
multispectral instrument; GLCM = gray level co-occurrence matrix; 
RF = random forest.

Result
Estimation Accuracy
The RF Classification Model Accuracy
With all the training samples input into the RF classification model of 
RFc, the classification accuracy of the three sub-groups is evaluated. 
Table 4 is the confusion matrix of the three groups of testing data set’s 
classification result based on RF classification model. It can be seen 
that the three groups of data have the high accuracy with the user's 
accuracy and producer’s accuracy all larger than 88%. The overall 
accuracy is 98.4% with a Kappa Coefficient of 0.93. It indicates that 
the classification model can accurately classify the samples into the 
corresponding sub-groups.

Table 4. The confusion matrix of testing data set’s classification result.
1–6 

Floors
7–12 

Floors
>12 

Floors Total
User’s 

Accuracy

1–6 floors 149851 135 283 150269 99.72%

7–12 floors 1198 9657 104 10959 88.12%

>12 floors 985 27 10065 11077 90.86%

Total 152034 9819 10452 172305

Producer’s 
Accuracy 98.56% 98.35% 96.30%

Overall 
Accuracy 98.41% Kappa 

Coefficient 0.93

In the confusion matrix, the bold font represents the predicted value 
equals the actual value, reflecting the accuracy of the classification results.

Figure 7 is the proportion of the reference value, predicted value, 
and the RF classification accuracy of the three groups in testing data 
set. The proportion of each group of testing data set is similar to the 
proportion in the entire study area: Group-1 occupies the main part, 
and the Group-2 and Group-3 have similar samples amount, account-
ing for about 6%, respectively. Among them, due to the large number 
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of samples in the Group-1 and the height difference is five floors; 
the accuracy rate is as high as 99.7%. Due to the small proportion of 
Groups-2 and -3 in the training and testing data data sets, the classifica-
tion accuracy of these two groups is not as high as that of Group-1.

The RF Regression Models Accuracy
As all the samples in training data set are classified into three groups 
according to the corresponding floor numbers, the relationship between 
RF regression models predicted building floors, and the correspond-
ing reference floors of Group-1, Group-2, and Group-3 are shown in 
Figure 8a–c, respectively. It can be seen from testing data distribution 
that there are good test results in three groups, and the RMSE is 0.61 
floor for RF1-6, 0.41 floor for RF7-12, and 0.98 floor for RF>12, all results 
are less than 1.00 floor. The heat map is mainly distributed along the 
one-to-one line. But in the third group, buildings below 30 floors are 
evenly distributed along both sides of one-to-one line, but for buildings 
greater than 30 floors, the prediction error is relatively large. In addi-
tion, due to the lack of data of the 33rd, 34th, and 36th floor buildings, 
there are no data for those floors in the heat map Figure 8c.

Finally, we combine the constructed RFc classification model and 
the three regression models to frame the heat map relationship between 
the testing data set’ reference height and the predicted height in Figure 
9. It shows that after the calculation of the RFc and RFr models, the re-
lationship between predicted value and reference value is closer to one-
to-one line with the RMSE of 1.62 floor. These results corroborate the 
effectiveness of the proposed method for building height estimation. In 
addition, compared with the RMSE of 1.75 floor shown in Figure 4, the 
prediction accuracy is improved after feature and parameter selection.

Figure 9. The results of combination use of RFc and RFr models. 
RMSE = root-mean-square error.

Actual Applications
Based on the RF models proposed in this study, we can acquire the esti-
mated buildings height of the study area. Namely, the 30% testing data 
set prediction results of those three groups of RF models. Figure 10a is 
the reference building height image of the study area, Figure 10b is the 
predicted building height image of the same area, and Figure 10c is the 
difference between 10b and 10a. Figure 10c shows that there are few 
building pixels with large error value. The conditions with larger errors 
mainly due to the predicted values generated by classification model 
of RFc classify the samples into wrong sub-groups. Especially for the 
buildings over 12 floors, the error is greater. Figure 10d is the histo-
gram of the samples in Figure 10c. It can be seen that the error between 
the predicted floors and the reference floors in the study area is mostly 
below five floors, and the samples with absolute value of prediction er-
rors less than one floor accounts for 95.39% of the total samples.

In order to further verify the rationality of the method proposed in this 
paper, we selected three 2 km × 2 km rectangular areas of I, II, and III in 
the study area, which are shown in the yellow rectangle in Figure 11.

It can be seen from Figure 11 that for the three selected areas, the 
predicted building height of the pixel is relatively consistent with the 
reference value, and only a few pixels have obvious errors. Figure 11 
shows that different regions have different characteristics: Region I 
contains a total of 16 187 building pixels, and the proportions of the 
three groups of buildings are 65.32%, 8.07%, and 26.60%, respec-
tively. The buildings over 12 floors take a larger proportion in Region 
I than in the overall study area. About 73.97% building pixels are 
accurately estimated (namely the predicted value is the same as the ref-
erence value after rounding; for example, the reference value is three 
floors, and the predicted value is also three floors), and the regional 
overall RMSE = 2.79 floor. Region II contains a total of 17 809 building 

Figure 7. The proportion of the reference value, predicted value, and 
the Random Forest (RF) classification accuracy of the three groups 
in testing data set.

Figure 8. Three Random Forest (RF) regression models’ prediction results. (a) 1–6 floors group (b) 7–12 floors group, and (c) higher than 12 
floors group. RMSE = root-mean-square error.
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pixels, and the proportions of the three types of buildings are 83.23%, 
6.62%, and 10.15%, respectively. There is a clear boundary between 
low-rise buildings and high-rise buildings. About 80.54% building 
pixels are accurately estimated, and the regional overall RMSE = 2.34 
floor. Region III contains a total of 15 014 building pixels, and the 
proportions of the three types of buildings are 96.20%, 3.30%, and 0%, 
respectively, all buildings are below 12 floors. About 67.78% building 
pixels are accurately estimated, and the regional overall RMSE = 1.09 
floor. On the whole, the overall regression effect of the data is good, 
indicating that the RF building height estimation used has a certain 
degree of accuracy.

Figure 12 shows the number of samples with respect to building 
floors for reference data and RF model predicted results. It can be seen 
that the predicted height has a similar distribution to the reference 
height. In addition, because one-floor buildings’ shadow gap is small 
between the two seasons, the number of predicted one-floor building is 
less than the number of predicted one-floor building.

Discussion
Analysis of Using Different Input Data
Comparison with Only Using Single Temporal Image
Note that the bi-temporal Sentinel-2 MSI images close to winter solstice 
and summer solstice are used in this study to predict the building 
height. For comparison, the RF models of only using winter solstice 
and summer solstice image is also constructed similar as the bi-tem-
poral model. Figure 13 is the O-O-B RMSE with respect to a different 
number of trees in the RF model for using a winter image, summer im-
age, and bi-temporal images, respectively. It shows that the RF-model 
constructed with single summer image perform worst, the maximum 
RMSE is 1.86 floor, while the bi-temporal image performs best, the RMSE 
is the minimum 1.75 floor (without feature and parameter selection in 

Figure 10. (a) Reference building height image of the study area; (b) predicted building height image; (c) the difference between (b) and (a); (d) 
histogram of (c).

Figure 11. The locations of three 2 km × 2 km areas. (a) Reference 
building height image, (b) predicted building height image, and (c) 
the deviation between (b) and (a).
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the “Feature and Parameter Selection” section). Thus the bi-temporal 
images are finally used to predict the building height in this study.

Comparison with Not Removing Cloud Pixels
Note that the Sentinel-2 images after cloud mask are used in this study. 
As comparison, the RF model of using original images, namely after 
atmospheric correction but without remove cloud pixels, are also 
constructed. Figure 14 shows the O-O-B RMSE versus number of trees 
using the data with and without cloud removal operation. The RMSE is 
2.14 without the cloud removal, which is much larger than the RMSE of 
1.75 using cloud removed data. It indicates that the cloud removal is 
useful to improve the prediction accuracy of the constructed RF model.

Note that the optical images are inevitably affected by clouds and 
cloud shadows (Li et al. 2019; Zhu et al. 2015); it was hard to acquire 
the clear sky images on the winter solstice and summer solstice simulta-
neously. To avoid the influences of clouds, the Sentinel-2 images close to 
the winter solstice and summer solstice can be used in this study. In addi-
tion, after performing cloud mask processing based on the quality-scene-
classification file, the 130 m × 130 m square (matching 13 × 13 pixels) 
with the cloud as the center is removed. Therefore, is also very important 
to select the cloud coverage in the effective data in the study area and we 
need to balance between the cloud coverage, the size of structural ele-
ment, and the amount of data during the model establishment.

Transferability of the Method for Other Regions
With regard to the transferability of our building height estimation 
method, there are some points need to be declared. The solar zenith 
and azimuth angles are different for the different location as the 
Sentinel-2 observe. Thus, the shadow length is different for different 
locations in bi-temporal images. This can induce some uncertainties in 
building height estimation, as the model trained based on high latitudes 
data used for some low latitude areas. In addition, the gray level 
change characteristics of GLCM can be calculated in four directions. 
Only the 90° direction is selected in this study due to the regional 
characteristics of Beijing (north of the Tropic of Cancer). Different 
countries and regions should select optimal direction according to the 
actual correlation coefficient.

Besides that, the building outlines are used to extract building 
pixels before RF model construction. In actual applications, besides 
the Sentinel-2 optical images, the building outlines in vector format 
such as Open Street Map or building layers in raster format such as 
Global Human Settlement Layer (Martino et al. 2016) are necessary to 
extract building pixels before height prediction. As long as the above-
mentioned aspects are taken into account during the model training, the 
building height estimation method using bi-temporal MSI images can 
be used for other areas.

Note that the height information at the individual building scale is 
indeed more useful for many applications such as real property rights 
registration and cadastral surveying. But the building height products 
with different spatial resolutions have different applications. For ex-
ample, this product in 10 m resolution is useful for population density 
estimation in 100 m or 1 km or seismic risk estimation at large areas. 
What is more important is that the height information at individual 
building scale is not available for some remote or underdeveloped 

regions. The height information produced by the method proposed in 
this study can be an efficient and cost-effective substitute of individual 
building scale height products.

Prediction Accuracy of High-Rise Buildings
This study selects the building pixels within the 15 km × 15 km area 
of Beijing in 2017. After comparing the predicted building height and 

Figure 12. Comparison of reference and predicted building height of three 2 km × 2 km region I, II, and III.

Figure 13. Out-of-Bag (O-O-B) root-mean-square error (RMSE) with 
respect to different number of trees of using single and bi-temporal 
images.

Figure 14. Out-of-Bag (O-O-B) root-mean-square error (RMSE) 
versus different number of trees with and without cloud removal.
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the reference value, it shows that the prediction accuracy of high-rise 
buildings (taller than 12 floors) is lower than the low-rise buildings 
(less than 12 floors). The possible reasons are as follows: (1) It may 
be that the ground interval between high-rise buildings are too small, 
inducing shadows cover other building pixels or overlap between shad-
ows. (2) We only studied the features within 60 m in each direction of 
building pixels when performing feature extraction of morphology and 
GLCM, but actual high-rise building shadows may far exceed this range 
in winter in Beijing. (3) In the process of model training, the samples 
of over 12 floors in the study area were insufficient compared with less 
than 12 floor conditions, resulting in the training was unstable.

Note that for some actual applications such as seismic risk analysis, 
the building height data produces by the method proposed in this study 
is sufficient to correctly classify the building into the corresponding 
sub-groups. Namely, the RMSE of high-rise buildings of about the 1.62 
floor is sufficient for the estimation of seismic vulnerability of buildings. 
However, to map the height of buildings across the country, we should 
select as many high-rise building samples as possible, such as Shanghai 
and Shenzhen, to improve the prediction accuracy of the proposed model.

It should be noted that the reference building height data used in 
this study is the number of building floors, not meters. The floor height 
of buildings in China is around 2.8 m, with different buildings com-
monly having different heights. This can induce some uncertainty in 
floor number estimation using the bi-temporal image-based method. 
Thus, the RMSE can be further reduced as more accurate reference data 
of building height data become available.

Conclusions
The building height information is a very important parameter for many 
applications, such as urban planning and population density estimation. 
There are some typical methods to estimate buildings height: the build-
ing shadow-based method using very-high-resolution optical images; 
the photogrammetry method based on stereo image pairs or InSAR im-
ages to extract the digital elevation model and building height; and the 
lidar data-based method acquired from drones. However, those methods 
discussed above rely on data that are difficult and expensive to acquire 
or that can only be used for a limited area. Considering the mid-reso-
lution satellite data have the advantages of being easier to access com-
pared with VHR images and have a global coverage compared with the 
local coverage of airborne data, this study tries to estimate the building 
height based on the mid-resolution satellite images of Sentinel-2.

The region of 15 km × 15 km in central Beijing, China is taken as 
the study area. Based on the bi-temporal optical images, the spectral 
features, mathematical morphology indexes, and the gray level co-
occurrence matrix are all considered. The widely used random forest 
model is used to estimate buildings height. To explore the feasibility 
of the building height estimation using Sentinel-2 images, the samples 
of the study area are randomly split into two parts: 70% as the training 
data set and the rest 30% as the testing data set.

A classification model is proposed based on the RF model, classify-
ing all the buildings into three sub-groups: 1–6 floors, 7–12 floors, and 
above 12 floors. Then three RF regression models are proposed to pre-
dict the corresponding building height. Based on the test data, it shows 
that the overall accuracy rate of the RF classification model has reached 
98.4% and the kappa coefficient is 0.93. The RF regression models’ 
RMSE is 0.61 floor for 1–6 floors group, 0.41 floor for 7–12 floor group, 
and 0.98 floor for above 12 floors group. The final results show that the 
bi-temporal Sentinel-2 images have good accuracy in predicting the 
height of buildings with the RMSE of the 1.62 floor for all effective data. 
This result shows that this method has great potential for large-scale 
building mapping and regional large-scale disaster assessment.
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Generation of High-Resolution Orthomosaics  
from Historical Aerial Photographs Using 

Structure-from-Motion and Lidar Data
Ji Won Suh and William Ouimet

Abstract
This study presents a method to generate historical orthomosaics using 
Structure-from-Motion (SfM) photogrammetry, historical aerial photo-
graphs, and lidar data, and then analyzes the horizontal accuracy and 
factors that can affect the quality of historical orthoimagery products 
made with these approaches. Two sets of historical aerial photographs 
(1934 and 1951) were analyzed, focused on the town of Woodstock 
in Connecticut, U.S.A. Ground control points (GCPs) for georeferenc-
ing were obtained by overlaying multiple data sets, including lidar 
elevation data and derivative hillshades, and recent orthoimagery. 
Root-Mean-Square Error values of check points (CPs) for 1934 and 
1951 orthomosaics without extreme outliers are 0.83 m and 1.37 m, re-
spectively. Results indicate that orthomosaics can be used for standard 
mapping and geographic information systems (GIS) work according to 
the ASPRS 1990 accuracy standard. In addition, results emphasize that 
three main factors can affect the horizontal accuracy of orthomosa-
ics: (1) types of CPs, (2) the number of tied photos, and (3) terrain.

Introduction
Land use land cover (LULC) change plays a fundamental role in record-
ing the impact of human activities on earth surface processes and 
understanding these impacts is one of the grand challenges in envi-
ronmental science today (National Research Council 2001). Satellite-
based data such as Landsat have been widely used to understand LULC 
in the field of remote sensing (Leh et al. 2013; Verbesselt et al. 2012; 
Zhu et al. 2016, 2020; Zhu and Woodcock 2014), but are limited in 
terms of temporal scope (Landsat first launched in 1972) and spatial 
resolution (with the best available pixel resolution being 15–30 m 
between the 1970s and early 2000s). To understand historical LULC 
changes prior to the satellite era and at much higher spatial resolution, 
historical aerial photography has long been considered an important 
source of data, adding multiple new time intervals in the study of land 
use activity in forestry, ecology, urban planning, cultural resources, 
and geomorphology related studies (Kadmon and Harari-Kremer 1999; 
Llena et al. 2018; Mallinis et al. 2011; Nita et al. 2018; Rocchini et al. 
2006; Sevara 2013; Verhoeven et al. 2012; Zomeni et al. 2008).

Unlike modern remote sensing imagery derived from airplanes, 
unmanned aerial vehicles (UAV) or satellites, a number of issues need to 
be taken into account when using historical aerial photographs. These 
include: (1) low data accessibility, (2) no georeferencing, (3) time-con-
suming work for mosaicking fragmented aerial photograph campaigns 
and scaling up the spatial extent, (4) poor information for aligning or 
calibrating individual aerial photograph such as camera position, flight 
altitude, yaw, pitch, and roll (Fox and Cziferszky 2008; Frankl et al. 
2015), (5) no ground control points (GCPs), which are crucial in removing 

inherent radial distortion and tilt for georeferencing (Bolstad 1992; Wolf 
et al. 2014), and (6) low image quality due to digital scanning. These 
problems have generally restricted the application of modern photogram-
metric techniques when dealing with historical data (Lingua et al. 2009; 
Turner et al. 2012; Weng et al. 2013). In addition, they can attenuate 
errors associated with automated image processing in photogrammetric 
software such as Agisoft Metashape and Pix4Dmapper when it comes to 
the shortage of metadata or increasing the number of photos stitched.

Despite these challenges, a number of studies have been conducted 
to orthorectify historical aerial photographs and reconstruct historical 
digital elevation models (hDEM) based on photogrammetric techniques 
such as Structure-from-Motion (SfM). The historical aerial photography 
considered in these studies ranges from the 1930s (Fox and Cziferszky 
2008; Frankl et al. 2015; Geyman et al. 2022) to the 1990s (Arnaud 
et al. 2015) and most of the research has been concentrated on images 
from the 1950s onward (Comiti et al. 2011; Gennaretti et al. 2011; 
Gomez 2014; Kadmon and Harari-Kremer 1999; Llena et al. 2018; 
Marignani et al. 2008; Maurer and Rupper 2015; Nebiker et al. 2014; 
Rocchini et al. 2006). To overcome the lack of external information 
of historical data, creating GCPs from reference data such as DEMs is 
essential during SfM processing. Depending on the spatial resolution of 
reference data, the quality of output orthomosaics or DEMs varies. The 
quality of orthomosaics has been evaluated by root-mean-square error 
(RMSE) and the RMSE results with coarse reference data (e.g., ~10–40 
m) ranges from 5 m to 15 m (Baker et al. 1995; Gennaretti et al. 2011; 
Marignani et al. 2008; Rocchini et al. 2006).

The advent of Light Detection and Ranging (lidar) data and high-
resolution DEMs (e.g., 1 m) can lead to increasing the accuracy of 
historical orthomosaics and hDEMs given that lidar derivatives such as 
hillshades allow for visualizing of small-scale features and greater po-
tential for choosing GCP with accurate coordinates and elevation values. 
To date, however, the application of high-resolution topographic data 
from lidar in SfM photogrammetry processing has been focused on as-
sessing vertical accuracy of hDEM products (Child et al. 2021; Nebiker 
et al. 2014) rather than extracting GCPs for the orthomosaic. One of 
reasons for this is that high-resolution historical imagery needs high-
resolution topographic data as a reference to build orthomosaics with 
less horizontal error. Furthermore, there is a lack of research focused on 
expanding the spatial extent of orthophotos made from high-resolution 
historical aerial photos (i.e., less than 1:20 000 scale, less than 1m pixel 
resolution) and lidar data. This is because a large number of historical 
photos need to be aligned and orthomosaicked to cover larger spatial 
extent, in contrast to the aforementioned previous studies that use less 
than 40 photos. In other words, the paucity of such studies underlines 
the need for an improved methodological approach. Lidar data and its 
derivatives provide an opportunity to fill in the gap between the low 
resolution of reference topographic data (e.g., 30 m DEMs) and the reso-
lution of input from historical imagery (e.g., 1 m) (Llena et al. 2018).Ji Won Suh and William Ouimet are with the Department of 
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The goal of this paper is to present the generation of high-resolution 
historical orthomosaic over a broad area using SfM photogrammetry 
combined with GCPs from lidar derivatives. Our objectives are to (1) 
provide a method to build high-resolution historical orthomosaics by 
using 1934 and 1951 black and white aerial photographs focused on 
the town of Woodstock, Connecticut, United States; (2) evaluate the 
horizontal accuracy of orthomosaics based on RMSE values for overall 
assessment and residual error to understand spatial distribution of er-
rors, and (3) analyze factors that can affect the quality of these histori-
cal orthophotos by comparing orthomosaics from 1934 and 1951.

Data and Methods
Study Area
This study was conducted focusing on the town of Woodstock in north-
eastern Connecticut. In order to cover the entirety of Woodstock, our study 
area is a rectangle and includes adjacent towns described in Figure 1. To be 

specific, Figure 1B shows the DEM ranging from 64 m to 335 m and topog-
raphy in the west part comprised mainly of hilly uplands with mixed conif-
erous-deciduous forests and agricultural lands. On the other hand, the east 
part consists of lowland used for agricultural lands as well as mixed forests 
and muddy brook which flows south into Roseland lake. Distributed over 
the entire study area are stone walls, stacked around agricultural lands that 
indicate an anthropogenic legacy of English-style agriculture during the 
17th to 20th centuries (Cronon 1983; Thorson 2002) (Figure 1C and 1D). 
They are easily detected in a hillshade map derived from lidar in open area 
and deciduous forest (Johnson and Ouimet 2014, 2016).

Data
Collected data for this study can be divided into two sets in terms of 
usages: to produce historical orthomosaics and to create GCPs (Table 
1). In particular, the first data set includes high-resolution black and 
white air photos of 1934 and 1951 provided from the Connecticut 
State Library (1934, 1951). For 1934, 141 air photos (spatial scale 1:12 
000) were used for an orthomosaic covering about 264 Km² area. The 

Figure 1. Map of the study area. (A) study area with camera positions of 1934 and 1951 aerial photographs (ESRI, 2012). Lower case and upper 
case refer to 1934 and 1951 north-south flight paths, respectively; (B) Digital Elevation Model ranging from 64 m to 335 m; (C) an example of 
stone walls with 2012 leaf-off orthophoto (CT ECO 2012); (D) an example of stone walls with a hillshade map derived from lidar.

Table 1. List of maps and aerial photographs used for this study.
Data Usage Data Type Year Date Resolution/Map Scale # of Images (Covering Area) Source

Historical 
orthomosaics

A/BW 1934 April 1934 1:12 000 141 (264 Km2) Connecticut State Library1

A/BW 1951

5 September 1951

1:20 000 68 (380 Km2) Connecticut State Library2 
13 October 1951

25 November 1951
27 November 1951

Reference 
data 

A/O/C 2012 0.3 m CT ECO
A/O/C 2016 0.07 m CT ECO
DEM 2016 1 m CT ECO

Hillshade 2016 1 m 2016 DEM
A: aerial photographs; O: ortho-rectified aerial photographs; BW: black and white; C: color. CT ECO = Connecticut Environmental Conditions Online;  
DEM = digital elevation model.
1 Connecticut State Library, 1934 Aerial Surveys, Record Group 089:011, Department of Transportation, State Archives.
2 Connecticut State Library, 1951 Aerial Surveys, Record Group 089:011b, Department of Transportation, State Archives.
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vertical photography was taken in April 1934 (note that specific dates 
were not available) by Fairchild Aerial Survey Corporation using a K-3 
aerial survey camera with a 241.3 mm focal length. The survey flights 
were flown at an altitude of around 3500 m. The overlap rate between 
two images were approximately 50%. This historical photography was 
digital-scanned as a 1270 dots-per-inch in 2006. On the other hand, 68 
air photos of 1951 (spatial scale 1:20 000) were used covering about 
380 Km². Robinson Aerial Surveys took 1951 imagery on the following 
dates: 5 September 1951, 13 October 1951, 25 November 1951, and 27 
November 1951. Unlike 1934 photography, detailed information about 
survey and scanning process for 1951 was not available. Regarding the 
number of photos of 1934 and 1951, each 1934 photo covers small extent 
compared to 1951 photo so that the more photos of 1934 were collected.

As reference data to create GCPs, the second data set includes recent 
orthophotos (2012 and 2016), DEM derived from 2016 lidar, and a 
hillshade map produced from lidar DEM. First, 2012 and 2016 high-
resolution orthophotos were streamed from Connecticut Environmental 
Conditions Online (CT ECO) image services in ArcGIS Desktop 10.5 
(CRCoG 2016; CT ECO 2012). The spatial resolution of 2012 and 2016 
orthoimagery is 0.3 m and 0.07 m, respectively (Table 1). Next, high-res-
olution DEM from lidar is used to get elevation values of GCPs with fewer 
errors. Lastly, lidar DEM is also a source to produce a hillshade map 
that is able to detect surface features such as stone walls (Johnson and 
Ouimet 2014), which ensures the horizontal position of target locations.

A Workflow for Generating Historical Orthomosaics
In order to build 1934 and 1951 historical orthomosaics and conduct 
horizontal accuracy assessment, we provided a workflow from steps 1 
through 11 by using Agisoft Metashape 1.6 and ArcGIS Desktop 10.5, 

described in Figure 2. Agisoft LLC (2019) provides a general workflow to 
build an orthomosaic or DEMs and a number of studies have followed it 
(Ajayi et al. 2017; Midgley and Tonkin 2017; Nita et al. 2018; Riquelme 
et al. 2019). However, it needs to be improved for applications involv-
ing historical data in order to overcome a lack of photo information and 
build high-quality georeferenced orthophotos that can be used for map-
ping and GIS purposes. A workflow consists of three general stages, (1) 
preprocessing (steps 1 and 2), (2) georeferencing and orthomosaicking 
(steps 3 to 10), and (3) horizontal accuracy assessment (step 11). Details 
on each step will be addressed in the following sub-sections: “Pre-
Processing Stage (Steps 1 to 2)”, “Photo-Alignment/Orthomosaicking 
Stage (Steps 3 to 10)”, and “Horizontal Accuracy Assessment Stage 
(Step 11)”. The data were processed with Intel Xeon CPU E5-2687W v3 
at 3.10 GHz with 10-core, 128 GB RAM, 20 processors, AMD FirePro 
W7100 graphics card, and operating on Windows 10 64-bit.

Pre-Processing Stage (Steps 1 to 2)
As a preprocessing stage, input historical photos were masked (step 1) to 
eliminate unnecessary information such as frame and letters and then the 
image quality of these photos was estimated (step 2) based on the sharp-
ness value of images that Agisoft image quality tool provides (Agisoft 
LLC 2019). A blurry image can reduce an orthophoto quality at the final 
step so images below 0.5 sharpness value out of 1.0 were discarded dur-
ing the orthomosaicking process (step 10 in Figure 2). The quality test 
result of 1934 air photos ranges from 0.47 to 0.66 and two photos below 
the 0.5 quality threshold were disabled. Figure 3 represents an image 
quality comparison between 0.47 (A) and 0.66 (B) snapped in the same 
spatial extent. On the other hand, all 1951 air photos were used since 
they meet the requirement by ranging between 0.74 and 0.88.

Figure 2. A flowchart for generating orthomosaics of historical aerial photographs using Agisoft Metashape and ArcGIS desktop. DEM = digital 
elevation model; RMSE = root-mean-square error.

Figure 3. An image quality comparison between 0.50 (A) and 0.61 (B) snapped from 1934 air photos in the same spatial extent. 1934 Aerial 
Surveys, State Archives Record Group 089:011, State Archives, Connecticut State Library.
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Photo-Alignment/Orthomosaicking Stage (Steps 3 to 10)
In this stage, photo-alignment (step 3) was conducted with high ac-
curacy and the generic pair preselection option in Agisoft Metashape. 
The key point limit and tie point limit was set as 100 000 and 8000, 
respectively. Given that no information about camera position is used 
during the photo-alignment process, GCPs with northing, easting, and 
elevation values should be placed on photos to better alignment as well 
as georeferencing.

However, there are no GCPs available for historical data, so we 
defined GCPs (step 4) by selecting points that have not changed over 
time in a comparison of historical air photos, recent orthophotos, and 
lidar hillshade maps. Three aspects were taken into account when 
selecting GCPs. First, the priority of point selection was set considering 

frequency and stability of features through time. Therefore, stone 
walls were the first priority since they existed in the entire study area 
and were relatively stationary features pre-1934. Then it is followed 
by road crosses or edges, fixed structures (e.g., bridge, dam, etc.), 
and the attributes of natural landscape (e.g., creek crosses) (Figure 4). 
However, the attributes of natural landscape such as creek crosses can 
be relatively easily changed over time so it was only considered for 
GCP selection when the rest of potential features (e.g., stone walls, road 
crosses or edges, fixed structures) were unavailable.

The second aspect was the distribution of GCPs. Given that GCPs 
with three-dimensional (3D) coordinates strongly control error behav-
ior (Wolf et al. 2014), the optimal distribution of GCPs is a point on 
each corner and additional points uniformly and densely distributed 

Figure 4. Examples of ground control points (GCPs) on 1934 aerial photo, 2016 orthophoto, and lidar hillshade. 1934 images from 1934 Aerial 
Surveys, State Archives Record Group 089:011, State Archives, Connecticut State Library.
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throughout an image. We tried to place our GCPs as uniformly as possible 
but were limited by the fact that landscape changes between the images 
used are often not uniform. When using historical aerial photograph, 
with 50–90 years between original images and modern lidar and ortho-
photo data sets, this will likely also be a limitation contributing to error.

The last aspect was the number of photos that each GCP stitched. 
Each GCP should be located in the place where at least two photos were 
overlapped. Once GCPs are created at least 1:500 scale level through 
ArcGIS desktop, northing and easting values were extracted from cre-
ated GCPs, and elevation values were extracted from lidar DEM (Llena 
et al. 2018) and exported as CSV format, herein we used UTM 18N pro-
jection (EPSG: 6347) since measuring horizontal distances was required 
in accuracy assessment (step 11). After creating GCPs, these GCPs were 
imported in Agisoft and placed on photos (step 5).

Steps 6 to 9 were repeated until RMS reprojection error was less 
than 3.0 pixels (see step 7). Camera optimization (step 6) was under-
taken using Brown’s distortion model (Agisoft LLC 2019) to adjust 
photo-alignment considering lens distortion. In particular, the follow-
ing 11 variables were used; focal length (f), principal point offset (cx 
and cy), radial distortion coefficients (K1, K2, K3, and K4), affinity and 
skew transformation coefficients (B1 and B2), and tangential distor-
tion coefficients (P1 and P2). This was an alternative way to overcome 
a lack of camera calibration information for historical imagery. The 
quality of photo alignment step is evaluated by RMS reprojection error 
(in pixel) that is a geometric error associated to the distance between a 
reconstructed 3D point and an original 3D point detected on the photo. 
If RMS reprojection error was greater than 3.0 pixel, more GCPs were 
created and placed on photo. If RMS reprojection error was less than 
3.0 pixel, building an orthomosaic (step 10) was conducted. As stated 
in the description of step 2, images above 0.5 quality threshold were 
used during an orthomosaicking step and surface parameter was set as 
1 m resolution lidar DEM instead of hDEM derived in Metashape due to 
low resolution of hDEM (e.g., 40 m). Then the orthophoto product was 
exported and assessed for horizontal accuracy (step 11).

Horizontal Accuracy Assessment Stage (Step 11)
To assess horizontal accuracy of the 1934 and 1951 orthophotos, check 
points (CPs) were placed on the photo to calculate the residual error 
of each point and the standard deviation of all residual errors (RMSE). 
Like GCPs, CPs were typically one of four types: (1) stone walls (SW), 
(2) road crosses and edges (Rd), (3) natural landscape feature (NL) 
(e.g., creek crosses), and (4) fixed structures (FS) (e.g., bridge, dam, 
etc.). In general, RMSE values (i.e., RMSEx, RMSEy, and RMSExy) of 
CPs are widely used to evaluate the quality of an orthophoto product 
(American Society for Photogrammetry and Remote Sensing 1990, 
2014; Congalton and Green 2009; Tomaštík et al. 2019) since they 
are not used during photo-alignment process. In this study, they are 
calculated as:

  
(1)

  
(2) 

  (3)

where:
xi is the easting value of CPs from a lidar hillshade map; x̂i is the 

estimated easting value of CPs in an orthomosaic product; yi is the 
northing value of CPs from a lidar hillshade map; and ŷi is the estimated 
northing value of CPs in an orthomosaic product.

The results of RMSE values were compared to American Society for 
Photogrammetry and Remote Sensing (ASPRS) 1990 standard shown 
in Table 2. Even though the 1990 standard is regarded as a legacy, we 
used this standard instead of the recent RMSE standard (e.g., less than 
1.4 cm * resolution of geospatial data) given that our inputs were 1934 
and 1951 historical data.

Table 2. ASPRS 1990 horizontal accuracy standard information 
including classes, RMSE values, and recommended uses for each class.

Class

1990 Standard RMSEx and 
RMSEy (m) based on pixel size

Recommended Use1934 1951 

1 0.6 m 2.0 m Highest accuracy work

2 1.2 m 4.0 m Standard mapping and GIS work

3 1.8 m 6.0 m Visualization

ASPRS = American Society for Photogrammetry and Remote Sensing;  
RMSE = root-mean-square error; GIS = geographic information systems.

Results
By following all steps provided in the orthomosaicking workflow 
(Figure 2), two sets of historical orthomosaics were produced. One is 
1934 orthoimage (ground resolution: 0.3 m/pixel) mosaicked with 141 
photos covering 264 km² and the other is 1951 orthomosaic (ground 
resolution: 0.9 m/pixel) stitched with 68 photos covering 380 km². To 
meet RMS reprojection error condition (<3.0 pixel), 237 of GCPs was 
used for 1934 and 234 of GCPs was used for 1951. During the photo-
alignment step, the total number of valid tie points for 1934 was 185 
293 out of 474 139 and the RMS reprojection error was 2.93 pixel. 
After bundle adjustment, the mean residual errors of X, Y, Z, and total 
three coordinates for 1934 were 1.15 m, 1.26 m, 5.56 m, and 5.82 m, 
respectively. For 1951, the total number of valid tie points was 221 475 
out of 464 127 and the RMS reprojection error of 1951 point cloud was 
1.1 pixel. After bundle adjustment, the mean residual errors of X, Y, Z, 
and total three coordinates were 1.59 m, 1.54, 9.2 m, and 9.46 m. The 
bundle adjustment result shows that a large residual error in vertical 
value (Z) occurred compared to horizontal value (X and Y). This result 
supports the use of high-resolution lidar DEM as a better resource for 
the orthomosaicking process instead of the hDEM reconstructed from 
the historical aerial photographs.

Table 3 and Table 4 shows estimated distance and overlap informa-
tion for the 1934 and 1951 results based on the estimated camera posi-
tion by Metashape. The range of side overlap slightly changes depending 
on the north-south flight path; overall, the survey was flown as regular.

Table 3. Distance and overlap information between camera flight paths 
of 1934 aerial photographs. The lower case refers to the north-south 
flight path IDs shown in Figure 1.
1934 Camera 
Paths a–b b–c c–d d–e e–f f–g g–h h–i i–j

Avg. overlap 
(km)

1.8 1.7 1.1 2.1 1.4 1.1 1.8 1.7 1.6

Max. overlap 
(km)

2 1.8 1.3 2.2 1.7 1.4 2.3 1.9 1.9

Min. overlap 
(km)

1.6 1.6 0.9 2 1 0.8 1.4 1.5 1.2

Side overlap 
(%) 35–47 35–40 54–67 27–35 41–62 51–73 24–55 45–37 41–60

Forward overlap 
(%) 45–60

Table 4. Distance and overlap information between camera flight paths 
of 1951 aerial photographs. The upper case refers to the north-south 
flight path IDs shown in Figure 1.
1951 Camera Paths A–B B–C C–D D–E E–F

Avg. overlap (km) 3.35 3.66 2.98 3.71 3.98

Min. overlap (km) 2.9 3.15 2.49 3.38 2.83

Max. overlap (km) 3.13 3.37 2.67 3.53 3.05

Side overlap (%) 28–33 21–25 39–40 19–25 29–36

Forward overlap (%) 60–80
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Horizontal accuracy assessment was then conducted to validate the 
quality of final orthophoto products by using RMSE values. To do this, 
a total of 287 CPs for the 1934 orthomosaic and 182 CPs for the 1951 
orthomosaic were established for the accuracy evaluation. More CPs for 
the 1934 orthomosaic were required compared to those for the 1951 
orthomosaic due to the number of CPs per image. In addition, the 1951 
aerial photographs were taken during leaf-on conditions, which led to 
additional challenges associated with identifying reference objects that 
have not changed over and were not forested.

RMSE Results of 1934 and 1951 Orthomosaics
Table 5 shows the RMSE results of the 1934 and 1951 orthomosaics. 
According to the 1990 ASPRS horizontal accuracy standard (Table 2), 
the 1934 orthomosaic can be used for standard mapping and GIS work 
in that the RMSE result without outliers is less than 1.2 m and 1951 
orthophoto products can be used for highest accuracy work considering 
the RMSE without outliers is less than 2.0 m (Table 5). It was found that 
high-resolution historical orthomosaics can be constructed to town-
scale with high accuracy and the orthomosaic procedure can be further 
applied to expand the spatial scale of study area (i.e., state-scale).

Spatial Pattern of Residual Errors
Figure 5 shows the spatial distribution of residual errors of CPs regard-
ing their location: inside and margin area. Figure 6 shows the residual 
error boxplots of each CPs for inside area and margin area in both 
1934 and 1951 orthophoto results. The results demonstrate that (1) the 
mean residual errors of 1951 orthophoto are larger than those of 1934 
orthoimage and this is caused by spatial resolution differences between 
two periods, (2) the residual errors from the margin area are larger than 
those from inside area, and (3) extreme outliers tend to be observed in 
edge part of the margin area. These results of (2) and (3) supported an 
edge effect reported in previous studies (Hung et al. 2019; Khan and 
Miklavcic 2019; Nogueira and Roberto 2017). It is partly due to the 

Table 5. RMSE results of 1934 and 1951 orthomosaics. n is the number 
of CPs.

1934 1951

n 287 182

RMSEx (m) 0.94 1.28

RMSEy (m) 1.08 1.28

RMSExy (m) 1.43 1.82

RMSExy (m) without 
extreme outliers (>3 m) 0.83 (n = 277) 1.37 (n = 173)

RMSE = root-mean-square error; CPs = check points.

Figure 5. Spatial distribution of residual error from orthomosaic results (A: 1934; B: 1951). CPs = check points; GCPs = ground control points. 
1934 Aerial Surveys, State Archives Record Group 089:011, and 1951 Aerial Surveys, State Archives Record Group 089:11b, State Archives, 
Connecticut State Library.

Figure 6. Boxplots of horizontal residual error (m) for inside area and margin area in 1934 (left), 1951 (right). (Ground resolution: 1934 
orthomosaic (0.3 m/pixel) and 1951 orthomosaic (0.9 m/pixel)).

42 Januar y 2023 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



fact that the smaller number of key points were extracted and matched 
from limited images (e.g., two photos) in the margin area.

Discussion
As stated earlier, it was found that the accuracy of a historical ortho-
mosaic can be affected by the spatial resolution of input photos and 
reference data, and their location (i.e., inside/margin). In other words, 
the conditions for obtaining high quality of orthomosaics are (1) to use 
high-resolution input photos (American Society for Photogrammetry 
and Remote Sensing 2014), (2) to extract reference points from high-
resolution reference data such as lidar DEMs and hillshade, and (3) 
to use additional input photos by buffering a target area at least one 
flight strip surrounding it to minimize edge effect. However, the results 
(Figure 5) also demonstrate that a couple of major residual errors occur 
locally unlike an orthomosaics derived from modern UAV such as a 
drone. Therefore, we herein discussed additional factors influencing 
the quality of an orthomosaic from historical aerial photos over a broad 
area based on a spatial join between CPs’ residual errors and map of 
each factor.

Types of CPs
As aforementioned in section “Horizontal Accuracy Assessment Stage 
(Step 11)”, CPs fall into four types: SW, Rd, NL, and FS. The number of 
CPs categorized as SW or Rd accounts for ~80% since their locations 
are relatively easy to be identified between orthomosaic and lidar 
hillshade and are common landscape features that are static over time. 

The occurrence of each CP was the close to the same for each time 
frame: for the 1934 orthomosaic, the number of CPs categorized as SW 
accounts for 56%, Rd is 22%, NL is 17%, and FS is 5%; for the 1951 
orthomosaic, SW accounts for 53%, Rd is 24%, NL is 19% and FS is 4%. 
Figure 7 is a boxplot representing the distribution of residual error for 
each type of CP. CPs of SW and Rd are widely distributed throughout 
the orthomosaics and tend to show lower residual error compared to 
NL and FS—although it is difficult to generalize this result because the 
number of points for each type varies and the accuracy may depend 
on the location of points (e.g., inside/margin area). In addition, SW 
and Rd types were easily detectable and more easily delineated on the 
hillshade maps derived from high-resolution lidar DEM.

The Number of Tied Photos
The number of tied photos was considered as a second factor affect-
ing the quality of orthomosaic because, theoretically, the more photos 
tied to specific reference points, the higher the accuracy of projected 
point placement (Agisoft LLC 2019). Figure 8 shows boxplots of CPs’ 
residual errors according to the number of tied photos in 1934 and 
1951 orthomosaics. Our results do not completely support the theoreti-
cal assumption. In the 1934 orthomosaic, mean residual error tends to 
decrease as the number of tied photos goes from 1 to 5, but in the 1951 
orthomosaic, mean residual error does not decrease as the number of 
tied photos increases. This is likely due to the fact that it is difficult to 
place reference points in the exact same location in all photos because 
some photos have poor sharpness or bad conditions.

Figure 7. Residual error boxplots of four types of CPs in 1934 (left), 1951 (right). (SW = stone walls, Rd = road crosses or edges, NL = natural 
landscape features such as creek intersections, FS = fixed structures such as dams or bridges). (Ground resolution: 1934 orthomosaic (0.3 m/
pixel) and 1951 orthomosaic (0.9 m/pixel).)

Figure 8. Residual error boxplots as a function of the number of tied photos used in 1934 (left) and 1951 (right). (Ground resolution: 1934 
orthomosaic (0.3 m/pixel) and 1951 orthomosaic (0.9 m/pixel).)
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Terrain
As the last factor that affects the accuracy of an orthomosaic result, 
three terrain elements (elevation, relief, and slope) were taken into 
account (Figure 9). Relief indicates the topographic range in elevation 
that exists over a specified window; we used a window size of 100 m. 
Elevation in the study area ranges from 64 m to 335 m, relief ranges 
from 0 to 71 m, and slope ranges between 0 to 40 degrees. From the 
perspective of spatial variation, the northwest portion of the study area 
shows the highest elevation, relief, and slope values. To figure out 
the relationship between terrain elements and positional accuracy of 
orthomosaic, each terrain element was reclassified into three classes, 
which are low (1), medium (2), and high (3) based on natural break 
and residual error boxplots of terrain conditions were created for both 
the 1934 and 1951 orthomosaic (Figure 10).

Mean positional residual error of historical orthomosaics increases 
slightly in areas characterized by higher elevations and higher slope 
values (Figure 10). One factor contributing to this trend is that fewer 
GCPs were used in areas with higher elevations and slope values 

because these areas tend to have high forest cover in our study area, 
which poses a challenge to identifying GCPs in lidar hillshades and his-
torical aerial photographs. Therefore, it could be the coupling of terrain 
characteristics with vegetation differences, rather than strictly terrain, 
that prevents accurate matching of key points in the aerial photos and 
leads to larger residual errors.

Conclusion
This study presents a methodological procedure for generating high-
resolution historical orthomosaic over a broad area using SfM soft-
ware Agisoft Metashape and ArcGIS desktop, which allows for the 
incorporation of lidar data. Among 11 steps in the procedure, creating 
GCPs with lidar data is the most important step in order to align photos 
and build historical orthomosaics with high horizontal accuracy. We 
produced two town-scale high-resolution historical orhomosaics from 
different timeframes (1934 and 1951) that vary in terms of spatial 
resolution—1934 (0.3 m/pixel) and 1951 (0.9 m/pixel). In terms of 

Figure 9. Map of three terrain elements (elevation, relief, and slope) in the study area.(A) elevation map; (B) relief map; (C) slope map.

Figure 10. Residual error boxplots of three terrain elements (elevation, relief, and slope) reclassified into low, medium, and high classes 
based on a natural break. The top row shows the residual error results for the 1934 orthomosaic; the bottom row indicates that of the 1951 
orthomosaic.
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horizontal accuracy assessment, RMSE values without extreme outliers 
for both orthomosaics demonstrate they are highly accurate and can 
be used for standard mapping and GIS work according to 1990 ASPRS 
horizontal accuracy standard. In addition, the spatial distribution of CP 
residual errors indicates that an edge effect should be taken into ac-
count and enough photos should be included to cover at least one more 
edge layer larger than study area.

Moreover, we highlight that there are three factors influencing 
the quality of historical orthomosaics. First, it is important to use CPs 
not only extracted from high-resolution reference data such as lidar 
but also selected in terms of being stationary features through time 
and high frequency across the study area (e.g., stone walls and road 
crossings). Second, the number of tied photos can increase horizontal 
accuracy, but more tied photos do not always lead to higher accuracy 
because external causes such as image quality and stains on images 
prevent reference points being placed on the exact same locations. 
Lastly, it was found that the complexity of terrain can also affect the 
accuracy of orthomosaics.

Limitations to this study include the following: (1) the factors 
influencing the quality of historical orthomosaics were examined by a 
spatial join between the map of each factor and a map of CPs’ residual 
errors such that it is not possible to examine the relationships amongst 
individual factors; (2) there may have been errors associated with or-
thomosaicking or accuracy assessments results due to digitization and 
imprecise locations of reference points on both photos and the map; 
and (3) it can be challenging to apply this method to completely for-
ested areas where, in general, reference points are harder to come by.

Overall, despite these limitations, this contribution provides an 
important methodological procedure for making high-resolution, his-
torical orthomosaics and for suggesting factors to be considered when 
applying this method. The procedure presented here can be applied to 
any study areas where historical aerial photographs and lidar data are 
available. Future application of this methodology would be to extend 
beyond the town scale considered here (e.g., 50–200 km²) all to the 
way to state scale or larger (10 000–100 000 km²), such as the state 
of Connecticut or the northeastern US in general. In addition to this, 
the outputs of our procedure can be used in various studies based on 
time-series analysis since the early to mid-20th century when historical 
aerial photographs become widely available, like detecting environ-
mental disturbances, land use changes, and anthropogenic impacts. 
These products can also be used as input data for state-of-the-art deep 
learning algorithms to do image classification to reconstruct and ana-
lyze historical LULC.
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The Cellular Automata Approach in Dynamic 
Modelling of Land Use Change Detection and 
Future Simulations Based on Remote Sensing 

Data in Lahore Pakistan
Muhammad Nasar Ahmad, Zhenfeng Shao, Akib Javed, Fakhrul Islam, Hafiz Haroon Ahmad, and Rana Waqar Aslam

Abstract
Rapid urbanization has become an immense problem in Lahore 
city, causing various socio-economic and environmental problems. 
Therefore, it is noteworthy to monitor land use/land cover (LULC) 
change detection and future LULC patterns in Lahore. The present 
study focuses on evaluating the current extent and modeling the future 
LULC developments in Lahore, Pakistan. Therefore, the semi-automatic 
classification model has been applied for the classification of Landsat 
satellite imagery from 2000 to 2020. And the Modules of Land Use 
Change Evaluation (MOLUSCE) cellular automata (CA-ANN) model was 
implemented to simulate future land use trends for the years 2030 
and 2040. This study project made use of Landsat, Shuttle Radar 
Topography Mission Digital Elevation Model, and vector data. The 
research methodology includes three main steps: (i) semi-automatic 
land use classification using Landsat data from 2000 to 2020; (ii) 
future land use prediction using the CA-ANN (MOLUSCE) model; and 
(iii) monitoring change detection and interpretation of results. The 
research findings indicated that there was a rise in urban areas and a 
decline in vegetation, barren land, and water bodies for both the past 
and future projections. The results also revealed that about 27.41% of 
the urban area has been increased from 2000 to 2020 with a decrease 
of 42.13% in vegetation, 2.3% in barren land, and 6.51% in water 
bodies, respectively. The urban area is also expected to grow by 
23.15% between 2020 and 2040, whereas vegetation, barren land, and 
water bodies will all decline by 28.05%, 1.8%, and 12.31%, respec-
tively. Results can also aid in the long-term, sustainable planning 
of the city. It was also observed that the majority of the city’s urban 
area expansion was found to have occurred in the city’s eastern and 
southern regions. This research also suggests that decision-makers and 
municipal Government should reconsider city expansion strategies. 
Moreover, the future city master plans of 2050 must emphasize the 
relevance of rooftop urban planting and natural resource conservation.

Introduction
Land use describes how people use the land, while land cover refers 
to the characteristics of the surface materials. Rapid transformation in 
land use/land cover (LULC) affects the human environment (Guidigan 

et al. 2019; Hou et al. 2020) and ecosystem services (Chen et al. 2021; 
Huang et al. 2019). Over the past two decades, LULC change detec-
tion has drawn a lot of attention from researchers. Land use/land cover 
is primarily expedited by the construction of artificial infrastructure 
(Girma et al. 2022; Zhu et al. 2022). Therefore, significant change 
in LULC has been influenced by rapid urbanization (Li et al. 2019; 
Naikoo et al. 2022) and population growth all over the world. As a 
result of rapid urbanization and infrastructure development, mostly 
vegetation and water bodies have changed into urban centers (Dewan 
and Yamaguchi 2009; Hassan 2017). By 2050, it is projected that the 
metropolitan sectors will increase by 66% (Marondedze and Schütt 
2021; Ullah et al. 2019).

There are several key issues driven by LULC change which are: 
increase in land surface temperature, haze, smog, vegetation loss, 
increase in impervious surface (Nath et al. 2021), environmental un-
certainties, CO2 emissions (Bhattacharjee and Chen 2020; Zhou et al. 
2021), water degradation, and urban flooding. In the cities, a high pro-
portion of vegetation cover is converted into impervious surfaces due 
to recent metropolitan expansions. Therefore, for a better knowledge of 
prior research on LULC, it is important to monitor existing trends and 
the future trajectory of LULC detection.

Remote sensing (Sohl and Sleeter 2012) combined with geo-infor-
mation science has provided a new corridor for researchers to conduct 
studies related to urban development. Advancements in remote sensing 
technologies such as machine learning and artificial intelligence tech-
nologies (Abbas et al. 2021; Hamedianfar et al. 2020; Talukdar et al. 
2020) are providing prompt and reliable results. There are numerous 
prediction models adopted by researchers (Ghalehteimouri et al. 2022; 
Zhang et al. 2022), such as Markov Chain, Artificial Neural Network 
(ANN), and cellular automata (CA). The cellular automata model is used 
more extensively to simulate future LULC change as it uses historical 
LULC data (Akbar et al. 2019; Guidigan et al. 2019) with indepen-
dent variables to strengthen the prediction results. Cellular automata 
is a well-known and well-adopted artificial intelligence modeling 
technique (Al-Darwish et al. 2018). The CA model operates in such a 
manner that it computes cells automatically based on transitional rules 
and algorithm equations, and it simulates complex systems such as city 
expansion dynamics (Khan et al. 2022; Shafizadeh-Moghadam et al. 
2021; Zhang and Wang 2021).

This research work was conducted based on CA and ANN algorithms 
using the Modules for Land-use Change Evaluation (MOLUSCE) model. 
Moreover, the machine learning-based model of semi-automatic classi-
fication (SCP) is used for land-use classification. MOLUSCE uses Markov 
chain analysis and cellular automata methods (Aneesha Satya et al. 
2020) to determine the land-use dynamics.
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Lahore has experienced a significant transformation in LULC (Fahad 
et al. 2021). Such rapidly growing cities need to simulate future LULC 
prediction modeling. In recent decades, Lahore’s development progress 
has resulted in serious environmental problems (Jabbar and Yusoff 
2022), such as high land surface temperature and smog formation 
(Farid et al. 2022). Lahore ranked second in the most populated cities 
in 2021 (Jabeen et al. 2022) and recorded the 453 highest air quality 
index. In terms of LULC change, Lahore is one of Pakistan’s fastest-
growing metropolitan cities. In the past, many studies have been con-
ducted by researchers for the planning and development (Hong 2022; 
Hussain and Nadeem 2021; Zhang et al. 2019) of Lahore. According to 
statistics, Lahore’s per capita water supply has fallen from 5600 cubic 
meters to 1038 cubic meters (Zhang et al. 2021) and the availability 
has been recorded at about 877 cubic meters in 2020. Although the city 
is confronted with several obstacles, such as a lack of urban develop-
ment policies, an exploding population, and an energy crisis.

This research aims to evaluate the present LULC mapping for the 
years 2000, 2010, and 2020. And to simulate future LULC patterns for 
the years 2030 and 2040, respectively. There are two key objectives of 
this research work (i) LULC change detection and future simulations in 
Lahore and (ii) implementation of SCP semi-automatic classification 
model and CA-ANN simulation algorithm. Another aim of this research 
was to determine the efficiency of machine learning algorithms for 
LULC change recognition and future simulations. In recent studies, a 
variety of methods have been used to access LULC transformations. But 
in this research, the authors have implemented the SCP plugin com-
bined with MOLUSCE-CA models to investigate LULC in Lahore. The use 
of these machine learning models can also help to develop applications 
for land use planning and vertical infrastructure development plan. It 
will be useful for policymakers and future research, because Lahore is 
the capital city of the Punjab Province.

Study Area
Lahore is the second major city in terms of population and the capital 
of the province. Lahore has a population of around 12 642 000 people 
and is located in the northeast region of Punjab, Pakistan. It has a 
spatial location of 31° 34' 55.36'' N latitude and 74° 19' 45.75'' E 

longitude. Lahore has an area coverage of approximately 1772 sq. km. 
with 217 meters of altitude above mean sea level. The location of the 
study area on the map is shown below in Figure 1.

The city has developed in a horizontal direction, and it consists 
of a walled city adjacent to urban and residential areas. The city has 
grown as a technological center, with significant commercial, indus-
trial, and trade prospects. Lahore is the urban center of the province 
and has been converted to other land-use developments in the last three 
decades because of rapid urbanization. Lahore experiences semi-arid 
weather (Bakker et al. 2022), with little rainfall to support a humid 
subtropical climate. In terms of the economy, with an expected average 
growth rate of 5.6 percent as of 2008, the city’s gross domestic product 
was estimated to be $40 billion (Bakker et al. 2022). When compared 
to Karachi, the economic hub of Pakistan, Lahore’s economy ($78 
billion in 2008) is 51% larger while having only half the population of 
Karachi. Lahore experiences semi-arid weather (Bakker et al. 2022), 
with little rainfall to support a humid subtropical climate.

Materials and Methods
Satellite Imagery and Vector Data Set
In this research, both satellite imagery and vector data sets are used 
and subsequently processed to carry out the overall analysis. Table 1 
and Table 2 show the satellite and vector data sets used in this study.

Data Flow Diagram and Methodology
Multiple Landsat satellite data products were obtained from the USGS 
website using the EarthExplorer platform. Details of the data set such 
as scene ID, sensors, and path/row are explained in Table 1. Landsat 

Figure 1. Location of the study area on the map.

Table 1. Satellite data set used in this study.
No. Sensor ID Sensor Type Acquisition Date Row/Path Spatial Resolution
1 LT051490382000031101T1 TM 11-03-2000 149/038 30 m
2 LT051490382010030601T1 TM 07-03-2010 149/038 30 m
3 LC081490382020021501RT OLI/TIRS 15-02-2020 149/038 30 m
4 SRTM DEM ASTER-V3 23-09-2014 N31/E074 30 m 
Source: NASA/USGS-Earth Explorer (https://earthexplorer.usgs.gov/).
TM = Thematic Mapper; OLI = Operational Land Imager; TIRS = Thermal Infrared Sensor; SRTM DEM = Shuttle Radar Topography Mission Digital Elevation Model.

Table 2. Details of vector data set used in this study.
No. Name Datum Coordinate System

1 Country and City Boundary D_WGS_1984 UTM_Zone_43N

2 Roads D_WGS_1984 UTM_Zone_43N

3 Waterways D_WGS_1984 UTM_Zone_43N

4 River D_WGS_1984 UTM_Zone_43N

Source: Lahore Development Authority (https://www.lda.gop.pk).
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data for the Lahore district was downloaded over a 10 year period 
from 2000 to 2020. Landsat 5 Thematic Mapper (TM) was used for 
both 2000 and 2010, which were acquired in March, while Landsat 
8 Operational Land Imager (OLI) was used for 2020, also acquired in 
January. For each Landsat product, cloud coverage was adjusted to 
less than 15% to improve the precision of data processing for more 
accurate LULC change detection. Similarly, Shuttle Radar Topography 
Mission Digital Elevation Model (SRTM DEM) (version 3) was also 
downloaded from the United States Geological Survey (USGS) website 
and used as an independent variable in this research. Figure 2 illus-
trates the overall data flow diagram for this study.

Furthermore, all the satellite data, including satellite imagery and 
DEM, was then clipped using the vector boundary of the Lahore district. 
The LULC simulation model incorporated additional three spatial 
variables with classified maps for more precise future simulation. For 
this purpose, roads, waterways, and water bodies data were obtained 
from the local government sectors and Lahore Development Authority. 
These spatial layers were used as dependent factors in the cellular 
automata model.

Semi-Automatic Classification Module
There are numerous image processing applications including Erdas 
Imagine, Envi, Catalyst, Geomatica, and ArcGIS that have been used 
by previous studies. In this research, a SCP tool in QGIS was applied for 
both LULC classifications. The SCP Plugin is an open-source plugin in 
QGIS (Tempa and Aryal 2022) that facilitates semi-automated classifi-
cation using remote sensing data in both supervised and unsupervised 
modules (De Lotto et al. 2022). The SCP is a comprehensive tool, 
especially for land-use land cover mapping and classification. SCP en-
ables the use of several classification algorithms (Congedo 2021) based 
on a range of satellite images such as Moderate Resolution Imaging. 
Spectroradiometer (MODIS), Landsat, or S2 (Sentinel-I, Sentinel-II). 
Furthermore, it provides various tools for pre-processing of images 
such as downloading satellite data and radiometric corrections, (Islam 
et al. 2021; Maung and Sasaki 2021; Riad et al. 2020). Similarly, SCP 
allows postprocessing tasks including merging of classes, accuracy as-
sessment, and conversion from a classified raster to vector format.

In the preprocessing module, SCP automatically converts satellite 
bands from their digital number values to reflectance. It also provides an 

Figure 2. Overall workflow diagram.
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automatic Dark Object Subtraction1 machine-learning algorithm to find 
the darkest pixel value in each band for atmospheric corrections. The 
semi-automatic classification image processing approach identifies com-
ponents in an image based on their spectral signatures. The supervised 
classification often needs the user to pick one or more regions of interest 
(ROI) also known as training areas for each land-use class. Generally, 
in SCP, a Region Growing Algorithm is used for training area selection. 
The spectral distance between adjacent pixels is used by the region 
growing algorithm to choose pixels that are spectrally comparable.

There are several classification algorithms that are available in 
SCP, including (i) Minimum Distance, (ii) Maximum Likelihood, (iii) 
Spectral Angle Mapper, (iv) Parallelepiped Classification, (v) Land 
Cover Signature Classification, and (vi) Algorithm raster. However, 
for LULC classification, the Spectral Angle Mapper (SAM) algorithm 
(Christovam et al. 2019; Verma et al. 2020) is most commonly used, 
and it also efficiently processes multispectral satellite data. The SAM 
classifier is based on identifying pixel spectral value through its 
angular information (Hoque et al. 2022; Nappo et al. 2021). It actually 
calculates the angle between pixel spectral signatures and training 
signatures provided by the classifier user.

Methods of Land-use Change Evaluation Simulations
In this study, the MOLUSE simulation model has been applied for LUCL 
prediction for 2030 and 2040 in the Lahore district. MOLUSCE is an 
open-source tool used for land-use change simulations (Hossain et al. 

2022). It includes well-known methods that may be applied to LULC 
analysis (Muhammad et al. 2022). There are several algorithms that are 
present in MOLUSCE for creating transition potential maps (Baig et al. 
2022; Rehman et al. 2022), including cellular automata-artificial neural 
networks (CA-ANN), weights of evidence, logistic regression, and 
Multi-Criteria Evaluation (Kamaraj and Rangarajan 2022).

Cellular automata is a well-known and significant modeling technique 
(Hu et al. 2022; Mwabumba et al. 2022) uses machine learning methods. 
Many researchers (Abdullah et al. 2022; Kafy et al. 2021; Mohammad et 
al. 2022; Tolentino and Galo 2021) describe that artificial neural networks 
(CA-ANN) algorithms can provide more efficient results for land use/cover 
change analysis. Figure 3 illustrates the main steps involved in running the 
land-use change evaluation model. In this research, we have implemented 
a cellular automata-based artificial neural network to simulate LULC maps. 
For the generation of prediction maps, we used classified maps of 2000, 
2010, and 2020 as input for the prediction of 2030. Similarly, we used the 
2020 and 2030 classified maps as input for the 2040 prediction map.

Classification Methods and Techniques
The classification process was performed using the SCP plugin in QGIS. 
As SCP allows the download of seven satellite data products (Tempa and 
Aryal 2022) such as Landsat, Sentinel-1, Sentinel-2, Sentinel-3, ASTER 
satellite images, MODIS, and GOES. In this research, for the year 2000, 
Landsat 4-5 satellite imagery was collected, while Landsat 8 imagery 
was used through SCP for the years 2010 and 2020. In the classification 

Figure 3. MOLUSCE step-by-step procedure for LULC simulation.
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scheme, there were four major classes for land use mapping such as ur-
ban area, vegetation, waterbodies, and barren land. Land-use and land-
cover classification has been performed by creating ROIs using manual 
digitization for each class. Furthermore, for each class, more than 4500 
ROIs were created and the SAM algorithm was used for classification.

Dependent Variables and Their Integration in LULC Simulations
For more accurate simulations, we integrated some additional raster 
layers in the cellular automata algorithm such as DEM, distance from 
roads, distance from waterways, and distance from water bodies 
respectively, as shown in Figure 4. These spatial variables had a 
significant influence on the predicted results of LULC using CA-ANN. 
Furthermore, these factors are acute to study area because waterbodies, 
road infrastructure, and terrain (height) have had an impact on the city 
expansion in the last three decades (Abd EL-kawy et al. 2019; Imran 
and Mehmood 2020). These distance maps were created in ArcMap 
using spatial analysis and algebra tools such as (i) Euclidean distance, 
(ii) extract by mask, and (iii) reclassify. During the simulation process 
of 2030, we integrate these dependent variable maps with the initial 
(2010) and final (2020) maps and vice-versa for 2040.

Results and Discussions
This section explains the results and findings, for LULC historical 
modeling and future prediction through the methods and processing 
discussed in the section “Materials and Methods”. We found that LULC 

patterns have increased in Lahore from 2000 to 2020. The results are 
further explained below individually.

LULC Change and Prediction Modeling from 2000 to 2040
The land-use change patterns as shown in Figure 6 were obtained for 
2000, 2010, and 2020 respectively using the SAM classification algo-
rithm processed in SCP-QGIS. The SAM algorithm has provided more 
prompt results as compared to maximum likelihood and minimum 
distance in SCP. It can be seen from research finding that LULC has sig-
nificant impacts on the degradation of vegetation and water resources. 
According to the results in Figure 5 and Figure 6, it can be seen that 
most of the developments are observed in urban areas, with degrada-
tion in vegetation, barren land, and waterbodies, respectively.

Table 3 shows the overall land-use transformation in sq. km. from 
2000 to 2020 (three decades) and the accuracy assessment information 
with an overall accuracy of 89%. Thus, the results of LULC analysis 
revealed that about 27.41% of the urban area has been increased from 
2000 to 2020, while about 42.13% of vegetation and 6.51% of water 
bodies were degraded or converted into urban area land use.

According to (Gazi et al. 2021), there are several factors involved 
in land-use transformation, such as urbanization, population growth, 
and migration of people towards urban cores. Lahore is Pakistan’s 
rapidly developing economic hub and faces numerous environmental 
and socio-economic challenges (Anjum et al. 2021).

Neural network learning curves are commonly used in machine 
learning algorithms and deep learning neural networks (Cohen et al. 

Figure 4. Dependent variables used for future prediction of land use/land cover.
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2021; Loureiro et al. 2021). Therefore, LULC simulations were pre-
dicted for the years 2030 and 2040 also presented in (Figure 6) via the 
cellular automata technique and neural network curves.

Furthermore, Table 4 shows the estimated change for each land use 
type from 2030 and 2040 and overall accuracy (82.4 %). The urban 
area is expected to grow by 23.15% between 2030 and 2040, whereas 
the amount of vegetation, bare land, and water bodies will all decrease 
by 28.05%, 3.5%, 1.8%, and 12.31%, respectively.

Table 4. LULC area change (sq. km) and Overall accuracy of 2030 and 
2040 simulations.

LULC Class 

Year Accuracy %

2030 2040 Overall 82.4

Urban Area 1184.97 1311.69 77.4

Vegetation 864.45 707.29 89.15

Barren Land 7.2 5.22 84

Waterbodies 9.08 8.83 79

LULC = land use/land cover.

Cross-Validation of the Results and Accuracy
In order to ensure that predictions made using LULC data were ac-
curate, an CA-ANN model was first used to estimate the LULC for 2020. 
Therefore, first classified maps of 2000 and 2010 were used as input to 
predict 2020 simulated LULC map. After that simulation results of 2020 
were compared with classified land use maps. The comparison between 
both output maps provided significant accuracy (up to 90%). Therefore, 
it was substantial to use CA-ANN simulation for future years. Therefore, 
the land use maps from 2020 and 2030 were used to anticipate 2040 
LULC projection. Furthermore, we used MOLUSCE kappa validation 
technique to compare existing and projected LULC images to verify the 
model and prediction accuracy for our results. Thus, we found an over-
all accuracy for predicted land use (sum of 2030 and 2040) is 82.4%, 
indicating that simulated results are significant and consistent.

Moreover, the neural network curves also provide the cross valida-
tion of future simulations. These curves can be under-fit, over-fit, and 
good-fit, which reflects the accuracy (correctness) of the prediction. 
In addition, under-fitting occurs when model is too simplistic for data, 
over-fitting occurs when model is too sophisticated for data, and good 
fitting occurs when the validation and training data both are sym-
metrical. The neural network learning curves in this study were found 
a medium to good fit trend. Because the train and validation points 
curves were symmetrical, as shown in Figure 7 for 2030 and Figure 8 
for 2040, respectively. The CA-ANN algorithm has effectively assessed 
historical LULC and predicted the future trends of land-use in Lahore.

A trend analysis was also performed to identify the direction of 
land use change in the study area. From trend analysis, we found that 
most of urban area was transformed in east and south-ward direction of 
the city. Figure 9 shows the overall trend of city expansion from year 
2000 to 2040. It also indicates that the future urban development can 
be projected in the south and east region of the city by 2040. This trend 
makes it possible for urban planners to organize available land and 
resources for future sustainable urban development.

According to this research, the expansion of urban areas of the 
Lahore district is increasing high-temperature zones, and if this trend 
continues, the city will confront an urban heat island that can lead to 
more environmental issues in future. This study recommends that effec-
tive land management plans and policies must be developed and imple-
mented to manage future LULC scenarios. Although Lahore is facing 
multiple challenges including energy consumption crises (Ahmad et al. 
2022), clean water scarcity, urbanization, population growth, and smog, 
this study mainly aimed to monitor LULC from 2000 to 2040. These 
outcomes and findings can assist city planners in land-use planning, tree-
cover preservation, agricultural land conservation, and environmental 
protection. Future advancements in geospatial methods like remote sens-
ing technology can assist researchers more in future. It also motivates 
policymakers to pay greater attention to and invest more in geospatial 
infrastructure as a way to address the majority of environmental issues.

Figure 5. Land use/land cover (LULC) change and future prediction 
(2000–2040) in Lahore City.

Figure 6. Historical land use/land cover change and future prediction 
for 2030 and 2040 using cellular automata-artificial neural networks 
(CA-ANN).

Table 3. Land use/land cover area change (sq. km) from 2000–2020.

LULC Class 

Year Accuracy %

2000 2010 2020 Overall 89

Urban Area 705.73 832.45 1008.71 78

Vegetation 1026 987.12 959.12 85.5

Barren Land 10.26 9.8 8.1 95

Waterbodies 37.12 33.06 13.96 100

LULC = land use/land cover.
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Conclusions
The core objective of this research work was to analyze the current 
status of LULC change and then to simulate the future patterns for LULC 
in Lahore using remote sensing imagery. We have implemented the 
CA-ANN algorithm using the MOLUSCE tool for future prediction. A 
machine learning-based model, SCP was adopted for LULU classifica-
tion. The LULC maps were generated at 10-year intervals from 2000 

to 2020 to detect the land-use change and future land-use patterns 
were predicted for the years 2030 and 2040. This study shows that 
about 27.41% of the urban area has been increased from 2000 to 2020 
with a decrease of 42.13% in vegetation, 2.3% in the barren land, and 
6.51% in water bodies, respectively. Also, projected that the urban area 
will increase by 23.15% from 2020 to 2040 while vegetation, barren 
land, and water bodies will decrease by 28.05%, 1.8%, and 12.31%, 

Figure 7. Neural network curve for 2030 land use/land cover 
predictions (good-fit).

Figure 9. Land use/land cover trend map and growth direction from 2000 to 2040.

Figure 8. Neural network curve for 2040 land use/land cover 
predictions (good-fit).
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respectively. Therefore, it can be concluded that, concerning LULC, 
collectively 55.46% of the urban area will be increased in Lahore by 
2040. The overall accuracy for land use future prediction is 82.4%, 
which indicates that simulated results are significant. It is concluded 
that this study can help in better preparedness for land-use planning 
in Lahore. It is also concluded that most of urban expansion was 
observed (Figure 9), in the eastern and southern parts of the city, that 
can assist urban planners to plan available land and resources for future 
sustainable city development. Our research findings also revealed that 
machine learning models such as MOLUSCE can process multispec-
tral satellite imagery more quickly and can provide significant future 
simulation with high % of correctness. This research can also help on 
the national level to achieve sustainable development goals by 2030, 
especially in developing countries. By preserving ecological and 
agricultural land in the city area, government sectors can accomplish 
regulated urban expansion and planning.
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Director: Denise Theunissen 
Assistant Director: Jin Lee

Lidar Division 
Director: Ajit Sampath
Assistant Director: Mat Bethel

Photogrammetric Applications Division 
Director: Ben Wilkinson
Assistant Director: Hank Theiss
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Director: Greg Stensaas
Assistant Director: Srini Dharmapuri

Professional Practice Division 
Director: Bill Swope
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Robert Hariston-Porter

Eastern Great Lakes Region
Michael Joos, CP, GISP

Florida Region
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Founded in 1934, the American Society for Photogrammetry and Remote Sensing (ASPRS) is a scientific association 
serving thousands of professional members around the world. Our mission is to advance knowledge and improve under-
standing of mapping sciences to promote the responsible applications of photogrammetry, remote sensing, geographic 
information systems (GIS) and supporting technologies.
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SUSTAININGMEMBERS
ACI USA Inc.
Weston, Florida
https://acicorporation.com/
Member Since: 2/2018
Aerial Services, Inc.
Cedar Falls, Iowa
www.AerialServicesInc.com
Member Since: 5/2001

Airworks Solutions Inc. 
Boston, Massachusetts
Member Since: 3/2022

Applanix
Richmond Hill, Ontario, Canada
http://www.applanix.com
Member Since: 7/1997

Ayres Associates
Madison, Wisconsin
www.AyresAssociates.com
Member Since: 1/1953

CT Consultants
Mentor, Ohio
Member Since: 3/2022

Dewberry
Fairfax, Virginia
www.dewberry.com
Member Since: 1/1985

Esri
Redlands, California
www.esri.com
Member Since: 1/1987

GeoCue Group
Madison, Alabama
http://www.geocue.com
Member Since: 10/2003

Geographic Imperatives LLC
Centennial, Colorado
Member Since: 12/2020

GeoWing Mapping, Inc.
Richmond, California
www.geowingmapping.com
Member Since: 12/2016

Halff Associates, Inc.
Richardson, Texas
www.halff.com
Member Since: 8/2021

Keystone Aerial Surveys, Inc.
Philadelphia, Pennsylvania
www.kasurveys.com
Member Since: 1/1985

Kucera International
Willoughby, Ohio
www.kucerainternational.com
Member Since: 1/1992

L3Harris Technologies
Broomfield, Colorado
www.l3harris.com
Member Since: 6/2008

Merrick & Company
Greenwood Village, Colorado
www.merrick.com/gis
Member Since: 4/1995

Nearmap
South Jordan, Utah
www.nearmap.com
Member Since: 6/2023

NV5 Geospatial
Sheboygan Falls, Wisconsin
www.quantumspatial.com
Member Since: 1/1974

Pickett and Associates, Inc.
Bartow, Florida
www.pickettusa.com
Member Since: 4/2007

Riegl USA, Inc.
Orlando, Florida
www.rieglusa.com
Member Since: 11/2004

Robinson Aerial Surveys, Inc.(RAS)
Hackettstown, New Jersey
www.robinsonaerial.com
Member Since: 1/1954

Sanborn Map Company
Colorado Springs, Colorado
www.sanborn.com
Member Since: 10/1984

Surdex Corporation
Chesterfield, Missouri
www.surdex.com
Member Since: 12/2011

Surveying And Mapping, LLC (SAM)
Austin, Texas
www.sam.biz
Member Since: 12/2005

T3 Global Strategies, Inc.
Bridgeville, Pennsylvania
https://t3gs.com/
Member Since: 6/2020

Towill, Inc.
San Francisco, California
www.towill.com
Member Since: 1/1952

Woolpert LLP
Dayton, Ohio
www.woolpert.com
Member Since: 1/1985

Membership
 9 Provides a means 
for dissemination 
of new 
information

 9 Encourages 
an exchange 
of ideas and 
communication 

 9 Offers prime 
exposure for 
companies

SUSTAININGMEMBERBENEFITS
Benefits of an ASPRS Membership
 – Complimentary and discounted Employee 
Membership*

 – E-mail blast to full ASPRS membership*
 – Professional Certification Application fee dis-
count for any employee 

 – Member price for ASPRS publications
 – Discount on group registration to ASPRS virtual 
conferences

 – Sustaining Member company listing in ASPRS 
directory/website

 – Hot link to company website from Sustaining 
Member company listing page on ASPRS 
website 

 – Press Release Priority Listing in PE&RS Industry 
News

 – Priority publishing of Highlight Articles in PE&RS 
plus, 20% discount off cover fee

 – Discount on PE&RS advertising
 – Exhibit discounts at ASPRS sponsored confer-
ences (exception ASPRS/ILMF)

 – Free training webinar registrations per year*
 – Discount on additional training webinar regis-
trations for employees

 – Discount for each new SMC member brought 
on board (Discount for first year only)

*quantity depends on membership level



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING Januar y 2023  59

Ad Size Width Height • Publication Size: 8.375” × 10.875” (W x H)
• Live area: 1/2” from gutter and 3/8” from all other edges
• No partial page bleeds
• Publication Style: Perfect bound
• Printing Method: Web offset press
• Software Used: PC InDesign
• Supported formats:

TIFF, EPS, BMP, JPEG, PDF, PNG
PC InDesign, Illustrator,  
and Photoshop

Cover (bleed only) 8.625” 11.25”

Full Page (bleed) 8.625” 11.25”

Full Page (trim) 8.375” 10.875”

2/3 Page Horizontal 7.125” 6.25”

2/3 Page Vertical 4.58” 9.625”

1/2 Page Horizontal 7.125” 4.6875”

1/2 Page Vertical 3.4375” 9.625”

1/3 Page Horizontal 7.125” 3.125”

1/3 Page Vertical 2.29” 9.625”

1/4 Page Horizontal 7.125” 2.34”

1/4 Page Vertical 3.4375” 4.6875”

1/8 Page Horizontal 7.125” 1.17”

1/8 Page Vertical 1.71875” 4.6875”

PE&RS 2023 Advertising Rates & Specs
THE MORE YOU ADVERTISE THE MORE YOU SAVE! PE&RS offers frequency discounts. Invest in a three-times per year advertising package and receive 

a 5% discount, six-times per year and receive a 10% discount, 12-times per year and receive a 15% discount off the cost of the package.

Sustaining Member 
Exhibiting at a 2023 ASPRS Conference

Sustaining Member Exhibitor Non Member

All rates below are for four-color advertisments

Cover 1 $1,850 $2,000 $2,350 $2,500

In addition to the cover image, the cover sponsor receives a half-page area to include a description of the cover (maximum 500 words). The cover sponsor also has the 
opportunity to write a highlight article for the journal. Highlight articles are scientific articles designed to appeal to a broad audience and are subject to editorial review before 
publishing. The cover sponsor fee includes 50 copies of the journal for distribution to their clients. More copies can be ordered at cost.

Cover 2 $1,500 $1,850 $2,000 $2,350

Cover 3 $1,500 $1,850 $2,000 $2,350

Cover 4 $1,850 $2,000 $2,350 $2,500

Advertorial 1 Complimentary Per Year 1 Complimentary Per Year $2,150 $2,500

Full Page $1,000 $1,175 $2,000 $2,350

2 page spread $1,500 $1,800 $3,200 $3,600

2/3 Page $1,100 $1,160 $1,450 $1,450

1/2 Page $900 $960 $1,200 $1,200

1/3 Page $800 $800 $1,000 $1,000

1/4 Page $600 $600 $750 $750

1/6 Page $400 $400 $500 $500

1/8 Page $200 $200 $250 $250

Other Advertising Opportunities

Employment 
Promotion

$500 (30 day web + 1 email)
$300 (30 day web)

$500 (30 day web + 1 email)
$300 (30 day web)

$500 (30 day web + 1 email)
$300 (30 day web)

$500 (30 day web + 1 email)
$300 (30 day web)

Dedicated Content 
Email blast $3000 $3000 $3000 $3000

Newsletter Display 
Advertising 1 Complimentary Per Year 1 Complimentary Per Year $500 $500

PE&RS Digital Edition 
Announcement E-Mail $1000 $1000 $1000 $1000

A 15% commission is allowed to recognized advertising agencies

Send ad materials to:
Rae Kelley

rkelley@asprs.org

Ship inserts to:
Alicia Coard

Walsworth

2180 Maiden Lane

St. Joseph, MI 49085 

888-563-3220 (toll free) 

269-428-1021 (direct) 

269-428-1095 (fax) 

alicia.coard@walsworth.com
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Special Advertising Opportunities
FRONT COVER SPONSORSHIP
A PE&RS cover sponsorship is a unique opportunity to capture the undivided 

attention of your target market through three premium points of contact.

1— PE&RS FRONT COVER
(Only twelve available, first-come, first-served)
PE&RS is world-renowned for the outstanding imagery displayed monthly 
on its front cover—and readers have told us they eagerly anticipate every 
issue. This is a premium opportunity for any company, government agency, 
university or non-profit organization to provide a strong image that 
demonstrates their expertise in the geospatial information industry.

2— FREE ACCOMPANYING “HIGHLIGHT” ARTICLE
A detailed article to enhance your cover image is welcome but not a condition 
of placing an image. Many readers have asked for more information about the 
covers and your article is a highly visible way to tell your story in more depth 
for an audience keenly interested in your products and services. No article 
is guaranteed publication, as it must pass ASPRS editorial review. For more 
information, contact Rae Kelley at rkelley@asprs.org.

3— FREE TABLE OF CONTENTS COVER DESCRIPTION
Use this highly visible position to showcase your organization by featuring 
highlights of the technology used in capturing the front cover imagery. Limit 
200-word description.

Terms: Fifty percent nonrefundable deposit with space reservation and 
payment of balance on or before materials closing deadline.

Cover Specifications: Bleed size: 8 5/8” × 11 1/4”,  Trim: 8 3/8” × 10 7/8”

PRICING
Sustaining Member  
Exhibiting at a 2023  
ASPRS Conference

Sustaining 
Member

Exhibitor Non Member

Cover 1 $1,850 $2,000 $2,350 $2,500

Belly Bands, Inserts, Outserts & More!
Make your material the first impression readers have  
when they get their copy of PE&RS. Contact Bill Spilman  
at bill@innovativemediasolutions.com
VENDOR SEMINARS
ASPRS Sustaining Members now have the opportunity to hold a 1-hour 
informational session as a Virtual Vendor Seminar that will be free to all 
ASPRS Members wishing to attend.  There will be one opportunity per 
month to reach out to all ASPRS Members with a demonstration of a new 
product, service, or other information.  ASPRS will promote the Seminar 
through a blast email to all members, a notice on the ASPRS web site home 
page, and ads in the print and digital editions of PE&RS.

The Virtual Seminar will be hosted by ASPRS through its Zoom capability 
and has the capacity to accommodate 500 attendees.    

Vendor Seminars

Fee $2,500 (no discounts)

DIGITAL ADVERTISING 
OPPORTUNITIES

EMPLOYMENT PROMOTION
When you need to fill a position right away, use this direct, right-to-
the-desktop approach to announce your employment opportunity. The 
employment opportunity will be sent once to all ASPRS members in our 
regular Wednesday email newsletter to members, and will be posted on 
the ASPRS Web site for one month. This type of advertising gets results 
when you provide a web link with your text. 

Employment 
Opportunity

Net Rate

30-Day Web + 1 email $500/opportunity

Web-only (no email) $300/opportunity
Do you have multiple vacancies that need to be filled? Contact us 
for pricing details for multiple listings.

NEWSLETTER DISPLAY ADVERTISING
Your vertical ad will show up in the right hand column of our weekly 
newsletter, which is sent to more than 3,000 people, including our 
membership and interested parties. Open Rate: 32.9%

Newsletter vertical 
banner ad

Net Rate

180 pixels x 240 pixels max $500/opportunity

DEDICATED CONTENT EMAIL BLAST
Send a dedicated email blast to the ASPRS email list. Advertiser supplies 
HTML (including images). Lead time: 14 days. 

Materials Net Rate
Advertiser supplies HTML, 

including images. 
$3000/

opportunity

PE&RS Digital Edition
Digital Edition Announcement E-Mail: 5,800+
PE&RS is available online in both a public version that is available to 
anyone but does not include the peer-reviewed articles, and a full version 
that is available to ASPRS members only upon login.

The enhanced version of PE&RS contains hot links for all ASPRS 
Sustaining Member Companies, as well as hot links on advertisements, 
ASPRS Who’s Who, and internet references.

Become a sponsor today! 
The e-mail blast sponsorship opportunity includes a 180 x 240 pixel ad in 
the email announcement that goes out to our membership announcing the 
availability of the electronic issue.

Digital Edition Opportunities Net Rate
E-mail Blast Sponsorship* $1,000



 
 

 

    

 
After more than 15 years of research and writing, the Landsat Legacy 
Project Team published, in collaboration with the American Society 
for Photogrammetry and Remote Sensing (ASPRS), a seminal work on 
the nearly half-century of monitoring the Earth’s lands with Landsat. 
Born of technologies that evolved from the Second World War, 
Landsat not only pioneered global land monitoring but in the process 
drove innovation in digital imaging technologies and encouraged 
development of global imagery archives. Access to this imagery led 
to early breakthroughs in natural resources assessments, particularly 
for agriculture, forestry, and geology. The technical Landsat remote 
sensing revolution was not simple or straightforward. Early conflicts 
between civilian and defense satellite remote sensing users gave 
way to disagreements over whether the Landsat system should 
be a public service or a private enterprise. The failed attempts 
to privatize Landsat nearly led to its demise. Only the combined 
engagement of civilian and defense organizations ultimately saved 
this pioneer satellite land monitoring program. With the emergence 
of 21st century Earth system science research, the full value of the 
Landsat concept and its continuous 45-year global archive has 
been recognized and embraced. Discussion of Landsat’s future 
continues but its heritage will not be forgotten. 

The pioneering satellite system’s vital history is captured in this 
notable volume on Landsat’s Enduring Legacy.  

Landsat Legacy Project Team
Samuel N. Goward
Darrel L. Williams
Terry Arvidson
Laura E. P. Rocchio
James R. Irons
Carol A. Russell
Shaida S. Johnston

Landsat’s Enduring Legacy
Hardback. 2017,  ISBN 1-57083-101-7   
Member/Non-member  $48*
Student Member $36*

* Plus shipping

LANDSAT’S ENDURING LEGACY

Pioneering Global Land Observations from Space

Landsat Legacy Project Team

Landsat’s Enduring LEgacy
Pioneering global land observations from sPace

Order online at 
www.asprs.org/landsat
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 » PE&RS, the scientific journal of ASPRS
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