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that is available to everyone.
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INDUSTRYNEWSTo have your press release published in PE&RS, 
contact Rae Kelley, rkelley@asprs.org.

ANNOUNCEMENTS

Pickett is pleased to share the opening of a new office in 
Hendersonville, North Carolina! This is especially exciting 
as it is the first space that Pickett has shared with ESP, 
the parent company of Pickett and Associates. Henderson-
ville is officially open and shared by geospatial, survey and 
engineering team members from both Pickett and ESP. The 
space was opened due to a large demand from the clients of 
both companies in the Mid-Atlantic region, and offers room 
for growth of additional team members.

Our new office is located at 1027 Fleming Street, Suite D, 
Hendersonville, NC, 28791. We look forward to our con-
tinued expansion of offices and team members! For more 
information visit https://www.pickettusa.com/.

 ¼½¼½ 

Woolpert was contracted by the U.S. Army Corps of Engi-
neers and Pro-ROV Services for the Browns Valley Irrigation 
District under separate contracts to collect and integrate 
lidar and multibeam sonar data. These data will be used to 
determine the accurate capacity of two California reservoirs 
and to support the management of water resources.

For the Browns Valley Irrigation District project, Woolp-
ert collected lidar data via uncrewed aircraft system and 
acquired multibeam sonar data with a survey vessel. These 
data will be used to map and model Collins Lake, a reservoir 
located northeast of Sacramento in the foothills of the Sierra 
Nevada Mountains.

Under a separate contract, the Corps selected Woolpert 
to collect multibeam sonar data for capacity surveys con-
ducted at Lake Isabella, east of Bakersfield. At the same 
time, Woolpert was under contract to fly topographic lidar 
over the region for the U.S. Geological Survey 3D Elevation 
Program. By combining the hydrographic data collected 
at Lake Isabella and integrating it with USGS lidar data, 
Woolpert developed a high-resolution digital elevation model 
of the reservoir and watershed to accurately determine the 
capacity of Lake Isabella. This opportunity to leverage two 
surveys produced a valuable dataset that will be used for 
many years.

“With the ongoing drought, the accuracy of these data is 
essential to the effective management of water resources,” 
Woolpert Certified Hydrographer David Neff said. “Collect-
ing and integrating lidar and multibeam sonar data ties 
together two technologies and creates a precise and seamless 
elevation model. That model is then hosted within a point 
cloud for state and local officials to access, so they can effec-
tively plan and manage these critical assets.”

Neff said UAS was employed for Collins Lake and fixed-wing 

aircraft was used for Lake Isabella due to the specific needs 
of each region and each project. He added that the sonar 
data was collected by eTrac, a Woolpert Company, which is a 
vessel-based hydrographic survey firm acquired by Woolpert 
in February 2022 with headquarters in San Rafael.

“We are fortunate to have the staff and equipment to collect 
data as each project demands,” Neff said. “With three offices 
in California, we understand all too well the impact that 
the drought has on the state. Advanced technologies such 
as these hold the key to the state’s ability to overcome the 
water crisis. We are here and ready to help.” For more, 
visit woolpert.com.

 ¼½¼½

Three Halff Associates, Inc. (Halff) projects collected En-
gineering Excellence Awards from the Texas chapter of the 
American Council of Engineering Companies (ACEC).

Two projects received gold medals, while one earned silver. 
Halff’s French Creek Natural Channel Restoration and Flood 
Control project was awarded a gold medal in the Water 
Resources category, while the East Austin Emergency Utility 
Repair effort received gold in Special Projects. The City of 
Sugar Land Integrated Stormwater Management Model 
(ISWMM) earned a silver medal distinction in Studies, Re-
search and Consulting Engineering Services.

The French Creek Natural Channel Restoration and Flood 
Control project included 2,611 linear feet of channel im-
provements to mitigate flood conditions. Reconstruction of a 
half mile of an existing two-lane collector roadway and the 
addition of one new span bridge and two new bridge-class 
culverts provided a safe all-weather access facility for this 
community. The project included natural channel design 
and stormwater filtration features for water quality, con-
struction of retaining walls and relocation of seven major 
franchise utilities. Key projects elements were the construc-
tion of three new bridge structures and downstream channel 
improvements to alleviate flooding of the roadway during 
low- and high-frequency storm events (including the 100-
year intensity).

Meanwhile, East Austin water main breaks along a fail-
ing box culvert prompted the City of Austin to declare an 
emergency and initiate a forensic data collection effort. 
In November 2020, the City contracted with Halff to be-
gin designing repairs to the box culvert joints and failing 
infrastructure. Halff designed the repairs within an accel-
erated schedule to ensure construction was not delayed and 
to reduce the length of delays within the neighborhood. The 
emergency declaration suspended Austin’s normal permit 
approval process. Halff was responsible for coordinating with 

mailto:rkelley@asprs.org
https://www.pickettusa.com/
https://www.usace.army.mil/
https://www.usace.army.mil/
https://www.pro-rov.com/
https://woolpert.com/
https://woolpert.com/
https://www.etracinc.com/
https://woolpert.com/
https://acectx.site-ym.com/
https://acectx.site-ym.com/
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all City departments for informal approvals as the design 
progressed. Construction began in January 2021. The project 
was substantially completed in December 2021 below the 
construction budget determined by Halff.

Sugar Land’s ISWMM connects to 27 rain/stream gauges 
across the city that report real-time information, which 
creates instantaneous ponding maps that include street 
ponding depths. The system gives the public reliable infor-
mation throughout Sugar Land and allows the City to send 
notifications about intensifying street ponding, flooding and 
potential street closures. Other benefits include assisting in 
evacuation routes, coordinating hazard mitigation plans and 
evaluating drainage infrastructure to better target improve-
ment areas.

Halff has won a firm-record 21 projects in 2022. For more 
information about Halff, visit halff.com.

 ¼½¼½

SkyWatch Space Applications Inc. (“SkyWatch“), a Canadian 
space tech company democratizing remote sensing data, an-
nounced the launch of EarthCache-X (EC-X) and its partner-
ships with Capella Space, ICEYE, Satellogic (NYSE: SATL), 
and Vexcel Imaging, to deliver emerging data types to the 
commercial Earth observation (EO) market.

EarthCache-X (EC-X) provides a new means for remote 
sensing partners to go to market with flexible ways to handle 
data in custom formats that customers might require. With 
the addition of these industry-leading partners to Sky-
Watch’s repertoire, customers will now have access to SAR, 
DEMs, aerial imagery and stereo/tri-stereo imagery.

EC-X presents a flexible platform for ingesting and distrib-
uting new data types to the EarthCache customer base. The 
way a customer searches for and receives data remains the 
same; EC-X still eliminates the friction of multiple contracts 
by providing a single business relationship with SkyWatch. 
With these new data providers, SkyWatch is able to create 
bespoke solutions for customers, defining the right product 
offerings and price points on a custom basis.

SkyWatch launches the EC-X program with an exceptional 
set of partners, each providing unique sensing technology 
that is underutilized by the commercial market today. Cus-

tomers can now ensure that they are able to rapidly adopt 
and innovate around new sensing technologies, while our 
data partners grow their presence in the commercial mar-
ket and learn how to optimize their solutions for those end 
markets. Over time, SkyWatch will migrate these in-demand 
sensing technologies into fully-integrated product offerings, 
with standardized pricing and output types.

Each of the inaugural EC-X partners was selected to bring 
strategic value to SkyWatch customers, in response to the 
demand SkyWatch is seeing in the market and on its Earth 
observation distribution platform, EarthCache.

Capella Space has the most responsive and agile SAR im-
aging services in the industry on the leading edge of rapid 
data acquisition for emergencies or tip and cue, with the 
added benefit of fully-automated scheduling, downlink, and 
processing architecture. Owning the world’s largest SAR 
satellite constellation, ICEYE delivers proven and reliable 
Earth Observation solutions. ICEYE’s high revisit and daily 
coherent change detection capabilities enable users to gain 
robust and comprehensive situational awareness. Satellogic 
is a vertically integrated EO satellite and data company that 
makes EO data more accessible, more reliable, and more 
affordable, offering the best price across the industry with 
the largest daily data collection capacity. Satellogic aims to 
deliver daily global remaps with the end goal of 200+ satel-
lites in orbit. Vexcel runs the world’s largest aerial imagery 
and geospatial data program, collecting multiple types of 
aerial content in 25+ countries. Vexcel delivers products such 
as Oblique, True Ortho, and Digital Surface Model data at 
up to 7.5cm resolution. Imagery and data are also optimized 
for ML/AI capabilities.

The addition of SAR, DEMs, and aerial data enriches the 
SkyWatch aggregation model, which provides Earth observa-
tion data customers access to the largest network of indus-
try-leading data sets within a single solution with a flexible, 
pay-per-use pricing model.

To learn more about EarthCache, visit getstarted.skywatch.
com/ec-x.

 

CALENDAR

•	15-17 February, ASPRS Annual Conference at Geo Week, Denver, Colorado. For more information, visit https://
my.asprs.org/2023conference.

•	5 May,  ASPRS GeoByte — SeaSketch 2.0: A New, Free and Open Source software Service for Map-based Sur-
veys and Collaborative Geodesign. For more information, visit https://www.asprs.org/geobytes.html.

http://www.halff.com/


PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 Februar y 2023 	 63

P H O T O G R A M M E T R I C  E N G I N E E R I N G  &  R E M O T E  S E N S I N G

February 2023  Volume 89  Number 2

See the Cover Description on Page 64See the Cover Description on Page 64

facebook.com/ASPRS.org twitter.com/ASPRSorg youtube.com/user/ASPRSlinkedin.com/groups/2745128

Special Issue Introduction — AI-Based 
Environmental Monitoring with UAV Systems
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77
79 UAS Edge Computing of Energy Infrastructure Damage Assessment
Jordan Bowman, Lexie Yang, Orrin Thomas, Jerry Kirk, Andrew Duncan, David 
Hughes, and Shannon Meade

Energy infrastructure assessments are needed within 72 hours of natural disasters, and 
previous data collection methods have proven too slow. This article demonstrates a scalable 
end-to-end solution using a prototype unmanned aerial system that performs on-the-edge 
detection, classification (i.e., damaged or undamaged), and geo-location of utility poles.

89 Apricot Tree Detection from UAV-Images Using Mask R-CNN and U-Net
Firat Erdem, Nuri Erkin Ocer, Dilek Kucuk Matci, Gordana Kaplan, and Ugur Avdan

Monitoring trees is necessary to manage and take inventory of forests, monitor plants in 
urban areas, distribute vegetation, monitor change, and establish sensitive and renewable 
agricultural systems. This article aims to automatically detect, count, and map apricot trees 
in an orthophoto, covering an area of approximately 48 ha on the ground surface using two 
different algorithms based on deep learning. 

97 Comparative Analysis of Different CNN Models for Building 
Segmentation from Satellite and UAV Images
Batuhan Sariturk, Damla Kumbasar, and Dursun Zafer Seker

Building segmentation has numerous application areas such as urban planning and 
disaster management. In this article, 12 CNN models (U-Net, FPN, and LinkNet using 
EfficientNet-B5 backbone, U-Net, SegNet, FCN, and six Residual U-Net models) were 
generated and used for building segmentation. Inria Aerial Image Labeling Data Set 
was used to train models, and three data sets (Inria Aerial Image Labeling Data Set, 
Massachusetts Buildings Data Set, and Syedra Archaeological Site Data Set) were used to 
evaluate trained models.

107 Unmanned Aerial Vehicle (UAV)–Based Imaging Spectroscopy for 
Predicting Wheat Leaf Nitrogen
Rabi N. Sahoo, Shalini Gakhar, R.G. Rejith, Rajeev Ranjan, Mahesh C. Meena, Abir 
Dey, Joydeep Mukherjee, Rajkumar Dhakar, Sunny Arya, Anchal Daas, Subhash Babu, 
Pravin K. Upadhyay, Kapila Sekhawat, Sudhir Kumar, Mahesh Kumar, Viswanathan 
Chinnusamy, and Manoj Khanna

Quantitative estimation of crop nitrogen is the key to site-specific management for 
enhanced nitrogen (N) use efficiency and a sustainable crop production system. This article 
attempts to predict leaf N of wheat crop through spectroscopy using a field portable 
spectroradiometer (spectral range of 400–2500 nm) on the ground in the crop field and an 
imaging spectrometer (spectral range of 400–1000 nm) from an unmanned aerial vehicle 
(UAV) with the objectives to evaluate four multivariate spectral models and  two sets of 
hyperspectral data collected from two platforms and two different sensors.

117 Car Detection from Very High-Resolution UAV Images Using Deep 
Learning Algorithms
Yunus Kaya, Halil brahim enol, Abdurahman Yasin Yi it, and Murat Yakar

It is important to determine car density in parking lots, especially in hospitals, large 
enterprises, and residential areas, which are used intensively, in terms of executing 
existing management systems and making precise plans for the future. In this article, cars 
in parking lots were detected using high-resolution unmanned aerial vehicle (UAV) images 
with deep learning methods.
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Exploding white dwarf stars are thought to be the ultimate source of much of 
our solar system’s lithium. But on Earth, there are certain environments where 
the soft, light, silvery-white metal is most concentrated and easily mined—no-
tably in briny groundwater aquifers found beneath desert salt flats.

An ideal climate for mining lithium is generally arid, punctuated by seasonal 
rains or melting. This allows water to pool in shallow, salty lakes and then 
evaporate during the summer—a cycle that helps concentrate the lithium. 
Thermal hot springs, volcanic activity, and a subsiding landscape also typically 
accompany major lithium reserves.

These conditions abound in the Atacama Desert in South America, where some 
of the world’s most largest lithium deposits and mining operations are located. 
But they can also be found in Nevada’s Clayton Valley—the site of the only ac-
tive lithium mine in the United States. The town of Silver Peak was established 
in the 1860s around gold and silver mines, but since the 1960s the town has 
focused on harvesting lithium, which is concentrated under the Clayton Valley in 
an area where an extinct volcano left lithium-rich deposits.

The Operational Land Imager-2 (OLI) on Landsat 9 acquired this natural-color 
image of the lithium mining operation in Silver Peak on December 8, 2022. 
The mine pumps brine to the surface and shunts it into a series of shallow 
evaporation ponds. Color variations in the ponds are due to varying concentra-
tions of lithium in the water; lighter blue ponds have higher concentrations of 
lithium. The valley’s frequently dry, sunny, and windy weather evaporates water 
and leaves an increasingly concentrated lithium brine—a process that can take 
18 months or more. The brine is then pumped to a nearby facility where it is 
processed, dried into a powder, and packaged.

Global demand for lithium has ballooned in recent years and is forecast to con-
tinue surging in the coming decade because the metal is used in the recharge-
able batteries used to power electric vehicles. Makers of laptops, cell phones, 
and other products with rechargeable batteries also rely heavily on lithium. 
Lithium is also used in ceramics, certain types of glass, industrial grease, and 
some types of medication.

Like many lithium mines around the world, the mine at Silver Peak is adding 
new pumps and evaporation ponds to try to keep up with the demand. The mine, 
which has been the only U.S. source of lithium for decades, plans to double its 
production by 2025. Demand for U.S.-produced lithium is particularly strong 
due to tax incentives that reward consumers for buying electric vehicles with 
domestically produced and assembled parts.

The Silver Peak mine generates about 1 percent of the world’s annual production 
of lithium. Brine operations, mostly in Chile and Argentina, generate about 75 
percent of worldwide production. The mining of lithium-containing ore, which is 
especially common in Australia, accounts for the rest.

To view the complete image, visit https://landsat.visibleearth.nasa.gov/view.
php?id=150730.

NASA Earth Observatory image by Lauren Dauphin, using Landsat data from the 
U.S. Geological Survey. Story by Adam Voiland.

http://www.asprs.org
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The acronym, DEM, which stands for Digital Elevation 
Model, can have different meanings to different users. Some 
users interpret a DEM to be any digital representation of the 
elevation, including digital contours (vectors) and triangular 
irregular networks (TINs). Others, myself included, use DEM 
to refer to raster-based representations of elevation where the 
values of each raster cell are derived from elevations (adjusted 
to some datum) of some surface. The surface referenced in the 
DEM may be the bare-earth terrain, devoid of any above-sur-
face features, man-made or natural, often referred to as a 
Digital Terrain Model (DTM) or some other surface, such as 
the tree canopy or building rooftop surface, often referred to 
as a Digital Surface Model (DSM). DEM enhancement, such 
as hydro-flattening and/or hydro-enforcing, is the topic of a 
future column. Now, using lidar (IfSAR, sonar and/or phodar/
photogrammetry) as the source data, the ground (or sub-
merged ground) returns are processed into a bare earth DTM, 
and the first returns are processed into a specific DSM.

This month’s tips focus on visualizing DEMs, specifically IfSAR 
(Interferometric Synthetic Aperture Radar) and/or lidar-de-
rived DTMs. The illustrations were constructed using ArcGIS 
Pro 3.0 and an IfSAR DTM, but the workflow to produce the 
end products are identical in both the previous Pro versions 
(2.X) and the Esri Desktop products (10.X and earlier). Similar 
workflows can be used for making these visualizations in QGIS 
and GlobalMapper. NOTE: The DTM used in the illustrations 
was obtained from the US National Map (TNM Download v2 
[nationalmap.gov]); a topic for a future Tips & Tricks column.

Tip #1 — Building Raster Pyramids
When a raster layer is first added to the Contents Pane, the 
user is asked to build pyramids and calculate statistics. This 
is a one-time calculation and by doing so will add a metadata 
file (.aux) and an overlay (.ovr) file to the directory with the 
raster DTM (Figure 1). The raster pyramids and statistics 
decrease the rendering time of the raster, and I recommend 
building the pyramids/statistics as a routine when working 
with rasters. Deleting these file will not alter the raster, but 
will increase the rendering time.

By checking the “Always use this choice” box (Figure 1), 
Pyramids and Statistics for all future rasters newly add-
ed to your map will be calculated and this prompt will not 
reappear. (NOTE: To re-activate the prompt, or change the 
settings, use Project | Options | Raster and Imagery.)

Tip #2 — Adjust the Default Color Scheme (ramp) 
The default color scheme ramp for a DTM, or any DEM for 
that matter, is a the black (low elevation) to-white (higher 
elevation) color ramp as in Figure 2 below. This default ramp, 
while representative of the elevation, is neither very informa-
tive nor visually pleasing (looks like an X-ray image to me.)

Figure 1.  Building Pyramids and Statistics when first adding a raster to 
ArcGIS Pro3.0.  Check the “Always use this choice” to affect all future 
rasters added to the Contents Pane.

Figure 2.  The default color scheme for a DTM newly added to the map.  
The elevation range is seen in the Contents pane.
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Of course, it is easy to 
alter the color scheme 
and most GIS software 
programs provide multiple 
color scheme choices. As 
the elevation is expressed 
as a continuous value, 
choose a continuous, 
rather than discrete, color 
scheme. In the ArcGIS 
Pro, you can either right-
click on the color scheme 
ramp (highlighted in 
Figure 2) in the Contents 
Pane, and use the drop-
down arrow to reveal the 
choices, or you can select 
the DTM in the Contents 
Pane and open the Sym-
bology Tab (Figure 3) to 
alter the color scheme.

Choosing a continuous col-
or scheme ramp (I chose 
the Elevation #1 color 
ramp, fifth color scheme 
from the top) results in 
the DTM being rendered as in Figure 4. This U.S. Geological 
Survey (USGS) standard elevation color scheme runs from 
Blues (low elevations) to Greens to Red/Browns, and finally 
to Whites (high elevations) and provides the viewer with ad-
ditional visual information. Now the user can clearly visual-
ize the river draining from the northeast (higher elevations) 
to the southwest (lower elevations), as well as the highest 
elevation (white) mountain peaks. While this rendering is 
more visually appealing than the standard black-to-white 
shading, but, at least to me, it looks a little primitive.

Tip #3 — Changing the Primary Symbology of 
the DTM 
To further enhance the rendering of the DTM, notice that 
the default on the Primary Symbology tab is set to “Stretch” 
and that there is a dropdown arrow (to the right) on that 
same line. Using the dropdown (Figure 5) reveals several 
additional choices for rendering. The choice that I prefer is 
the “Shaded Relief”. This is frequently referred to as a “Hill-
shade” in Esri and other GIS software packages, including 
QGIS and the WhiteBox Toolset (discussed in a previous 
Tips & Tricks column). 

Deploying the Shaded Relief renderer (Figure 5) opens a 
new tab (Figure 6) with additional options. The default is to 
have the sun at 45 degrees (relative to the horizon) and at an 
Azimuth of 315 degrees (northwestern portion of the sky as 
in mid-afternoon) and no vertical exaggeration (Z Factor = 
1). These parameters result in the rendering of the DTM as 
in Figure 6. 

Setting the Z Scale factor to a 5X exagger-
ation results in a more dramatic and easily 
interpretable rendition of the DTM as in 
Figure 7.

With the 5X Z Factor exaggeration, the river 
is even better defined as are the mountain 
valleys, ridges and peaks.

Adjusting the sun angle to a position lower 
in the sky (Altitude = 15 degrees) exagger-
ates the shadows as in Figure 8 tends to 
increase shadow lengths, while increasing 
the sun altitude reduces shadows.

Figure 3.  The Symbology Tab in 
ArcGIS Pro 3.0 shows the Primary 
Symbology (as Stretch) and the 
default color scheme.  Using the 
arrow to the right of the Color 
Scheme reveals user-defined choices 
for color schemes.

Figure 4.  The DTM rendered with the USGS Standard Elevation #1 color scheme.  Note that the 
Primary Symbology is set to “Stretch”.

Figure 5.  Options for the Primary symbology raster rendering.  A simple 
choice to enhance the rendering is to choose “Shaded Relief”.
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Similarly, the direction of the shadows, 
simulating time of day, can be changed by 
altering the Azimuth to have the sun in 
the east (~45 – 115 degrees) simulating a 
morning view, rather than the west (351 
degrees) simulating an afternoon view.

I prefer to maintain the late afternoon 
sun angle and shadows (Azimuth = 315 
and Altitude = 45) but adjust the Z-factor 
for flatter terrains (Z Factor = 8), normal 
terrains (Z Factor = 5), and mountainous 
terrains (Z Factor = 3).

Tip #4 — Create your own Hillshade 
DTM and customize the look
To achieve an even more customized look, 
in ArcGIS Pro open the Geoprocessing 
Tab and either search for or navigate 
to the “Hillshade” Geoprocessing Tool 
(Spatial Analyst | Surface | Hillshade 
or 3D Analyst Tools | Raster | Surface 
| Hillshade). You can build this raster in 
Esri (Hillshade), QGIS (in Raster |Ter-
rain Analysis), in WhiteBox (Geomor-
phometric Analysis | Hillshade), SAGA 
(Terrain Analysis- Lighting, Visibility | 
Analytical Hillshading), and several other 
GIS programs. In general, you will see the 
same, or similar, parameters as previ-
ously, Sun Azimuth, Sun Altitude and Z 
Factor (vertical exaggeration) to construct 
the Hillshade raster.

In the example in Figure 9 (next page), I 
built the Hillshade raster using the Geo-
processing Tool in Spatial Analyst selected 
the DTM as input, set the afternoon sun 
azimuth and altitude (315 degrees and 45 
degrees, respectively) and specified a 5X 
vertical exaggeration (Z Factor).

Then, I placed the Hillshade5X.tif raster 
below the DTM raster in the Drawing 
Order on the Contents Pane. Selecting the 
Original DTM, I returned the Primary Sym-
bology to “Stretch” but retained the USGS 
Elevation #1 color scheme and made the 
DTM raster 35% transparent (Figure 10).

This workflow results in a visually ap-
pealing rendition (Figure 11) of the DTM 
similar to the Shaded Relief option in Tip 
3, and permits additional customization 
of the DTM rendering independent of the 
“Shaded Relief” option.

Figure 6.  The Shaded Relief options tab.  The user can specify the compass bearing (Azimuth) 
and height on the meridian (Altitude) for solar illumination, and an exaggeration (Z Scale) factor.  
The default solar parameters simulate a mid-afternoon illumination and shadows.

Figure 7.  Shaded Relief rendering of the DTM with the default sun Azimuth and Altitude, but 
with a 5X Z Scale Factor exaggeration.

Figure 8.  DTM rendered with sun illumination at 15 degrees Altitude showing more shadows 
than in Figure 7.
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Figure 9.  The Spatial Analyst Hillshade 
Geoprocessing Tool dialog used to 
construct a 5X exaggerated hillshaded 
raster.

You can experiment with different color scheme ramps, dif-
ferent lighting conditions and different transparency levels 
to achieve the precise rendering you desire for your map.

Send your questions, comments, and tips to GISTT@ASPRS.org.

Al Karlin, Ph.D., CMS-L, GISP is with Dewberry’s Geospatial 
and Technology Services group in Tampa, FL. As a senior 
geospatial scientist, Al works with all aspects of Lidar, remote 
sensing, photogrammetry, and GIS-related projects. He also 
teaches beginning map making at the University of Tampa.

Figure 10.  Selecting the original DTM in the Contents Pane, then selecting Raster Layer on the 
Ribbon and adjusting the Transparency to 35%.

Figure 11.  DTM rendered with 35% Transparency and an independent 5X exageration 
Hillshade raster showing through from beneath.

Too young to drive the car? Perhaps!

But not too young to be curious 
about geospatial sciences.

The ASPRS Foundation was established to advance the 
understanding and use of spatial data for the betterment of 
humankind. The Foundation provides grants, scholarships, 
loans and other forms of aid to individuals or organizations 
pursuing knowledge of imaging and geospatial information 
science and technology, and their applications across the 
scientific, governmental, and commercial sectors.

Support the Foundation, because when he is ready 
so will we.

asprsfoundation.org/donate

ASPRS 
WORKSHOP 

SERIES
It’s not too late to 
earn Professional 

Development Hours

Miss an ASPRS 
Workshop or GeoByte? 

Don’t worry! Many 
ASPRS events are 

available through our 
online learning catalog.

https://asprs.
prolearn.io/catalog
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BOOKREVIEW

Protecting the Places We Love: 
Conservation Strategies for Entrusted 
Lands and Parks 
By Breece Robertson 
ESRI Press: Redlands, California. 2021. 280 pages, including 
diagrams, maps, photos, images, index. Paperback or eBook. 
$29.99. ISBN 9781589486164, eISBN 9781589486171.

Reviewed by Matthew E. Ramspott, Ph.D., 
Professor, Department of Geography, Frostburg State 
University, Frostburg, Maryland.

According to author Breece Roberston, this book project (her 
first) was developed to share insights gained from years of 
experience working at the intersection of the worlds of land 
conservation advocacy and geospatial science and technology.  
Breece, currently the Director of Partnerships and Strategy 
for the Center for Geospatial Solutions at the Lincoln Insti-
tute of Land Policy, previously worked at the Trust for Public 
Lands, leading efforts devoted to land protection, improving 
park access and utilization, and development of voter-ap-
proved public funding for parks and conservation projects.  
In a 2021 promotional interview1 with ESRI co-founder and 
president Jack Dangermond, Breece suggests that her book 
was written for a broad audience but targeted toward land 
trusts and other conservation groups that are currently un-
derutilizing GIS. As Jack suggested in the interview, a prima-
ry goal of the book is to “catalyze the conservation community 
with quantitative methods.” As access barriers (fiscal, tech-
nical, organizational, or otherwise) to geospatial science and 
tech have become less onerous in recent years, Breece calls 
attention to this opportunity at a critical time when environ-
mental challenges have arguably reached crisis proportions.  
The book is organized into ten Chapters, each highlighting 
opportunities for conservation organizations to improve their 
effectiveness and efficiency through the enhanced utilization 
of geospatial data and tools. The book is illustrated with 
colorful maps, graphics, and photos throughout. 

The Foreword sets the tone with a vigorous call to action, 
making the case that in an environment of complex and com-
peting political and economic priorities, all available tools and 
methods need to be explored to advance the goals of land con-
servation. Each subsequent chapter unfolds with reference to 
resources and ideas addressing various aspects of the subject. 
Some specific topics include: a broad primer on using maps as 
a device to focus attention on places and problems; discussion 
of the importance of enhancing urban parks and greenspace 
systems with a view toward balancing access, equity, biodi-
versity, and connectivity; understanding and documenting the 
relationship between climate resilience & green infrastruc-
ture; measuring and understanding landscape connectivity; 
innovative and effective ways of promoting community en-
gagement; building strategy and impact into the park plan-
ning process; and bringing Geographic Information Science 
into the critical process of evaluating and communicating 
the impacts and benefits of conservation efforts.  The latter 
chapters highlight the availability of new capabilities that can 
enhance public interface with parks and conservation efforts 
and offer a strategic look at ways to improve the integration 
of GIS capabilities into traditional organizational structures. 
The cross-referenced Index gives some help to readers wishing 
to review and revisit specific examples.

One clear strength of the book is the large amount of prac-
tical discussion centered around data sourcing. This is a 
focus that runs throughout the book, pertaining to a wide 
variety of issues of interest to those engaged with advocat-
ing for and assessing the benefits of wildland conservation, 
parks, and green infrastructure development. Highlighted 
are US Census-derived demographic and socioeconomic data, 
multiscale land use/land cover data, outputs from ecological 
and habitat models, archives of location-based information 
on conservation projects, and many more datasets.  This 
fundamental aspect of the book seems effective as an idea 
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BOOKREVIEW

YOUR COMPANION TO SUCCESS
•	Have you ever wondered about what can and can’t be achieved with geospatial technologies and processes?
•	Have you been intimidated by formulas or equations in scientific journal articles and published reports?
•	Would you like to understand the geospatial industry in layman’s terms?
•	Do you have a challenging technical question that no one you know can answer?

If you answered “YES” to any of these questions, then you need to read Dr. Qassim 
Abdullah’s column, Mapping Matters. In it, he answers all geospatial questions—
no matter how challenging—and offers accessible solutions.

“Your mapping matters publications have helped 
us a lot in refining our knowledge on the world of 

Photogrammetry. I always admire what you are doing to 
the science of Photogrammetry. Thank You Very much! 
the world wants more of enthusiast scientists like you.

Send your questions to Mapping_Matters@asprs.org

To browse previous articles of Mapping Matters, visit http://www.asprs.org/Mapping-Matters.html	

generator to help with the potentially challenging process of 
locating appropriate and readily accessible data.  Discussion 
of data reliability is perhaps a little sparse, but the sources 
referenced here are credible and authoritative, and issues 
related to data integrity and accuracy have been covered in 
depth elsewhere.

The book gives a comprehensive view of the processes and 
challenges associated with effective management of land 
conservation efforts, making use of representative examples 
far too numerous to address completely in this short review.  
Overall, the tone is grounded in practical organizational con-
siderations such as framing goals and questions, identifying 
potential stakeholders and collaborators, strategic planning 
& prioritization, inviting public participation, accessing 
useful geospatial data and tools, and integrating geographic 
information into advocacy, outreach, and fundraising efforts. 

It should be noted that this is not a highly technical book, 
nor is it intended to be. The book surveys many methods and 
structures associated with geospatial analysis but does not 
venture far into the realm of a technical “how-to” manual.  
Perhaps unsurprisingly, much of the description of software 
and apps in the book prominently features ESRI products. 
The focus instead is on underscoring the potential value 
of geospatial science and detailing successful examples to 
point the way forward. The projects described in the book 

range from the very local scale (e.g. the redevelopment of a 
local neighborhood park or schoolyard) to intermediate scale 
(e.g. evaluating park needs in a large metropolitan area 
with diverse socioeconomic situations) and regional scales 
(e.g. tracking the locations and connectivity of conservation 
projects with an eye towards meeting more broadly integrat-
ed conservation goals and objectives).  The many benefits 
of community partnerships and collaborations are weaved 
throughout the narrative.

In conclusion, Protecting the Places We Love seems 
well-suited to its target audience. With a focused and deep 
understanding of the operational concerns of organizations 
devoted to the expansion of land conservation and green 
space, Robertson thoughtfully explores her subject in a clear, 
authoritative, and well-organized manner.  The underly-
ing message is about the diverse array of opportunities for 
conservation and parks advocates to enhance their work by 
leveraging the capabilities of geospatial science, and Robert-
son successfully presents it in a way that is both inclusive 
and empowering.
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by Clifford J. Mugnier, CP, CMS, FASPRS

When the Spanish Conquistadores first 
entered into Central America in the ear-
ly 16th century, Indians of the Pipil tribe 

occupied the area now known as El Salvador. The 
Pipil were a subgroup of a nomadic people known 
as the Nahua, who had migrated into Central 
America around 3,000 B.C. They eventually fell 
under the Maya Empire, which dominated Cen-
tral America until about the 9th century A.D. 
According to the Library of Congress Country 
Studies, “Pipil culture did not reach the advanced 
level achieved by the Maya; it has been compared, 
albeit on a smaller scale, to that of the Aztecs in 
Mexico. The Pipil nation, believed to have been 
founded in the 11th century, was organized into 
two major federated states subdivided into small-
er principalities.” The Spaniards were initially 
defeated in 1524 when they attempted to enter 
the area, and it took until 1528 with two more 
expeditions to finally subdue the Pipil nation. The 
fierce warrior Atlacatl is revered to this day to the 
exclusion of Alvarado who finally overcame the 
natives. “In this sense, the Salvadoran ambiva-
lence toward the conquest bears a resemblance to 
the prevailing opinion in Mexico, where Cortes is 
more reviled than celebrated.”

El Salvador (The Savior) is the smallest Spanish-speak-
ing nation in the Western Hemisphere. It is located on the 
western side of the Central American isthmus. The country 
is slightly smaller than Massachusetts, and its land bound-
aries are with Guatemala (203 km), and Honduras (342 km) 
(PE&RS, July 1999). El Salvador’s coastline is 307 km on 
the Pacific Ocean and its terrain is mostly mountainous with 
a narrow coastal belt and central plateau. The lowest point 

is the Pacific Ocean (0 m), and the highest point is Cerro El 
Pital (2,730 m). El Salvador is known as the “Land of Volca-
noes,” and is one of the most seismologically active regions 
on Earth, situated atop three large tectonic plates.

Topographic Mapping of the Americas, Australia and New 
Zealand states, “To 1930, the only detailed accurate survey-
ing done in El Salvador – a country that became independent 
in 1821 – was the surveying done for the Intercontinental 
Railroad Commission and a few surveys related to possible 
road routes.” However, Nicaragua and Honduras had been 
squabbling regarding their border for more than 30 years, 
and an arbitration agreement was signed in 1930 and soon 
thereafter surveyed by the U.S. Coast & Geodetic Survey. 
El Salvador, Guatemala, and Honduras signed a protocol on 
26 March 1936 accepting Cerro Monte Cristo as the tripoint 
of the boundaries of the three states. It was during this era 
that the first geodetic surveys were performed on the border 
between El Salvador and Guatemala from 1937 to 1940. The 
Dirección General de Cartografía was established in 1946 to 

The Grids & Datums column has completed an exploration of 
every country on the Earth. For those who did not get to enjoy 
this world tour the first time, PE&RS is reprinting prior articles 
from the column. This month’s article on the Republic of El 
Salvador was originally printed in 2005 but contains updates to 
their coordinate system since then.

REPUBLIC OF 

EL SALVADOR

Photogrammetric Engineering & Remote Sensing
Vol. 89, No. 2, February 2023, pp. 71-72.

0099-1112/22/71-72
© 2023 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.89.2.71



72	 Februar y  2023	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

continue the geodetic surveys and to implement a topographic mapping of the country. 
The end of the following year 1947, the Inter American Geodetic Survey (part of the 
U.S. Army Map Service) signed a cooperative agreement with El Salvador. By 1958, 
all classical geodetic triangulation had been completed in the country, and topographic 
mapping was well underway. The national mapping agency is now known as the Insti-
tuto Geográfico Nacional “Ing. Pablo Arnoldo Guzmán.”

The original horizontal datum of El Salvador is the Ocotepeque Datum of 1935 which 
was established by the U.S.C.&G.S. at Base Norte (in Honduras) where jo = 14° 26´ 
20.168˝ North, lo = 89° 11´ 33.964˝ West of Greenwich, and Ηo = 806.99 meters above 
mean sea level. The defining geodetic azimuth to Base Sur is: αo = 235° 54´ 21.790˝, 
and the ellipsoid of reference is the Clarke 1866 where a = 6,378,206.4 meters and 1/f 
= 294.9786982. The corresponding astronomic observations at that mountainous loca-
tion are: Φo = 14° 26´ 13.73˝ North (±0.07”), Λo = 89° 11´ 39.67˝ West (±0.045”), and 
the defining astronomic azimuth to Base Sur is: αo = 235° 54´ 20.37˝ (±0.28”). The dif-
ference between these two sets of coordinates is due to the local gravimetric deflection 
of the vertical. The grid system used in El Salvador is based on the Lambert Confor-
mal Conic projection where the Central Meridian, lo = 89º 00´ 00˝ West, the Lati-
tude of Origin, jo = 13º 47´ 00˝ North, the Scale Factor at Origin, mo = 0.999967040, 
the False Easting = 500,000 m, and the False Northing = 295,809.184 m. Sometime 
after that, the National Geospatial-Intelligence Agency (nee NIMA) computed all the 
classical triangulation of Central America on the North American Datum of 1927. The 
1987 published datum shift parameters for Central America based on 19 stations (TR 
8350.2) from NAD27 to WGS84 are: ΔX = 0 m ± 8 m, ΔY = +125 m ± 3 m, ΔZ = +194 m 
± 5 m.

After the disaster when Hurricane Mitch hit Central America, the U.S. National Geo-
detic Survey established a number of GPS Continuously Operating Reference Stations 
in the region. They observed a number of stations in El Salvador in order to establish 
and publish a High Accuracy Reference Network on the North American Datum of 
1983. The National Geodetic Survey (NGS) has posted all of the data, including var-
ious other sources of geodetic coordinate data in El Salvador and the region on their 
website. The documentation of their geodetic observations is a superb resource for the 
researcher, and it is freely available. Thanks, NGS!

Update  on the Republic of El Salvador
“The reference frame of El Salvador is a GPS base network of 38 stations. It was 
measured by the Gerencia de Geodesia, Instituto Geográfico y del Catastro Nacional 
(GG-IGCN using differential GPS positioning in partial sub-networks and in 36 
daily sessions between October and December 2007. Most of the reference stations 
(28) were determined together with a secondary control point in order to ensure 
the long-term stability of the network.  The GPS data were processed by Deutsches 
Geodätisches Forschungsinstitut (DGFI) within the SIRGASWGII (Geocentric Datum) 
activities. The analysis strategy is based on the double difference approach (Bernese 
Software V5.0, Dach et al. 2007).”  As is typical of Latin American nations that relate 
their local coordinate systems to the SIRGAS, they do not publish the transformation 
parameters from their classical native coordinates to SIRGAS. https://www.sirgas.
org/fileadmin/docs/Boletines/Bol14/35_Figueroa_SIRGAS-ES2007_8.pdf 

The contents of this column reflect the views of the author, who is responsible for the facts 
and accuracy of the data presented herein. The contents do not necessarily reflect the official 
views or policies of the American Society for Photogrammetry and Remote Sensing and/or the 
Louisiana State University Center for GeoInformatics (C4G).

This column was previously published in PE&RS.
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COMMUNICATIONS COUNCIL MEMBER

ASPRS SAC GIS DAY MAP CONTEST WINNERS!

To celebrate GIS Day, the ASPRS Student Advisory Council (SAC) hosted an 
online Cartography Map Contest. Maps were welcomed in any format including 

hand drawn submitted maps. The SAC received numerous entries showcasing the 
application of cartography in multiple disciplines. 
Prior to voting, participants 
were encouraged to share the 
story behind their maps. All of 
the contest submissions repre-
sented different stories. Four 
winners were selected. When 
asked what motivated their 
participation, the winners 
said the GIS Map Contest 
was an amazing opportunity 
to display and share their 
work with the remote sensing 
and geoscience community 
and participate in the ASPRS 
community.
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GIS Map Day Winners received:
1.	Complimentary one-year license of ArcGIS for Personal
2.	Map displayed at the ASPRS Annual Conference at Geo Week in February 2023
3.	Student Volunteer Registration to the ASPRS Annual Conference at Geo Week

All attendees of the SAC meeting who participated in the live voting received a complimentary  one-year premium subscrip-
tion to Esri’s ArcGIS StoryMaps.

“This contest provides an opportunity 
to inform readers about an effective 
and humane model for addressing the 
houselessness crisis that plagues Portland 
and so many other American cities”. 

~ Peter Samson,
2021 GIS Day Map Contest Winner  
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NEW ASPRS MEMBERS
ASPRS would like to welcome the following new members!

Tolga Bakirman
 Nishan Bhattarai, PhD

Daniel Bollich
Andre Doria, PhD

Firat Erdem
Michael James Fink

Feng Gao, PhD
Christopher Allen Gray

Seth Gulich
Rob Harrap
Kris Kleiner

Danial Mariampillai
Emma Menio

Andrew Molchan
Andrew Moody

Melanie A. Olson
Robert Patten

Mark Que
Richard Renton

John Tobeck
Victor Valdivia

Michael Winfield

FOR MORE INFORMATION ON ASPRS MEMBERSHIP, VISIT 
HTTP://WWW.ASPRS.ORG/JOIN-NOW

2023 ASPRS MEMBERSHIP 
RENEWALS

Members may notice a few changes in the online 
renewal process in 2023.

1.	 As part of their 2023 budget approval, the ASPRS Board of Directors 
voted to increase annual dues for Individual Members by $25 (from 
$150 to $175) effective May 1. This is the first dues increase in nearly 
a decade and is necessitated by rising costs. Sustaining Member and 
Student Member dues will remain unchanged in 2023.
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Special Issue Introduction — AI-Based 
Environmental Monitoring with UAV Systems

Tolga Bakırman, Yildiz Technical University

Global warming and climate change have become the most important 
factor threatening the world. Climate change results in dramatical 
environmental hazards and threatens the planet and human life. A 
wide variety of policies have been proposed to decrease the effects of 
global warming and climate change. The most important one is the 
Paris Agreement which aims to limit global warming to well below 
two degrees Celsius. Many countries have formulated long term low 
greenhouse gas emission development strategies related to the Paris 
Agreement which aimed to meet the essential strategies addressing 
issues with climate change, environmental protection and low carbon.

The astonishing developments on unmanned aerial vehicle (UAV) 
systems and artificial intelligence (AI) technologies enables a great 
opportunity to monitor the environment and propose reliable solutions 
to restore and preserve the planet and human health.

Data acquisition and processing paradigm has been changed as a 
result of technological developments. It is obvious that new solutions, 
innovative approaches will make significant contributions to solve the 
problems which our planet is facing. UAV data can be collected by 
various platforms (planes or helicopters, fixed wing systems, drones) 
and sensors for earth observation and sustainable environmental mon-
itoring which are also utilized by the United Nations to support the 
delivery of its mandates, resolutions, and activities.

UAV based earth observation data and AI techniques have a wide 
range of applications such as risk management, disaster monitoring 
and assessment, environmental impact evaluation and restoration, 
monitoring agriculture and food cycles, urban analysis, digital twin 
and smart city applications and providing increased situation aware-
ness. This growth of widely available UAV data associated with the 
exponential increase in digital computing power, machine learning 
and artificial intelligence plays a key role in the environmental moni-
toring and solution generation of geospatial information for the benefit 
of humans and the planet.

This special issue in Photogrammetric Engineering and Remote 
Sensing (PE&RS) gathers peer-reviewed papers that advance state-of-
the-art in AI-Based Environmental Monitoring with UAV Systems. 
The papers focus on the use of AI-based method for investigation of 
the relationship between environmental monitoring, and apricot trees 
segmentation, wheat leaf nitrogen prediction, energy infrastructure 
damage assessment, urban building segmentation and car detection. 

Forest management and inventory, plant monitoring in urban areas, 
vegetation distribution, change monitoring, and the establishment of 
sustainable agricultural systems all require extraction and monitoring 
of trees. In this regard, Erdem et al. focuses on detecting, counting, 

and mapping the apricot trees from UAV orthophoto imagery using 
U-Net and Mask R-CNN deep learning methods. 

Nitrogen has a key role in plant development and directly affects 
the crops’ quality. The secret to site-specific management for im-
proved nitrogen usage efficiency and a sustainable crop production 
system is quantitative measurement of crop nitrogen. Sahoo et al. 
investigates exploitation of spectroscopy using field portable spect-
roradiometer on ground in the crop field and imaging spectrometer 
from UAV to predict leaf nitrogen of wheat crop with artificial neural 
network, extreme learning machine, least absolute shrinkage and 
selection operator and support vector machine regression.

In any environmental or natural disaster, effective emergency man-
agement is the major key to save lives. The management authorities 
need rapid and accurate information regarding energy infrastructure’s 
damage assessment in order to guide critical allocations of lifesav-
ing resources within 72 hours. Hughes et al. demonstrates a scalable 
end-to-end solution using UAV that provides AI-based edge detection, 
classification and geolocation of utility poles. 

Similarly, building segmentation also has numerous application 
areas including disaster management and urban planning. Sariturk et 
al. performed a comprehensive performance comparison of state-of-
the-art deep learning architectures for building segmentation using 
aerial imagery.

Environmental monitoring is also related to the urban development 
and hence it is important to determine the car density in the parking 
lots, especially in hospitals, large enterprises, and residential areas, 
which are used intensively, in terms of executing existing manage-
ment systems and making precise planning for the future. Kaya et al. 
tested the performance of the two deep learning approaches namely 
YOLOv3 and Mask R-CNN in order to determine the number of cars 
in the parking lot using high resolution UAV imagery within the deep 
learning tools of ESRI ArcGIS Pro.

I believe the topics that the papers have focused on in this Special 
Issue will have a wider impact in the Environmental Monitoring 
community. I would like to express my gratitude to the authors, who 
contributed to this Special Issue of the PE&RS for sharing their scien-
tific results. I would also like to acknowledge the voluntary reviewers, 
whose professional reviews contributed to the further improvement 
of the submitted papers. I’m also thankful to Prof. Dr. Bülent Bayram 
from Yildiz Technical University, Istanbul, Türkiye for organizing 
the International Symposium on Geoinformatics 2021 (https://www.
isagsymposium.org/isag2021). Finally, I’m grateful to PE&RS Editor 
Prof. Dr. Alper Yılmaz for his support and guidance in assembling this 
Special Issue.

Tolga Bakırman is with the Yildiz Technical University, Istanbul, 
Turkey. bakirman@yildiz.edu.tr
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Call for PE&RS Special Issue Submissions 

Innovative Methods for Geospatial Data using 
Remote Sensing and GIS

Internationally comparable data is a global need for 
managing resources, monitoring current trends and 
taking actions for sustainable living. Even though 
there has been a significant progress on geospatial 
data availability, extensive data gaps are still a 
major problem for general assessment and supervise 
the progress through the years. According to United 
Nations 2022 The Sustainable Development Goals Re-
port, while health and energy sectors have the high-
est data available, limited data available for climate 
action. 

The COVID-19 crisis has also shown that there are in-
novative data collection methods utilizing information 
and computer technologies. However, only 5% of the 
countries have benefit from remote sensing technolo-
gies to measure the impact of COVID-19. Additionally, 
novel approaches such as artificial intelligence should 
be used in conjunction with assessments to make sure 
they are put to use for critical situations. 

The recent developments in remote sensing, geo-
graphic information systems and ICT have provided a 
wide accessibility to create geospatial data for vari-
ous purposes. The proposed special issue focuses on 
“Innovative Methods for Geospatial Data using Remote 
Sensing and GIS” for wide range of applications. This 
special issue aims to bring researchers to share knowl-
edge and their expertise about innovative methods 
to contribute to fill data gaps around the world for a 
better future.  

The proposed special issue aims to contributes 
ASPRS’s key mission on ‘Simplify and promote the use 
of image-based geospatial technologies for the end-
user’, ‘Promote collaboration between end users and 
geospatial experts to match data and technology to 
applications and solutions’ and ‘promote the transfer 
of geospatial data and information technology to 
developing nations’ by providing innovative methods 
to create geospatial data using remote sensing and 
geographic information systems utilizing state-of-the-
art developments and solutions. 

Deadline for Manuscript Submission—July 1, 2023

Submit your Manuscript to http://asprs-pers.edmgr.com
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UAS Edge Computing of Energy  
Infrastructure Damage Assessment

Jordan Bowman, Lexie Yang, Orrin Thomas, Jerry Kirk, Andrew Duncan, David Hughes, and Shannon Meade

Abstract
Energy infrastructure assessments are needed within 72 hours of 
natural disasters, and previous data collection methods have proven 
too slow. We demonstrate a scalable end-to-end solution using a 
prototype unmanned aerial system that performs on-the-edge detec-
tion, classification (i.e., damaged or undamaged), and geo-location of 
utility poles. The prototype is suitable for disaster response because 
it requires no local communication infrastructure and is capable of 
autonomous missions. Collections before, during, and after Hurricane 
Ida in 2021 were used to test the system. The system delivered an 
F1 score of 0.65 operating with a 2.7 s/frame processing speed with 
the YOLOv5 large model and an F1 score of 0.55 with a 0.48 s/
frame with the YOLOv5 small model. Geo-location uncertainty in the 
bottom half of the frame was ~8 m, mostly driven by error in cam-
era pointing measurement. With additional training data to improve 
performance and detect additional types of features, a fleet of similar 
drones could autonomously collect actionable post-disaster data.

Introduction
In the wake of disaster, timely, effective emergency management saves 
lives (Kerle and Oppenheimer 2002). Emergency management officials 
such as the US Department of Energy and the Federal Emergency 
Management Agency (FEMA), and others across the globe, need action-
able information for damage assessment to guide critical allocations of 
lifesaving resources within 72 hours (FEMA 2020; Hodgson et al. 2010). 
Traditionally, damage assessments have been performed by local disas-
ter response crews deployed to the affected area. Any imagery-based 
data collection (e.g., from unmanned aerial systems (UAS)) suffered 
from download, processing, and/or upload delays. Collections also 
frequently relied on local communication infrastructures that may have 
sustained damage (Boccardo and Tonolo 2015). Methods that rely on 
social media (e.g., Twitter messages) to infer damage require communi-
cations systems in the disaster-damaged area to be operable often expe-
rience data gaps and suffer from self-reporting bias in favor of wealthier 
and more tech savvy individuals (Alam et al. 2017). The lack of precise 
geo-location in social media-based information also makes accurate 
damage assessment challenging. Efforts using satellite imagery have 
had limited impact and effectiveness in operation because of challenges 
related to acquisition lag; low resolution; inconsistent image quality 
(e.g., clouds, haze); and slow dissemination (Laituri and Kodrich 2008).

Data collection and processing following Hurricane Ida in 2021 
illustrated the latency and scope of the problem (ArcGIS Online 2022). 
Within the 72-hour window of landfall, scattered social media images 
were collected, ICEYE synthetic aperture radar satellite images were 
collected for the whole area (for flood detection), National Oceanic 
and Atmospheric Administration captured crewed aerial imagery along 
major transportation corridors, the US Civil Air Patrol collected UAS 
imagery over some areas, and nearly comprehensive crewed aerial im-
agery was provided by the National Insurance Crime Bureau. The US 
Civil Air Patrol implemented an effective data management program. 

However, the data had to be off-loaded from aircraft and satellites 
and processed to provide actionable information. The crowdsourced 
analysis began a full four days after landfall. FEMA’s ArcGIS damage as-
sessments layer were first published 53 days after landfall. At the time 
of writing, the most recent update was 219 days after landfall.

This paper describes a scalable method to deliver actionable intel-
ligence (not imagery) within FEMA’s designated 72-hour post-disaster 
window. Our prototype uses a UAS to obtain sufficient resolution; 
deploys rapidly and autonomously; operates without any need for local 
communication infrastructure; and has enough onboard processing 
power to: (1) autonomously assess damage of energy infrastructure such 
as utility poles and substations using machine learning (ML), (2) geo-
locate detected features of interest, and (3) transmit relevant damage as-
sessment results over constrained communications. Initial testing, based 
on collected imagery from before and after Hurricane Ida, attempted to 
detect utility poles and classify them as damaged or undamaged.

In this paper, the term UAS refers to a remote-controlled vehicle 
and its operator; the term unmanned aerial vehicle (UAV) refers to the 
vehicle only.

Related Work
UAS onboard processing is commonly used for flight control and auto-
pilot. Onboard obstacle detection and avoidance (i.e., sense and avoid) 
research is ongoing (Yu and Zhang 2015; Fasano et al. 2016; Liu et at. 
2019; Pedro et al. 2021; Rave 2021). Onboard simultaneous location 
and mapping to augment direct geo-positioning, operation in Global 
Navigation Satellite System (GNSS) denied environments, and avoid-
ance of obstacles has also been a focus (Bershadsky and Johnson 2013; 
Bender et al. 2016, 2017; Rojas-Perez and Martinez-Carranza 2017). 
Edge processing has also been used to classify image sections for 
artificial intelligence (AI)–enhanced views aiming to increase operator 
comprehension (Speranza 2021).

Research has been moving toward onboard feature detection for 
years. Several feature detection algorithms were proposed, but edge 
implementation was left for future work (Gerke and Seibold 2014; 
Kuchhold et al. 2018; Nguyen et al. 2019; Castellano et al. 2020; 
Balamuralidhar et al. 2021; Hernandez et al. 2022; Koay et al. 2021). 
Real-time detection has been implemented on offboard devices 
(Redmon and Farhadi 2018; Wang et al. 2018; Harter et al. 2019; Jiang 
and Zhang 2019). Chen et al. (2022) proposed using large crewed 
aerial vehicles as local edge servers and gateways to cloud computing 
for off-loading edge computing tasks in drone swarms.

There are at least two published reports of UAS onboard feature 
detection. Jiang et al. (2022) reported UAS onboard feature detection 
of bridge cracks, spalling, and corrosion. Kraft et al. (2021) built a 
custom drone with an onboard global positioning unit (GPU) to auto-
matically detect and geo-position features of interest (e.g., litter). Our 
solution extends these by addressing operation in constrained commu-
nication environments and beyond visual line of sight.

Geospatial Sciences and Human Security Division, Oak Ridge 
National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830 
(hughesdc@ornl.gov).
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Nguyen et al. (2019) performed work relevant to energy infra-
structure. They trained ML models to detect missing utility pole caps, 
cracked poles, cracked cross arms, rot-damaged cross arms, and 
woodpecker-damaged poles. Their work differs from ours in two im-
portant ways. First, it was not implemented on-the-edge, in restrained 
communication, or beyond visual line of sight. Second, the image 
resolutions differed by orders of magnitude because Nguyen et al. were 
looking for small features (i.e., cracks and rot), while we were looking 
for broken and leaning poles. Hence, direct comparisons of the net-
work performance are not useful. Other efforts to use UAS in disaster 
response (e.g., floods) stop short of actual edge computing (Koay et al. 
2021; Hernandez et al. 2022).

Methods
We performed a market survey of commercial UAS market in search of 
a vehicle with suitable onboard processing power to conduct real-time 
imagery analysis, sufficient flight time to collect data in a real-world 
scenario, and an open-software architecture conducive to the re-
search environment. The Association of Unmanned Vehicle Systems’ 
International comprehensive database of over 2000 commercial-off-
the-shelf (COTS) aircraft was consulted, and we found listed no aircraft 
that satisfied all three requirements. Therefore, a modified aircraft was 
required. We chose the TurboAce Matrix quadcopter (Figure 1) because 
it can be easily modified to meet the specific needs of this project.

Airframe
The prototype aircraft (Figure 2) was named “Cornelia” after the first 
wife of the Roman emperor Julius Caesar. Modifications include the 
addition of the PixC4 compute module, camera, and the Multimodal 
Autonomous Vehicle Network (MAVNet) cellular command and control 
software (see Command and Control Link for additional details). The 
resulting aircraft has the following performance specifications:
•	 Weight: 3895 g (with battery and payload)
•	 Wingspan: ~44 inches
•	 Battery: 6S (24 V); 10 000 mAh lithium polymer
•	 Flight time: 25 minutes
•	 Range: 4–5 miles

The UAV market has begun signaling increased interest in on-
board computer power and advanced communications, which may 
be applicable for future iterations of this technology. For example, 
the Parrot Anafi AI has an onboard GPU and cellular communications 
and has recently become commercially available. The Anafi AI may 
closely replicate the capabilities of our prototype, but there are still 
unanswered questions regarding the computational power available for 
onboard processing.

Onboard Processors
We used the ORNL-developed PixC4-Jetson, which is a flight controller 
and co-processor carrier board to host the popular Nvidia Jetson NX 
series of companion computers. Figure 3 shows a schematic of the as-
sociated hardware. The PixC4-Jetson provides a lightweight, compact, 
and robust means of integrating the companion computer with the 
flight controller. This integration provides the co-processor with the 
position and orientation data required to geo-locate acquired imagery. 
The companion computer hosts the Docker ML algorithms used in this 
project while simultaneously performing real-time onboard processing. 
Figure 4 shows the PixC4 module with Nvidia Jetson co-processor.

Figure 1. TurboAce Matrix, a commercial-off-the-shelf unmanned 
aerial vehicle. (Source: TurboAce.com)

Figure 2. Modified aircraft “Cornelia” prior to test flight. (Source: Carlos Jones, ORNL)

Figure 3. PixC4-Jetson carrier board hardware architecture. GNSS = 
Global Navigation Satellite System.

Figure 4. PixC4 with Nvidia Jetson Xavier NX.
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Command and Control Link
We used the MAVNet system for global command and control of the 
UAV. MAVNet is a suite of hardware and software technologies devel-
oped for enabling next-generation unmanned systems research. The 
MAVNet communication system maintains communication links by 
allowing mesh networks, cellular/5G, and Iridium satellite communica-
tion modems to coexist, automatically falling forwards or backwards 
among them. This communication paradigm allows real-time opera-
tion in remote, austere environments such as those requiring disaster 
response (Harter et al. 2019).

MAVNet includes a web-based ground control system (GCS) that 
serves as the operator’s primary interface with the aircraft. It displays 
real-time data sent from the UAV and enables complete control of the 
UAV and payloads from a single interface. For the purposes of this 
research, the GCS interface was modified to support hosting imagery 
collected by the Cornelia aircraft in real time. As detections are made, 
annotations are displayed in real time on the operator’s interface, al-
lowing the pilot immediate access to the data.

The GCS interface, shown in Figure 5, was customized to support 
displaying ML-detected features as icons. These icons have attributes for 
detection confidence, feature type, and optional image thumbnails. The 
interface can display up to 2000 icons simultaneously. For ease, an anno-
tation manager was created to find, filter, and delete the icons. As shown 
in the figure, the aircraft’s location is represented as the blue “delta” 
symbol. Telemetry data is shown in real time in the panel on the left side 
of the screen. The green icons display the detected location of undam-
aged utility poles collected during a test flight of the system. The opera-
tor can click on the icons to access more information (e.g., detection 
confidence) and full-resolution images collected by the aircraft. In the 
screen capture, the quadcopter is returning to a landing spot (“D”) after 
having flown a short mission over some known utility poles in a test lo-
cation. The black dots indicate where pictures were taken, and the green 
pole icons indicate where each pole was detected and its condition.

Figure 5. MAVNet GCS with sample detections.

Compute
The software running on the Nvidia Jetson Xavier NX companion com-
puter is a version of Linux with everything not essential for the project 
removed. The primary applications are:
•	 MavnetProxy, a C#-based application developed in house that 

interfaces between the MAVNet server and the flight management 
unit. Specifically, it transfers raw images to ML Docker and then 
retrieves, stores, and uploads processed images and results.

•	 NVGSTCapture/GStreamer for camera control and image 
acquisition.

•	 Docker (docker-ce version 19.03), the host for the machine learning 
algorithms.

•	 Ardupilot (branch COPTER-4.1.2), the flight management 
software.

•	 Jetson Xavier Jetpack version 4.6 for the NVIDIA GPU.

Geo-Positioning Algorithm Development
We implemented algorithms for Cornelia and Anafi AI to translate 
pixel position to geo-location and upload results to MAVNet. The 

image-to-ground (I2G) operations is an inversion of the ground-to-
image (G2I) operation. G2I is closed form, but it results in the loss of 
dimensionality from a three-dimensional (3D) ground point to a two-
dimensional (2D) image point. The inversion, I2G, cannot recover the 
dimension lost in the projection. Instead of recovering the 3D point in-
put, I2G returns the line that contains the point. This can be described 
as range ambiguity, meaning we know the direction toward the ground 
point but not how far away it is. Range ambiguity can be resolved if 
two (or more) images are used to observe the same 3D ground point. 
Barring degenerate geometry, their I2G operations will result in mul-
tiple lines whose intersection estimates the 3D ground point.

In this work, the simplest way to recover the lost range was to as-
sume a ground plane. To describe the operation more formally, we define 
three coordinate systems: pixel space, image space, and ground space.

Pixel space is a 2D coordinate system, (u, v), defined with respect 
to an image in default landscape orientation. The origin is the top-left 
corner of the top-left pixel. The positive x-direction is from image left 
to image right. The positive y-direction is from image top to image 
bottom. The units are in pixels.

The image coordinate system is defined with respect to the image 
perspective center and focal length. The origin is at the image principal 
point (i.e., the intersection of the image’s optical axis with the image 
plane). The positive x-direction is from image left to image right. The 
positive y-direction is from image bottom to image top. The nega-
tive z-direction (to keep with a right-handed coordinate system) is 
the image look direction from the perspective center out through the 
principal point. Image coordinates, x = x  y  zT, have only two degrees 
of freedom because z = –f is constant, where f is the focal length of the 
camera. The units are the same as the focal length (typically mm or 
pixels). The GCS can be any right-handed 3D Cartesian system.

The transformation from pixel space to image space can be com-
plicated. The camera matrix (Mugneir et al. 2013) captures all linear 
transformations including scaling to focal length units, correcting for 
non-square pixels and skew between the image axes. The transforma-
tion is commonly extended to include nonlinear distortions (Fryer 
and Fraser 1986; Claus and Fitzgibbon 2005; Remondino and Fraser 
2006). Camera calibration, the process of computing these parameters, 
is not required. This is acceptable because the accuracy requirements 
are loose, and image space errors are an insignificant contributor to 
overall error (as will be shown). It is also unavoidable because of the 
intended mass deployment to nontechnical users. Hence, it is assumed 
that pixels are square, axes are perpendicular, the principal point is in 
the center of the image, and the manufacturer’s published focal length 
is reliable and can be converted to pixel units. This simplifies the trans-
formation to  x = u – w/2, v = –(v – h/2), and z = –f, where w and h are 
the respective width and height in pixels and f is also in pixels.

The image position, O = Xc  Yc  Zc
T and orientation define the 

transformation from ground space to image space. Orientation has 
three degrees of freedom and is expressed in a variety of ways. Roll, 
pitch, and heading; Euler angles; quaternions; and 3 × 3 orthogonal 
rotation matrices are common examples. The rotation matrix, M, is the 
form used in the formulas below. M rotates from the GCS to the image 
coordinate system.

The G2I transformation can be written as x = λMX – O, where X = 
X  Y  ZT is a ground point and λ = –f/(M2,0(X – Xc) + M2,1 (Y – Yc) + M2,2 
(Z – Zc)) is the scale that moves x into the focal plane. The inverse, 
I2G, can thus be written as O + λ–1MTx = X. Note that λ is the range 
along the line defined by the camera center O and look vector MT x to 
the ground point, X. λ is unrecoverable in the inversion because it is a 
function of the unknown X. However, the ray r = O + ρMT x with ρ>0 
contains X. Our I2G operation resolves ρ by intersecting r with the ap-
proximate ground plane, Z = Zg:

	 O + MTx(Zg – 0z)/(MTx)z = Z,	 (1)

where 0z is the z-component of the camera position and (MTx)z is the 
z-component of the look vector MTx. This is reasonable for the first 
intended applications in flat, coastal, hurricane-damaged areas.
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Cornelia’s real-time telemetry data includes airframe position, 
yaw (α), roll (β), and pitch (γ). The constant rotation between the 
airframe and camera had to be calibrated separately. This is modeled 
as x = λMcMAX – O. MA = f(α, β, γ) is the time-variant rotation from the 
ground to airframe systems provided by the real-time telemetry. Mc is 
the constant rotation from airframe to camera systems; M = McMA, and 
λ is the same scale factor.

The calibration flight was roughly circular with convergent look 
vectors (Figure 6). The circular flight sampled the yaw domain. The 
domains of pitch and roll were not widely sampled, but accelerations 
from the circular flight and buffeting from winds caused some varia-
tion. Pitch was in the range [–5°, 11°], and roll in the range [–3°, 7°].

The dirt and short cut weeds of the field feature matched well in 
the open-source structure-from-motion software COLMAP (Figure 6). 
The 18 images had an average of 190.5 feature matches. Each ground 
point was measured in an average of 3.6 images. The root-mean-square 
error of the image measurements was 0.82 pixels. The rotation matrix 
of each image, Mi, was an output of the photo triangulation. Mc was 
computed to minimize the residual errors (να,i, νβ,i, να,γ) in the telemetry, 
Mc = MT

A,i Mi, where MT
A,i = f(αi + να,i, βi + νβ,i, γi + νγ,i). The residuals 

were weighted equally. In this model, Mi was considered errorless. This 
is a reasonable approach given the triangulated rotations were orders of 
magnitude more precise than the telemetry.

The I2G transformation (Equation 1) inputs are the six telem-
etry parameters, the image point, and the ground elevation estimate. 
Uncertainty estimates for each of these inputs is required to model the 
uncertainty of the computed ground location. Covariance of the telem-
etry parameters was estimated from their residuals in the calibration 
flight. The image location of the features is measured at the bottom 
of the ML bounding box, and the standard error was estimated at five 
pixels (for both x- and y-axes). The standard error of the ground eleva-
tion was modeled as 3 m. All estimated errors were reported at the one 
σ level.

The uncertainty of the computed ground location varies across the 
image (Figure 6). For ease, Figure 7 uses normalized fiducial coordi-
nates (x̂∈[–1,1] and ŷ∈[–1,1]). The dominant signal is an exponential 
increase in uncertainty from the bottom (ŷ = –1) to the top of the image 
(ŷ = 1) . The left (x̂ = –1) and right (x̂ = 1) sides of the image are not 
symmetrical because the cameras were mounted with a small roll that 
tilts the right side of the image up.

Figure 8 shows the contribution of different sources of error. The 
curves are from the center vertical of the image. The top curve (solid 
black) is the full error propagation model. The remaining curves show 
the predicted accuracy when different input categories are modeled 
as errorless. Modeling the pixel measurements as errorless had a 
negligible effect on the estimated error. Modeling the camera position 
as errorless reduced the estimated uncertainty by ~50% in the bottom 
two-thirds of the field of view (FOV). The improvement falls off to 4% 
at the top of the image. Modeling the rotations as errorless reduced the 
error estimate by 45% at the bottom half of the FOV. This increased to 
95% at the top of the image.

I2G accuracy for the Parrot Anafi AI used to collect data before, 
during, and after Hurricane Ida was analyzed similarly. Figure 9 com-
pares the I2G accuracy of the Parrot Anafi and the Cornelia. The Parrot 
complete model is more accurate in the bottom tenth of the image, but 
it degraded faster through the bottom two-thirds of the FOV. This was 
driven mostly by larger systematic errors in the heading. In the top-
third of the FOV, the Parrot Anafi’s relative accuracy improves because 
the Cornelia was pitched 10.6° further from nadir.

Figure 6. Four example views from Cornelia’s circular calibration flight.

Figure 7. Area of the Cornelia I2G error ellipses for three vertical 
image lines (one σ).

Figure 8. Analysis of error sources by comparison of the complete 
I2G uncertainty model to models assuming zero error in different 
input categories.

Figure 9. Comparison of uncertainty in the Parrot I2G and Cornelia 
models.
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Machine Learning Algorithm Development
YOLOv5 (Jocher et al. 2022) single-stage object detection architecture 
was selected for utility pole detection and damage assessment. YOLOv5 
had superior performance and flexibility to scale the model for real-
time results on the UAS edge device.

YOLOv5 can be trained with different model sizes, which vary in 
their number of layers and parameters. Larger models offer superior 
object detection performance at the cost of requiring more compu-
tational and storage resources, which are both limited when dealing 
with edge devices. We selected three model sizes (labeled YOLOv5 
Small, YOLOv5 Medium, and YOLOv5 Large) to give a sense of how 
the trade-offs between model size and performance impact our ap-
plication. Generally, YOLOv5 adapts the architecture of CSPDarknet53 
(Bochkovskiy et al. 2020) with a Spatial Pyramid Pooling layer as a 
backbone, PANet as a Neck, and a YOLO detection head (Redmon et al. 
2016). To further optimize the overall performance, a bag of freebies 
and specials (Bochkovskiy et al. 2020) were incorporated. Because 
YOLOv5 is the most notable and convenient one-stage detector, we 
selected it as our base object detection module.

Summary of the Image Collection and Processing Framework
We illustrate the main components of the proposed framework in 
Figure 10, where the critical steps of MAVNet, georeferencing, and ML 
processing are provided in detail.
1.	 At even increments of ground movement (nominally 25 m), 

the Flight Management Unit (FMU) sends a message to the 
MavnetProxy application.

2.	 MavnetProxy recognizes the message and retrieves the most recent 
inertial measurement unit (IMU)/global positioning system (GPS)/
Orientation messages. These messages are continually sent by the 
FMU to the application at ~5 Hz.

3.	 MavnetProxy then commands the camera driver to capture the 
current image buffer and saves the JPEG file with current date/time. 
The camera is always “on”, so this is practically instantaneous.

4.	 MavnetProxy next creates a new “job” entry in the Workflow data-
base with the image filename, and all relative information from the 
FMU (acquired in Step 2).

5.	 The workflow engine serializes each image as a multipart job.

Part 1—Process the Image
a.	 Copy file into shared filesystem area.
b.	 Send command to Docker to start the ML application and pass in 

the filename. (Machine Learning Algorithm Development)
c.	 Wait for ML application to return a status code (OK or error).
d.	 Copy (from the shared filesystem) the “labels” and processed 

image files. The “labels” file is a CSV text file with each infrastruc-
ture item described by a sperate line. Each line contains X/Y pixel 
location, status, and confidence of each item located in the image. 

The processed image file is the input file with bounding rectangles 
around the objects. The image file returned is the same size as the 
input file.

e.	 Clean up the “shared” filesystem in preparation for the next job.

Part 2—Process the Labels File
f.	 For each detected feature, compute a ground location (Geo-

Positioning Algorithm Development)
g.	 Upload the ground location to MAVNet with the feature type, dam-

age rating, and confidence. These are also displayed as icons in the 
MAVNet user interface.

Part 3—Apply Quadcopters GPS/IMU Data as EXIF Metadata to the 
Image Files
h.	 Add EXIF data to the raw and processed images with the GPS, IMU, 

and Orientation.

Part 4—Store all Data on a Removable USB Drive for further/after-
flight analysis.

Part 5—Upload Imagery to MAVNet if a high-speed network is 
available.
i.	 Send either image (usually the processed) to MAVNet over the 

cellular network. This step is queued for later if the quadcopter is 
operating only on an Iridium satellite connection.

Results and Discussion
This section discusses results of this work as pertains to hardware, geo-
positioning, and ML.

Hardware
Hurricane Ida was the only hurricane in the 2021 season that was avail-
able for collection of damaged infrastructure imagery needed for this 
work. We collected images with the Anafi Parrot USA quadcopter and 
post-processed them because the Cornelia platform was not operational 
at the time of the hurricane. A total of 334 images were curated and 
used for ML training and validation and algorithm testing. Imagery 
was collected from the Oak Ridge Reservation and two locations in 
neighboring Knox County, Tennessee, due to ease of data collection 
and curation.

The edge processing UAS prototype was developed to understand 
the future needs for state and local governments, who typically as-
sess damage following natural disasters, to implement the ML and 
photogrammetry onboard hardware and analysis required. MAVNet is 
designed to enable next-generation applications for small autonomous 
systems. MAVNet’s hardware component, PixC4-Jetson, is mated to a 
COTS quadcopter. A specially designed microcontroller-based vehicle 
controller with an integrated GPU-accelerated companion computer is 
onboard the platform. This hardware is compatible with a wide variety 

Figure 10. Image collection and processing flowchart. GPS = global positioning system; IMU = inertial measurement unit; ML = machine 
learning.
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of commercial and hobby-level platforms. The hardware collects 
imagery from an onboard camera and immediately begins processing 
the data onboard, seeking to identify damaged utility poles and other 
infrastructure. In just seconds, the resulting data products are uploaded 
to the MAVNet cloud server and distributed to users anywhere in the 
world. In contrast, the stages of current systems involve manually 
creating flight.

Geo-Positioning
The I2G error estimate increases exponentially toward the top of the 
image. The error propagation model predicts that limiting the detected 
features to the bottom 60% of the image will bound the predicted 
semimajor error ellipsoid axis length at 8 m (one σ level). The model 
predicts that better direct georeferencing hardware (e.g., real-time 
kinematic GNSS) would reduce the estimated uncertainty by ~50% in 
the bottom of the image. In the top portion of the image, the rotation 
uncertainty becomes the dominant source of error. Higher-accuracy 
direct orientation measurements will make more of the top of the im-
age usable. However, using the whole FOV will likely require a more 
nadir-looking pitch to manage the exponentially increasing error.

Machine Learning
Training an effective model requires high-quality imagery that captures 
the variety of object types, scenery, and lighting conditions a deployed 
system could be expected to encounter. Images of undamaged utility 
poles can be readily collected. However, we were able to collect only 
one set of post-disaster images (from Hurricane Ida). Table 1 and Table 
2 provides the number of images and labels collected and the split 
between training and testing.

The Ida images proved inadequate to train a robust detector. To 
compensate for the scarcity of post-disaster images, we used two-stage 
model training and a combination of pre- and post-disaster imagery. 
First, the model was trained to detect utility poles. Second, the model 
was fine-tuned to distinguish between damaged and undamaged util-
ity poles. Stage 2 used the fine-tune strategy (Li and Hoiem 2017) to 
update the extracted features’ damaged status. This transfer learning 
approach has been shown to be useful to increase model generalizabil-
ity under data-scarcity scenarios.

For comparisons, we repeated the same two-stage process with 
three different model sizes (various numbers of model parameters and 
layers in YOLOv5) using the combined data set, as well a single-stage 
model using only the damaged pole images from Hurricane Ida (see 
Table 3).

In Table 3 we used precision, recall, F-score, and mean Average 
Precision (mAP) metrics to evaluate utility pole damage assessment 
detection results. We framed this detection problem as a binary clas-
sification problem, for which all detected bounding boxes were either 
damaged pole or undamaged pole.

The imbalanced sample distribution and fewer number of labels in 
the Ida data set, as shown in the Table 1 and Table 2, may have contrib-
uted to the lower precision, recall and mAP. With the two-stage model 
training (training and transfer learning), we can observe the consistent 
improvements over the single-stage model (Table 3). For example, the 
YOLOv5 two-stage approach improved the F1-score from 0.603 to 0.652 
and the mAP from 0.537 to 0.581.

Assuming a nominal flying speed of 5 m/s and image capture 
separation of 25m, there is ~5 seconds of available processing time 
between images. YOLOv5 processing time varies from 1.03 to 2.7 
seconds per image for the small to large models (Table 4). Hence, there 
is flexibility to maintain real-time processing using the larger model, 
flying faster, and/or capturing image more frequently.

We showed an example of predictions from three YOLOv5 models 
in Figure 11, where the predictions are consistent across three models 
for this given image. In Figure 12, examples of common issues and 
incorrect detections were listed, where one utility pole might have 
been captured by more than one predicted bounding box predictions 
with conflicting assigned labels (lower middle in Figure 12c) and the 
utility pole on the ground was classified as undamaged because of its 

orientation, making it visually similar to those undamaged utility poles 
nearby (lower right in Figure 12b and 12c).

We also compared the results from the three YOLOv5 models to 
those obtained from YOLOv3 (Redmon and Farhadi 2018) and older but 
popular object detection frameworks. YOLOv5 models yielded better 
F-scores and mAP for one- and two-stage models. The only exception 
was a worse mAP (0.371 versus 0.403) for the one-stage YOLOv5 Small 
model. However, YOLOv5 Small model was twice as fast as the YOLOv3 
analog (Table 4), which may be a reasonable trade-off for edge-com-
puting applications.

We saw improvements in model performance as new data was in-
corporated into the training set, and we anticipate performance gains as 
more post disaster imagery is acquired. Therefore, the feature detection 
will improve as we iterate on our object detection model. We are also 
investigating few-shot learning (Bowman and Yang 2021) and model 
optimization methods to improve overall model performance with 
limited quantities of training data.

Table 1. Number of images from the three data collection locations, 
training/validation/testing splits, and contribution to the combined data set.
Location Total Images Training Validation Testing

Middlebrook Pike 257 182 50 25

Northshore 484 340 96 48

Hurricane Ida 334 235 66 33

Combined 1075 757 212 106

Table 2. Number of labeled utility poles in the Ida data set by 
condition. Undamaged utility poles account for 78% of the objects in 
the data set, and damaged utility poles account for 22%.
Feature of 
Interest

Ida 
Training

Ida 
Validation

Ida 
Testing

Ida 
Total

Undamaged pole 2063 458 329 2850

Damaged pole 504 168 112 784

Table 3. Testing results for one-stage YOLOv3 and YOLOv5 training on 
Hurricane Ida data and two-stage training on the combined data set 
(Middlebrook, Northshore, Ida). The bolded numbers indicate the best 
performing metrics.
Data Model size Precision Recall F-score mAP

YOLOv5

One-stage Large 0.811 0.48 0.603 0.537

Medium 0.852 0.423 0.565 0.475

Small 0.778 0.333 0.466 0.371

Two-stage Large 0.885 0.516 0.652 0.581

Medium 0.881 0.488 0.628 0.552

Small 0.855 0.411 0.555 0.480

YOLOv3

One-stage Standard 0.303 0.439 0.358 0.403

Two-stage Standard 0.422 0.456 0.471 0.438

Table 4. Object detection model size and inferencing speed.

Framework
Number of 
Parameters

Inferencing Speed 
(Seconds per Image)

YOLOv5 Large 46 149 064 2.7

YOLOv5 Medium 20 879 400 1.35

YOLOv5 Small 7 027 720 0.48

YOLOv3 61 508 200 1.03
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(a) Input image and labels (b) Predictions from YOLOv5 Large

(c) Predictions from YOLOv5 Medium (d) Predictions from YOLOv5 Small

Figure 11. Examples of the predictions from three YOLOv5 models. DMG in red boxes: damaged utility pole; UND in cyan boxes: undamaged 
utility pole.

(a) Input image and labels (b) Predictions from YOLOv5 Large

(c) Predictions from YOLOv5 Medium (d) Predictions from YOLOv5 Small

Figure 12. Examples of incorrect predictions and commonly seen failures. DMG in red boxes: damaged utility pole; UND in cyan boxes: 
undamaged utility pole.
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The current processing workflow operates on still-image captures 
and functions within the capabilities of our current UAS prototype. 
We see advantages in moving toward processing the video stream. 
Edge processing would identify and track possible features of interest, 
providing multiple views. The feature detection performance offsets re-
quired for faster processing would ideally be offset by the redundancy. 
Additionally, multiple observations through a time series would allow 
I2G operations by photogrammetric intersection independent of ground 
surface priors. Perhaps more importantly, we could photogrammetri-
cally estimate pole heights and lean to increase robustness of detection 
and classification.

We also plan improve the Cornelia quadcopter, geo-positioning, and 
ML implementation. Tasks include investigating more precise GNSS, 
exploring the addition of an altitude sensor, investigating the possibil-
ity of changing the camera to a more nadir viewpoint, and investigating 
few-shot learning strategies to improve the performance of the utility 
pole damage classification model. We will also work to identify COTS 
UAVs with capabilities similar to the Cornelia’s so that the work can 
be more easily scaled.

Conclusion
In this work, we demonstrated our end-to-end deployable framework 
including prototype to detect, classify, and geo-locate utility poles on 
the edge. We have advanced the state of the art for this topic in two 
areas: (1) deployed, onboard UAS analysis that allows ML processing 
within size, weight, and power (SWaP) parameters and communications 
constraints and (2) an object detection and classification module that 
delivers satisfactory performance with a small set of labeled data. The 
proposed framework can be scaled to solve the post disaster energy 
infrastructure damage assessment problem. The developed onboard 
processing system and hardware are available for adoption and emula-
tion by the US Civil Air Patrol and other organizations for real-time di-
saster assessment. We anticipate data collected from commercial, local, 
state, and federal entities to improve training, validation, and testing.
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Apricot Tree Detection from UAV-Images  
Using Mask R-CNN and U-Net
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Abstract
Monitoring trees is necessary to manage and take inventory of 
forests, monitor plants in urban areas, distribute vegetation, monitor 
change, and establish sensitive and renewable agricultural systems. 
This study aims to automatically detect, count, and map apricot trees 
in an orthophoto, covering an area of approximately 48 ha on the 
ground surface using two different algorithms based on deep learn-
ing. Here, Mask region-based convolutional neural network (Mask 
R-CNN) and U-Net models were run together with a dilation opera-
tor to detect apricot trees in UAV images, and the performances of 
the models were compared. Results show that Mask R-CNN operated 
in this way performs better in tree detection, counting, and mapping 
tasks compared to U-Net. Mask R-CNN with the dilation operator 
achieved a precision of 98.7%, recall of 99.7%, F1 score of 99.1%, 
and intersection over union (IoU) of 74.8% for the test orthophoto. 
U-Net, on the other hand, has achieved a recall of 93.3%, precision 
of 97.2%, F1 score of 95.2%, and IoU of 58.3% when run with the 
dilation operator. Mask R-CNN was able to produce successful results 
in challenging areas. U-Net, on the other hand, showed a tendency 
to overlook existing trees rather than generate false alarms.

Introduction
Accurate detection and counting of trees are challenging tasks faced 
by agricultural producers, urban planners, foresters, ecologists, and 
insurers to make correct assessments on issues such as irrigation, main-
tenance, planning, value, and risk determination. By their nature, the 
working areas in these fields can be hundreds of hectares, and perform-
ing these tasks in such large areas with traditional methods is very time 
consuming, expensive, and prone to errors. Therefore, more advanced, 
economical, and accurate methods are needed.

Tree detection and counting through imagery have been carried out 
with different methods for decades. For example, to detect and count 
palm trees from high-resolution UAV imagery, Shafri et al. (2011) 
proposed a method consisting of spectral and texture analysis, edge 
extraction, segmentation, morphological analysis, and blob analysis 
stages that results in average detection accuracy of more than 95%. In 
another study, Santoso et al. (2016) used spectroscopic measurements 
to extract palm trees using QuickBird images. Traditional digital image 
processing techniques, such as local maximum (Mohan et al. 2017), 
marker-controlled watershed (Huang et al. 2018), Hough transform 
(Koc-San et al. 2018), histogram of oriented gradient features, and 
support vector machine classifier (Wang et al. 2019), were also used to 
detect and count trees in high-resolution images.

In recent years, as an attempt to simulate the learning behavior of 
the human brain for computers, deep learning has been used in many 
remote sensing applications, including tree extraction and count-
ing using remote sensing imagery (Safonova et al. 2019; Santos et 
al. 2019). Especially, the convolutional neural network (CNN) has 
been recognized as one of the most successful and widely used deep 
learning approaches and has found a place for itself in tree detection 

applications (Chen et al. 2017; Li et al. 2018). Having a hierarchical 
architecture that can be trained using a large amount of data, CNN is 
able to perform object detection tasks. When CNNs are used together 
with region proposal networks  in methods such as Faster R-CNN or 
Mask R-CNN, they produce fast, efficient, and highly accurate results in 
the field of object detection (Girshick 2015; He et al. 2017). The Mask 
region-based convolutional neural network (Mask R-CNN) was recently 
used to detect trees in urban, campus, and rural areas (Ocer et al. 2020; 
Lumnitz et al. 2021). Introduced in 2017 as an extension to the Faster 
R-CNN model, Mask R-CNN is capable of detecting objects in images 
and creating masks for them, which is named instance segmentation. 
Quoc et al. (2020) compared the performance of this model with U-Net 
for segmenting agricultural areas in satellite images, obtaining a mean 
average precision of 95.21% for Mask R-CNN and 92.69% for U-Net. 
First proposed for segmenting biomedical images, U-Net (Ronneberger 
et al. 2015) has been used for many different areas in the literature, 
such as cell counting (Falk et al. 2019), brain tumor detection (Dong et 
al. 2017), road detection (Yang et al. 2019), and tree detection (Zhao et 
al. 2018; Korznikov et al. 2021).

The speed performances and capacity limits of deep learning 
algorithms, almost all of which are run better on a graphics processing 
unit (GPU), are directly related to the memory and speed values of this 
hardware. There is a certain upper limit to the image size the GPU can 
process, depending on the model used. For example, when Matterport’s 
Mask R-CNN implementation (Abdulla 2017) is used as the model, the 
maximum RGB image size that an Nvidia GTX 1080 Ti GPU with 11 GB 
of internal memory can handle is 4896×4896 pixels. For this reason, 
when object detection is to be done larger than the upper limit, it is 
necessary to split the image into parts or reduce the image size to suf-
ficient dimensions (hence compromising on detail). In studies dealing 
with such cases (Ma et al. 2018; Gao et al. 2019; Zhang et al. 2019), 
the image is usually divided into small pieces that overlap to a certain 
extent, and then additional processes are applied to prevent repetitive 
object counting in the overlap regions and to determine the object 
locations correctly. However, as these studies are concerned with only 
object detection, the problem of the existence of multiple outputs for 
the same ground truth in the overlap regions is not addressed in terms 
of mapping tasks.

Encountered in cases where object detection is performed with deep 
learning–based instance segmentation methods, such as Mask R-CNN or 
U-Net, the generated masks do not fit correctly to the ground truth, as 
some artificial gaps between the masks and the output image edges are 
formed for the objects close to the edges, eventually leading to mask 
localization inaccuracies (Cheng et al. 2020; Kirillov et al. 2020). In 
cases where the dimensions of the image to be examined are larger than 
the capacity of the GPU used, splitting the image into parts for process-
ing increases the total number of edges, eventually boosting incorrect 
segmentation and detection results in the regions close to the edges.

In this study, the detection, counting, and canopy mapping of 
apricot trees in a very high-resolution large orthophoto were conducted 
with the help of two instance segmentation models: Mask R-CNN and 
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U-Net. The main objectives of this study are (1) to compare the results 
produced by these models and (2) to improve these results by alleviat-
ing the problem of mask localization inaccuracies in generated tree 
masks, leading to a vast amount of false alarms encountered in object 
detection and segmentation. As a solution to the latter, this article 
proposes to apply a dilation operator to the detection outputs. To make 
comparisons between model results and to prove the effectiveness of 
the suggested method, a very large apricot tree orchard in Malatya 
province was selected as the study area. Results are compared in terms 
of precision, recall, F1 score, and intersection over union (IoU) metrics.

Study Area
Four different study sites located in Malatya/Turkey were chosen to 
detect apricot trees (Figure 1). The geographic coordinates of the study 
sites were 38.2332° E–38.3986° N, 38.2441° E–38.4113° N, 37.6981° 
E–38.8596° N, and 38.3248° E–38.5074° N for Site 1 (12 ha), Site 
2 (13 ha), Site 3 (64 ha), and Site 4 (48 ha), respectively. With an 
average annual precipitation of 574 mm, Malatya city has a warm and 
temperate climate. All study sites were orchards that contain apricot 
(Prunus armeniaca) trees. To increase the model’s generalization 
capability, study sites with different characteristics were selected. The 
crowns of the trees in Site 1 were wider than in other study sites. The 
trees in Site 3, on the other hand, had a small number of leaves because 
they belong to the drying period. For this reason, trees in Site 3 were 
more difficult to distinguish from the background.

Materials and Methods
Data Acquisition
In all study sites, a flight was performed with a DJI Phantom 4 Pro UAV 
with RGB-integrated 20-megapixel camera, and aerial images were 
obtained. For all study sites, the flight altitude was chosen as 75 m and 
the front and side overlap as 80% and 70%, respectively. After the UAV 
flights, orthophoto production was performed using Agisoft Metashape 
software. As a result of this process, four orthophotos were obtained. 
Orthophotos of Sites 1–3 were used for model training, while the 
orthophoto of Site 4 was used for testing the model. The spatial resolu-
tions of the orthophotos used for training were 2.07 cm for Sites 1 and 
2, 1.84 cm for Sites 3 and 4.

To obtain label data, trees on the orthophoto images were manu-
ally annotated using ArcMap software, and polygons describing tree 
boundaries were produced (Figure 2). As a result, a total number of 
1692 trees were annotated in orthophotos and used for training. In 
the orthophoto used for the test, a total of 957 trees were annotated. 
Orthophoto images and label images were cropped into pieces of 
768×768 pixels to make the training of the deep learning model more 
efficient. Image subsets without trees were removed from the training 
data set.

Instance Segmentation Models Based on Deep Learning
Being a subset of machine learning, deep learning is a neural network 
with multiple layers. Similar to the learning behavior of the human 
brain, these networks use large amounts of data for a specific purpose 

Figure 1. Location of the study sites and generated orthophotos.
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in a process to minimize the error. Among the key problems deep 
neural networks can solve is detecting objects in images. The computer 
vision task for detecting and localizing an object in an image is defined 
as instance segmentation. In this study, we use two different types of 
instance segmentation algorithms—Mask R-CNN and U-Net—for apri-
cot tree detection. In the following parts, details about both methods 
will be given.

Mask R-CNN
Mask R-CNN is conceptually simple and flexible object detection 
and instance segmentation model (He et al. 2017). In addition to the 
existing branch for bounding box recognition, the approach extends 
the Faster R-CNN model by adding a branch to predict an object 
mask in parallel. Thus, the Mask R-CNN model produces high-quality 

segmentation masks for detected objects and classifies them. As given 
in the schematic diagram in Figure 3, Mask R-CNN consists of three 
main components: (1) a feature pyramid network module, which 
generates multi-scale feature maps with better-quality information 
than regular feature extractors by constructing a bottom-up pathway 
and a top-down pathway in order to extract the hidden features in 
the input image; (2) a region proposal network module, which uses 
the appropriate feature output map of the feature pyramid network to 
propose candidate object bounding boxes or regions of interest; and 
(3) a prediction and regression module, which predicts the class, the 
offset values for the bounding box, and the mask of the object located 
in the proposed region. In this study, in the test phase, RGB images of 
4800×4800 pixels were input to the Mask R-CNN model, and binary 
masks of the same size were produced as output, where trees were 
represented with white and other regions with black.

U-Net
The U-Net architecture is a fully convolutional network, first designed 
for image segmentation in biomedicine. The results of the ISBI 2012 
challenge for segmentation of neural structures in electron micro-
scopic stacks showed that U-Net architecture can be trained using 
a small number of photos and exceeded the previous best approach 
(Ronneberger et al. 2015). It is divided into two parts: the contract-
ing path and the expansive path. The contracting path is made up of 
recurrent 3×3 convolutions, rectified linear unit, and 2×2 max-pooling 
layers with stride 2. The number of feature channels is doubled after 
down-sampling. The expansive path is made up of up-sampling the 
feature map, 2×2 up-convolution, and concatenation with the equiva-
lent feature map from the contracting path. To map each feature vector 
in the final layer, a 1×1 convolution is employed. The schematic 
diagram of the U-Net architecture is given in Figure 4. In this study, 
images of 768×768 pixels were input to the U-Net, and binary masks 
of the same size were produced as output, where trees were represented 
with white and other regions with black.

Figure 3. Architecture for Mask region-based convolutional neural network.

Figure 4. U-Net architecture.

Figure 2. Manually annotation of tree boundaries.
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Postprocessing: Dilation
The output map for the entire test orthophoto is produced by combining 
the binary mask outputs for each image subset. However, due to mask 
localization inaccuracies, some artificial gaps between the masks and 
the output image edges are formed, clearly visible at the intersections of 
small images (Figure 5). To avoid this problem, the morphologic dilation 
process was applied to the binary image. Erosion and dilation are the 
fundamental operators in mathematical morphology. When mathemati-
cal morphology is utilized in image processing, these operations are ap-
plied to an image with a collection of known shapes, called a structuring 
element. When the dilation operator is applied to an image, it produces 
an output image that illustrates where the structuring element hits the ob-
jects in the image (Benediktsson et al. 2003). It enlarges bright regions 
and shrinks dark regions. In this study, the shape of the structuring ele-
ment was selected as a disk, and the radius of the disk-shaped footprint 
was set to 11 for outputs of Mask R-CNN and 7 for outputs of U-Net. 
These parameters were selected empirically. As a result of dilation op-
eration, tree crowns are dilated, and edge mistakes were mitigated.

Work Flow for Apricot Tree Detection in Large-Scale UAV Images
The detection and segmentation of apricot trees in large-scale images 
are difficult. Due to hardware limitations, to perform these tasks with 

deep learning methods, the image size must be brought to a level that 
the GPU can handle by either cropping the image into parts or shrinking 
its dimensions. However, resizing the image will reduce details, mak-
ing it hard to detect small targets. Therefore, it is necessary to examine 
the image by cropping in order not to lose detail and to analyze the 
image in its original resolution. So, as in our study (see the flowchart 
in Figure 6), the orthophoto is divided into patches that do not overlap 
each other, the Mask R-CNN and U-Net models are fed with these 
patches, and mask outputs for the trees are produced. However, due to 
mask localization inaccuracies near the output edges, it is not possible 
to make accurate detections for the entire orthophoto simply by putting 
these patches together. Mask localization inaccuracies near the image 
edges are encountered in deep learning instance segmentation models, 
where the masks of the objects close to the edges of the output image 
do not fit the ground truth, and artificial gaps are formed between the 
mask border and the edge. As in this study, splitting the image into 
many parts increases the number of edges, further exacerbating the 
edge problem. In order to alleviate this problem, this article proposes 
applying a morphology operator, such as dilation, to the detection out-
puts before putting them together. The binary output detection results 
for test orthophoto were obtained in four steps:

Figure 5. Postprocessing work flow.

Figure 6. Flowchart of the study.
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1.	 Cropping the orthophoto into patches that do not overlap each 
other (4800×4800 pixels for Mask R-CNN, 768×768 for U-Net)

2.	 Feeding the cropped images into the models
3.	 Applying dilation operator to the model outputs
4.	 Putting the filtered outputs together

Accuracy Assessment Method
The accuracy assessments of the detection results in this study were 
performed using the F1 score, precision, recall, and IoU metrics. 
Manual annotation was performed in order to use it as reference data in 
accuracy assessment. F1 score, precision, and recall were calculated in 
an object-based manner. That is, a generated mask is approved as a true 
positive if it overlaps more than half of the ground truth; otherwise, 
it is marked as a false positive. Precision is the ratio of the number of 
correctly predicted positive results to the number of all positive predic-
tions, and recall is the ratio of number of correctly predicted positive 
results to the number of total positive ground truths. The F1 score 
is the weighted average of precision and recall. F1 score, precision, 
and recall are calculated using steps 1 to 3 listed below, respectively 
(Sokolova et al. 2006):

	 	
(1)

	 	
(2)

	 	
(3)

where TP, FP, TN, and FN are the total numbers of true positives, false 
positives, true negatives, and false negatives, respectively.

The IoU score has been calculated on the basis of pixels to evalu-
ate segmentation performances. IoU is the crossover rate between 
the prediction and the ground-truth boundaries, thus the ratio of their 
intersection to union (Nowozin 2014). It can be calculated using

	 	
(4)

Experimental Setup
The experiments related to Mask R-CNN were carried out using the 
framework introduced by Abdulla (2017), which uses the Keras and 
Tensorflow libraries. The U-Net model was also created using the 
Keras library. Transfer learning was carried out using the weights 
produced by Ocer et al. (2020) as initial weights for both models. Data 
augmentation techniques (random scaling, rotation, vertical/horizontal 
flipping, contrast/brightness alteration, and Gaussian blurring) were 
applied to increase the amount of data. Stochastic gradient descent 
with momentum is employed to optimize the Mask R-CNN model, with 
a weight decay of 0.0001 and a momentum of 0.9. The initial learn-
ing rate was determined as 0.002 and gradually increased to 0.01. On 
the other hand, to optimize the U-Net model, the Adam optimization 
algorithm was used, and the initial learning rate was set to 0.0005. The 
number of epochs was determined as 100 for both models. The hard-
ware configurations were an Intel i7 6850 K central processing unit 
with an Nvidia GTX 1080 Ti GPU for training and testing of the models. 
Training of both models was carried out with images of 768×768 
pixels. The Mask R-CNN framework produced instance segmentation 
results in run length encoding format, the results of which were con-
verted to binary image format using a Python script.

Mask R-CNN and U-Net models were also compared with the ma-
chine learning–based classification and regression tree (CART) method 
(Lewis 2000). CART models use a collection of if-then (split) conditions 
called tree-building algorithms for classification (Razi and Athappilly 
2005). The algorithm was implemented in eCognition Developer soft-
ware. Tree, shadow, and background classes were defined for classifi-
cation. After the classification, shadow and background classes were 
merged, and a binary image that represents tree and nontree classes 
was obtained.

Results and Discussion
Binary mask outputs produced for the test orthophoto with different 
models are given in Figure 7. There are 957 trees in total in the ortho-
photo. When run with the dilation operator, the Mask R-CNN model 
detected 954 trees correctly, missed three trees, and generated 13 
masks that are not actually trees. On the other hand, the U-Net model, 
run with the dilation operator, detected 893 trees correctly, missed 64, 
and generated 26 false alarms. On the other hand, when the dilation 
operator is not applied, Mask R-CNN could detect 936 trees correctly, 
missed 21 trees, and generated 161 masks that are not actually trees, 
while U-Net detected 883 trees correctly, missed 74, and generated 
55 false alarms. The CART algorithm detected 917 trees correctly, but 
it missed 40 trees and generated 660 masks that are not actually trees. 
Accuracy assessment results are given in Table 1.

Comparison of the Models in Tree Detection
When run with the dilation operator, the Mask R-CNN model achieved 
a precision of 98.7%, a recall of 99.7%, an F1 score of 99.1%, and an 
IoU of 74.8% for the test orthophoto. The experiment showed that, 
with the help of dilation operation, the Mask R-CNN model achieved 
a high success in the detection of apricot trees with a tendency to 
produce false alarms. A measure of segmentation success, its IoU score 
was 74.8% due to false alarms and, in some cases, less accurate tree 
boundary segmentation. U-Net, on the other hand, achieved a recall 

Figure 7. Detection results.

Table 1. Accuracy assessment results.

Metric

Mask R-CNN (%) U-Net (%)

CART 
(%)

With 
Dilation

Without 
Dilation

With 
Dilation

Without 
Dilation

F1 score 99.1 91.1 95.2 93.2 73.4

Precision 98.7 85.3 97.2 94.1 58.2

Recall 99.7 97.8 93.3 92.3 95.8

IoU 74.8 69.6 58.3 52.4 57.3

Mask R-CNN = Mask region-based convolutional neural network; CART = 
classification and regression tree; IoU = intersection over union.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 February 2023	 93



of 93.3%, a precision of 97.2%, an F1 score of 95.2%, and an IoU of 
58.3% when run with the dilation operator. Compared to Mask R-CNN, 
U-Net showed a greater tendency to overlook existing targets. The 
CART algorithm achieved a recall of 95.8%, a precision of 58.2%, an F1 
score of 73.4%, and an IoU of 57.3%. Although the CART algorithm’s 
recall value is not low, it produced detection results with lower success 
compared to deep learning–based Mask R-CNN and U-Net models.

As shown in Figure 8, the detection capability of Mask R-CNN is 
outstanding even when it comes to difficult samples. While the model 
demonstrated the ability to distinguish leafless, dry trees from live trees 
targeted for detection, U-Net, on the other hand, missed some trees in 
the scene.

The results support similar studies in the literature. For example, 
Zhang et al. (2022) compared several models for crown delineation of 
different tree types in a mixed forest, and Mask R-CNN outperformed 
both U-Net and YOLO. Mask R-CNN holds the edge in the other 
compared parameters. Zhao et al. (2018) conducted similar research on 
pomegranate trees where Mask R-CNN outperformed U-Net in the accu-
racy analysis. Different from our study, in their study area, there were 
multiple connected trees, while in our study area, multiple connected 
apricot trees are rare. In their study, the biggest disadvantage of Mask 
R-CNN is the longer training time.

Effectiveness of the Dilation Operator
When the dilation operator did not engage, all detection evalua-
tion metrics for the outputs generated by both models deteriorated. 
Especially, the precision metric suffers much more for Mask R-CNN, 
as many false alarms are generated compared to the case where the 

dilation applied. However, the results produced by U-Net, when run 
without the dilation operator, were not as badly affected as those of 
Mask R-CNN. It is noteworthy that the Mask R-CNN result is adversely 
affected, although IoU, which is a measure of segmentation success, is 
almost 70% for Mask R-CNN and 52% for U-Net when dilation is not 
applied. This is due mainly to the inaccurate segmentations produced 
for objects in the edge regions, which is a characteristic of the Mask 
R-CNN model. In the U-Net model, this problem is much milder. When 
the large image is cropped into patches so that it can be processed in 
models, the new edges of the created patches split some trees into two 
pieces. When these patches are processed in the models and reas-
sembled, if there are large gaps between the segmentation output of 
the object and the edge, as in the case of Mask R-CNN output, which is 
shown on the top row of Figure 9, the tree, which is actually one piece, 
is detected wrongly as two separate trees. However, as can be seen in 
the case of U-Net (the image at right in the top row of Figure 9), the 
gap is much narrower, and two detections from the same object are less 
likely. When a dilation operator is applied to the outputs, tree masks 
are enlarged, and dark regions are shrunk (Figure 9, bottom row). Thus, 
especially as seen in Mask R-CNN output, two masks belonging to the 
same object are combined and counted as a single object as it should 
be. Thus, 148 false alarms produced by the Mask R-CNN model on the 
test orthophoto were eliminated thanks to the applied dilation operator.

Conclusion
This study aims to automatically detect, count, and map apricot trees 
in a large-scale orthophoto, using Mask R-CNN and U-Net instance 

Figure 8. Comparison of the detection performance of the models on hard samples.
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segmentation models, and to improve the results by alleviating the 
object detection problem encountered around image edges. For this 
purpose, first, training and testing of the models were conducted using 
the images of apricot trees with distinct characteristics from four differ-
ent sites to make models robust against variations in diverse tree views. 
Then a dilation filter was applied on the patches of mask outputs to 
eliminate gaps between two masks of the same tree in the junction 
areas of the patches.

The results indicate that, when run with the dilation operator, Mask 
R-CNN produces better outputs in each of the tree detection, counting, 
and canopy mapping tasks compared to the U-Net. According to all 
evaluation metrics used in this study, Mask R-CNN outperforms U-Net. 
Mask R-CNN was able to produce successful results in areas where 
accurate detection is difficult even for the trained human eye. U-Net, 
on the other hand, showed a tendency to overlook existing trees rather 
than generate false alarms. However, Mask R-CNN seems to suffer more 
from the edge problem. The results show that when it comes to object 
detection and mapping tasks for large areas that have to be examined 
in parts, a dilation operator to be applied on the outputs of instance 
segmentation models helps to improve detection accuracies greatly.

These results add to the rapidly expanding field of deep learning in 
the remote sensing area. For future studies, we recommend compar-
ing different models for extracting different tree types. This way, using 
similar data, the extraction of various tree types with different content 
in the images can be evaluated.

Acknowledgment
We would like to thank the Turkish Agricultural Insurance Pool 
(TARSIM), which contributed to our work by sharing UAV data.

References
Abdulla, W.. 2017. Mask R-CNN for object detection and instance segmentation 

on keras and tensorflow. https://github.com/matterport/Mask_RCNN
Benediktsson, J. A., M. Pesaresi, and K. Amason. 2003. Classification and 

feature extraction for remote sensing images from urban areas based on 
morphological transformations. IEEE Transactions on Geoscience and 
Remote Sensing 41(9):1940–1949.

Chen, S. W., S. S. Shivakumar, S. Dcunha, J. Das, E. Okon, C. Qu, C. J. 
Taylor, and V. Kumar. 2017. Counting apples and oranges with deep 
learning: A data-driven approach. IEEE Robotics and Automation Letters 
2(2):781–788.

Cheng, T., X. Wang, L. Huang, and W. Liu. 2020. Boundary-preserving Mask 
R-CNN. Pages 660–676 in Proceedings of the European Conference on 
Computer Vision, held in Glasgow, United Kingdom, 23-28 August 2020. 
Berlin: Springer-Verlag. 

Dong, H., G. Yang, F. Liu, Y. Mo, and Y. Guo. 2017. Automatic brain tumor 
detection and segmentation using U-Net based fully convolutional 
networks. Pages 506–517 in Proceedings of the Annual Conference on 
Medical Image Understanding and Analysis, held in Edinburgh, Scotland, 
11-13 Jully 2017. Berlin: Springer-Verlag.

Figure 9. Effect of dilation filter on the mask outputs generated by Mask region-based convolutional neural network and U-Net for the same 
ground truth.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 February 2023	 95



Falk, T., D. Mai, R. Bensch, Ö. Çiçek, A. Abdulkadir, Y. Marrakchi, A. Böhm, 
J. Deubner, Z. Jäckel, and K. Seiwald. 2019. U-Net: Deep learning for cell 
counting, detection, and morphometry. Nature Methods, 16(1):67–70.

Gao, L., Y. He, X. Sun, X. Jia, and B. Zhang. 2019. Incorporating negative 
sample training for ship detection based on deep learning. Sensors 
19(3):684.

Girshick, R. 2015. Fast R-CNN. Pages 1440–1448 in Proceedings of the IEEE 
International Conference on Computer Vision, held in Santiago, Chile, 
7-13 December 2015. Washington, D.C.: IEEE Computer Society.

He, K., G. Gkioxari, P. Dollár, and R. Girshick, R. 2017. Mask R-CNN. Pages 
2961–2969 in Proceedings of the IEEE International Conference on 
Computer Vision, held in Venice, Italy, 22-29 October 2017. Washington, 
D.C.: IEEE Computer Society.

Huang, H., X. Li, and C. Chen. 2018. Individual tree crown detection and 
delineation from very-high-resolution UAV images based on bias field 
and marker-controlled watershed segmentation algorithms. IEEE Journal 
of Selected Topics in Applied Earth Observations and Remote Sensing 
11(7):2253–2262.

Kirillov, A., Y. Wu, K. He, and P. Girshick. 2020. Pointrend: Image 
segmentation as rendering. Pages 9799–9808 in Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition, held in , 
13-19 June 2020. Washington, D.C.: IEEE Computer Society.

Koc-San, D., S. Selim, N. Aslan, and B. T. San. 2018. Automatic citrus tree 
extraction from UAV images and digital surface models using circular 
Hough transform. Computers and Electronics in Agriculture 150:289–301.

Korznikov, K. A., D. E. Kislov, J. Altman, J. Doležal, A. S. Vozmishcheva, and 
P. V. Krestov. 2021. Using U-Net-like deep convolutional neural networks 
for precise tree recognition in very high resolution RGB (red, green, blue) 
satellite images. Forests 12(1):66.

Lewis, R. J. 2000. An introduction to classification and regression tree (CART) 
analysis. In Proceedings of the Annual Meeting of the Society for 
Academic Emergency Medicine, held in San Francisco, Calif., 22-25 May 
2000. Citeseer.

Li, W., R. Dong, H. Fu, and L. Yu. 2018. Large-scale oil palm tree detection 
from high-resolution satellite images using two-stage convolutional neural 
networks. Remote Sensing 11(1):11.

Lumnitz, S., T. Devisscher, J. R. Mayaud, V. Radic, N. C. Coops, and V. C. 
Griess. 2021. Mapping trees along urban street networks with deep 
learning and street-level imagery. ISPRS Journal of Photogrammetry and 
Remote Sensing 175:144–157.

Ma, M., J. Chen, W. Liu, and W. Yang. 2018. Ship classification and detection 
based on CNN using GF-3 SAR images. Remote Sensing 10(12):2043.

Mohan, M., C. A. Silva, C. Klauberg, P. Jat, G. Catts, A. Cardil, A. T. Hudak, 
and M. Dia. 2017. Individual tree detection from unmanned aerial vehicle 
(UAV) derived canopy height model in an open canopy mixed conifer 
forest. Forests 8(9):340.

Nowozin, S. Optimal decisions from probabilistic models: the intersection-over-
union case. Proceedings of the Proceedings of the IEEE conference on 
computer vision and pattern recognition, 2014, pp. 548–555.

Ocer, N. E., G. Kaplan, F. Erdem, D. Kucuk Matci, and U. Avdan. 2020. Tree 
extraction from multi-scale UAV images using Mask R-CNN with FPN. 
Remote Sensing Letters 11(9):847–856.

Quoc, T. T. P., T. T. Linh, and T. N. T. Minh. 2020. Comparing U-Net 
convolutional network with mask R-CNN in agricultural area 
segmentation on satellite images. Pages 124–129 in Proceedings of the 
2020 7th NAFOSTED Conference on Information and Computer Science 
(NICS), held in Ho Chi Minh city, Vietnam, 26-27 November 2020. New 
York: IEEE).

Razi, M. A. and K. Athappilly. 2005. A comparative predictive analysis of 
neural networks (NNs), nonlinear regression and classification and 
regression tree (CART) models. Expert Systems with Applications 
29(1):65–74.

Ronneberger, O., P. Fischer, and T. Brox. 2015. U-net: Convolutional networks 
for biomedical image segmentation. Pages 234–241 in Proceedings of the 
International Conference on Medical Image Computing and Computer-
Assisted Intervention, held in Munich, Germany, 5-9 October 2015. 
Berlin: Springer-Verlag.

Safonova, A., S. Tabik, D. Alcaraz-Segura, A. Rubtsov, Y. Maglinets, and F. 
Herrera. 2019. Detection of fir trees (Abies sibirica) damaged by the bark 
beetle in unmanned aerial vehicle images with deep learning. Remote 
Sensing 11(6):643.

Santos, A. A. D., J. Marcato Junior, M. S. Araújo, D. R. Di Martini, E. C. Tetila, 
H. L. Siqueira, C. Aoki, A. Eltner, E. T. Matsubara, and H. Pistori. 2019. 
Assessment of CNN-based methods for individual tree detection on 
images captured by RGB cameras attached to UAVs. Sensors 19(16):3595.

Santoso, H., H. Tani, and X. Wang. 2016. A simple method for detection and 
counting of oil palm trees using high-resolution multispectral satellite 
imagery. International Journal of Remote Sensing 37(21):5122–5134.

Shafri, H. Z., N. Hamdan, and M. I. Saripan. 2011. Semi-automatic detection 
and counting of oil palm trees from high spatial resolution airborne 
imagery. International Journal of Remote Sensing 32(8):2095–2115.

Sokolova, M., N. Japkowicz, and S. Szpakowicz. 2006. Beyond accuracy, 
F-score and ROC: A family of discriminant measures for performance 
evaluation. Pages 1015–1021 in Proceedings of the Australasian Joint 
Conference on Artificial Intelligence, held in Hobart, Australia, 4-8 
December 2006. Berlin: Springer-Verlag.

Wang, Y., X. Zhu, and B. Wu. 2019. Automatic detection of individual oil 
palm trees from UAV images using HOG features and an SVM classifier. 
International Journal of Remote Sensing 40(19):7356–7370.

Yang, X., X. Li, Y. Ye, R. Y. K. Lau, X. Zhang, and X. Huang. 2019. Road 
detection and centerline extraction via deep recurrent convolutional neural 
network U-Net. IEEE Transactions on Geoscience and Remote Sensing 
57(9):7209–7220.

Zhang, C., J. Zhou, H. Wang, T. Tan, M. Cui, Z. Huang, P. Wang, and L. Zhang. 
2022. Multi-species individual tree segmentation and identification based 
on improved Mask R-CNN and UAV imagery in mixed forests. Remote 
Sensing 14(4):874.

Zhang, S., R. Wu, K. Xu, J. Wang, and W. Sun. 2019. R-CNN-based ship 
detection from high resolution remote sensing imagery. Remote Sensing 
11(6):631.

Zhao, T., Y. Yang, H. Niu, D. Wang, and Y. Chen. 2018. Comparing U-Net 
convolutional network with Mask R-CNN in the performances of 
pomegranate tree canopy segmentation. Pages 210–218. in SPIE Asia-
Pacific Remote Sensing, held in Honolulu, Hawaii, 24-26 September 2018. 
Bellingham, WA: SPIE

96	 Februar y  2023	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



Comparative Analysis of Different  
CNN Models for Building Segmentation  

from Satellite and UAV Images
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Abstract
Building segmentation has numerous application areas such as 
urban planning and disaster management. In this study, 12 CNN 
models (U-Net, FPN, and LinkNet using EfficientNet-B5 backbone, 
U-Net, SegNet, FCN, and six Residual U-Net models) were gener-
ated and used for building segmentation. Inria Aerial Image Labeling 
Data Set was used to train models, and three data sets (Inria Aerial 
Image Labeling Data Set, Massachusetts Buildings Data Set, and 
Syedra Archaeological Site Data Set) were used to evaluate trained 
models. On the Inria test set, Residual-2 U-Net has the highest F1 
and Intersection over Union (IoU) scores with 0.824 and 0.722, 
respectively. On the Syedra test set, LinkNet-EfficientNet-B5 has F1 
and IoU scores of 0.336 and 0.246. On the Massachusetts test set, 
Residual-4 U-Net has F1 and IoU scores of 0.394 and 0.259. It has 
been observed that, for all sets, at least two of the top three models 
used residual connections. Therefore, for this study, residual connec-
tions are more successful than conventional convolutional layers.

Introduction
In the last few years, particularly with the developments in urbanized 
areas, building detection and segmentation from aerial images have be-
come challenging and important research topics within the remote sens-
ing and computer vision community (Ye et al. 2021). Assigning each 
pixel into a building or non-building class is challenging because there 
are big differences in sizes and shapes of buildings, strong similarities 
between buildings and non-buildings, and small between class and large 
within-class variance in pixel values in aerial images (Chen et al. 2021). 
Building map generation from aerial images is a costly, laborious, and 
mostly a manual process (Zhu et al. 2021). However, tasks such as 
detection of illegal buildings (Liu et al. 2021), change detection (Sun et 
al. 2020), urban planning (Rathore et al. 2016), and disaster manage-
ment (Liu et al. 2020a) all require precise building segmentation.

With continuous developments in current technologies, such as 
unmanned aerial vehicles (UAVs), sensors, and satellites, a large num-
ber of high-resolution aerial images have become more accessible and 
preferred data for building segmentation applications (Zhu et al. 2021), 
which opened new paradigms for the community. With these high-
resolution aerial images, the texture, structure, and spectral information 
of the buildings have become more refined (Wang and Miao 2022), and 
these images facilitate the automatic building segmentation greatly (Hu 
et al. 2021). But this brings more challenges that arise from diversity 
in building characteristics to complex backgrounds (Liu et al. 2020b; 
Tian et al. 2021). Therefore, improving the accuracy and efficiency of 
building segmentation is still a challenging task and the focus of many 
studies (Ye et al. 2021).

Technologies used in building segmentation studies have also 
progressed over the years (Ye et al. 2021) and various techniques have 

been proposed. In earlier studies, most of these methods were tradi-
tional image processing methods that focus on pixels (Sirmacek and 
Unsalan 2008), lengths, edges (Ferraioli 2010), shapes (Dunaeva and 
Kornilov 2017), spectrum (Zhong et al. 2008), textures (Awrangjeb et 
al. 2013) and shadows (Chen et al. 2014; Sirmacek and Unsalan 2008) 
as input features. Then, later on, conventional machine learning meth-
ods such as Support Vector Machines (Inglada 2007), K-Means (Celik 
2009), Random Forests (Dong et al. 2015), Conditional Random Fields 
(CRF) (Li et al. 2015) and AdaBoost have been started to be used. 
However, the building structure complexities, similarities with other 
classes (such as roads and cement backgrounds), dependency on prior 
knowledge of the topic (Liu et al. 2020b), and the need for manual 
feature selection led to poor generalization capabilities and bias (Liu 
et al. 2021). Thus, they are not well suited for building segmentation 
from high-resolution aerial images.

Recently, deep learning approaches, most popularly convolutional 
neural networks (CNN) have come forth as successful methods for 
computer vision applications (Qin et al. 2018), due to the availability 
of large data sets and increased computation power. CNN, which is a 
subclass of deep neural networks (DNN), is proposed in (LeCun et al. 
1989). Differently, from previously mentioned conventional methods, 
deep learning methods can learn the features and semantic informa-
tion directly from the input (Liu et al. 2020b), perform detailed feature 
mapping via CNNs, and make classifications and segmentations through 
sequential convolutions with fully connected layers (Wang and Miao 
2022). Therefore, CNN can be regarded as a method that combines 
feature extraction and segmentation/classification into a single model.

CNN models, which are mostly patch-based, have made notable 
achievements in building extraction tasks. However, they rely on small 
patches around targets to predict and ignore the relations between 
patches (Wang and Miao 2022). In addition, these patch-based models 
are time-consuming. To overcome these problems, fully convolutional 
networks (FCN) were proposed by (Long et al. 2015). In FCNs, fully 
connected layers that are used in conventional CNNs are replaced with 
convolutional layers, and the up-sampling layers are incorporated into 
the model. This allows the models to predict dense segmentation fea-
ture maps. This approach has become very popular and has achieved 
considerable performance on semantic segmentation tasks (Erdem 
et al. 2021; Ozturk et al. 2022; Sariturk et al. 2020). In addition, 
numerous variants based on FCN have been proposed such as SegNet 
(Badrinarayanan et al. 2017), DeepLab (Chen et al. 2018), DeconvNet 
(Noh et al. 2015), and U-Net (Ronneberger et al. 2015).

Despite FCN’s success, there are some limitations. Firstly, fully 
convolutional layers in FCNs lead to a large number of parameters 
and computation complexity. Secondly, FCNs fail to provide detailed 
information about complex structures and lose information about 
small objects (Khan et al. 2022). To overcome these disadvantages, 
(Ronneberger et al. 2015) proposed U-Net, which achieved significant 
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success in medical image segmentation studies. U-Net, which adopts a 
U-shape architecture, consists of two parts. The first part is the encod-
er, which extracts features from the input image. The second part is the 
decoder, which performs the dense predictions. Nowadays, most CNNs 
used in segmentation studies from aerial images are based on FCNs.

In this study, 12 CNN models were generated, trained, evaluated, and 
comparisons were realized. U-Net, Feature Pyramid Networks (FPN), 
and LinkNet architectures using EfficientNet-B5 backbone, Original 
U-Net, SegNet, FCNs, and six different Residual U-Net approaches that 
use six different residual block designs were used for building segmen-
tation from aerial images. The main objectives of the study were: 
(1)	 Comparison of performance and generalization capabilities of dif-

ferent state-of-the-art CNN models for building segmentation
(2)	 Comparison of different residual block designs inspired by the 

ResNet architecture, which has been popular in recent years 
and achieved successful results, with each other and other used 
approaches

(3)	 Evaluating the usability of models trained with publicly available 
image data covering urban and rural areas, for archaeological 
sites, and which approaches might be more appropriate

These models were trained using the training set prepared using 
the images from the Inria Aerial Image Labeling Data Set. To test the 
trained models, three different test sets were prepared, and evaluations 
were realized. These test sets were prepared using the Inria Aerial 
Image Labeling Data Set, the Massachusetts Buildings Data Set, and 
our Syedra Archaeological Site Data Set. This study aims to realize 
comparisons between used approaches for building segmentation tasks 
and test the usability of the models trained with the data from urban 
and rural areas for the detection of buildings and building remains in 
archaeological sites.

Methodology
In this study, U-Net, FPN, and LinkNet were used as base architec-
tures to generate the models. In addition to the original U-Net model, 
EfficientNet-B5 is used as a backbone for all three base architectures. 
Moreover, six different residual block designs (Naranjo-Alcazar et al. 
2019) were applied to the original U-Net architecture. Consequently, a 
total of 12 CNN models were obtained.

Architectures
U-Net
U-Net is a CNN that was developed originally for biomedical image 
segmentation (Ronneberger et al. 2015). Due to its effective GPU us-
age and good representation ability, it has become a popular architec-
ture for image segmentation tasks (Lei et al. 2021). U-Net is an archi-
tecture with a U-shaped, symmetrical structure. It consists of encoder, 
decoder, and bottleneck parts that can extract and then concatenate 
feature maps (Figure 1). The encoder path extracts feature maps, and 
these feature maps propagate via skip connections to the decoder path. 
Afterward, the decoder path uses the learned features to reconstruct the 
images into wanted dimensions using up-sampling (Punn and Agarwal 
2021). The bottleneck, which connects encoder and decoder paths, 
includes two 3 × 3 convolutions. The encoder consists of four blocks; 
each one includes two sets of 3 × 3 convolutions, Rectified Linear Unit 
(ReLU) activations, and 2 × 2 max-pooling. The decoder also consists 
of four blocks and each block includes a 2 × 2 transposed convolution 
layer, skip connection to the related feature map, and two 3 × 3 convo-
lutions (Ronneberger et al. 2015).

Feature Pyramid Networks (FPN)
Lin et al. (2017) introduced FPN in 2017. The authors used the inherent 
pyramidal and multi-scale hierarchy of deep CNNs to construct feature 
pyramids. The aim was to naturally use the pyramidal shape of the feature 
hierarchy of CNN and at the same time create a semantically strong fea-
ture pyramid (Lin et al. 2017). To achieve this, Lin et al. (2017) used an 
architectural design that combines semantically strong and low-resolution 
features with semantically weak and high-resolution features using lateral 
connections and top-down path. Consequently, a feature pyramid that has 
strong and rich semantic information was obtained.

FPN consists of two paths: a top-down and a bottom-up path (Figure 
2). The bottom-up path is a traditional CNN used in image segmentation 
and classification tasks. The top-down path generates the pyramidal 
features to be used for object detection. This path takes the last layer 
of the bottom-up path, up-sample the output of the previous layer, and 
adds the output of the bottom-up path with the same dimension. 

LinkNet
In 2017, Chaurasia and Culurciello proposed a deep neural network 
called LinkNet, which allows the model to learn without any impor-
tant increase in the number of parameters (Chaurasia and Culurciello 
2017). Unlike many CNN architectures, the novelty of LinkNet lies in 
the way that they link every encoder with a decoder (Figure 3). Due 
to the usage of multiple down-sampling in the encoder, some spatial 
information is lost, and therefore it is quite hard to recover the informa-
tion by using just these down-sampled outputs. In LinkNet, inputs 
of each encoder are bypassed to the output of their corresponding 
decoders (Chaurasia and Culurciello 2017). With this operation, lost 
spatial information is recovered and can be used by decoders and in up-
sampling operations. Additionally, since the encoder and decoder are 
sharing knowledge learned by the encoder at each layer, decoders can 
use fewer parameters. This results in a more efficient network design 
compared to other existing networks (Chaurasia and Culurciello 2017).

SegNet
Badrinarayanan et al. (2017) presented a deep fully convolutional 
network for semantic segmentation, called SegNet. The proposed 
architecture consists of an encoder, a decoder, and a classification 

Figure 1. U-Net architecture (Ronneberger et al. 2015).

Figure 2. Feature pyramid network architecture (Lin et al. 2017).
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layer (Figure 4). The topology of the encoder is identical to the first 13 
convolutional layers used in the VGG16 network (Badrinarayanan et al. 
2017). Every convolution layer is followed by a Batch Normalization 
and a ReLU. There is a corresponding decoder layer for each encoder 

layer; hence the network has 13 decoder layers. The decoder maps the 
low-resolution feature maps coming from the encoder to input resolu-
tion for pixel-wise classification. The final decoder output is a classifier 
to produce final class probabilities.

Fully Convolutional Networks (FCN)
In 2015, Long et al. (2015) adapted modern networks used for classifi-
cation (VGGNet, AlexNet, GoogleNet) into fully convolutional networks 
(FCN) and transferred their representations to image segmentation 
tasks by fine-tuning. Then, they defined an architecture (Figure 5) that 
combines the deep, semantic information with the shallow, appearance 
information by using skip connections to produce detailed and accurate 
segmentations (Long et al. 2015). 

Backbone (EfficientNet)
In the study, EfficientNet is used as a backbone for architectures 
U-Net, FPN, and LinkNet. Tan and Le (Tan and Le 2019) studied the 
model scaling and found that balancing the width, depth, and resolu-
tion of a network can lead to better performance. They proposed a 
scaling method that scales all dimensions uniformly, using a compound 
coefficient (Figure 6). As a result of these studies, they designed a 
baseline network and scaled the network up to obtain a model family 
called EfficientNet. The EfficientNet family consists of eight models, 
named from B0 to B7 (Tan and Le 2019). As the number in the model 

(a) (b) (c)
Figure 3. (a) LinkNet architecture, (b) encoder block, (c) decoder 
block (Chaurasia and Culurciello 2017).

Figure 4. SegNet architecture (Badrinarayanan et al. 2017).

Figure 5. Fully convolutional network architectures (Long et al. 2015).

Figure 6. EfficientNet-B0 architecture (Tan and Le 2019).
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name increases, it is stated that the model has more parameters. For 
this study, the EfficientNet-B2 variant is selected as the backbone.

Residual Blocks and Residual U-Net Approaches
Residual blocks were originally proposed via ResNet architecture (He 
et al. 2016a), to overcome problems of deep CNNs (He et al. 2016a). 
When the number of layers in a network continues to increase, the 
“vanishing gradient problem” occurs. During the training of deep 
models, gradients often get very small or zero, and eventually leave 
the weights nearly unchanged. Using residual connections, informa-
tion can be directly passed many layers down (He et al. 2016a). In 
this study, additionally to the residual block (RB1) used in ResNet, 
four different block designs (RB2-RB5) by (He et al. 2016b), and one 
(RB6) introduced by (Dai et al. 2017) were used to generate Residual 
U-Net approaches (Figure 7). Conventional convolution layers and 
convolution blocks are replaced with residually connected layers and 
residual blocks. As a result, six different Residual U-Net approaches 
have been generated.

Data Sets
In the study, a total of three different data sets were used. Inria Aerial 
Image Labeling Data Set was selected to train and test the models, 
and two additional data sets were also used to test the trained models. 
These additional test sets were prepared using Massachusetts Buildings 
Data Set and our Syedra Archaeological Site Data Set. 

Inria Aerial Image Labeling Data Set
The Inria Aerial Image Labeling Data Set is a benchmark data set pro-
vided by Inria for use in building segmentation studies (Maggiori et al. 
2017). This data set features RGB images with 30 cm spatial resolution. 
The data set is divided into two sets as training and testing (Maggiori 
et al. 2017). Every image in the training set has a corresponding binary 
mask, with building and not building classes. Since the images in the 
provided test set don’t have masks, only images and corresponding 
masks from the training set were used. The regions where the im-
ages are from differ from densely populated areas (e.g., Chicago and 
Vienna) to rural areas (e.g., Austrian Tyrol). The usage of this diverse 
data set provides a high generalization ability. The training set provid-
ed by Inria consists of a total of 180 images and their masks from five 
cities with different characteristics (Chicago, Ill., USA; Austin, Tex., 
USA; Kitsap County, Wash., USA; Vienna and Western Tyrol, Austria). 
These images are in the size of 5000 × 5000 pixels and each covers an 
area of 1500 × 1500 m².

In order to augment the size of the data set and cut the computation-
al cost, images and masks were cropped into smaller patches in size 
of 512 × 512 pixels (Figure 8). Images and masks with a low number 
of buildings and no buildings were eliminated from the set, and as a 

result, 11 210 images and corresponding masks were obtained. From 
this data set, 7848 images and masks (70%) were selected to be used as 
the training set, 1681 images and masks (15%) were selected to be the 
validation set, and the remaining 1681 images and masks (15%) were 
selected as the test set. In these selections, attention has been given to 
the homogeneous distribution of the rural and urban areas.

Massachusetts Buildings Data Set
One of two data sets used to generate additional test sets is 
Massachusetts Buildings Data Set. This data set was introduced by 
Volodymyr Mnih in 2013 (Mnih 2013) and includes 151 RGB images 
and corresponding masks from Boston, Mass., USA. Images in the 
data set is the size of 5000 × 5000 pixels and covers an area of 2.25 
km². Selected images and masks from the set were cropped into 512 × 
512 pixel size patches (Figure 9), similar to the preparation of the Inria 
set, and the images with little to no amount of building classes were 

Figure 8. Sample 512 × 512 image and mask from Inria data set.

Figure 9. Sample 512 × 512 image and mask from Massachusetts 
data set.

Figure 7. Residual block designs were used in the study (Naranjo-Alcazar et al. 2019).
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eliminated. As a result of all the steps, a test set that includes 225 im-
ages and corresponding masks was obtained.

Syedra Archaeological Site Data Set
Syedra Archaeological Site Data Set was acquired over the Syedra 
Ancient City in November 2020. The ancient city of Syedra is located 
approximately 20 km southeast of Alanya, Antalya, Turkey. While the 
central structures of Syedra, which are spread over a very large area, 
are concentrated on the summit of Asar Tepe (approximately 400 m 
above sea level) and its south-facing high parts, there are also city-
related building groups in the harbor area on the coastline and other 
smaller hills around Asar Tepe (Can 2017). In the study, the images 
were collected from the hilly area (approximately 10 ha), which is 
the old city center, where the buildings that have been preserved until 
today are located.

The images have been acquired using a DJI Mavic 2 Pro UAV with 
Hasselblad L1D-20c, 20 MP aerial camera. They were obtained with 
two flights with fixed take-off heights of 46 m and 58 m in the south re-
gion of the city. The collected images were cropped into 256 × 256 pixel 
size patches (Figure 10), the images with little to no amount of building 
classes were eliminated, and as a result, a total of 487 images and their 
corresponding masks were obtained to be used as the second test set.

Training and Testing
In the study, U-Net, FPN, and LinkNet architectures with 
EfficientNet-B5 backbone, original U-Net architecture, SegNet, FCN, 
and six Residual U-Net approaches with different residual block 
designs were used to generate models and comparisons between 
them were realized. To train these models, the prepared Inria data set 
was used. To test the trained models, in addition to the Inria data set, 
Massachusetts and Syedra data sets were used. Tensorflow framework 
was used to build models, and all models (except Residual U-Net ap-
proaches) are available in the “Segmentation Models” repository on 
GitHub (Yakubovskiy 2019). 

As mentioned earlier, 70% of the Inria data set was used for train-
ing, and 15% was used for validation. To cut the computational cost, 
images and their corresponding masks were resized from 512 × 512 
pixels to 256 × 256 pixels and normalized. “Adam” optimizer (Kingma 
and Ba 2015) with a 0.0001 initial learning rate was used during the 
training. To incrementally reduce the learning rate, with respect to 
training performance, the “ReduceLROnPlateau” callback was used. 
This callback monitored the validation loss during training, and when 
the value does not decrease for five consecutive epochs, the learning 
rate value was reduced by a 0.1 factor. All models are trained with a 
batch size of 2, and to calculate loss values, two loss functions were 
used together. These are Binary Cross-Entropy Loss and Dice Loss. 
Previous studies on building detection have shown that using joint loss 
functions is effective (Iglovikov et al. 2018). Binary Cross-Entropy 
is a loss function that is used in studies involving binary decisions 
(Equation 1) (Rosebrock 2017). The dice coefficient is a metric widely 
used in computer vision studies to calculate similarities between 
two images (Jadon 2020). In 2016, it has been adapted as Dice Loss 
(Equation 2) (Sudre et al. 2017). 

	  	
(1)

 	 	
(2)

To determine the duration of the training, another callback called 
“EarlyStopping” was used. During the training, this callback monitored 
the validation loss and if the value doesn’t decrease for 10 consecutive 
epochs, the training stopped. In addition to mentioned callbacks, the 
“ModelCheckpoint” callback was also used to save the model when-
ever the validation loss value decreased. With this callback function, 
the best models were saved during the training, and later on, were used 
for testing and segmentation. The training epochs for all models, along 
with the number of trainable parameters, were shown in Table 1.

Table 1. Number of trainable parameters and number of epochs.

Architectures

Number of 
Trainable 

Parameters

Epoch of 
the Best 
Model

Total 
Number of 

Epochs

U-Net 31M 12 22

SegNet 37.3M 20 30

FCN 134.3M 49 50

U-Net (EfficientNet-B5 Backbone) 37.4M 42 52

FPN (EfficientNet-B5 Backbone) 31.8M 21 31

LinkNet (EfficientNet-B5 Backbone) 33.7M 12 22

Residual-1 U-Net 31.7M 15 25

Residual-2 U-Net 31.7M 27 37

Residual-3 U-Net 31.7M 18 28

Residual-4 U-Net 31.7M 17 27

Residual-5 U-Net 31.7M 23 33

Residual-6 U-Net 31.7M 18 28

After training, the best models for each architecture were picked 
and evaluated on the test sets. To evaluate the models, several metrics 
were used, and image segmentation was performed with 0.5 threshold 
applied to the class probabilities. The metrics used for the evaluation 
process are Precision, Recall, F1 Score, and Intersection over Union 
(IoU). The precision metric is the ratio of True Positive (TP) values to 
total positive (TP + False Positive (FP)) (Equation 3) (Patterson and 
Gibson 2017). The recall is the ratio of TP values to all real positive 
values (TP + False Negative (FN)) (Equation 3) (Patterson and Gibson 
2017). F1 Score is a metric used to measure the general performance 
of a model in segmentation and classification studies, and it is the har-
monic mean of Precision and Recall (Equation 4). IoU gives the ratio 
of the overlapped area between the mask and the prediction, of the 
union of these areas (Equation 5) (Géron 2019). Besides these metrics, 
test loss and test accuracy values were calculated for all models, using 
each test set.

	 	
(3)

	 	
(4)

 	 	
(5)

Figure 10. Sample 256 × 256 image and mask from Syedra data set.
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Results and Discussion
A summary of evaluation metric results is shown in Table 2. It has 
been observed that on the Inria test set, the Residual-2 U-Net model 
has the highest IoU score, F1 score, and test accuracy with 0.824, 
0.722, and 94.7%, respectively. For the F1 score, Residual-3 U-Net 
and U-Net follow Residual-2 U-Net with 0.824 and 0.819. For the IoU 
score, U-Net and Residual-6 U-Net follow with 0.712. On the Syedra 
test set, the LinkNet model with the EfficientNet-B5 backbone has the 
highest F1 and IoU scores with 0.336 and 0.246. Residual-4 U-Net and 
Residual-3 U-Net follow with 0.252 and 0.249 F1 scores, and 0.172 
and 0.178 IoU scores, respectively. 

On the Massachusetts test set, the Residual-4 U-Net model has the 
highest F1 and IoU scores with 0.394 and 0.259. Residual-1 U-Net and 

Residual-3 U-Net models follow with 0.368 and 0.336 F1 scores and 
0.243 and 0.220 IoU scores. Residual-6 U-Net model has the highest 
test accuracy on both Massachusetts and Syedra test sets with 83.1% 
and 84%, respectively.

Test images, their corresponding masks, and example segmentation 
images are shown in Figures 11, 12, and 13. Predictions were per-
formed with 0.5 threshold value. In the segmented images presented, 
white pixels are building classes and black pixels are the background.

According to the results obtained on prepared test sets, the 
Residual-3 U-Net architecture, using the RB-3 residual block de-
sign, is in the top three for all test sets according to the evaluations. 
Therefore, it can be stated that it is the most inclusive model among all 
used approaches. When evaluated in general, it has been observed that 

Table 2. Evaluation results of the models.
Inria Syedra Massachusetts

F1 IoU
Test Acc. 

(%) F1 IoU
Test Acc 

(%) F1 IoU
Test Acc 

(%)
U-Net 0.819 0.712 94.1 0.188 0.134 82.6 0.312 0.200 79.3
SegNet 0.674 0.558 92.1 0.073 0.053 83.5 0.165 0.101 81.5
FCN 0.693 0.567 91.6 0.187 0.136 83.7 0.254 0.158 73.9
U-Net EfficientNet-B5 0.701 0.568 89.9 0.179 0.115 77.1 0.275 0.173 80.3
FPN EfficientNet-B5 0.661 0.527 89.8 0.140 0.086 80.0 0.299 0.187 79.6
LinkNet EfficientNet-B5 0.690 0.552 89.8 0.336 0.246 82.6 0.305 0.190 78.1
Residual-1 U-Net 0.811 0.703 94.1 0.218 0.151 83.7 0.368 0.243 83.0
Residual-2 U-Net 0.824 0.722 94.7 0.199 0.140 83.8 0.311 0.202 82.3
Residual-3 U-Net 0.824 0.705 94.2 0.249 0.178 83.7 0.336 0.220 82.4
Residual-4 U-Net 0.803 0.693 93.9 0.252 0.172 78.9 0.394 0.259 82.0
Residual-5 U-Net 0.797 0.686 93.9 0.141 0.096 83.2 0.328 0.211 81.7
Residual-6 U-Net 0.817 0.712 94.4 0.151 0.107 84.0 0.313 0.204 83.1
IoU = Intersection over Union; acc. = Accuracy.

Figure 11. Segmentation results of image no. 552 from the Inria test set.
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Figure 12. Segmentation results of image no. 128 from the Massachusetts test set.

Figure 13. Segmentation results of image no. 329 from the Syedra test set.
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models using residual connections are more successful than models 
using conventional convolution structures. On all three test sets, at 
least two of the top three most successful models, according to the 
evaluation metric results, use architectures with residual connections. 
This can be interpreted as residual connections being more success-
ful due to their ability to carry spatial information from earlier layers. 
The model uses LinkNet architecture with EfficientNet-B5 backbone 
achieved the most successful results on the Syedra test set, which is 
the test set that has the most different feature characteristics, which 
are archaeological buildings and building remains. Since this architec-
ture achieves the most promising results compared to other models, 
it could be said that this approach is best suited for different feature 
characteristics among all models and could be a better choice to be 
used for future studies on archaeological sites. On the other hand, FPN 
architecture with EfficientNet-B5 backbone and SegNet were the least 
successful models for all three test sets. According to the evaluation 
metric results, SegNet was in the bottom three for all three test sets and 
provided the lowest F1 and IoU scores for Syedra and Massachusetts 
test sets. Considering these results on test sets that have different 
types of feature characteristics than the training set, it could be said 
that SegNet is the approach that has the least generalization ability 
among the others used in the study. Therefore, it can be stated that the 
architectural structures of FPN and SegNet are the least suitable model 
approaches for building detection and segmentation study compared to 
other approaches used.

Conclusions
Over the years, automatic building segmentation from aerial images 
has become a challenging and important research topic with the rapid 
developments in especially urban areas. Within the study, building 
segmentation from satellite and UAV images was performed using the 
Inria Aerial Image Labeling Data Set as the training set, and the Inria 
Aerial Image Labeling Data Set, the Massachusetts Buildings Data Set, 
and the Syedra Archaeological Site Data Set as test sets. A total of 12 
models were generated, and comparisons were realized. 

Results show that the Residual-2 U-Net model, which uses a differ-
ent residual block from ResNet, performs best in all evaluation metrics 
on the Inria test set. According to the evaluation metrics, the LinkNet 
EfficientNet-B5 model on the Syedra Archaeological Site Test Set and 
the Residual-4 U-Net model on the Massachusetts Test Set showed the 
best results. Since the features in Syedra Archaeological Site Test Set 
have different characteristics from the Inria Training Set, it may be said 
that the LinkNet EfficientNet-B5 model has high generalization ability. 
Nevertheless, the features from Massachusetts Test Set are similar to 
the Inria Training Set but from a different kind of sensor, and because 
of that it can be mentioned that the Residual-4 U-Net model has a gen-
eralization ability across similar features and different sensors.

In further studies, performance improvements will be realized on 
the proposed residual models, with the implementation of approaches 
such as attention gates and transformers. Additionally, studies to ex-
tract buildings and building remains on the archaeological sites will be 
continued using the Syedra Archaeological Site Data Set and different 
CNN approaches. 
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Abstract
Quantitative estimation of crop nitrogen is the key to site-specific man-
agement for enhanced nitrogen (N) use efficiency and a sustainable 
crop production system. As an alternate to the conventional approach 
through wet chemistry, sensor-based noninvasive, rapid, and near-
real-time assessment of crop N at the field scale has been the need for 
precision agriculture. The present study attempts to predict leaf N of 
wheat crop through spectroscopy using a field portable spectroradi-
ometer (spectral range of 400–2500 nm) on the ground in the crop 
field and an imaging spectrometer (spectral range of 400–1000 nm) 
from an unmanned aerial vehicle (UAV) with the objectives to evaluate 
(1) four multivariate spectral models (i.e., artificial neural network, 
extreme learning machine [ELM], least absolute shrinkage and selec-
tion operator, and support vector machine regression) and (2) two sets 
of hyperspectral data collected from two platforms and two different 
sensors. In the former part of the study, ELM outperforms the other 
methods with maximum calibration and validation R2 of 0.99 and 0.96, 
respectively. Furthermore, the image data set acquired from UAV gives 
higher performance compared to field spectral data. Also, significant 
bands are identified using stepwise multiple linear regression and used 
for modeling to generate a wheat leaf N map of the experimental field.

Introduction
Plant growth is highly dependent on nitrogen (N) and has a direct influ-
ence on the quality of crops. Leaf N (LNC) content is one of the major 
factors governing leaf nutrition and is a decision-making factor for 
accurate and effective fertilizer application. Wheat (Triticum aestivum 
L.) is the second most important cereal crop in India and influences 
nutritional security of the country (Anuj et al. 2014). Therefore, agri-
production that increases yield and sustainability requires satisfying 
the demand and supply trade-off for N use efficiency. For this purpose, 
management of N is complex and necessitates problem-oriented, inter-
disciplinary research (Spiertz 2009). Destructive methods for computa-
tion of LNC are not only time consuming but also highly expensive and 
labor intensive at the same time. Remote sensing is a fast, nondestruc-
tive, dependable method for accurate assessment of LNC and capturing 

the LNC variability in the field for site-specific fertilizer application for 
enhanced N use efficiency and precision agriculture (Barzin et al. 2021).

Remote sensing in general has been a very important supporting 
tool for capturing spatiotemporal variability of different biophysical and 
biochemical parameters for better managing the required inputs across 
the field, which encourages sustainable practices through precision 
farming (Barrientos et al. 2011; Shanmugapriya et al. 2019). Ground- 
or field-based spectral data acquisition using a nonimaging sensor like 
a spectroradiometer is more accurate but is restricted to the collection 
of limited samples and inefficient for large-scale coverage. Whereas 
air- or spaceborne imaging sensors suffer from the limitations of a long 
revisit time and low spatial and spectral resolution and necessitate good 
light and atmospheric conditions, high cost, and so on (Liu et al. 2017), 
unmanned aerial vehicles (UAVs), or drones, have the extensive capabil-
ity to address the previously mentioned gaps and acquire agricultural 
data. They have a multitude of advantages, such as lightweight, low 
altitude, speed control, high-resolution imagery, quick and iterative 
missions, and so on (Xiang and Tian 2011). Current satellites provid-
ing coarse to medium spatial resolution are not sufficient due to their 
nonavailability during cloud cover, limited revisit possibility during 
the crop season, and expensive data set. UAVs have been identified as 
a viable substitute and/or complement to remote sensing platforms for 
agricultural applications and mainly for better visualization and quan-
titative assessment of crop conditions at very high resolution. At pres-
ent, the sensors that are mounted on UAVs are mostly red, green, blue 
and multispectral cameras with fewer spectral bands. Therefore, the 
acquired spectral information is limited to few applications. However, 
hyperspectral sensors, with hundreds of narrow and contiguous bands, 
have the capability of capturing subtle variations in plant growth and 
parameters, thereby having many potential applications in agriculture. 
The development of hyperspectral sensors has enabled quantitative 
assessment of plant parameters, encouraging researchers to implement 
precision agriculture. However, hyperspectral remote sensing comes 
with its own set of challenges, such as spectral variability, mixed pixel 
problems, accuracy requirements, selection of an appropriate model for 
information extraction that would provide better accuracy, and so on 
(Das et al. 2015; Hank et al. 2019; Pandey et al. 2020).

Civil aviation and other relevant authorities elsewhere in the world 
are now allowing UAVs to be used for limited and specific trials and, 
in some cases, commercial operations in agriculture (Ahirwar et al. 
2019), horticulture (Tu et al. 2020), viticulture (Spachos and Stefano 
2019), and forestry (Tang and Shao 2015). Spraying for controlling 
diseases, weeds, and pests; spreading microgranular pesticides and 
fertilizers and even beneficial insects; and planting are among the di-
verse uses now being done using UAVs (Rao Mogili and Deepak 2018; 
Chen et al. 2021). Plant parameters obtained from UAV-based sensors 
can be used not only for monitoring crop growth conditions but also 
for crop response to differential treatment of nutrients and water (Yang 
et al. 2020). N status monitoring is important for farmers, as it leads 
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to an efficient fertilizer application (Lee et al. 2020a). Various studies 
have attempted to capture spectral reflectance data of crops at different 
growth stages and also synchronized measurements of plant param-
eters, such as leaf area index, leaf dry matter, plant dry matter, and 
three plant N indicators, that is, leaf N accumulation, plant N accumu-
lation, and N nutrition index, and developed their relationships through 
modeling in the recent past.

Most of the studies presented in literature are based on either 
ground-based or airborne image–derived spectral data for assessing 
plant N content. Spectroradiometric study of plant N may not help 
one scale up to the field level , as this is mainly single-pixel based 
regardless of field of view coverage. There is a need to scale up the 
same at the farm scale using airborne imaging spectrometry. However, 
intercomparison of the sensor data at different platforms needs to be 
studied. To assess N content, many studies use univariate and multi-
variate statistical analyses. Univariate regression models involve the 
association of the quantitative correlation of crop parameters with 
spectrally derived indices, such as the normalized difference vegeta-
tive index (NDVI). Nevertheless, numerous recent studies involve 
nonlinear multivariate models to accommodate more spectral data for 
better prediction with high accuracy. These models include partial least 
square regression (PLSR) (Santos-Rufo et al. 2020), stepwise multiple 
linear regression (MLR) (Zheng et al. 2018), random forest (RF) (Yang 
et al. 2021), multivariate adaptive regression splines (Mahajan et al. 
2021), artificial neural networks (ANN), support vector machine (SVM) 
(Yuan et al. 2017), extreme learning machine (ELM) (Yu et al. 2020), 
least absolute shrinkage and selection operator (LASSO) (Shafiee et al. 
2021), and many more.

The present study exploits two sets of spectral data sets collected 
from imaging sensors on UAV platforms and nonimaging sensors, 
namely, a spectroradiometer at ground level in the field, to predict 
leaf the N content of wheat crops. The approach performs an exhaus-
tive comparative assessment of machine learning multivariate models 
in order to find the suitable predictive model(s) for N estimation. 
Furthermore, the work done here aims to promote the application of 
UAV-based hyperspectral remote sensing for the same field scale for 
site-specific nutrient management.

Materials and Methods
Field Experimentation
An experiment was conducted at the Research Farm of ICAR–Indian 
Agricultural Research Institute, New Delhi, India, during rabi season 
(from December to April 2021–2022). The experimental field was 
located at 28°38′28.314″N latitude and 77°9′3.106″E longitude with 
an average elevation of 230 m above mean sea level. The wheat crop 
(T. aestivum L.) variety HD 3059 was sown on 13 December 2021 
under three irrigation treatments—irrigation based on soil moisture 
sensor (I1); crop water stress index, CWSI (I2); and conventional (I3)—
and five N levels—0 kg N ha−1 (N0), 50 kg N ha−1 (N1), 100 kg N ha−1 
(N2), 150 kg N ha−1 (N3), and 200 kg N ha−1 (N4). The experiment was 
conducted in a split-plot design with three replications (R1, R2, and R3) 
in which irrigation was the main plot treatment and N were the subplot 
treatment in a plot size of 13×7.2 m. Thus, the total number of plots 
was 45 (3×5×3). One-third of the recommended amount of N and the 
full recommended amount of phosphorus (P) and potassium (K) were 
applied as a basal dose in the form of urea (46% N), diammonium 
phosphate (18% N and 46% P2O5), and muriate of potash (60% K2O), 
respectively. The remaining N was applied at the time of first and sec-
ond irrigation in two equal split doses. The leaf samples from 45 plots 
were collected, and their total N concentration was determined by the 
Micro–Kjeldahl method (Guebel et al. 1991; Ranjan et al. 2012). The 
plot layout of the research farm is shown in Figure 1 along with irriga-
tion, and N treatment details are tabulated in Table 1.

Collection of Spectral Data Using Ground-Held Spectroradiometer
The spectral reflectance of leaf samples in the range of 350–2500-
nm wavelength has been collected at a 1-nm interval using a contact 
probe with an ASD field spec-3 spectroradiometer (Analytical Spectral 
Devices Inc., Boulder, CO, USA). After acquiring the spectral data, 

a series of preprocessing techniques, such as splice correction, noise 
removal, and smoothening of spectra, have been applied. The spectral 
drifts at 1001 and 1831 nm are rectified using the splice correction 
function of ASD Viewspec Pro™. The noise-dominant bands that exist 
at the spectral range of 350–359 nm and 2451–2500 nm have been 
removed for further analysis. Finally, the preprocessed spectral data 
have been used for generating the spectral library of the collected field 
samples. Since a three-point sampling method has been adopted for the 
present study, 135 spectral reflectance curves are obtained from each 
sampling point of 45 plots. The spectral reflectance acquired for the 
wheat crop is shown in Figure 2.

Figure 1. Geographic location of the experimental plot with different 
fertilization treatments. (a and b) Location of ICAR-IARI campus 
and experimental wheat plots (source: ESRI base map, India Street 
Map). (c) Wheat field layout collected on 7 February 2022.

Table 1. Irrigation and fertilization treatments in the field experiment 
on wheat.

Crop 

Irrigation Fertilization

Main 
Plot

Basis of 
Irrigation Subplot

Graded Nitrogen  
(N) Levels (kg ha−1)

Wheat (Rabi, 
2021–2022)

I1
Soil moisture  

sensor N0 0

I2 CWSI N1 50

I3 Conventional N2 100

N3 150

N4 200

Figure 2. Spectral reflectance curves of the wheat crop using a 
ground-held spectroradiometer.
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UAV Imaging Using a Hyperspectral Sensor
Synchronized with leaf sample collection, spectral data collection has 
been prearranged, and the images of wheat fields are captured using a 
visual and near-infrared push-broom style hyperspectral UAV imaging 
camera with a lens of 4.8 mm. The hyperspectral imagery has been 
collected with a Headwall Nano-Hyperspec (Headwall Photonics Inc., 
Bolton, MA, USA) hyperspectral sensor mounted on a DJI Matrice 600 
Pro UAV platform with Ronin gimbal. It captures data in 269 spectral 
bands ranging from 400 to 1000 nm with ~2.2 dispersion/pixel spectral 
interval (FWHM with 6-nm slit). The flight height has been adjusted 
to 21 m for getting a spatial resolution of 3.4 cm. The acquisitions of 
the hyperspectral images are performed between 11:00 AM and 12:00 
PM in the daytime in sunny or lightly cloudy weather (cloud cover less 
than 20%) with relatively stable solar light. The detailed specifications 
of the hyperspectral sensor used for ground-based and airborne remote 
sensing are tabulated in Table 2.

Processing of UAV Captured Hyperspectral Images
The radiometric correction, reflectance conversion from digital num-
ber values, geometric correction, and mosaicking of the individual 
hyperspectral data cubes have been done using the designated software 
named SpectralView. The data was acquired 57 days after sowing of 
the wheat crop when it was in tillering stage. The orthorectification of 
reflectance hypercubes has been carried out using the data from Global 
Navigation Satellite System receivers, the inertial measurement unit, 
and the Shuttle Radar Topography Mission digital elevation model 
(Van Zyl 2001; Santos-Rufo et al. 2020).

A combination of NDVI threshold and spectral angle mapper (SAM) 
binary masks has been used for segmenting the wheat field canopy 

pixels from neighboring soil, shadow, and grass pixels (Oshigami et al. 
2013). A primary mask image was generated by multiplying the NDVI 
threshold image with the SAM binary mask followed by application 
of the morphological erosion operator to remove the mixed pixels at 
the edges (Moghimi et al. 2018). The threshold for NDVI was chosen 
at the center between the vegetation peak of the wheat canopy and the 
neighboring trough in the NDVI histogram (Chancia et al. 2021). The 
SAM classification has been carried out using the endmember spectra of 
the wheat crop, soil, and grass extracted manually from the image. The 
generated spectral signatures have been smoothened for enhancing the 
spectral features using the Savitzky–Golay (SG filter) algorithm with a 
second-order polynomial and a window size of 5 (Savitzky and Golay 
1964) (Ge et al. 2019). The endmember spectra corresponding to dif-
ferent leaf N values have been generated using the sequential maximum 
angle convex cone (SMACC) (Wei et al. 2019). The SMACC is a sequen-
tial algorithm based on a convex cone model (Gruninger et al. 2004). 
The process starts with a single endmember and shows an incremental 
rise in dimension until a specified number of endmembers is achieved. 
A convex cone was developed with extreme points and the existing 
(first) endmember, and an oblique projection was applied to it for deriv-
ing the next endmember. It also simultaneously generated abundance 
maps and was updated at each iterative step. The hyperspectral image 
with the wheat crop is shown in Figure 3a, and the corresponding 
extracted endmember spectral library is illustrated in Figure 3b.

Spectral Modeling
More recently, machine learning algorithms have shown remarkable 
results in the very same field, having exceptional capabilities to auto-
matically learn the relationship between the data (here the spectra cap-
tured) and predict accordingly. After an exhaustive literature survey, 
five models were identified to calibrate between the reflectance spectra 
(acquired from the field and extracted from the hyperspectral UAV 
image) and leaf N concentration values. Namely, ANN, ELM, support 
vector machine regression (SVR), LASSO, and MLR are implemented and 
compared in order to identify a suitable model for leaf N prediction 
and mapping. Each data set is split into calibration (two-thirds of all 
observations) and validation (one-third of all observations) with cor-
responding N values. A brief description of the implemented models is 
given in the following sections.

ANN
This network mimics the capability of learning like the human brain, 
containing neurons as the most fundamental and functional unit. Its 
architecture contains input hidden and output layers that are fully con-
nected. The input neurons act as computational unit and receive raw 
information; furthermore, the data pass to a hidden layer that trans-
forms the data into a usable form to generate the output.

For every input xi, the corresponding weight value wi is multiplied. 
The one with higher influence on the output value is triggered:

Table 2. Specifications of field and airborne hyperspectral sensor used 
for the study.

Nano-Hyperspec 
Hyperspectral Sensor

ASD Field 
Spectroradiometer

No. of bands 269 2151

Spectral range 400–1000 nm 350–2500 nm

Spectral resolution 2.2 nm 3 nm at 700 nm, 6 nm at 
1400 nm, 6 nm at 2100 nm

Frame rate 300 Hz —

Spatial resolution 0.03 m —

Signal to noise >15:1 (1000 nm) < 140:1 
(550 nm)

—

Total storage limit 480 GB —

Focal length 4.8 m —

Weight 1.2 kg 5.44 kg

Figure 3. (a) Hyperspectral image of the wheat experimental field. (b) Spectral signatures of wheat crop derived from the image.
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	 Σ = (x1 × w1) + (x2 × w2) +… (xn × wn)	 (1)

where x = [x1, x2, x3, …xn] and w = [w1, w2, w3, …wn] are the row vec-
tors belonging to input and the corresponding weights. Therefore, the 
dot product is given by

	 x · w = (x1 × w1) + (x2 × w2) +… (xn × wn)	 (2)

which turns out to be

	 Σ = x · w	 (3)

Bias b plays a major role in balancing the complete architecture; it 
often acts as an offset to move the activation function and produce the 
output value:

	 z = x · w + b	 (4)

This intermediate value that is generated is passed to an activation 
function that is nonlinear and influences the learning speed of the net-
work. Multiple activation functions are used, depending on the applica-
tion. The training mechanism includes back-propagating the error by 
computing the gradient values concerning the weight. The mean square 
error is calculated by the difference between the actual values and the 
predicted values of error. Later, the weights can be optimized, and 
hyperparameters, such as the minimum error, number of epochs, and 
learning rates, can be fixed. Tao et al. (2020) evaluated the accuracies 
of winter-wheat yield based on ground-measured plant height, which is 
extracted from UAV-based hyperspectral images using PLSR, ANN, and 
RF regression techniques (Yue et al. 2017; Tao et al. 2020). Another 
study aimed to estimate traits of rice, such as plant N content, leaf N ac-
cumulation, and plant N accumulation, using UAV-based hyperspectral 
data. Univariate regression models on vegetation indices and ANN, RF, 
and SVM were evaluated over different rice stages (Wang et al. 2021).

ELM
In 1994, G. B. Huang proposed the ELM with a single hidden layer that 
can overcome some major drawbacks, such as slow learning, iterative 
parameter tuning, and so on, of traditional gradient methods (Guang-
Bin et al. 2006). The output function and hidden layer output function 
are given by Equation 5 and Equation 6, respectively,

	 	
(5)

	 h(x) = [G(a1, b1, x), …, G(aL, bL, x)]	 (6)

Here, x is the input vector and G is the activation function.
The training of the ELM happens by

	 	
(7)

where H (hidden layer output matrix) is a column vector given by

	

Here, {(xi, ti)| xi ∈Rd, ti ∈Rm, i = 1, …, N} is the training set, G(a, 
b, x) is the hidden node output function, N is the number of train-
ing samples, and L is the number of hidden nodes. The value of β is 
computed as

	 β = HTT	 (8)

	 H = (wi,…, wN, bi,…, bN, xi,…, xN)

	

	

where T is training data target matrix.
Researchers have tried to exploit the advantage of fast learning 

process and higher training accuracy with low error percentage in order 
to estimate N content using ELM for rice crops (Yu et al. 2019, 2020). 
But there is much less evidence in the literature that similar studies are 
done with respect to wheat crops. As hyperspectral data set is volu-
minous, and the traditional gradient-based methods take an additional 
computation effort to perform regression.

SVM
SVM (Corinna and Vapnik 1995) is an extensively used method for 
hyperspectral data analysis. It maximizes the margin and generates a 
decision boundary with extreme separation between the data points of 
multiple classes. The decision boundary may be linear or nonlinear, 
depending on the separability analysis of the data used. It is a machine 
learning algorithm that utilizes labeled data, trains the associated 
model, and predicts unlabeled data.

The mathematical formulation of SVM includes formulas of lines in 
two dimensions and hyperplanes in multi-dimensions represented by

	 y = mx + b	 (9)

	 w · x + b = 0	 (10)

where x is sample data set for which SVM finds weights w such that 
the data points in the data set are separated using the most optimal 
hyperplane. The width is calculated by taking the dot product of the 
distance vector and the perpendicular vector w and then dividing by the 
magnitude of w:

	 	
(11)

Since the width needs to be maximized, LaGrange multipliers 
are used (Shevade et al. 2000). Furthermore, L is differentiated with 
respect to w:

	 	
(12)

	 	
(13)

Differentiating L with respect to b gives

	 	
(14)

Substituting the value of w from Equation 13 into Equation 12 gives

	
(15)

	 	
(16)
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Since the above derivation deals with linearly separable data points 
but the practical problems involve nonlinear boundaries to establish 
separation, a kernel trick is required, and the general equation is

	 k(x, y) = xTy + c	 (17)

SVM has already proven its efficacy for hyperspectral data, which is 
also evident from the literature. Various studies estimated the leaf chlo-
rophyll content of maize and wheat and comprehensively examined the 
effects of the spectral and spatial information of UAV imagery and the 
effects of phenotype and phenology on N estimation using SVM (Zhu et 
al. 2020; Wang et al. 2021). Lee et al. (2020b) used linear regression 
RF and SVM with UAV multispectral images to predict canopy N weight 
in corn. (see also Zha et al. 2020).

LASSO
The LASSO regression is a nonparametric model that shows an ability 
to eliminate nonsignificant weak predicting variables and thereby 
improves prediction accuracy (Chen et al. 2012). It manages the 
significant variables that control the dependent parameter and shrinks 
regression coefficients to zero if no improvement is perceived in model 
performance (Tibshirani 1996). Those variables with a regression coef-
ficient of zero after shrinkage are excluded from the model (Ranstam 
and Cook 2018). LASSO regression undergoes L1 regularization, adding 
a penalty equivalent to absolute values of the magnitude of coef-
ficients. In order to produce simple models, larger penalties generate 
values close to zero, and some coefficients were eliminated from the 
model. The mathematical equation of LASSO regression is

	  	
(18)

where λ denotes the amount of shrinkage, n is the number of instances,  
p is the number of features, x is the covariate matrix, and β is the coef-
ficient matrix.

Wheat grain yield was predicted using multiple vegetative indices 
with LASSO as a feature selection technique for multispectral UAV data 
(Li et al. 2019; Shafiee et al. 2021). Comparative assessment of 12 
different models was done for LandSat-derived total N with UAV-based 
image data to do water quality monitoring.

MLR
In MLR, a linear relationship between multiple dependent and indepen-
dent variables is used to generate appropriate equations for predicting 
the variable of interest (Besalatpour et al. 2012). The global regression 
model can be represented by

	 Y = c + a1x1 +  a2x2 + a3x3 +…+ anxn	 (19)

where y is the dependent variable, c is a constant, a1, a2, a3, …an are 
coefficients, and x1, x2,…xn are independent variables.

Model Evaluation
The performance of the predictive models has been assessed using the 
coefficient of determination (R2), root mean square error (RMSE), mean 
absolute error (MAE), and the ratio of performance deviation (RPD). 
Higher R2 and lower RMSE and MAE indicate the best performance for 
prediction models. Such a model will be applied to the whole data set 
for generating the N prediction map. Higher RPD values, such as 1.4–2 
and greater than 2, indicate good and very good predictions (Chang et 
al. 2001). All these statistical indices are generated using R software 
(version 4.2, R Development Core Team, 2018). Equations 20–23 are 
used for calculating R2, RMSE, MAE, and RPD:

	 	
(20)

	 	
(21)

	 	
(22)

	 	
(23)

Here, n is the total sample size, xi is the ith measured leaf N value, 
yi is the ith predicted leaf N value using a suitable model, and xi is the 
ith mean measured leaf N value. Generally, higher R2 values denote 
better performance for the predictive models. But the model having 
higher R2 values does not always possess low RMSE or higher RPD. To 
avoid such circumstances, each model is assigned a rank based on the 
multi-criteria decision-making rule (Das et al. 2020; Mahajan et al. 
2021). In the present study, each model is assigned a rank based on 
each statistical index following “more is better” and “less is better” 
rules. Statistical parameters such as R2, RPD, and the “more is better” 
rule were applied, and for parameters such as RMSE, the “less is better” 
rule was applied. Finally, the ranks were added to get a composite rank 
suggesting the best-performing model. A flowchart of the proposed 
approach is shown in Figure 4.

Figure 4. Flowchart of the proposed approach.

Results and Discussion
Descriptive Statistics of Leaf N
A descriptive statistical analysis of leaf N for the complete, calibration, 
and validation data set is given in Table 3. The leaf N values varied 
from 3.17% to 5.72% with an average of 4.78% for the complete data 
set. The values for the calibration and validation data sets varied from 
3.17% to 5.69% with an average of 4.80% and from 4.06% to 5.72% 
with an average of 4.75%, respectively. In terms of the coefficient of 
variation (CV), all three data sets show less variability. However, the 
calibration data set shows the highest variability (CV = 12.54%). The 
complete data set and calibration data set show negative skewness, 
while the validation data set seems to be positively skewed. The posi-
tive skewness of the validation data set implies that the observations 
are more concentrated toward the lower values and consist of very 
few higher values. The overall statistical analysis confirmed a good 
variability among the three data sets, suggesting the usage of these data 
sets for calibrating and validating the prediction models.

Spectral Characteristics of Leaves with Varying N Content
Leaf pigmentation, water content, leaf anatomy, and nutritional status 
are the major factors affecting the spectral reflectance of leaves. 
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All mature, healthy leaves show high reflectance in the NIR region 
(700 nm < λ <1500 nm), reduced reflectance in the green region, 
and very low reflectance in the ultraviolet, blue, and red regions. In 
low-reflectance regions, the major leaf pigments, such as chlorophyll, 
xanthophyll, and carotenoids, absorb the energy completely for pho-
tosynthetic activity. Thus, the spectrally active constituents, such as 
leaf pigment concentrations, depend on the leaf N concentration and 
were thereby responsible for getting typical spectral responses. Low N 
content in the leaf caused a decrease in chlorophyll and consequently 
reduced the absorption of radiation, which in turn caused high spectral 
reflectance in that region. The spectral characteristics of leaves with 
varying N content generated using the image-derived endmember 
spectra and spectroradiometer-based spectra data are shown in Figure 
5a and 5b. With an increase in N deficiency, reflectance increases from 
500 to 700 nm which is due to the absorption in this region is highly 
affected by pigment concentration which depends on N concentration. 
Roy (1989) reported an increase in reflectance from 500 to 700 nm 
in Coleus leaves for decrease in plant N. Al-Abbas et al. (1974) also 
reported high reflectance in maize leaves in the range of 530–750 nm 
under N-deficient treatments.

Spectral Modeling of Leaf N
As mentioned, four machine learning models (ANN, ELM, LASSO, and 
SVR) were analyzed and implemented for the prediction and estima-
tion of leaf N content in the considered experimental field. The study 
is threefold: (1) endmembers derived from the hyperspectral image 
are used, and (2) spectral signatures acquired in the field were used for 
modeling followed by (3) selection of a suitable model for prediction 
and analysis. Furthermore, MLR is used for the modeling equation to 
generate an in-field N map using hyperspectral images acquired by UAV.

Modeling of UAV Image Data for Leaf N
After the endmember spectra corresponding to different leaf N values 
have been generated using SMACC and background pixels are removed 
from the image, calibration and validation data sets (70:30) are given 
as input to the regression models. The results of the models have been 
contrastively analyzed and are tabulated in Table 4 followed by the 
corresponding regression plots, which were shown in Figure 6 (see 
next page). RMSE, MAE, R2, and RPD are calculated for all considered 
models and calibration and validation data sets.

ANN is a widely used regression method for field spectral data, but 
it is yet to be exploited for UAV data. For the present work, it performs 
well with R2 values of 0.99 and 0.97 for the calibration and validation 
sets, respectively, as tabulated in Table 4 and Figure 6a and 6b. The 
number of neurons is taken as 10, with the back-propagation algo-
rithm, the sigmoid activation function, and learning rate set as 0.01. 
The number of neurons in the hidden layer is set to be same, as the 
training data are small. An early stopping criterion, at 20 epochs, is 
considered in case there is no remarkable improvement in accuracy. 
Other activation functions, such as Bayesian regularization, were also 
applied, yielding less accuracy. The learning rate is selected by random 
initialization, which helps control the step size to reach minimum loss, 
further reducing its value to 0.01, and gives a better chance to find 
the minimum error value. Although analogous studies are carried out 
with different types of crops and crop assessment parameters, there is 
still scope to assess leaf N using airborne hyperspectral data (Wang et 
al. 2021). Tao et al. (2020) have proposed to estimate yield and plant 
height using spectral indices, ground-measured plant height, and UAV 
hyperspectral data with maximum R2 = 0.77 among PLSR, ANN, and RF 
at different growth stages.

The hyperparameters for the models are set according to the 
hit-and-trial method to attain maximum accuracy. According to the 
rank-based multi-criteria decision-making rule, ELM has performed 
remarkably well in the case of endmembers extracted from the image. 
The number of hidden neurons is set to be 1000 with the “purelin” 
activation function and distribution, from which the input weights and 
the bias should be initialized in the range of [−1, 1]. The calibration 
R2 = 0.998, whereas the validation R2 = 0.968 for the current study 
(refer to Table 4 and Figure 6c and 6d). A similar approach is fol-
lowed for rice crops to measure canopy chlorophyll content using UAV 
hyperspectral imaging using particle swarm optimization (PSO) as a 
feature selector and ELM as a regression model with R2 = 0.791 (Cao et 
al. 2020). Furthermore, Genetic Algorithm-ELM (GA-ELM) and Whale 
Optimization Algorithm-ELM (WOA-ELM) are explored on a hybrid ba-
sis with R2 = 0.887. Yu et al. (2019) used UAV hyperspectral inversion 
modeling of rice N content based on WOA-ELM. Similarly, rice canopy 
N content is estimated using UAV-based hyperspectral image data by 
PSO-ELM and Beetle Antennae Search (BAS-ELM) with an R2 value of 
0.86 for calibration data set. The high performance of ELM is evident 

Table 3. Descriptive statistical parameters of leaf nitrogen (%) in the study area.
Sample Size Minimum Maximum Mean Median SD % CV Skewness Kurtosis

Whole data set 45 3.17 5.72 4.78 4.85 0.56 11.62 −0.49 0.19

Calibration data set 30 3.17 5.69 4.80 4.94 0.60 12.54 −0.77 0.17

Validation data set 15 4.06 5.72 4.75 4.69 0.46 9.60 0.91 0.69

CV = coefficient of variation; SD = standard deviation.

Figure 5. Spectral characteristics of leaf nitrogen (N). (a) Imaging. (b) Non-imaging.
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from the literature as well due to its fast 
and efficient learning speed, fast conver-
gence, good generalization ability, and ease 
of implementation (Chen et al. 2017).

The LASSO technique is extensively 
used as a feature extraction method for 
selecting the significant bands in the litera-
ture (Omidi et al. 2020) and with multi-
spectral UAV imagery (Barzin et al. 2021). 
In the proposed approach, it is used as a 
regression method where the coefficients 
and the parameter of the model are selected 
through the ordinary least squares method. 
This method works by minimizing the sum 
of squares of residuals. It gives R2 as 0.99 
for validation and 0.89 for calibration, as 
shown in Table 4 and Figure 6e and 6f.

SVR considers the observations within 
the decision boundary with the best-fit 
hyperplane. The “radial” kernel function 
is used with a cost of 1000 and a gamma 
of 0.0001 taken as hyperparameters for 
the study. The main parameter to tune in 
case of SVR is the kernel, as it maps the 
observations into a suitable feature space 
to make them separable. Furthermore, Hsu 
et al. (2003) referred to choosing cost and 
gamma values. R2 values of 0.99 and 0.89 
are achieved for the calibration and valida-
tion sets, respectively (Table 4 and Figure 
6g and 6h).

Modeling of Ground Spectra Using 
Spectroradiometer for Leaf N
Four regression techniques for estimating 
leaf N content in wheat were compared by 
spectral features derived from field data 
acquisition. The results are given in Table 
5, and the simultaneous regression plots 
are shown in Figure 7 (see next page).

The calibration R2 lies between 0.9818 
and 0.9894, and the validation R2 ranges 
from 0.7353 to 0.9349 for all the four 
models. It is evident from the results that 
ANN is performing better than other three 
models considered. Although the calibra-
tion R2 is comparable for all models, the 
validation R2 is low in the case of LASSO.

Also, as compared to the endmem-
bers derived from the UAV hyperspectral 
image data, the R2 values are less in the 
case of field spectral signatures. The 
reason articulated for the same may be 
that the ground data are influenced by 
multiple atmospheric hindrances, such as 
weather, temperature, humidity, and so on. 
Therefore, the spectral signatures acquired 
in field conditions might not be similar to 
the spectral signatures derived from the 
image itself (Yadav et al. 2018).

MLR for Leaf N Mapping
Stepwise MLR model has been imple-
mented based on the following sensitive 
wavelengths: 399, 520, 668, 691,767, 774, 
803, 827, 830, 848, 904, and 922 nm. The 
R2 value of the model is 0.967, and the 
adjusted R2 is 0.943. The model equation is

Table 4. Accuracy assessment of regression models using unmanned aerial vehicle–based 
hyperspectral data.

Sequence 
No. Model

Calibration Validation 

RMSE MAE R2 RPD RMSE MAE R2 RPD

1 ANN 0.029 0.022 0.998 21.059 0.074 0.059 0.978 5.595

2 ELM 0.026 0.019 0.998 22.694 0.080 0.066 0.968 5.525

3 LASSO 0.059 0.043 0.994 9.592 0.160 0.130 0.892 2.247

4 SVR 0.054 0.051 0.994 10.524 0.122 0.103 0.938 3.237

ANN = artificial neural network; ELM = extreme learning machine; LSSO = least absolute shrinkage 
and selection operator; MAE = mean absolute error; RMSE = root mean square error; RPD = ratio of 
performance deviation; SVR = support vector machine regression.

Figure 6. Evaluation of different models for wheat leaf nitrogen (N) estimation using 
hyperspectral images from an unmanned aerial vehicle.
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 The above equation is used for prediction of leaf N 
content in the field using the hyperspectral image acquired by 
UAV. Figure 8 shows the N variability in the field according to 
the experimentation carried out. The values range from 0.9% 
to 6.69% with the maximum of them lying between 3.51% 
and 5.02%.

Conclusions
Wheat crop is studied for the estimation 
of leaf N through imaging and nonim-
aging spectroscopy. The development 
of hyperspectral remote sensing has 
enabled quantitative assessment of N by 
the extraction of a treasure of informa-
tion associated with a particular spectral 
signature. The proposed study is twofold. 
First, among the four models consid-
ered, ELM has outdone with calibration 
performance of RMSE = 0.02, MAE = 
0.019, RPD = 22.69, and R2 = 0.99 and 
validation performance of RMSE = 0.08, 
MAE = 0.06, RPD = 5.52, and R2 = 0.96 in 
the case of imaging data from the UAV. 
wherein ANN has performed well for 
nonimaging data from field spectroradi-
ometry with calibration performance of 
RMSE = 0.06, MAE = 0.04, RPD = 9.76, 
and R2 =0.98 and validation performance 
of RMSE = 0.117, MAE = 0.08, RPD = 
3.52, R2 = 0.93. Second, the machine 
learning measures in this stage make 
use of reference signatures derived from 
the image and field. The comprehensive 
analysis shows that the image-based 
spectral signatures have produced higher 
performance, whereas the field-based 
spectral data set, due to intervening 
effects of background illumination, has 
yielded low results. The other reason 
articulated for this inference is that the 
image-derived spectral signatures are 
tightly related to the imagery acquired 
from the UAV, and the challenge of insuf-
ficient spectral signatures is not there to 
give an optimal endmember spectrum. 
Furthermore, stepwise MLR is also used 
to derive significant spectral bands of 
399, 520, 668, 691,767, 774, 803, 827, 
830, 848, 904, and 922 nm with an 
adjusted R2 of 0.943. The present study 
encourages monitoring small to medium-
sized fields using UAVs as a viable solu-
tion for crop health management.
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Figure 7. Evaluation of different models for wheat Leaf nitrogen (N) estimation using spectral data 
derived from spectroradiometry.

Table 5. Accuracy assessment of regression  
models using field hyperspectral data.
Sequence 
No. Model

Calibration Validation 
RMSE MAE R2 RPD RMSE MAE R2 RPD

1 ANN 0.061 0.044 0.989 9.761 0.117 0.084 0.935 3.521
2 ELM 0.074 0.057 0.984 8.082 0.160 0.110 0.874 2.656
3 LASSO 0.088 0.067 0.982 6.374 0.228 0.157 0.735 1.580
4 SVR 0.081 0.066 0.982 7.105 0.143 0.099 0.906 2.783
ANN = artificial neural network; ELM = extreme learning machine; LSSO = least absolute 
shrinkage and selection operator; MAE = mean absolute error; RMSE = root mean square 
error; RPD = ratio of performance deviation; SVR = support vector machine regression.
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Car Detection from Very High-Resolution UAV 
Images Using Deep Learning Algorithms

Yunus Kaya, Halil İbrahim Şenol, Abdurahman Yasin Yiğit, and Murat Yakar

Abstract
It is important to determine car density in parking lots, especially in 
hospitals, large enterprises, and residential areas, which are used 
intensively, in terms of executing existing management systems and 
making precise plans for the future. In this study, cars in parking 
lots were detected using high-resolution unmanned aerial vehicle 
(UAV) images with deep learning methods. We tested the perfor-
mance of the two approaches by determining the number of cars 
in a parking lot using the You Only Look Once (YOLOv3) and Mask 
Region–Based Convolutional Neural Networks (Mask R-CNN) ap-
proaches as deep learning methods and the deep learning tool of 
Esri ArcGIS Pro. High-resolution UAV images were processed by 
photogrammetry and used as input products for the R-CNN and YOLOv3 
algorithm. Recall, F1 score, precision ratio/uncertainty accuracy, 
and  average producer accuracy of products automatically extracted 
with the algorithm were determined as 0.862/0.941, 0.874/0.946, 
0.885/0.951, and 0.776/0.897 for R-CNN and YOLOv3, respectively.

Introduction
Environmental monitoring is directly related to the urban development. 
Especially with technological developments, the use of unmanned 
aerial vehicles (UAVs) for environmental monitoring and ground 
observation has become widespread (Eskandari et al. 2020). The use 
of high-resolution UAV data, together with the deep learning algo-
rithms that have developed in recent years, facilitates environmental 
monitoring.

Object detection has been one of the important topics explored by 
remote sensing and photogrammetric techniques for years. It is almost 
impossible to detect objects manually, especially due to the growth and 
crowding of urban areas. However, with the developing image capture 
technologies and increasing resolution in recent years, detecting 
objects has started to become an important research topic. In addition, 
it has been possible to automatically detect these objects with the deep 
learning methods that have been around for years but have recently 
been used more frequently.

Literature Review
Studies for object detection are very large scale. The differentiation 
of data and the methods used and the fact that deep learning tech-
niques offer a wide range of solutions are the results of this. While the 
method used is important, the characteristics of the selected data are 
also important. With the development of high-resolution aerial images 
and light detection and ranging (lidar) applications in recent years, 
the diversity of data is also increasing. Although high-resolution UAV 
images (Moranduzzo et al. 2013; Moranduzzo and Melgani 2014; Ulvi 
and Toprak 2016; Perko et al. 2021; Bakirman et al. 2022) are used in 
most of the studies, very high-resolution satellite images (Perko et al. 
2021; Deng et al. 2022; Liu et al. 2022; Shamsolmoali et al. 2022), 

high-resolution video images (Jiao et al. 2021), and point cloud data 
obtained with lidar (Fiorucci et al. 2022) are also used.

Alternative methods based on digital aerial photogrammetry have 
been proposed as a low-cost, high-resolution, three-dimensional (3D) 
information source in obtaining high-resolution images (Iglhaut et al. 
2019; Puliti et al. 2020). Structure from motion (SfM) uses multiple 
images collected from different locations to create a 3D model of the 
visible surface that can generate point cloud data similar to lidar. SfM 
is a photogrammetric algorithm that automatically solves the geom-
etry of the scene, camera positions, and orientation without requiring 
pre-definition of a target mesh with known 3D positions (Vasuki et 
al. 2014; Hastaoğlu et al. 2022) . The SfM can be collected from an 
airborne platform, such as a handheld camera, aircraft, balloon, kite, 
or unmanned aerial system. The ability to generate high-resolution 
orthomosaic images from UAV aerial images covering the entire work 
area means that image-based methods are an attractive alternative to 
the more costly lidar data collection.

Apart from the data used for object detection, the deep learning al-
gorithms used also differ. Although algorithms for convolutional neural 
networks (CNN) (Liu et al. 2021; Shivappriya et al. 2021; de Arruda 
et al. 2022) are frequently used, the Part-Based Convolutional Neural 
Network (Sun et al. 2021), the Critical Feature Capturing Network 
(Ming et al. 2021), Attention Scale Pyramid Deformable (Gao et al. 
2021), the Stress Concentration Discrimination Model (Duan et al. 
2022), and the Frequency Extraction Network (Cheng et al. 2021) are 
also used for object detection.

Ammour et al. (2017) combined very high-spatial resolution UAV 
images with the CNN deep learning method and support vector machine 
classification method to perform car extraction with up to 93.6% accura-
cy. Benjdira et al. (2019) compared the performance of Faster R-CNN and 
You Only Look Once (YOLOv3) algorithms on very large-car data sets 
based on a car extraction application. Although YOLOv3 and Faster R-CNN 
can be compared in terms of accuracy, it has been found that YOLOv3 
has higher performance in terms of speed. Amato et al. (2019) proposed 
an approach for real-time parked car detection from UAV videos. They 
determined the accuracy as 95% in their YOLOv3-based solutions.

Kilic and Ozturk (2021) analyzed high-resolution aerial images for 
car counting with the heatmap learner convolutional neural networks 
tool and performed car extraction by uploading a test data. Srivastava 
et al. (2021) used the current methods for tool extraction and compared 
them in their studies. In the study, it has been determined that the use of 
different detection methods (UAV, lidar, sonar, and radar) together can 
produce better results. Zhang et al. (2021) made an application for car 
detection using high-resolution satellite images and CNN algorithms.

In this study, parked cars on high-resolution UAV images were 
extracted with YOLOv3 and a deep learning application provided by 
Esri Analytics and based on the Mask R-CNN algorithm. The main 
motivation of the study is to investigate the accuracy of Esri, which 
offers a commercial approach to developing deep learning object 
detection algorithms, and to question its use in projects that require 
high precision. Unlike previous studies, the usability of the results of a 
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commercial solution proposal was investigated. In the following parts 
of the study, detailed information is given about the data, algorithm, 
and results used.

Materials and Methods
Study Area
The study was carried out using high-resolution satellite images taken 
in a parking lot located at Mersin University, Turkey (Figure 1). The 
reason for choosing this area is to investigate whether it is possible 
to detect cars parked outside the parking lot as well as in the regular 
parking structure.

Data Acquisition
A Sensefly Ebee Plus UAV with a built-in 20-MP camera was used for 
photogrammetric research. It is integrated with a remote flight control 
and real-time kinematic (RTK) system. The characteristics of the UAV 
system and the onboard camera are given in Table 1.

Table 1. UAV system features and onboard camera parameters.
Specialty Value

Weight/size 1100 g/1100 mm

Cruising speed 40–110 m/s

Maximum of flight time About 50 minutes

PPK/RTK +

Radiolink distance 3 km

Satellite positioning systems GPS/GLONASS

Camera model S.O.D.A.

Sensor 1-inch CMOS effective pixels: 20 M

Lens 10.6 mm (35-mm equivalent: 29 mm)

Image size 5472 × 3648 pixels

f-number f/2.8–f/11

The main field activities were carried out in three steps: (1) flight 
mission, (2) placement and acquisition of ground control points (GCPs), 
and (3) flight operation and aerial image collection.

Terrain Awareness flight planning was preferred because a constant 
ground sample distance (GSD) value was desired at the end of the study. 
Terrain Awareness helps pilots achieve improved map quality in a 
variety of terrains with equal resolution and less probability of holes at 
higher altitudes. In Terrain Awareness flight planning, the equivalent of 
a GSD of ~5 cm/pixel is ~210 m in the S.O.D.A camera. In addition, the 
UAV was equipped with satellite positioning systems (GPS/GLONASS), 
and all images collected were geo-located in a WGS84/UTM36N metric 
coordinate system.

The data used in this study include a total of four missions con-
ducted during 1 day in Mersin, Turkey, in July 2021. Four hundred and 
twelve digital images were taken for the study area, and lens calibra-
tion was applied automatically. These images from the region provide 
approximately 75% overlap in both forward and lateral (overlap) 
directions.

Method
In this section, detailed information about the processing of the data 
obtained is given, as shown in Figure 2.

Image Processing and the SfM Algorithm
The acquired images were transferred to a computer for photogram-
metric processing. Flight trajectories were reconstructed using Global 
Navigation Satellite Systems/Inertial Measurement Unit (GNSS/IMU) 
measurements and adjusted using differentially corrected base station 
data in Emotion 3.0 software. Locations of cameras were further 
refined using GCPs, resulting in a derived point cloud with a geometric 
accuracy of 4.2 cm.

The processing of the images obtained by the UAV was done in 
Agisoft Metashape software, a commercial software based on image 
matching and model generation using the SfM algorithm (Şasi and 
Yakar 2018). In photogrammetric software using the SfM algorithm, 
bundle block adjustment algorithms are used to optimize the projec-
tion errors between the images and the calculated point positions 
(Duran and Atik 2021; Senkal et al. 2021). The software using these 
algorithms and methods first aligns the images, performs a preliminary 

Figure 1. Study area.
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adjusting, and creates a sparse point cloud. For this, algorithms are 
used to automatically position the matching points between the images 
(Hamal et al. 2020).

Feature Detection and Matching
In this step, Agisoft Metashape initiates the image alignment process 
by executing the scale-invariant feature transform (SIFT) algorithm 
(Moranduzzo and Melgani 2014; Ulvi 2020) to generate a starting 
point cloud consisting of matching key points in different images 
(Moranduzzo et al. 2015; Hamal 2022) .

The SIFT algorithm improves the initial camera parameters using the 
corrected positions and orientations of each image as a starting point. A 
set of key points is determined in each image through feature matching 
algorithms such as SIFT, and these are stored as key points in a data-
base (Hossein-Nejad et al. 2021). When processing a new image, the 
algorithm recognizes the image features and compares them with the 
features in the database to identify the tie points. The SIFT algorithm 
automatically detects and matches key points between multiple images 
determined by local pixel variances (Nesbit et al. 2018; Ulvi 2021). In 

Figure 2. Work flow.
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this step, a low-density point cloud is created with the 3D coordinates 
of the key points (Westoby et al. 2012). We set the limit of points to 
detect per image to 80k and the limit of matching points to 20k. We 
used “high” alignment accuracy for all data sets. GCPs were manually 
defined to refine camera positions and marked on some images to aid 
optimization. We processed the height data as ellipsoid height (meters). 
We used the WGS84 UTM 36N coordinate system in the study.

Multi-View Stereo
Another step in SfM is the process of creating a dense point cloud by 
condensing the created sparse point cloud for an accurate geometrical 
detail display. The algorithm used at this stage is the dense multi-view 
stereo algorithm. This algorithm divided the overlapping images into 
subsets and reconstructed the 3D point data independently of these sub-
sets. Point condensation was performed by a patch-based multi-view 
stereo algorithm (Lowe 2004; Ulvi 2018). In this step, binary depth 
maps are calculated for the overlapping image pairs using the GNSS 
stereo matching algorithm, taking into calculation the relative camera 
parameters previously calculated. The created binary depth maps were 
combined into partial dense point clouds. We set the quality of creating 
depth maps to “high quality” with an aggressive filtering mode.

In the final step, a photo-realistic 3D model and high-quality 2D or-
thomosaic image and a 2.5D digital elevation model can also be created 
in this step, alternatively using images to cover a real and natural surface.

Table 2. Accuracy evaluation of study area for the georeferencing of 
UAV-SfM photogrammetry.

Positioning Ground Control 
Points (as GCPs) Check Control Points (as ChPs)

No.
Horizontal 
Errors (m)

Vertical 
Errors (m) No.

Horizontal 
Errors (m)

Vertical 
Errors (m)

1 0.008 0.012 2 0.007 0.010

3 0.014 0.010 5 0.014 0.009

4 0.015 0.007 6 0.011 0.008

7 0.009 0.014 9 0.004 0.011

8 0.010 0.014 10 0.009 0.009

11 0.012 0.009 12 0.011 0.012

… … … … … …

MAE 0.014 0.015 MAE 0.013 0.010

RMSE 0.012 0.014 RMSE 0.011 0.08

A final 3D digital model of ~83 million points was created for the 
study area. The average surface density is about 14k points per meter. 
The mean absolute error (MAE) and the root mean square error (RMSE) 
of the GCPs and check control points (ChPs) used in the study were 
calculated (Table 2). These results show satisfactory accuracy for auto-
matic detail extraction analysis from images produced with high quality 
and accuracy. MAE (Equation 1) and RMSE (Equation 2) are two metrics 
that are employed in object detection algorithm evaluation. MAE 
represents the average absolute difference between true values   and 
predicted values  . Similarly, RMSE represents the average of the square 
root of the squared difference between the true and predicted values:

 	 	
(1)

 	 	
(2)

Mask R-CNN
For object instance segmentation, we used Mask R-CNN (He et al. 
2017), which is conceptually simple and frequently used in the lit-
erature (Ahmed et al. 2020; Mahmoud et al. 2020; Sun et al. 2022). 
The approach automatically detects objects with specific shapes on 
the high-resolution image while also creating a high-quality segmen-
tation mask for each sample. The CNN approach consists of several 

convolutional and pooling layers and ends with more than one fully 
connected layer. There are three steps in each convolution layer: 
convolution, nonlinear activation, and pooling. After each convo-
lutional layer, a feature map is created and passed to the next layer. 
Mask R-CNN extends Faster R-CNN by adding a branch for predicting 
an object mask in parallel with the existing branch for bounding box 
recognition. Faster R-CNN (Ren et al. 2015) has two outputs for each 
candidate object. The first step, called the region proposal network 
(RPN), proposes candidate object bounding boxes. The second step, 
which is Fast R-CNN (Girshick 2015), extracts features using RoIPool 
from each candidate box and performs classification and bounding 
box regression. Mask R-CNN has a third branch that extracts this object 
mask (Ammirato and Berg 2019). Mask R-CNN is easy to train and can 
easily be generalized to other tasks, such as estimating human poses, 
cars, or houses.

Mask R-CNN consists of two steps. In the first step (RPN), it scans 
feature maps and generates a region of interest (RoI) (Ren et al. 2015). 
RPN uses ResNet as its backbone architecture. The high-level and 
low-level fusion of different feature layers using a residual convolu-
tion network (He et al. 2016) and a four-layer feature pyramid takes 
full advantage of shallow image location information and meaningful 
semantic information. In the second step, RoI pool processing is applied 
for each RoI to downsample the feature map using the nearest neighbor 
approach (Girshick 2015). In the pooling phase, important features are 
selected from the feature map. The RoI pool can cause misalignment 
between extracted features. To create more accurate RoIs, RoI align-
ment created using bilinear interpolation is applied for each RoI. Mask 
R-CNN generates masks for each RoI as well as predicting the class and 
bounding boxes for each object (Zhang et al. 2020).

YOLOv3
Object detection is used in many areas to facilitate human life. Single-
stage models also need to be improved to meet the requirements, as 
their use is increasing rapidly (Narejo et al. 2021). YOLOv3 (Redmon 
and Farhadi 2018) is one of the state-of-the-art object detection meth-
ods evolving from YOLO and YOLOv2. The YOLOv3 object detection 
process consists of five steps (Figure 2). Unlike darknet19 used by 
YOLO9000, YOLOv3 uses a new backbone network. It is called darknet53 
because it is a 53 convolutional network (Kou et al. 2021). Compared 
with the two-stage object detection network, the YOLOv3 has an obvi-
ous speed advantage. Compared with the single-stage network, YOLOv3 
can achieve average sensitivity with higher detection speed. YOLOv3 
uses the idea of feature pyramid networks to make predictions at three 
different scales: 13 × 13, 26 × 26, and 52 × 52 (Ge et al. 2021). Three 
scales perform information extraction and merging for feature maps of 
different sizes and output detection. This improves detection accuracy 
while maintaining high-speed operation.

Assessment Method
After car detection algorithms are developed with deep learning, the 
performance of the final product should be evaluated. Currently, vari-
ous measurement techniques are used to evaluate the quality of object 
detection algorithms, including recall, F1 score, precision ratio/uncer-
tainty  accuracy (UAcc), producer accuracy (Pacc), and manual count-
ing (true, false). In order to evaluate the correct identification capacity 
of our mentioned accuracy assessment methodology, the following 
definitions need to be made.

The true positive (TP) value represents the number of cars that are 
actually cars and correctly identified by the algorithm. False positive 
(FP) means the number of cars misidentified by the algorithm, not 
actually cars. False negative (FN) means the undetected cars by the 
algorithm. The real number of cars in the images is represented as N.

Recall rate (sensitivity) is an important metric for evaluating algo-
rithm performance. It represents how many of the predicted positive 
cars are actually cars as follows:

 	 	
(3)
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Figure 3. Cars detected by the Mask R-CNN (a) and YOLOv3 (b) algorithms.

The F1 score combines precision and recall rates into single metric; 
this is the harmonic mean of these combined metrics:

 	 	
(4)

UAcc is another important evaluation metric that determines the 
number of cars predicted to be truly positive across all detections:

 	 	
(5)

 	 	
(6)

Results and Discussion
Today, various studies continue to be carried out for smart city and 
urban development. Identifying cars and detecting the use of parking 
lots can solve important urban problems, such as detecting car density 
in urban areas and identifying needed parking spaces.

The aim of the study is to distinguish and count the parked cars 
in a parking area using the Mask R-CNN and YOLO v3 deep learning 
methods. In this direction, a very high-resolution (5 cm) UAV image 
was used in the study.

In this study, car extraction was performed using the object detec-
tion method from the image in the deep learning tool, a tool that Esri 
ArcGIS Pro software has been developing recently. Toolbox uses 
the Mask R-CNN algorithm and allows data anlysis using a pretrained 
training package. Detailed information on the use of this tool can be 
found in Esri (2022). In addition, the YOLO v3 deep learning algorithm 
used for object detection was used through Anaconda. Open parking 
lots were selected from the very high-resolution UAV image used for 
the study. The hospital parking lot, where there are always too many 

cars, was preferred for the distinguishability of car detection. Figure 3 
shows the areas used for car detection and the resulting products.

As can be seen in Figure 3, although the algorithms worked success-
fully and detected cars, they also detected some unrelated objects that 
looked like cars. In this direction, to reveal the results of car detection, 
the detected polygons were examined, and an accuracy analysis was 
performed (Table 3). For the analysis, the accuracy between the ground-
truth feature objects and the objects detected by the deep learning algo-
rithm was calculated. Figure 3 shows the final car detection map for test 
parking, and Table 3 reports the quantitative detection results.

Table 3. Car detection results for the very high-resolution UAV images 
using deep learning methods (Mask R-CNN and YOLOv3).

Total TP FP FN Recall
F1 

Score
Precision 
(UAcc) Pacc

Mask R-CNN 388 301 39 48 0.862 0.874 0.885 0.776

YOLOv3 388 348 18 22 0.941 0.946 0.951 0.897

FN = false negative; FP = false positive; Pacc = producer accuracy; TP = true 
positive; UAcc = user accuracy.

When the values in Table 3 and Figure 3 are examined, it is seen 
that both methods are successful, but the YOLOv3 approach gives better 
results than the R-CNN approach. It has been noticed that the R-CNN 
algorithm has difficulty detecting especially in places where shad-
ows fall on the image due to the angle of the sun. However, although 
the algorithm was successful in detecting cars, it also detected other 
objects similar to cars as cars. The reason for this may be the light 
reflected from the car windows from other detected objects and the 
algorithm making an error for this reason. However, as you can see in 
Table 3, high accuracy rates were obtained, and the car detection was 
successful. Although YOLOv3 can be preferred because it gives more 
accurate results, programming ability is needed for the application of 
this method. However, the deep learning tool developed by Esri can 
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solve an engineering problem without the need for programming skills. 
Therefore, since Mask R-CNN can be used with commercial software, 
this deep learning approach is easy to use, although its accuracy is low.

Conclusion
The aim of this study is to investigate and compare the performances 
of the Mask R-CNN and YOLOv3 algorithms for car detection on high-
resolution UAV images. The object detection technique automatically 
detects cars with the recommended approach. The study consists of 
three stages: acquisition and processing of high-resolution UAV data 
and car detection using R-CNN and YOLOv3 architecture. First, high-
resolution (5-cm) images obtained with Sensefly Ebee Plus UAV with 
a built-in 20-MP camera were processed with the SfM algorithm. Then 
automatic detection of cars in the parking area was made using the 
Mask R-CNN and YOLOv3 architecture. As a result of the study, the 
recall, F1 score, UAcc, and Pacc average accuracy of products auto-
matically extracted with the algorithm were determined as 0.862/0.941, 
0.874/0.946, 0.885/0.951, and 0.776/0.897 for R-CNN and YOLOv3, 
respectively. Therefore, the proposed methods provide an automatic 
car counting technique over a processed UAV image. As a challenge of 
our work, serious planning is required to acquire UAV data automati-
cally and at regular intervals. Therefore, in future studies, we aim to 
determine the automatic car counting approach through data obtained 
from security cameras. However, comparisons can be made by adding 
more object detection deep learning algorithms in future studies. By 
making these comparisons with different data, a result can be obtained 
by choosing the right algorithms for the different data used.

References
Ahmed, B., T. A. Gulliver and S. alZahir. 2020. Image splicing detection using 

mask-RCNN. Signal, Image and Video Processing 14(5):1035–1042.
Amato, G., L. Ciampi, F. Falchi and C. Gennaro. 2019. Counting vehicles 

with deep learning in onboard UAV imagery. Pages 1–6 in 2019 
IEEE Symposium on Computers and Communications (ISCC), held in 
Barcelona, Spain 29 June to 3 July 2019. Edited by Sartaj Sahni. Los 
Alamitos, CA, USA: IEEE Computer Society.

Ammirato, P. and A. C. Berg. 2019. A Mask-RCNN baseline for probabilistic 
object detection. Preprint, arXiv:1908.03621.

Ammour, N., H. Alhichri, Y. Bazi, B. Benjdira, N. Alajlan and M. Zuair. 2017. 
Deep learning approach for car detection in UAV imagery. Remote 
Sensing 9(4):312.

Bakirman, T., I. Komurcu and E. Sertel. 2022. Comparative analysis of deep 
learning based building extraction methods with the new VHR Istanbul 
dataset. Expert Systems with Applications 202:117346.

Benjdira, B., T. Khursheed, A. Koubaa, A. Ammar and K. and Ouni. 2019. Car 
detection using unmanned aerial vehicles: Comparison between Faster 
R-CNN and YOLOv3. Pages 1–6 in 2019 1st International Conference 
on Unmanned Vehicle Systems-Oman (UVS), held in Muscat, Oman 5-7 
February 2019. Edited by Hadj Bourdoucen. Piscataway, New Jersey: 
IEEE.

Cheng, G., C. Lang, M. Wu, X. Xie, X. Yao and J. and Han. 2021. Feature 
enhancement network for object detection in optical remote sensing 
images. Journal of Remote Sensing 2021:9805389.

de Arruda, M.D.S., L. P. Osco, P. R. Acosta, D. N. Gonçalves, J. M. Junior, A. 
P. M. Ramos and W. N. Gonçalves. 2022. Counting and locating high-
density objects using convolutional neural network. Expert Systems with 
Applications 195:116555.

Deng, J., X. Li and Y. Fang. 2022. Few-shot object detection on remote sensing 
images. Preprint, arXiv:2006.07826.

Duan, Z., S. Wang, H. Di and J. Deng. 2022. Distillation remote sensing object 
counting via multi-scale context feature aggregation. IEEE Transactions 
on Geoscience and Remote Sensing 60:5613012.

Duran, Z. and M. E. Atik. 2021. Accuracy comparison of interior orientation 
parameters from different photogrammetric software and direct linear 
transformation method. International Journal of Engineering and 
Geosciences 6(2):74–80.

Eskandari, R., M. Mahdianpari, F. Mohammadimanesh, B. Salehi, B. Brisco and 
S. Homayouni. 2020. Meta-analysis of unmanned aerial vehicle (UAV) 
imagery for agro-environmental monitoring using machine learning and 
statistical models. Remote Sensing 12(21):3511.

Esri. 2022. Deep Learning Model to Detect Cars in High Resolution Imagery. 
<https://www.arcgis.com/home/item.html?id=cfc57b507f914d1593f5871b
f0d52999> Accessed 12 September 2022.

Fiorucci, M., W. B. Verschoof-van der Vaart, P. Soleni, B. Le Saux and A. 
Traviglia. 2022. Deep learning for archaeological object detection 
on LiDAR: New evaluation measures and insights. Remote Sensing 
14(7):1694.

Gao, G., Q. Liu and Y. Wang. 2021. Counting from sky: A large-scale data 
set for remote sensing object counting and a benchmark method. IEEE 
Transactions on Geoscience and Remote Sensing 59(5):3642–3655.

Ge, Z., S. Liu, F. Wang, Z. Li and J. Sun. 2021. Yolox: Exceeding yolo series in 
2021. Preprint, arXiv:2107.08430.

Girshick, R. 2015. Fast R-CNN. Pages 1440–1448 in IEEE International 
Conference on Computer Vision (ICCV), held in Santiago, Chile, 7-13 
December 2015. Edited by Lisa O’Conner. NW Washington, DC, United 
States: IEEE Computer Society.

Hamal, S.N.G. 2022. Accuracy of digital maps produced from UAV images in 
rural areas. Advanced UAV 2(1):29–34.

Hamal, S.N.G., B. Sarı and A. Ulvi. 2020. Using of hybrid data acquisition 
techniques for cultural heritage: A case study of Pompeiopolis. Türkiye 
İnsansız Hava Araçları Dergisi 2(2):55–60.

Hastaoğlu, K. Ö., S. Göğsu and Y. Gül. 2022. Determining the relationship 
between the slope and directional distribution of the UAV point cloud 
and the accuracy of various IDW interpolation. International Journal of 
Engineering and Geosciences 7(2):161–173.

He, K., G. Gkioxari, P. Dollár and R. Girshick. 2017. Mask R-CNN. Pages 
2961–2969 in Proceedings of the IEEE International Conference on 
Computer Vision, held in Venice, Italy, 22-29 October 2017. Edited by 
Lisa O’Conner. NW Washington, DC, United States: IEEE Computer 
Society.

He, K., X. Zhang, S. Ren and J. Sun. 2016. Deep residual learning for image 
recognition. Pages 770–778 in Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, held in Las Vegas, Nevada, 
26 June – 1 July 2016. Edited by Lisa O’Conner. NW Washington, DC, 
United States: IEEE Computer Society.

Hossein-Nejad, Z., H. Agahi and A. Mahmoodzadeh. 2021. Image matching 
based on the adaptive redundant keypoint elimination method in the SIFT 
algorithm. Pattern Analysis and Applications 24(2):669–683.

Iglhaut, J., C. Cabo, S. Puliti, L. Piermattei, J. O’Connor and J. Rosette. 2019. 
Structure from motion photogrammetry in forestry: A review. Current 
Forestry Reports 5:155–168.

Jiao, L., R. Zhang, F. Liu, S. Yang, B. Hou, L. Li and X. Tang. 2021. 
New generation deep learning for video object detection: A survey. 
IEEE Transactions on Neural Networks and Learning Systems 
33(8):3195–3215.

Kilic, E. and S. Ozturk. 2021. An accurate car counting in aerial images based 
on convolutional neural networks. Journal of Ambient Intelligence and 
Humanized Computing. https://doi.org/10.1007/s12652-021-03377-5.

Kou, X., S. Liu, K. Cheng and Y. Qian. 2021. Development of a YOLO-V3-
based model for detecting defects on steel strip surface. Measurement 
182:109454.

Liu, S., L. Zhang, H. Lu and Y. He. 2022. Center-boundary dual attention for 
oriented object detection in remote sensing images. IEEE Transactions on 
Geoscience and Remote Sensing 60:1–14.

Liu, Y., P. Sun, N. Wergeles and Y. Shang. 2021. A survey and performance 
evaluation of deep learning methods for small object detection. Expert 
Systems with Applications 172:114602.

Lowe, D. G. 2004. Distinctive image features from scale-invariant keypoints. 
International Journal of Computer Vision 60(2):91–110.

Mahmoud, A., S. Mohamed, R. El-Khoribi and H. Abdelsalam. 2020. Object 
detection using adaptive mask RCNN in optical remote sensing images. 
International Journal of Intelligent Engineering and Systems 13(1):65–76.

Ming, Q., L. Miao, Z. Zhou and Y. Dong. 2021. CFC-Net: A critical feature 
capturing network for arbitrary-oriented object detection in remote-
sensing images. IEEE Transactions on Geoscience and Remote Sensing 
60:1–14. 

122	 Februar y  2023	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



Moranduzzo, T. and F. Melgani. 2014. Automatic car counting method for 
unmanned aerial vehicle images. IEEE Transactions on Geoscience and 
Remote Sensing 52:1635–1647.

Moranduzzo, T., F. Melgani, Y. Bazi and N. Alajlan. 2015. A fast object detector 
based on high-order gradients and Gaussian process regression for UAV 
images. International Journal of Remote Sensing 36(10):2713–2733.

Moranduzzo, T., F. Melgani and A. Daamouche. 2013. An object detection 
technique for very high resolution remote sensing images. Pages 79–83 in 
2013 8th International Workshop on Systems, Signal Processing and Their 
Applications (WoSSPA), held in Algiers, Algeria, 12-15 May 2013. Edited 
by Boualem Boashash. Piscataway, NJ: IEEE.Narejo, S., B. Pandey, C. 
Rodriguez and M. R. Anjum. 2021. Weapon detection using YOLO V3 
for smart surveillance system. Mathematical Problems in Engineering 
2021:9975700.

Nesbit, P. R., P. R. Durkin, C. H. Hugenholtz, S. M. Hubbard and M. 
Kucharczyk. 2018. 3-D stratigraphic mapping using a digital 
outcrop model derived from UAV images and structure-from-motion 
photogrammetry. Geosphere 14(6):2469–2486.

Perko, R., A. Almer, M. Theuermann, M. Klopschitz, T. Schnsbel and P. M. 
Roth. 2021. Protocol design issues for object density estimation and 
counting in remote sensing. Pages 2771–2774 in 2021 IEEE International 
Geoscience and Remote Sensing Symposium (IGARSS), held in Brussels, 
Belgium, 12 – 16 July, 2021. Edited by Ramon Hanssen. NW Washington, 
DC, United States: IEEE International.Puliti, S., J. Breidenbach and R. 
Astrup. 2020. Estimation of forest growing stock volume with UAV 
laser scanning data: Can it be done without field data? Remote Sensing 
12(8):1245.

Redmon, J. and A. Farhadi. 2018. Yolov3: An incremental improvement. 
Preprint, arXiv:1804.02767.Ren, S., K. He, R. Girshick and J. Sun. 2015. 
Faster R-CNN: Towards real-time object detection with region proposal 
networks. In Advances in Neural Information Processing Systems, vol. 
28, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama and R. 
Garnett, 91–99. Red Hook, NY: Curran Associates, Inc.

Şasi, A. and M. Yakar. 2018. Photogrammetric modelling of Hasbey 
Dar’ülhuffaz (Masjid) using an unmanned aerial vehicle. International 
Journal of Engineering and Geosciences 3 (1):6–11.

Senkal, E., G. Kaplan and U. Avdan. 2021. Accuracy assessment of digital 
surface models from unmanned aerial vehicles’ imagery on archaeological 
sites. International Journal of Engineering and Geosciences, 6 (2), 81-89.

Shamsolmoali, P., J. Chanussot, M. Zareapoor, H. Zhou and J. Yang. 2022. 
Multipatch feature pyramid network for weakly supervised object 
detection in optical remote sensing images. IEEE Transactions on 
Geoscience and Remote Sensing 60:3106442.

Shivappriya, S. N., M.J.P. Priyadarsini, A. Stateczny, C. Puttamadappa and B. 
D. Parameshachari. 2021. Cascade object detection and remote sensing 
object detection method based on trainable activation function. Remote 
Sensing 13(2):200.

Srivastava, S., S. Narayan and S. Mittal. 2021. A survey of deep learning 
techniques for vehicle detection from UAV images. Journal of Systems 
Architecture 117:102152.

Sun, X., P. Wang, C. Wang, Y. Liu and K. Fu. 2021. PBNet: Part-based 
convolutional neural network for complex composite object detection in 
remote sensing imagery. ISPRS Journal of Photogrammetry and Remote 
Sensing 173:50–65.

Sun, Y., L. Su, Y. Luo, H. Meng, W. Li, Z. Zhang and W. Zhang. 2022. Global 
Mask R-CNN for marine ship instance segmentation. Neurocomputing 
480:257–270.

Ulvi, A. 2018. Analysis of the utility of the unmanned aerial vehicle (UAV) in 
volume calculation by using photogrammetric techniques. International 
Journal of Engineering and Geosciences 3(2):43–49.

Ulvi, A. 2020. Importance of unmanned aerial vehicles (UAVs) in the 
documentation of cultural heritage. Turkish Journal of Engineering 
4(3):104–112.

Ulvi, A. 2021. The effect of the distribution and numbers of ground control 
points on the precision of producing orthophoto maps with an unmanned 
aerial vehicle. Journal of Asian Architecture and Building Engineering 
20(6):806–817.

Ulvi, A. and A. S. Toprak. 2016. Investigation of three-dimensional modelling 
availability taken photograph of the unmanned aerial vehicle: Sample 
of Kanlidıvane Church. International Journal of Engineering and 
Geosciences 1(1):1–7.

Vasuki, Y., E. J. Holden, P. Kovesi and S. Micklethwaite. 2014. Semi-automatic 
mapping of geological structures using UAV-based photogrammetric data: 
An image analysis approach. Computers & Geosciences 69:22–32.

Westoby, M. J., J. Brasington, N. F. Glasser, M. J. Hambrey and J. M. Reynolds. 
2012. “Structure-from-Motion” photogrammetry: A low-cost, effective 
tool for geoscience applications. Geomorphology 179:300–314.

Zhang, J., Q. Hu, J. Li and M. Ai. 2021. Learning from GPS trajectories of 
floating car for CNN-based urban road extraction with high-resolution 
satellite imagery. IEEE Transactions on Geoscience and Remote Sensing 
59(3):1836–1847.

Zhang, Q., X. Chang and S. B. Bian. 2020. Vehicle-damage-detection 
segmentation algorithm based on improved Mask RCNN. IEEE Access 
8:6997–7004.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 February 2023	 123



124	 Februar y  2023	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

The 3rd edition of the DEM Users Manual includes 15 chap-
ters and three appendices. References in the eBook version 
are hyperlinked. Chapter and appendix titles include:
1.	 Introduction to DEMs

David F. Maune, Hans Karl Heidemann,  
Stephen M. Kopp, and Clayton A. Crawford

2.	 Vertical Datums
Dru Smith

3.	 Standards, Guidelines & Specifications
David F. Maune

4.	 The National Elevation Dataset (NED)
Dean B. Gesch, Gayla A. Evans,  
Michael J. Oimoen, and Samantha T. Arundel

5.	 The 3D Elevation Program (3DEP)
Jason M. Stoker, Vicki Lukas, Allyson L. Jason,  
Diane F. Eldridge, and Larry J. Sugarbaker

6.	 Photogrammetry
J. Chris McGlone and Scott Arko

7.	 IfSAR
Scott Hensley and Lorraine Tighe

8.	 Airborne Topographic Lidar
Amar Nayegandhi and Joshua Nimetz

9.	 Lidar Data Processing
Joshua M. Novac

10.	Airborne Lidar Bathymetry
Jennifer Wozencraft and Amar Nayegandhi

11.	Sonar
Guy T. Noll and Douglas Lockhart

12.	Enabling Technologies
Bruno M. Scherzinger, Joseph J. Hutton,
and Mohamed M.R. Mostafa

13.	DEM User Applications
David F. Maune

14.	DEM User Requirements & Benefits
David F. Maune

15.	Quality Assessment of Elevation Data
Jennifer Novac

Appendix A. Acronyms
Appendix B. Definitions
Appendix C. Sample Datasets

This book is your guide to 3D elevation technologies, prod-
ucts and applications. It will guide you through the incep-
tion and implementation of the U.S. Geological Survey’s 
(USGS) 3D Elevation Program (3DEP) to provide not just 
bare earth DEMs, but a full suite of 3D elevation products 
using Quality Levels (QLs) that are standardized and con-
sistent across the U.S. and territories. The 3DEP is based on 
the National Enhanced Elevation Assessment (NEEA) which 
evaluated 602 different mission-critical requirements for 
and benefits from enhanced elevation data of various QLs 
for 34 Federal agencies, all 50 states (with local and Tribal 
input), and 13 non-governmental organizations.

The NEEA documented the highest Return on Investment 
from QL2 lidar for the conterminous states, Hawaii and U.S. 
territories, and QL5 IfSAR for Alaska.

Chapters 3, 5, 8, 9, 13, 14, and 15 are “must-read” chapters 
for users and providers of topographic lidar data. Chapter 8 
addresses linear mode, single photon and Geiger mode lidar 
technologies, and Chapter 10 addresses the latest in topo-
bathymetric lidar. The remaining chapters are either relevant 
to all DEM technologies or address alternative technologies 
including photogrammetry, IfSAR, and sonar.

As demonstrated by the figures selected for the front 
cover of this manual, readers will recognize the editors’ vision 
for the future – a 3D Nation that seamlessly merges topo-
graphic and bathymetric data from the tops of the moun-
tains, beneath rivers and lakes, to the depths of the sea.

Co-Editors

David F. Maune, PhD, CP and
Amar Nayegandhi, CP, CMS

PRICING
Student (must submit copy of Student ID) $50 +S&H

ASPRS Member $80 +S&H

Non-member $100 +S&H

E-Book (only available in the Amazon Kindle 
store) $85

To order, visit 
https://www.asprs.org/dem



 
 

 

    

 
After more than 15 years of research and writing, the Landsat Legacy 
Project Team published, in collaboration with the American Society 
for Photogrammetry and Remote Sensing (ASPRS), a seminal work on 
the nearly half-century of monitoring the Earth’s lands with Landsat. 
Born of technologies that evolved from the Second World War, 
Landsat not only pioneered global land monitoring but in the process 
drove innovation in digital imaging technologies and encouraged 
development of global imagery archives. Access to this imagery led 
to early breakthroughs in natural resources assessments, particularly 
for agriculture, forestry, and geology. The technical Landsat remote 
sensing revolution was not simple or straightforward. Early conflicts 
between civilian and defense satellite remote sensing users gave 
way to disagreements over whether the Landsat system should 
be a public service or a private enterprise. The failed attempts 
to privatize Landsat nearly led to its demise. Only the combined 
engagement of civilian and defense organizations ultimately saved 
this pioneer satellite land monitoring program. With the emergence 
of 21st century Earth system science research, the full value of the 
Landsat concept and its continuous 45-year global archive has 
been recognized and embraced. Discussion of Landsat’s future 
continues but its heritage will not be forgotten. 

The pioneering satellite system’s vital history is captured in this 
notable volume on Landsat’s Enduring Legacy.  

Landsat Legacy Project Team
Samuel N. Goward
Darrel L. Williams
Terry Arvidson
Laura E. P. Rocchio
James R. Irons
Carol A. Russell
Shaida S. Johnston

Landsat’s Enduring Legacy
Hardback. 2017,  ISBN 1-57083-101-7   
Member/Non-member 	 $48*
Student Member	 $36*

* Plus shipping

LANDSAT’S ENDURING LEGACY

Pioneering Global Land Observations from Space

Landsat Legacy Project Team

Landsat’s Enduring Legacy
Pioneering Global Land Observations from Space

Order online at 
www.asprs.org/landsat
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