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ASPRS is changing the subscription model of our monthly journal, 
PE&RS. ASPRS is waiving open-access fees for primary authors 
from subscribing institutions. Additionally, primary authors who are 
Individual Members of ASPRS will be able to publish one open-access 
article per year at no cost and will receive a 50% discount on open-
access fees for additional articles. 

• Open Access matters! By providing 
unrestricted access to research 
we can advance the geospatial 
industry and provide research 
that is available to everyone.

• Institutions and authors receive more 
recognition! Giving permission to 
everyone to read, share, reuse the 
research without asking for permission, 
as long as the author is credited.  

• Reputation matters! Known for its 
high standards, PE&RS is the industry 
leading peer-review journal. Adding 
open access increases authors' visibility 
and reputation for quality research.

• Fostering the geospatial industry! 
Open access allows for sharing without 
restriction.  Research is freely available 
to everyone without an embargo period. 

Under the previous subscription model, authors and institutions paid $1500 
or more in open-access fees per article. This will represent a significant cost 
savings. Open-access publications benefit authors through greater visibility of 
their work and conformance with open science mandates of funding agencies.

Subscriptions asprs.org/subscribe
Membership asprs.org/membership
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INDUSTRYNEWSTo have your press release published in PE&RS, 
contact Rae Kelley, rkelley@asprs.org.

ANNOUNCEMENTS

GeoCue announces the European launch of the 2023 Li-
DARental Program. This new rental program provides easy 
access to Innovative TrueView 3D Imaging Systems and the 
complete LP360 Drone data processing and visualization 
software.

Drone lidar has solidified a position as leading technology in 
the geospatial industry for surveying and mapping applica-
tions. However, for some new to drone lidar, the cost of lidar 
hardware, software, workflow, training, and support can be 
intimidating. The 2023 LiDARental Program provides easy 
access to the drone lidar/imagery arena.

GeoCue CEO, Frank Darmayan explains, “We understand 
that many surveying, engineering, and construction com-
panies are eager to implement drone lidar, but hesitant to 
adopt the technology due to costs, support, software, and 
adaptation. That’s why we’ve made it easier than ever to try 
this technology at low risk and low cost through our LiDA-
Rental Program.”

The program includes training, support, data processing and 
visualization software through affordable weekly, monthly, 
quarterly, and annual rental plans. GeoCue understands 
that some projects take more or less time than others, there-
fore, rental periods are structured to meet your needs; as 
short as 1 week, up to 12 months. Rental also includes access 
to LP360 Drone processing software including Strip Align 
and Photo options for the rental period including one month 
after rental end date.

Participants in the 2023 LiDARental Program can choose 
from a full range of professional-grade geomatics sensors to 
select the right drone mapping solution for their project needs. 
Options include the TrueView 435, the TrueView 515, and the 
TrueView 660. Processing is included through LP360 Drone, 
transforming lidar and imagery data with visualization, quali-
ty check, classification, 3D editing, and analysis capabilities.

Conveniently, should a customer decide that a traditional 
purchase is more practical than renting, GeoCue can easily 
upgrade the plan to full ownership. The program is built 
around the needs of the customer. According to Vincent 
Legrand, Vice President of Sales for GeoCue, this new rental 
option will help open the drone lidar market to a wider range 
of geospatial companies.  “Our goal is to meet customers on 
their terms with technology adoption, budget, and resources. 
The LiDARental Program gives them the option to affordably 
complete their projects with all the benefits of our TrueView 
drone lidar equipment and LP360 software split into conve-
nient monthly payments.”

For more information, contact GeoCue at https://geocue.com/. 

 ¼½¼½ 

A RIEGL VZ-400i was used in a project showing the work-
flow and results of lidar data acquisition on urban infrastruc-
ture in Santiago, Chile. The project was led by RIEGL dis-
tribution partner GEOCOM S.A. and supported by RIEGL 
USA’s Regional Manager for LATAM, Claudio Avello.

Urban development entails the coexistence between existing 
elements and new constructions. The electricity transmission 
systems, visible through high-voltage power lines and mani-
fested in the form of high-voltage poles, characterize the area 
and mark the public space. This is expressed on one side of 
the “Parque Bicentenario” (Bicentennial Park, municipality 
of Vitacura ), where along Avenida Alonso de Córdoba one 
can see the existing relationship between the urban envi-
ronment and the overhead lines and poles that continue 
from their source at Santiago Municipal Park along Aveni-
da Alonso de Córdova, which in turn merges with Avenida 
IV Centenario between the municipalities of Vitacura, Las 
Condes and La Reina.

In this type of infrastructure project, where there are urban 
elements, electrical infrastructure, framed in a complex 
topographic context such as hills and parks, it is possible to 
capture the reality through geospatial techniques such as 
lidar, using a RIEGL terrestrial laser scanner for acquisition 
of highly precise and highly informative data in extremely 
productive execution times.

For more information, visit https://newsroom.riegl.
international/.

 ¼½¼½

Bluesky Geospatial Ltd. has announced the launch of its 
MetroVista 3D aerial mapping program in the United States. 
The service employs a hybrid imaging-lidar airborne sensor 
to capture highly detailed 3D data, including 360-degree 
views of buildings and street-level features, in urban areas 
for use in creating digital twins, visualizations, and simula-
tions.

Bluesky’s sister company, Bluesky International of Leices-
tershire, England, developed and introduced the MetroVista 
program in the United Kingdom in 2018 and has mapped 
more than 20 cities across the England and Scotland in 3D. 
For the U.S. program, Boston is the first metropolitan area 
completed by Bluesky Geospatial, which will feature in proj-
ect presentations this week at Geo Week 2023 in Denver.

“For many clients, the MetroVista 3D data set serves as the 
foundation for highly detailed digital twins at the heart of 
Smart City initiatives,” said Bluesky Chief Commercial Offi-
cer, Ralph Coleman. “The rich information content of the 3D 
data enables accurate visualization of existing features for 

mailto:rkelley@asprs.org
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informed decision making and realistic simulation of future 
development for comparative analysis.”

The MetroVista product is already being used in city man-
agement and urban planning for agencies as diverse as emer-
gency services, transportation, environmental protection, 
and utilities. Bluesky has seen rapid growth in the adoption 
of 3D data sets and digital twins in the AEC (architecture 
engineering construction), real estate, and insurance sectors.

For data collection, Bluesky flies the airborne Leica City-
Mapper-2 hybrid sensor which captures simultaneous 
oblique and nadir imagery along with lidar elevation 
measurements. Bluesky processes the data to create georef-
erenced 3D mesh models with 5-cm resolution and 10-cm ac-
curacy. The 3D models are delivered in a variety of formats 
for direct ingest into GIS and CAD environments.

“The MetroVista 3D product allows managers and planners 
to measure, model, and analyze the terrain and features in 
their cityscapes with confidence – all without leaving the 
office,” said Coleman.

The MetroVista U.S. program builds on a nearly 80-year 
legacy of delivering accurate, reliable and quality mapping 
projects under the Col-East name since 1946 and as part 
of the Bluesky brand since 2017. Along with its full line of 
aerial mapping services, Bluesky Geospatial will perform 
MetroVista city projects for clients in the Northeastern U.S. 
and beyond, adding to its archive of aerial imagery, photog-
raphy, and lidar products.

Visit www.bluesky-world.us for more information.

 ¼½¼½

Space Flight Laboratory (SFL) announced that ground con-
trol successfully established communication with three radio 
frequency (RF) geolocation microsatellites developed by SFL 
for HawkEye 360 of Herndon, Va. Cluster 6 was launched 24 
January 2023 on the inaugural flight for Rocket Lab’s Elec-
tron Rocket from Wallops Island, Va. This successful mission 
brings the number of HawkEye 360 microsatellites built by 
SFL and now in orbit to 18.

The HawkEye 360 Constellation detects and geolocates 
RF signals for maritime situational awareness, emergency 
response, national security, and spectrum analysis appli-
cations. To boost revisit rates over the mid-latitude regions 
of the globe, Cluster 6 was launched into an inclined orbit. 
Upon commissioning, HawkEye 360 will be able to collect RF 
data as frequently as every hour anywhere in the world. 

HawkEye 360 selected SFL due to the importance of forma-
tion flying by multiple satellites for successful RF geolo-
cation. Clusters 2, 3, 4 and 5 have all been built on SFL’s 
space-proven 30 kg DEFIANT microsatellite bus. SFL’s 
formation flying technology enables the Virginia company 
to offer the most timely and actionable RF data and data 
analytics available on the market. 

“Cluster 6 launched as planned to support expansion of the 
HawkEye 360 constellation as it scales to meet the growing 
worldwide demand for its commercial RF data and analyt-
ics services,” said SFL Director Dr. Robert E. Zee. “SFL’s 
trusted attitude control and formation-flying capabilities 
deliver the stability and accuracy required for precise RF 
geolocation.”

SFL is a unique microspace provider that offers a com-
plete suite of nano-, micro- and small satellites – including 
high-performance, low-cost CubeSats – that satisfy the needs 
of a broad range of mission types from 3 to 500 kilograms. 
Dating from 1998, SFL’s heritage includes 64 operational 
successes with more than 225 cumulative years of operation 
in orbit and 28 currently under construction or awaiting 
launch. 

These missions relate to Earth observation, atmospheric 
monitoring, ship tracking, communication, radio frequency 
(RF) geolocation, technology demonstration, space as-
tronomy, solar physics, space plasma, and other scientific 
research, utilizing core SFL-developed components such as 
modular (scalable) power systems, onboard radios, flight 
computers, and control software.

Visit www.utias-sfl.net for more information.

CALENDAR

• 3-5 April,  RSCy2023, Cyprus. For more information, visit www.cyprusremotesensing.com/rscy2023/ .

• 5 May,  ASPRS GeoByte — SeaSketch 2.0: A New, Free and Open Source software Service for Map-based Sur-
veys and Collaborative Geodesign. For more information, visit https://www.asprs.org/geobytes.html.

• 12-16 June,  ASPRS 2023 International Technical Symposium. For more information, visit https://my.asprs.
org/2023Symposium/
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151 Robust Guardrail Instantiation and Trajectory Optimization of Complex Highways 
Based on Mobile Laser Scanning Point Clouds
Xin Jia, Qing Zhu, Xuming Ge, Ruifeng Ma, Daiwei Zhang, and Tao Liu

As a basic asset of highways, guardrails are essential objects in the digital modeling of highways. Generating 
the vectorial 3D trajectory of a guardrail from mobile laser scanning (MLS) point clouds is required for real digital 
modeling. However, most methods limit straight-line guardrails without considering the continuity and accuracy 
of the guardrails in turnoff and bend areas; thus, a completed 3D trajectory of a guardrail is not available. We 
use RANDLA-Net for extracting guardrails as preprocessing of MLS point clouds and perform a region growth 
strategy based on linear constraints to obtain correct instantiations and a forward direction. 

163 Use of Artificial Intelligence Toward Climate-Neutral Cultural Heritage
Tolga Bakirman, Bahadir Kulavuz, and Bulent Bayram

Cultural heritage (CH) aims to create new strategies and policies for adapting to climate change. Additionally, the 
goals of sustainable development aim to protect, monitor, and preserve the world’s CH and to take urgent action 
to combat climate change and its effects. Therefore, developing efficient and accurate techniques toward making 
CH climate neutral and more resilient is of vital importance. This study aims to provide a holistic solution to 
monitor and protect CH from climate change, natural hazards, and anthropogenic effects in a sustainable way.

173 Validation of Island 3D-Mapping Based on UAV Spatial Point Cloud Optimization:   
A Case Study in Dongluo Island of China
Jian Wu, Shifeng Fu, Peng Chen, Qinghui Chen, and Xiang Pan

This artilce explored a methodology for island three-dimensional (3D) mapping and modelling based on 
spatial point clouds optimization with a K-Nearest Neighbors Adaptive Inverse Distance Weighted (K-AIDW) 
interpolation algorithm.

183 MCAFNet: Multi-Channel Attention  Fusion Network-Based CNN for  Remote 
Sensing Scene Classification
Jingming Xia, Yao Zhou, Ling Tan, and Yue Ding

Remote sensing scene images are characterized by intra-class diversity and inter-class similarity. When 
recognizing remote sensing images, traditional image classification algorithms based on deep learning only 
extract the global features of scene images, ignoring the important role of local key features in classification, 
which limits the ability of feature expression and restricts the improvement of classification accuracy. Therefore, 
this paper presents a multi-channel attention fusion network (MCAFNet) to effectively recognize scenes and 
obtain competitive classification results.
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At roughly 325 square kilometers, the Ebro Delta on the northeastern coast of 
Spain is one of the largest wetlands along the Mediterranean Sea coast. It is an 
important habitat for wildlife, including flamingos and birds using the wetlands 
as a stopover on migratory journeys. The site in southern Catalonia has been 
designated a UNESCO Biosphere Reserve.

The 50-kilometer-long coastline features two sand spits: El Fangar on the north 
shore and La Banya on the south. These appendages are the remnants of the 
river’s previous deltas, which were reworked when the river changed course 
over the past few thousand years.

The delta, which is home to 62,000 people, has also been greatly modified by 
human use. In the past 150 years, wetlands have been converted into fields 
of rice, which now cover up to 80 percent of the delta. To supply water for 
irrigation and to generate hydroelectric power, more than 187 dams have been 
built on Ebro River and its tributaries—development that trapped most of the 
sediment supply in Spain’s largest river in reservoirs and behind dams. Erosion 
and land subsidence followed downstream.

The two natural-color images, acquired in 1984 (top image) and 2021 (bottom 
image), by Landsat 5 and Landsat 8 (respectively), show the erosion of the trian-
gular island at the mouth of the Ebro River near Riumar has retreated by several 
hundred meters. Note that the differences in color between the images could be 
attributed to differences in the satellite sensors, changes in the landscape, and 
differences in the timing of tides.

Today, the shape and form of the delta is no longer controlled by the river, but 
by sea waves. And with sea-level rise and more frequent and intense storms, 
those waves are getting bigger, leading to further shoreline retreat. In January 
2020, the narrow sandbar that connects the southern spit to the main delta was 
flooded by storm Gloria, along with 3,000 hectares of rice fields. Storms also 
exacerbate the shrinking and loss of dune fields on the beaches.

The Ebro Delta illustrates the hard choices to come for communities facing 
rising seas—try to hold back the ocean or manage the retreat.

The Spanish government recently announced a plan to buy coastal land to 
create a buffer zone. If the plan is adopted, the purchase would constitute the 
largest land buyout in Europe so far due to climate change. But it is opposed by 
many of the delta’s inhabitants, some of whom instead favor beach nourish-
ment, pumping, and seawalls to protect the coast. Some farmers are experi-
menting with strains of rice that can better withstand saltwater intrusion.

For more information, visit https://landsat.visibleearth.nasa.gov/view.
php?id=149170.

NASA Earth Observatory images by Lauren Dauphin, using Landsat data from 
the U.S. Geological Survey. Story by Sara E. Pratt.
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Technology Changes During 
My 60-Year Mapping Career

BY Dr. David F. Maune, COLONEL USA (RET)

I am retiring at the end of 2022, after two won-
derful 30-year careers in the mapping sciences – 
30 years as a topographic engineer offi cer in the 
U.S. Army Corps of Engineers (USACE) (Figure 
1) and 30 years as a geospatial senior project 
manager with Dewberry (Figure 2). Both careers 
included photogrammetric and topographic map-
ping and production of Digital Elevation Models 
(DEMs) – my specialty, for which I served as edi-
tor/co-author of three editions of the DEM Users 
Manual (Figure 3).

 In addition to Army schools, assignments to 
topographic engineering battalions in Germany 
and Hawaii, the Army sent me to The Ohio State 
University (OSU) to get M.Sc. and PhD degrees 
in geodetic science and photogrammetry. Prior 
to the advent of GPS, we were taught how to use 
T-3 theodolites, star catalogs and precise celes-
tial navigation techniques to determine latitude 
and longitude; it took me weeks to complete all calculations 
and adjustments for a single position; I knew there had to 
be a better way. Similarly, I studied analog and analytical 
photogrammetry, again knowing there had to be a better 
way. My PhD dissertation on photogrammetric self-calibra-
tion won ASPRS’ Talbert Abrams Grand Award in 1976 for 
what was then considered to be pioneering research in digital 
photogrammetry. Self-calibration has evolved into today’s 
Structure from Motion (SfM) photogrammetry.

As an Army topographic engineer, we helped to map allied 
countries that asked for America’s help in mapping for nation 
building, and we mapped and performed terrain analyses 
of countries where we might potentially go to war. I retired 
from the Army in 1991 as the Commander and Director, U.S. 
Army Topographic Engineering Center (TEC) – now the U.S. 
Army Geospatial Center (AGC) – where we developed many 
mapping technologies in common use today. 

While at Dewberry from 1992 to the present, I’m best 
known as Project Manager for our major geospatial contracts 
with the U.S. Geological Survey (USGS) and the National 
Oceanic and Atmospheric Administration (NOAA) Offi ce for 
Coastal Management (OCM) and National Geodetic Survey 
(NGS). I also supported the Federal Emergency Management 
Agency (FEMA) for the National Flood Insurance Program 
(NFIP) and emergency response contracts. All these contracts 
gave me experience with lidar and other elevation technolo-
gies and applications which led me to serve as editor and 
principal author of three editions of Digital Elevation Model 

Figure 3. Editor of three editions of the DEM Users Manual, 
2001, 2007, 2018. Source, Dewberry.

 
Figure 1. Colonel in the U.S. 
Army Corps of Engineers, 1961-
1991. Source: Personal image. 

Figure 2. Senior Project Manager 
at Dewberry, 1992-2022. Source: 
Personal image.
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Technologies and Applications: The DEM Users Manual 
(Figure 3), published by ASPRS.

I have been intrigued by the changes in surveying and 
mapping technologies during my 60-year career, summarized 

in the ten technology sections below. I do not look back to the 
“good old days” but cherish the progress made during my 60 
years as a mapper.

Changes in Cartography
In his testimony to Congress on December 5, 1884, John 
Wesley Powell, 2nd Director of the USGS, stated: “A 
Government cannot do any scientifi c work of more value to 
the people at large than by causing the construction of proper 
topographic maps of the country.” Until the 21st century, 
USGS’ 7.5-minute topographic quad maps (Figure 4) were 
America’s standard mapping product. U.S. military organiza-
tions produced similar topographic maps of foreign countries 
at different scales. Cartographic features are either mapped 
as points, lines, or polygons. “Feature separates” are merged 
into “color separates” for each color used on the printed map, 
normally black, red, blue, green, and brown, and sometimes 
magenta to show map updates. 

For vector “feature separates”, scribing was used to pro-
duce lines for cartographic map compilations before the use 
of computer-based geographic information systems (GIS). 
Lines produced by manual scribing are sharp, clear and even. 
Using large walk-in cameras (Figure 5), pencil manuscripts 
were photographed onto scribe sheet material. Using a light 
table (Figure 6), lines on the scribe sheet were traced with a 

metal scribe tool to remove thin lines of translucent coating 
to produce a negative image (compared with drafting that 
produces a positive image). Scribing produced a result supe-
rior to drafting, but it is more time-consuming. A separate 
stylus was required for each thickness of line required, and 
some were used for parallel double-line road casings. Scribing 
was so time-consuming that a cartographer could spend a 
year or more scribing linear features for a single map sheet. 

Text was set by using a Leroy lettering set, a popular me-
chanical lettering template used by cartographers and drafts-
men; laminated plastic templates had characters engraved 
on the front, in different sizes, with the lines serving as guide 
grooves for the cartographer or draftsman to ink letters, 
numbers, and characters consistently.

Using “peel coats” to open windows for polygons, area fea-
tures were screened with patterns to depict swamps, forests, 
lakes, built-up areas, etc., or to lighten colors by dotted screens 
with differing amounts of white between the colored dots. For 
example, a river centerline might be printed with dark blue 

Figure 4. Topographic quadrangle maps produced by USGS 
until about 2002. Source: USGS.

Figure 5. Walk-in mapping camera used by my topographic 
engineer battalion in Hawaii to produce the L653 series of 
topographic maps for U.S. Forces, Korea. Personal image.

Figure 6. Although these scribed lines are thick for 
visualization purposes, most scribed lines are a small fraction 
of a mm thick and require a steady hand scribing beneath a 
microscope. Personal image.
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ink, but a lake or double-line stream would be screened so that 
the same dark blue ink appears to be light blue on the map.

Army topographic engineer units did much more than 
produce topographic maps. My topographic engineer battalion 
in Germany had three terrain intelligence detachments whose 
mission was to perform terrain analyses of countries where 
NATO units may go to war. Soldiers would need to determine 
the bridge-bearing capacity of bridges in potential enemy 
territory, the soil-bearing capacity for armored units travel-
ling off-road, and obstacles in moving through cities, towns, 
and villages. Soldiers would need to know potential parachute 
landing zones, landing beaches, obstacles to cross-country 
movement, areas for cover and concealment, etc. My battalion 
produced such map-based terrain analysis studies of eastern 
European countries, and most of those studies were either 
Confi dential or Secret. Thus, security of printed terrain analy-
sis studies in our map warehouses was always a challenge. 

GIS is like cartography but with key differences. Both 
include base maps to which additional data are added, but a 
GIS has no limit on the amount of supporting data that can 
be added, including massive geodatabases for example, and a 
GIS can automate analyses of connectivity, adjacency, and/or 

proximity. National mapping agencies, including the Defense 
Mapping Agency (DMA) and USGS, started adopting GIS tech-
nology and best practices in the 1980s, but they also continued 
using traditional cartography until the turn of this century.

Soldiers now use computers in the fi eld with GIS software 
for visualizing the terrain and performing geospatial intelli-
gence tasks in combat brigades and divisions. Most data come 
from the National Geospatial-Intelligence Agency (NGA), but 
Army geospatial intelligence analysts perform on-demand 
terrain analysis tasks in combat zones, tailored to satisfy 
tactical requirements. 

For the National Map (TNM) in the U.S., US Topo is 
USGS’ current topographic map series, modeled on the legacy 
7.5-minute topographic quad maps but mass-produced quick-
ly from GIS databases and published as digital documents. 
US Topo has various digital layers that overlay and can be 
turned on and off, including elevation, imagery, hydrogra-
phy, transportation, structures, land cover, boundaries, and 
geographic names.

The PE&RS GIS Tips and Tricks column by Dewberry 
Senior GIS Professional Al Karlin routinely stimulates think-
ing on the evolving use of GIS technology. 

Changes in Map Production and Distribution
Five-color topographic maps were prepared from feature 
separates, then merged into fi ve color separates. For ex-
ample, the black color separate might consist of (1) road 
vectors scribed with single or double-lines for different types 
of roads, (2) scribed buildings to be mapped in black, (3) black 
text throughout the map containing street names, highway 
numbers, city/town names, etc. (4) open-window “peelcoats” 
for screening with dots to create different shades of gray on 
the map; (5) map graticule, and (6) map marginalia including 
scale bar; north arrow/magnetic declination diagram; legend 
explaining the various colors and symbols used, accuracy 
information, and information about the map that today is 
called metadata. All six of these black feature separates 
would be photo-copied onto a black color separate, a fi lm neg-
ative, that would subsequently be burned onto a press plate 
for that color. Similar color separates would be prepared for 
all features to be mapped with red, blue, green, or brown ink. 
Color proofs would then be made for quality control to see if 
any color incorrectly overlays another color. When the color-
proofi ng process indicated everything was within specifi ca-
tions, only then could the press plates be sent for printing on 
single- or multi-color presses. With single-color presses, the 
entire system would be inked separately for the fi ve different 
press plates – the paper running through the press fi ve differ-
ent times with different colors. 

Map paper cutting and trimming was also a science. Blank 
paper map sheets need to be trimmed prior to printing to 
ensure that edges are perfectly square and straight, to avoid 
press jams and other mechanical press problems. In binding 

and fi nishing operations, cutting and trimming are performed 
to reduce large-size press sheets to the desired trim size and 
to remove extraneous edges containing registration marks. 
Most cutting and trimming are performed on a powerful guil-
lotine cutter, a large device consisting of a fl at bed on which 
the paper is stacked, and a wide, sharp steel or steel-carbide 
knife, which is lowered through the paper mechanically. Side 
and back gauges on the cutter bed also helped position the 
paper accurately and squarely, allowing for the ability to 
trim to a very accurate size. A cutter clamp holds the paper 
securely beneath the knife and expels air from the stack of 
sheets, eliminating distortion of sheets which can result in 
improper cutting. Cutting and trimming were also performed 
using cropmarks, lines in the trim area of the sheets which 
indicate the proper size of the fi nished stock. When stacks of 
maps are properly trimmed, automated counting machines 
could be used for accurate inventory audits.

These printing and fi nishing processes continued, world-
wide, until the early 2000s when maps became digital. 

During most of my 30-year Army career, topographic 
engineer battalions had Areas of Responsibility for which 
they maintained map reproducibles for all maps of countries 
for which they might need to provide maps to combat units; 
and they also maintained map warehouses for storing and 
shipping maps to users. Some maps were prepositioned in 
caves or bunkers in potential combat zones. The Army Map 
Service (AMS), and subsequently the Defense Mapping 
Agency (DMA), provided these services worldwide; and USGS 
did so nationwide with their topographic quadrangles. These 
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larger agencies all maintained their libraries of map repro-
ducibles and map warehouses. To the best of my knowledge, 
such brick and mortar facilities are no longer needed with the 
advent of digital mapping products.

Figures 7 and 8 show the map reproducible library and 
one of our printing presses in my topographic engineer bat-
talion in Hawaii. Figure 9 shows a row of map warehouses in 
my topographic engineer battalion in Germany where trucks 
were coming and going daily, moving freshly printed maps 
in from the printing presses and moving new maps out to the 
combat units throughout Germany. Of course, as truckloads 
of new maps were delivered, truckloads of old maps were 

continuously being returned and normally destroyed. In later 
years, we reused old map stock by printing lines on the re-
verse side so recycled maps could be guillotined into 8.5”x11” 
writing pads.

Today, the Army no longer has topographic engineer 
battalions supporting Army potential theaters of operation; 
instead, many forms of imagery and digital data are analyzed 
by geospatial-intelligence specialists at Army division and 
brigade level, using computers with specialized GIS software 
and various forms of digital datasets to perform terrain anal-
yses in support of the Army doctrine known as Intelligence 
Preparation of the Battlefi eld (IPB).

Figure 7. Map feature separates and 
color separates maintained by my 
topographic engineer battalion in 
Hawaii. Personal image.

Figure 8. Printing press at the base plant 
operated by my topographic engineer 
battalion in Hawaii. Personal image.

Figure 9. Map production & warehouse 
buildings (four large buildings in 
the rear) in my topographic engineer 
battalion in Germany. Personal image.

Changes in Map Accuracy Standards
The National Map Accuracy Standards (NMAS) of 1947 per-
tained to graphic contour maps with a published scale and con-
tour interval, defi ning horizontal and vertical accuracy as follows:
• Circular Map Accuracy Standard (CMAS): “For maps on 

publication scales larger than 1:20,000, not more than 10 
percent of the points tested shall be in error by more than 
1/30 inch, measured on the publication scale; for maps on 
publication scales of 1:20,000 or smaller, 1/50 inch. These 
limits of accuracy shall apply in all cases to positions of 
well-defi ned points only.”

• Vertical Map Accuracy Standard (VMAS): “Vertical ac-
curacy, as applied to contour maps on all publication 
scales, shall be such that not more than 10 percent of the 
elevations tested shall be in error more than one-half the 
contour interval. In checking elevations taken from the 
map, the apparent vertical error may be decreased by as-
suming a horizontal displacement within the permissible 
horizontal error for a map of that scale.”

The NMAS had no limits on the magnitude of errors for the 
10 percent outliers.

In 1990, ASPRS published its Accuracy Standards for 
Large-Scale Maps, again focused on printed maps:
• “Horizontal map accuracy is defi ned as the root-mean-

square (rms) error in terms of the project’s planimetric 
survey coordinates (X, Y) for checked points as determined 
at full (ground) scale of the map. The rms error is the cu-
mulative result of all errors including those introduced by 

the processes of ground control surveys, map compilation 
and fi nal extraction of ground dimensions from the map. 
The limiting rms errors are the maximum permissible rms 
errors established by this standard.” The limiting rms er-
rors for Class 1 maps were tabulated in tables, along with 
typical map scales associated with the limiting errors. 

• “Vertical map accuracy is defi ned as the rms error in 
elevation in terms of the project’s elevation datum for 
well-defi ned points only. For Class 1 maps the limiting 
rms error in elevation is set by the standard at one-third 
the indicated contour interval for well-defi ned points only. 
Spot heights shall be shown on the map within a limiting 
rms error of one-sixth of the contour interval.”

• Class 2 and Class 3 maps could have errors 2 or 3 times 
larger, respectively, than Class 1 maps.

In 1998, the Federal Geographic Data Committee (FGDC), 
assuming all mapping errors follow a normal error distri-
bution, published the National Standard for Spatial Data 
Accuracy (NSSDA), specifying that horizontal and vertical 
errors should be reported at the 95% confi dence level, based 
on RMSEx and RMSEy, translated into radial RMSEr for 
horizontal accuracy, and RMSEz for vertical accuracy.
• Horizonal accuracy at the 95% confi dence level 

(ACCURACYr) = 1.7308 × RMSEr
• Vertical accuracy at the 95% confi dence level 

(ACCURACYz) = 1.9600 × RMSEz
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I subsequently performed extensive research into lidar errors 
and determined that: (1) lidar bare-earth DTM errors in veg-
etated terrain do not follow a normal error distribution; (2) the 
use of RMSEz in vegetated terrain signifi cantly overstates the 
vertical errors; and (c) vertical errors in vegetated terrain should 
be defi ned in terms of the 95th percentile, rather than RMSEz. 
This resulted in publication of the National Digital Elevation 
Program (NDEP) Guidelines for Digital Elevation Data, 
Version 1.0, as well as the ASPRS Guidelines, Vertical Accuracy 
Reporting for Lidar Data, Version 1.0, both published in 2004.

In 2014, the ASPRS Positional Accuracy Standards for 
Digital Elevation Data were published. I chaired the commit-
tee that also included Dr. Qassim Abdullah, Karl Heidemann, 
and Doug Smith. These new standards replaced the existing 
ASPRS Accuracy Standards for Large-Scale Maps (1990) and 
the ASPRS Guidelines, Vertical Accuracy Reporting for Lidar 
Data (2004) to better address current digital mapping tech-
nologies. Map accuracy classes 1, 2, and 3 no longer exist. 
• Recognizing that many applications of horizontal accuracy 

cannot be tied directly to compilation scale, resolution of 
digital source imagery, or fi nal pixel resolution, and that 

geospatial data does not suddenly get more accurate just 
because an analyst on a computer can display digital data 
at higher resolution, horizontal accuracy is defi ned in 
terms of horizontal accuracy classes based on RMSEx and 
RMSEy, from which RMSEr and horizontal accuracy at 
the 95% confi dence level can be computed. Tables included 
horizontal accuracy classes between 0.63 cm and 10 me-
ters. The new standard also specifi es the allowable size 
of orthoimagery mosaic seamline mismatches, in terms of 
horizontal accuracy classes for RMSEx and RMSEy. 

• Vertical accuracy is computed using RMSEz statistics in 
non-vegetated terrain and 95th percentile statistics in veg-
etated terrain. Tables included vertical accuracy classes 
between 1 cm and 3.33 meters and included standards 
for Non-Vegetated Vertical Accuracy (NVA) at the 95% 
confi dence level and Vegetated Vertical Accuracy (VVA) at 
the 95th percentile.

The 2014 standards provided additional guidance on check-
point density and distribution, accuracy reporting, designa-
tion of low confi dence areas, and other factors.

Changes in Surveying and Geodesy
At Ethiopia’s request, my topographic engineer battalion in 
Germany was tasked to establish geodetic control monuments 
in Ethiopia in the 1960s as the foundation for topographic 
mapping. Like national mapping agencies worldwide, Army 
surveyors used T-3 theodolites to measure vertical and hori-
zontal angles for triangulation from Bilby towers, also used 
by the U.S. Coast and Geodetic Survey (USC&GS) through 
the 1980s (Figures 10 and 11). We used surveyor tapes to 
measure distances prior to the introduction of electronic dis-
tance measuring equipment (EDME). We used Bilby towers 
to see above obstacles and establish line-of-sight to survey 
targets at long distances; on a clear day, T-3 theodolites could 

accurately measure horizontal and vertical angles to survey 
targets over 50 miles away. 

Bilby towers had two unconnected parts – an internal 
tower for mounting surveying instruments and an external 
tower for surveyors. This separation allowed for isolating the 
instruments from vibrations caused by people, increasing the 
precision of measurements. These survey techniques formed 
the backbone of America’s spatial reference framework. 
Military and civilian surveyors also use(d) differential level-
ing (Figure 12) to measure vertical offsets between two points 
to transfer an elevation from a benchmark (BM, with known 
elevation) to another point (unknown elevation) by a series of 

Figure 10. Bilby tower with internal 
tower (for instrument) isolated from 
external tower (for surveyor). NOAA 
Photo Library.

Figure 11. T-3 triangulation 
measurement from a 
USC&GS Bilby tower. 
NOAA Photo Library.

Figure 12. Differential leveling used levels that 
took foresight (FS) and backsight (BS) elevation 
differences measured on marked survey leveling rods. 
NOAA Photo Library.
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foresights (FS) and backsights (BS). It took considerable time 
and expense to establish horizontal monuments and vertical 
benchmarks nationwide using such techniques. 

The Department of Defense’s NAVSTAR, now the Global 
Positioning System (GPS), became fully operational in 1995, 
though originally intended for military purposes. In 1998, 
under contract with NGS, I authored the National Height 
Modernization Study: Report to Congress and documented 
the costs and benefi ts of modernizing the national height 
system in the U.S. based on differential GPS measurements 
relative to Continuously Operating Reference Stations 
(CORS). Initially seen as a quick way to determine horizontal 
positions accurately, NGS proved that accurate elevations 

could also be obtained from high quality GPS receivers and 
rigorous procedures. Today, following procedures in NOAA 
Technical Manual NOS NGS-58, Guidelines for Establishing 
GPS-Derived Ellipsoid Heights (Standards: 2cm and 5cm), 
GPS is routinely used to transfer elevations from the near-
est CORS to local survey points to 2 or 5 cm at the 95% 
confi dence level, negating the need for benchmarks which 
are subject to subsidence and may otherwise be unstable. 
GPS revolutionized the surveying and geodesy professions. 
Airborne GPS is also vital for all types of aerial surveys.

Readers are invited to read “The Evolution of GPS” by 
Adam Goetsch, at https://illumin.usc.edu/the-evolution-of-gps/

Changes in Aerial and Satellite Imagery

Dr. Talbert “Ted” Abrams was named the Father of Aerial 
Photography for his innovations in aerial photography. As 
a Marine Corps aerial photographer in Germany during 
WWI, he took pictures over the side of an open airplane 
and knew there had to be a better way. He founded Abrams 
Aerial Surveys and designed an airplane (Figure 13) so that 
the engine smoke did not obscure aerial images taken with 
a mounted camera. Film cameras, normally with 6” focal 
length, acquired 9" × 9" aerial fi lm negatives for decades until 
large format metric digital cameras were introduced in the 
early 2000s. He also founded ASPRS’ Talbert Abrams Award. 
When I won his top award in 1977 for my research in pho-
togrammetric self-calibration (Figure 14), he showed me his 
pilot’s license signed by Orville Wright (Figure 15). 

 I was introduced to satellite imagery in the early 1970s 
when the US military used Hexagon KH-9 reconnaissance 
satellites (Figure 16) to map countries with or without 
their knowledge or consent. I was the Offi cer-in-Charge of 
Production for a NATO unit responsible for mapping the 
Soviet Union, and I was the “sanitation board” authority for 
determining the security classifi cation of NATO products 

produced from Top Secret imagery. The KH-9 used fi lm, 
not digital imagery. Operators ejected the undeveloped fi lm 
towards earth in reentry vehicles deployed by parachutes. 
When the object entered the upper atmosphere, the para-
chute would open and was then “snatched” mid-air by an 

Figure 13. Ted Abrams founded Abrams 
Aerial Surveys and designed his plane 
so photos would not be fogged by engine 
smoke. Source: The Abrams Foundation.

Figure 14. In 1977, Dr. Abrams 
presented me the Talbert Abrams 
Grand Award for my research in 
photogrammetric self-calibration. 
Source: Personal image.

Figure 15. Dr. Abrams bought me 
a beer and showed me his pilot’s 
license signed by Orville Wright. 
Source: The Abrams Foundation.

Figure 16. Now on display at the National Museum of the 
United States Air Force near Dayton, OH, the KH-9 Hexagon 
reconnaissance satellite was declassifi ed on 9/17/2011. At 
60-foot length and weighing 15 tons at launch, 19 KH-9 
satellites were launched between 1971 and 1986. Panoramic 
images were fi lm, not digital. Personal image.
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airplane, with a hooking apparatus beneath the plane, sent 
to the parachute’s expected point of entry. This seemingly dif-
fi cult feat was remarkably successful, with only one reentry 
vehicle lost in 15 years of operation. For photogrammetric 
compilation, the KH-9 panoramic images required rectifi ca-
tion to remove distortions caused by tilt. During the Cold 
War, 19 Hexagon missions imaged 877 million square miles 
of the earth’s surface between 1971 and 1986.

NASA’s Earth Resources Technology Satellite (ERTS) was 
launched July 23, 1972, collecting digital multispectral imag-
ery. Later renamed, Landsat 1 became the fi rst earth-observ-
ing satellite explicitly designed to study planet earth. In 1993, 
the U.S. Department of Commerce granted DigitalGlobe 
the fi rst license for private enterprise to build and operate a 
satellite system to gather high-resolution digital imagery of 
earth for commercial sale. Today, there are dozens of options 
for collecting aerial or satellite panchromatic, natural-color, 

multispectral, hyperspectral, or radar digital imagery opti-
mized for a large variety of user applications.

In 2001, Leica introduced the fi rst large format, calibrated 
digital mapping camera with its ADS40 pushbroom camera; 
Dewberry was the fi rst to produce digital orthophotos for 
USGS using a digital mapping camera. Other calibrated met-
ric digital mapping cameras soon followed. All digital map-
ping cameras have continued to improve to this day, widely 
used for federal, state, and local mapping projects. With the 
recent popularity of Structure from Motion (SfM) photogram-
metry, small-format consumer-grade non-calibrated cameras 
are now used for image acquisition for small mapping proj-
ects where redundant observations by multiple look angles 
allow for camera self-calibration.

The PE&RS Mapping Matters monthly column by Dr. 
Qassim Abdullah, has chronicled the recent advances in 
aerial imaging and photogrammetry.

Changes in Photogrammetry
The May 2021 issue of PE&RS included my Tips & Tricks 
article on aerial triangulation over the years with what I 
call four generations of photogrammetry: analog, analytical, 
digital, and SfM. I fi rst learned to be a photogrammetrist us-
ing fi rst-generation analog stereo plotters, which attempted 
to physically replicate the geometry that existed when aerial 
fi lm photos were taken. Stereoplotters used glass stereo dia-
positives to compile topographic maps. 

The Army trained me to use the Multiplex (Figure 17), 
which had a series of projectors with reduced-scale 2" × 
2" diapositives in individual projectors for each photo in a 
fl ight line. The long projector bar could be lengthened with 
more projectors added for longer fl ight lines. Based primar-
ily on optics, Multiplexes were still used by the U.S. Army 
in the 1960s, unchanged from what was used during WW II. 
Subsequently, Kelsh Plotters were widely used with full-size 
9”x9” diapositives. When I went to OSU, I learned analog 
photogrammetry on the Wild A-7 (Figure 18), an optical-
mechanical stereo plotter with hand cranks to move in x and 

y directions and a foot petal to change elevations for con-
touring; by keeping a “fl oating dot” on the ground for a set 
elevation, the photogrammetrist would trace a contour line 
of equal elevation. We also learned 2nd-generation analyti-
cal photogrammetry which mathematically replicated the 
physical geometry when stereo hardcopy photos were taken 
by metric fi lm cameras. My PhD dissertation was on pho-
togrammetric self-calibration, which became relevant with 
the latest 4th-generation SfM photogrammetry that does not 
require calibrated metric cameras. Dewberry has used SfM 
on several Alaska airfi eld mapping projects.

 As fate would have it, I became heavily involved with 
the development of third-generation digital photogram-
metry. As Commander and Director of the U.S. Army 
Engineer Topographic Laboratories (ETL) and Topographic 
Engineering Center (TEC) between 1988 and 1991, my orga-
nization developed the fi rst Digital Stereo Photogrammetric 
Workstation (DSPW), now marketed as SocetSet, as well as 
the fi rst high-resolution scanner to convert fi lm images into 

Figure 17. Multiplex projectors where I fi rst learned to 
perform stereo photogrammetric map compilation in the 
Army. This was the easiest to visualize how aerial geometry 
was replicated at reduced scale to perform relative and 
absolute orientation. Source: US Army.

Figure 18. Wild A-7 stereo plotter with drafting table that I 
used to study photogrammetry at OSU. Here, only one stereo 
pair at a time underwent relative orientation. Although this 
had advantages, absolute orientation was harder to perform 
after bridging between multiple stereo pairs, one at a time. 
Source: Personal image.
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digital images, subsequently marketed as PhotoScan-1. These 
two systems were part of the Army’s Terrain Information 
Extraction System (TIES) introduced in 1991. Dewberry now 
uses SocetSet as our prime digital photogrammetric software. 
Thus, in one way or another, I have worked with all four gen-
erations of photogrammetry during my 60-year career.

Founded in 1934 as the American Society of 
Photogrammetry (ASP), and renamed the American Society 

for Photogrammetry and Remote Sensing (ASPRS) in 1985, 
the society has now published six editions of the Manual of 
Photogrammetry as well as many other publications dealing 
with various forms of remote sensing, imaging, and geospa-
tial information, as well as the ASPRS Positional Accuracy 
Standards for Digital Geospatial Data. 

Changes in Radar
During my Army career, we used many forms of aerial and 
satellite radar systems for mapping and intelligence pur-
poses. Several Synthetic Aperture Radar (SAR) exploitation 
systems were developed by ETL/TEC. During the fi rst Gulf 
War in 1991, General Normal Schwarzkopf named several of 
our Army SAR systems as being instrumental in his ability to 
see the total battlefi eld in Iraq better than Saddam Hussein 
could see in his own back yard, or words to that effect. Of 
course, the main advantage of radar is that it enabled allied 
forces to perform our mapping and surveillance operations 
in all weather conditions, as radar maps through clouds, fog, 
and haze. 

During my Dewberry career, one of my major 
achievements was in mapping all of Alaska with aerial 

Interferometric Synthetic Aperture Radar (IfSAR). I chose 
this technology because it mapped through clouds, a per-
sistent problem in Alaska that, until 2008, had prevented 
Alaska from being mapped to established mapping stan-
dards at any scale. Figure 19 shows the advantage of aerial 
IfSAR in Alaska that also had the advantage of showing 
hydrographic features loud and clear. These IfSAR datasets 
are now used by Dewberry and others for Elevation Derived 
Hydrography (EDH) of Alaska.

Today, SAR satellites are extremely common for conti-
nental-scale mapping and change detection, and Differential 
Interferometric Synthetic Aperture Radar (DInSAR) is ideal 
for mapping the annual rates of land subsidence that com-
pounds the effects of sea level rise worldwide.

Figure 19. The aerial IfSAR Digital Terrain Model (DTM)(left) was vastly superior to the prior photogrammetric DTM (right) 
produced from satellite imagery for the National Elevation Dataset (NED). Source: Intermap

Changes in Lidar
In 1997, for the Federal Emergency Management Agency 
(FEMA), I evaluated the use of lidar and IfSAR for fl oodplain 
mapping and modeling for the National Flood Insurance 
Program (NFIP), and I wrote all of FEMA’s lidar guidelines 
and specifi cations between 1997 and 2010 when USGS 
published its fi rst Lidar Base Specifi cations. In 1998, for the 
National Geodetic Survey (NGS), I authored the National 
Height Modernization Study: Report to Congress on how to 

modernize the National Height System in the U.S. based on 
GPS surveys relative to CORS (in lieu of differential level-
ing), and nationwide elevation mapping with lidar and IfSAR 
(in lieu of photogrammetric mapping of DEMs). 

In 2000, ASPRS asked me to write a book on lidar and 
IfSAR, and I agreed to edit and co-author the fi rst edition of 
Digital Elevation Model Technologies and Applications: the 
DEM Users Manual (published in 2001) with chapters on 
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photogrammetry, IfSAR, topographic lidar, bathymetric lidar, 
and sonar, as I’ve always visualized a worldwide DEM from 
the tops of the mountains to the depths of the seas, including 
inland bathymetry. 

Whenever I autograph a copy of the DEM Users Manual, 
I write “May all your DEMs come true!” When the second 
edition was published in 2007, I had three basic dreams: (1) 
Development of high-accuracy, affordable elevation tech-
nologies for betterment of society; (2) Development of DEM 
technology standards, guidelines and specifi cations, and (3) 
Implementation of a nationwide program to produce and 
maintain standardized high-quality DEMs used by all. These 
three dreams have largely been realized and documented in 
the third edition published in 2018. My lidar dreams for the 
future are documented in the third edition. 

Although I had almost nothing to do with the development 
of lidar or IfSAR (my dream #1), I was the major champion 
of lidar for 20 years and ended up being named the Father of 
Lidar by the International Lidar Mapping Forum (ILMF) and 
LiDAR Magazine in 2018 for my roles in dreams #2 and #3, 
having authored the major lidar standards, guidelines and 
specifi cations, as well as the National Enhanced Elevation 
Assessment (NEEA) that led directly to today’s 3D Elevation 
Program (3DEP).

The 3DEP is widely heralded as a major success, having 
acquired Quality Level 2 (QL2) or better topographic lidar for 
most of the country, and QL5 IfSAR of Alaska. The map at 
Figure 20 shows the geographic extent of completion of the 
fi rst-ever national baseline of consistent high-resolution eleva-
tion data – both bare earth and lidar point clouds – as of 2022.

Recognizing the importance of dual-frequency (red/green) 
topographic-bathymetric (topobathy) lidar, my boss, Amar 
Nayegandhi, has been an industry leader and authored the 
topographic lidar and bathymetric lidar chapters in the third 
edition of the DEM Users Manual, as well as in USACE EM 
1110-1-1000, Photogrammetric and Lidar Mapping, for the 
U.S. Army Corps of Engineers.  Dewberry now owns and 
operates two state-of-the-art topobathy lidar sensors, as well 
as a topographic lidar sensor.  

When water clarity allows, topobathy lidar does an out-
standing job of mapping both the topographic and bathymet-
ric surfaces, as shown in Figure 21 which revealed the previ-
ously unknown bathymetric surface beneath waters in the 
Potomac River. When water clarity is poor, because of water 
turbidity and/or presence of signifi cant aquatic vegetation, as 
shown in Figure 22, topobathy lidar data voids will occur that 
require sonar to fi ll in the gaps.

In September of 2022, the 3D Nation Elevation 
Requirements and Benefi ts Study (Figure 23) was completed 
by Dewberry for NOAA/NGS and USGS, primarily authored 
by Sue Hoegberg of Dewberry. I was pleased to see that the 
“3D Nation” vision included inland topography and inland 
bathymetry (for USGS), and nearshore and offshore bathym-
etry (for NOAA) – each with their own technologies and 
user applications. The USGS link to the study is at https://

Figure 20. Geographic extents of QL2 or better lidar for 49 
states and US territories and QL5 IfSAR of Alaska. Source: 
USGS.

Figure 21. Topobathy lidar produced by Dewberry for USGS, 
showing the topo-bathy surface along the Potomac River near 
Shepherdstown, WV. Source: Dewberry.

Figure 22. Example of a seamless topobathy lidar data 
surface in Puerto Rico, including data voids where aquatic 
vegetation, bioluminescence or sediments in the water 
prevented penetration by the green laser. The data voids in 
outer areas occurred where the laser extinction depth was 
exceeded. Source: Dewberry
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www.usgs.gov/3d-elevation-program/3d-nation-elevation-re-
quirements-and-benefi ts-study, which points to https://www.
dewberry.com/services/geospatial-mapping-and-survey/3d-
nation-elevation-requirements-and-benefi ts-study.

In October 2022, USGS posted a technical announce-
ment for the 3D Nation Study, which can be found here: 
https://www.usgs.gov/news/technical-announcement/
results-are-3d-nation-study-report-now-available.

Kevin Gallagher, USGS Associate Director for Core 
Science Systems said: “This study is foundational to our 
future direction of the 3D National Topography Model that 
integrates elevation and hydrography in 3D. The 3D National 
Topography Model will provide the terrestrial component of 
the 3D Nation vision we share with NOAA to build a continu-
ous elevation and hydrography surface from the peaks of our 
mountains to the depths of our waters.” Similarly, NOAA 
developed a blog post about the study.

For inland bathymetry, Figure 24 shows where topo-
graphic lidar was merged with topobathy lidar of the Lower 
Withlacoochee River (Florida) for a 22.5 mi2 area. The CZMIL 
topobathy lidar coverage area was 12.5 mi2. Topobathy lidar 
was unable to get bottom returns in the deeper parts of the 
river channel due to multiple bathymetric factors: depth, 
tannic water, and mucky bottom substrate. The areas outside 
the channel were shallow enough to overcome the bottom and 
water turbidity issues. Figure 25 shows where Multibeam 
Echo Sounder (MBES) sonar was collected for the deeper 
parts of the channel (0.3 mi2 or 14 linear river miles); and 
Single Beam Echo Sounder (SBES) sonar with a HyDrone in 
the two dam spillway areas that were too shallow for MBES 
and too turbid for lidar. Figure 26 shows the successful 
merger of the topographic lidar, topobathy lidar, and sonar 
data to map the entire topographic-bathymetric surface. 
This is representative of what needs to be done for rivers and 
lakes nationwide in order to fully satisfy objectives of the 3D 
Nation initiative. 

Figure 24. Topobathy lidar mapped 
portions of the river, but not the deeper 
tannic waters with mucky bottom. 
Image source: Dewberry. 

Figure 25. Multibeam sonar mapped 
the deeper parts of the river not 
mapped with topobathy lidar. 
Image source: Dewberry.

Figure 26. By merging the two datasets, 
the entire topographic and bathymetric 
surface was mapped seamlessly. 
Image source: Dewberry.

 Changes in Sonar
During my fi rst 30-year career, in the U.S. Army Corps of 
Engineers, I never managed hydrographic surveys. However, 
between 1988 and 1991, while serving as Commander and 
Director, U.S. Army Engineer Topographic Laboratories 
(ETL) and Topographic Engineering Center (TEC), my 
organization authored what was then the latest version of 
USACE Engineering Manual EM 1110-2-1003, Hydrographic 
Surveying, which explained technologies and best practices 
for SBES and MBES surveys. 

During my second 30-year career with Dewberry, I special-
ized in DEMs from all technologies, and all three editions 
of my DEM Users Manual included chapters on photogram-
metry, IfSAR, topographic and bathymetric lidar, and sonar. 
The sonar chapters were all authored by Captain Guy Noll 
(NOAA Corps, retired) and different co-authors he selected. I 
always considered the underwater bathymetric surface to be 
a continuation of the above-water topographic surface.

Between 2015 and 2022, I served as a member of NOAA’s 
Hydrographic Services Review Panel (HSRP), which authored 

Figure 23. Front cover of the 3D Nation Elevation 
Requirements and Benefi ts Study. Source: Dewberry
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numerous issue papers relevant to sonar and hydrographic 
surveys. In 2019, the Presidential Memorandum on Ocean 
Mapping of the United States Exclusive Economic Zone (EEZ) 
and Shoreline and Nearshore of Alaska was issued. Section 
2 called for a National Ocean Mapping, Exploration, and 
Characterization (NOMEC) strategy. Section 3 of that memo-
randum directed the NOAA Administrator, in coordination 
with the state of Alaska and the Alaska Mapping Executive 
Committee (AMEC) – co-chaired by NOAA and the USGS 
- to develop a proposed strategy to map the shoreline and 
nearshore of Alaska and inform actions of the Ocean Policy 
Committee and relevant agencies. NOAA subsequently de-
veloped two strategies – one for the NOMEC and another for 
the ACMS. I was the primary author of the HSRP whitepaper 
with HSRP recommendations to NOAA on the implementation 
plan for the ACMS, including the use of Uncrewed Surface 
Vessels (USVs) and Autonomous Surface Vessels (ASVs).

By then, the 3D Nation Elevation Requirements and 
Benefi ts Study had already been in progress for several 
years, documenting how nearshore bathymetry had not been 
collected for most of coastal Alaska, and offshore bathym-
etry had not been collected for major portions of the U.S. 
Exclusive Economic Zone (EEZ). As stated above, the fi nal 
3D Nation Study report was released in September of 2022, 
including evaluations of relevant technologies that could 
most cost-effectively address the major unmet needs for 
MBES surveys. See: https://www.dewberry.com/services/

geospatial-mapping-and-survey/3d-nation-elevation-require-
ments-and-benefi ts-study, which includes an analysis of 
technology trends and risk considerations.

Whereas there are many excellent commercial multibeam 
sensors available, it is the platforms for those sensors that 
will have the greatest impact on future benefi ts vs. costs. For 
years, crewed systems for MBES have been the norm; but un-
crewed systems are now making inroads as force-multipliers, 
either with a crewed mothership (Figures 27 and 28) or as 
stand-alone collection platforms. But crewed motherships are 
very expensive to operate, e.g., $40,000 or more per day for 
the mothership shown in Figure 27.

 To reduce costs dramatically for MBES surveys of large 
areas, several new ASV platforms have emerged that do not 
require crewed motherships. They are generally powered by 
wind-energy, solar-energy, batteries and/or micro diesel en-
gines. They operate 24/7, often monitored and controlled from 
mission control thousands of miles away. They often have 
complex situational awareness sensors and communications 
for data transfer and to enable remote operators to monitor 
progress and take corrective actions if needed. Depending on 
the platform used, they can autonomously collect MBES data 
for hours, days, weeks, and months between services.

I see these ASVs as the future for ocean mapping, and I 
believe they will revolutionize the way that multibeam sonar 
is collected, cost-effectively, for the world’s large unmapped 
oceans and coastlines. 

Figure 27. Larger vessel (mothership) used for traditional 
MBES surveys in deeper water and CW5 USV (yellow) used 
for shallow-water surveys. Source: TerraSond. 

Figure 28. With the mothership in the background, such 
USVs are ideal for shallow-water surveys using a variety 
of SBES or MBES sensors. Source: TerraSond.

Changes in Geophysical Mapping
Geophysical mapping involves the non-invasive investiga-
tion of subsurface conditions in the earth through measuring, 
analyzing, and interpreting physical properties at or close to 
the surface. 

When geodesists like myself study geophysics, it normally 
boils down to measurements of gravity, needed to develop or 
improve geoid models to convert ellipsoid heights (from GPS 
observations) into orthometric heights (elevations). For years, 
Dewberry has been collecting airborne gravity data for NGS’ 
Gravity for the Redefi nition of the American Vertical Datum 
(GRAV-D). Dewberry has also used Ground Penetrating 
Radar (GPR) to detect underground utilities; and in 2016, 
we sponsored a GPR survey to measure the depth of the ice 

and snow on the peak of Denali, America’s tallest mountain; 
we had previously determined the elevation at the top of the 
ice and snow using redundant GPS/GNSS receivers. When I 
started mapping, I barely understood magnetic declinations 
and the earth’s changing magnetic fi eld.

In 2019, USGS announced the Earth Mapping Resources 
Initiative (Earth MRI), apparently choosing this acronym for 
its similarity to a human MRI which maps inside the hu-
man brain. The Earth MRI is a geophysics initiative to map 
geologic features beneath the surface of the earth.

USGS’ Earth MRI home page (https://www.usgs.gov/spe-
cial-topics/earth-mri) states that the goal of Earth MRI is to 
improve our knowledge of the geologic framework in the U.S. 
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and to identify areas that may have the potential to contain 
undiscovered critical mineral resources. Enhancement of our 
domestic mineral supply will decrease the Nation’s reliance on 
foreign sources of minerals that are fundamental to our secu-
rity and economy. The home page provides greater details on 
why Earth MRI is needed; how the Earth MRI is being imple-
mented; and Earth MRI acquisitions completed or planned.

As part of our Geospatial Products and Services Contracts 
(GPSC3 and GPSC4) with USGS, the Dewberry team has 
been awarded Earth MRI task orders for over a million line-
kilometers of magnetic and radiometric (MAG-RAD) data 
acquired at low-altitude, typically 80 to 100 meters above 
the terrain, where safety is a major factor. Data are acquired 
at higher altitudes over cities and other sensitive locations. 
Two dimensional drape surfaces are established to provide 
vertical guidance over the terrain to an aircraft fl ying nar-
rowly spaced traverse lines normally fl own perpendicular to 
the dominant local geological trend, spaced a few hundred 
meters apart, and widely spaced tie or control lines fl own 
perpendicular to the traverse lines, spaced from 5 to 10 times 
greater than the traverse line spacing. At the crossing points 
between traverse lines and tie-lines, fl ying heights must 
agree within small tolerances, requiring special aircraft guid-
ance systems and expert pilots. When the terrain is relatively 
fl at, specially equipped fi xed wing aircraft are used, as shown 
at Figure 29, with the magnetic sensor housed in a “stinger” 
at the rear. In rugged terrain, specially equipped helicopters 
are required, shown equipped with a stinger in Figure 30, or 
alternatively with a “bird” towed beneath the helicopter as 
shown in Figure 31. 

 The airborne equipment includes cesium vapor magne-
tometers (used to acquire aeromagnetic data), gamma-ray 
spectrometers, downward facing and upward facing Nal 
crystals (used to acquire gamma-ray data), navigation and 
data acquisition systems, GNSS receivers, digital radar 
altimeters, laser altimeters, digital barometric altimeters, 
and outside air temperature sensors. Base station equipment 
includes cesium vapor magnetometers, GNSS receivers, and 
data acquisition computers.

Wikipedia explains why aeromagnetic surveys are ac-
quired using aircraft with magnetometers housed in “sting-
ers” or towed birds in order to separate the metallic aircraft 
and its magnetically noisy engine and electronics from the 

sensitive magnetic sensors. As the aircraft fl ies, the magne-
tometer measures and records the total intensity of the mag-
netic fi eld at the sensor, which is a combination of the desired 
magnetic fi eld generated in the earth as well as variations 
mostly due to the temporal effects of the constantly vary-
ing solar wind and the magnetic fi eld of the survey aircraft. 
By subtracting the solar, regional, and aircraft effects, the 
resulting aeromagnetic map refl ects the spatial distribution 
and relative abundance of magnetic minerals (most com-
monly the iron oxide mineral magnetite) in the upper levels 
of the earth’s crust. Because different rock types differ in 
their content of magnetic minerals, the magnetic map allows 
a visualization of the geological structure in the subsurface, 
particularly the spatial geometry of bodies of rock, intrusions 
of volcanic material, and the presence of faults and folds. This 
is particularly useful where bedrock is obscured by surface 
sand, soil or water. Aeromagnetic data was once presented 
as contour plots, but now is more commonly expressed as 
thematic (colored) and shaded computer generated pseudo-
topography images. The apparent hills, ridges, and valleys 
are referred to as aeromagnetic anomalies. A geophysicist can 
use mathematical modeling to infer the shape, depth, and 
properties of the rock bodies responsible for the anomalies.

In “Mineral Exploration: Principles and Applications,” the 
author, Swapan Haldar, explains that radiometric surveys 
detect and map natural radioactive emanations (γ ray) from 
rocks and soils. The gamma radiation occurs principally from 
the natural decay of isotopes of the elements U, Th, and K.

The radiometric method is capable of detecting these ele-
ments at altitudes up to 300m above the surface, or greater 
depending on the strength of the radiation. Some common 
radioactive minerals that can be detected are uraninite (238U), 
monazite, thorianite (232Th), feldspar (40K), muscovite, and 
sylvite in acid igneous rocks. Exploration for these miner-
als by radiometric survey became important because of the 
demand for nuclear fuels and also for detection of associ-
ated nonradioactive deposits such as titanium and zircon. 
Isotopes are elements whose atomic nuclei contain the same 
number of protons but different number of neutrons. Certain 
isotopes are unstable. They disintegrate spontaneously to 
generate other elements. Radioactivity means disintegration 
of atomic nuclei by emission of energy and particles of mass. 
The by-products of radioactive disintegrations are in various 

Figure 29. Fixed-wing geophysics aircraft 
with stinger in the rear. Image source: 
Sander Geophysics Ltd.

Figure 30. Rotary-wing geophysics 
aircraft with stinger in the front. 
Image source: Sander Geophysics Ltd.

Figure 31. Helicopter with towed “bird” 
with MAG RAD sensors. Source: Sander 
Geophysics Ltd.
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combinations of alpha (α) particles of helium nuclei, beta 
particles (β) of electrons emitted by splitting of neutrons and 
gamma (γ) ray of pure EM radiation. Only the gamma (γ) ray 
radiation is detectable at any appreciable distance above the 
ground and emanates from only the top 10cm or less of the 
earth’s surface. Even so, maps of gamma-ray radiation and 
their relative abundance often refl ect underlying geological 
formations and alteration of lithology, while keeping in mind 
that in areas of signifi cant overburden the character of the 
surface gamma-ray may refl ect transported material.

When asked how USGS uses this MAG-RAD data for the 
Earth MRI, Anjana Shah, a Geophysics Chief Scientist at 
USGS, pointed me to a recently-published article on one of 
the fi rst Earth MRI projects: https://www.geosociety.org/GSA/
Publications/GSA_Today/GSA/GSAToday/science/G512A/ar-
ticle.aspx. She also pointed to upcoming articles in Economic 
Geology explaining how these MAG RAD surveys have identi-
fi ed previously unknown mineral deposits.

Summary – the Big Picture
I am amazed with the vast improvements in mapping tech-
nologies over my 60-year career.

Cartography: In my Army topographic engineer battalion 
in Germany in the 1960s, we had dozens of the fi nest German 
civilian cartographers and dozens of U.S. Army cartogra-
phers who spent two years compiling maps and preparing 
text, scribecoats, and peelcoats for the mapping of one city—
Munich, Germany. Those maps were never completed while I 
was there. After two years, we were told by headquarters, US 
Army Europe, that new aerial photography was being fl own, 
and we would need to update many of the features we had 
compiled the past two years. 

Recently at Dewberry, we had a FEMA emergency re-
sponse contract where we proved that, for cities or disaster 
areas up to 100 square miles, aerial imagery could be ac-
quired, and high-resolution natural color digital orthophotos 
could be produced and delivered to FEMA within 48 hours of 
notice to proceed. These 1-meter orthophotos were overlaid 
with street and administrative boundary vectors, with names 
for streets and communities. Furthermore, the orthophotos 
were linked to a database that included location of critical 
infrastructure, individual building footprints, street address-
es, assessed value, names of owners for potential insurance 
claims, and other geospatial information. 

With today’s GIS software, cartographic features are ac-
companied by geodatabases with vast amounts of supporting 
information. Specialized maps are produced in hours that 
previously would have taken years to produce.

Map Production and Distribution: With paper maps, large 
brick and mortar facilities were required for map produc-
tion, storage, and distribution. Large quantities of new paper 
maps were produced daily that would replace large quantities 
of old paper maps that would need to be disposed of daily. 
Special facilities were required for paper maps and terrain 
analysis studies that were secret or confi dential, with guards 
and security procedures to prevent such maps from getting 
into the wrong hands.

Today, with few exceptions, brick and mortar printing 
plants and map warehouses are obsolete. Maps and terrain 
analyses are prepared by geospatial specialists working 
at their desks with GIS or photogrammetric workstations. 

Digital data are stored in large databases and often served 
to the public via the cloud. Administrative procedures are in 
place to protect classifi ed geospatial information.

Map Accuracy Standards: The National Map Accuracy 
Standards of 1947 defi ned horizontal and vertical map accu-
racy standards in terms of the map scale and contour interval 
of printed topographic maps, assuming all errors had a 
normal error distribution. However, with digital imagery and 
lidar, map scales and contour interval could be changed at 
the push of a button, but the data does not suddenly become 
more accurate just because it can be displayed at a larger 
scale or higher resolution on our computers. Furthermore, 
my personal research demonstrated that elevation errors in 
lidar bare-earth DEMs in vegetated terrain do not follow a 
normal error distribution and the 95th percentile should be 
used in lieu of RMSEz to defi ne the vertical accuracy of lidar 
bare-earth DTMs in vegetated terrain. I was proud to be a 
co-author of the ASPRS Positional Accuracy Standards for 
Digital Geospatial Data, 2014, that established positional ac-
curacy standards for digital orthoimagery, digital planimetric 
data, and digital elevation data from lidar, and other eleva-
tion technologies. 

Surveying and Geodesy: The 1st edition of the DEM Users 
Manual has fi gures that show the large number of miles of 
First Order differential leveling used for the NGVD 1929 ver-
tical adjustment, as well as the much larger vertical control 
network required in the NAVD 1988 adjustment. These dif-
ferential leveling survey lines were extremely expensive and 
time-consuming. Surveyors needing to establish local vertical 
control would fi rst need to identify the best and closest bench-
marks in the National Spatial Reference System (NSRS); and 
it could then take days or weeks of differential leveling to de-
termine an acceptable elevation for a single local benchmark 
or FEMA Elevation Certifi cate.

Today, in one hour, a surveyor equipped with a geodetic 
grade GPS receiver can establish local vertical control ac-
curate to 2-cm or 5-cm at the 95% confi dence level, relative to 
Continuously Operating Reference Stations (CORS) located 
nationwide. Thankfully, Bilby towers are long gone.  

Aerial and Satellite Imaging: For my fi rst decade in 
the mapping profession, fi lm imagery was the only option. 
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Navigating largely by visual means, looking out the air-
plane windows and through view-fi nders, pilots and aerial 
photographers had to be extremely skilled to acquire aerial 
photos of the desired area with the correct position for photo 
centers, forward overlap, sidelap, and exposure controls; and 
experienced photolab personnel developed the fi lm to produce 
acceptable fi lm negatives and diapositives. Then think of the 
complexity in retrieving satellite fi lm imagery from space, 
having to return miles of fi lm from space to the earth for 
developing as we did with the KH-9 Hexagon satellites.

Today, with modern digital mapping cameras, automated 
exposure controls, inertial measurement units, airborne GPS, 
and modern fl ight management systems, personnel can be 
quickly trained to acquire digital imagery with the correct pho-
to centers, forward overlap and sidelap, and optimal exposure 
controls. Of course, satellite images are now all digital and are 
easily transmitted back to earth for mapping and analyses.

Photogrammetry: When I fi rst learned photogrammetry 
on the Multiplex, it would take up to eight hours to bring a 
single stereo pair of images into relative orientation. Then 
additional images would be added, one at a time, to bring 
subsequent stereo pairs into relative orientation. Then at 
the end of a fl ight line, absolute orientation would need to be 
performed on the entire strip in order to correctly scale the 
model and fi t ground control on both ends of the strip. We 
didn’t have a good way to perform block triangulation with 
dozens or hundreds of overlapping fl ight lines.

Today, with automated image correlation as well as 
position and orientation recorded for each image, Dewberry 
reviewed a large block triangulation with over 20,000 digital 
images acquired by 11 different cameras for a 4,000+ mi2 
area, and the software told us there was a problem with 
only one of those images. A review identifi ed that the wrong 
calibration parameters had been entered for that one problem 
image; after correction, the block triangulation was success-
fully completed, in a few hours, for those 20,000+ images that 
each formed stereo pairs with about eight surrounding and 
overlapping images.

Radar: In the past, I primarily looked to radar as a low-
resolution reconnaissance tool, mostly valuable to the mili-
tary for broad area surveillance.

Today, I know that aerial IfSAR was the perfect tool for 
mapping through clouds in Alaska or anywhere worldwide 
where clouds are an issue. I’ve also learned the value of using 
DInSAR, with current and archived satellite SAR images, to 
map annual rates of subsidence at the cm- or even mm-level 
per year.  

Lidar: For the fi rst half of my 60-year career, neither pho-
togrammetry nor radar could accurately map the elevations 
of bare earth terrain in forested areas. With aerial imagery, 
the ground beneath the trees could not be mapped in stereo 
because there were trees in the way; and radar generally 
mapped the top refl ective surface, i.e., treetops.

Topographic lidar, with red lasers, came along in the 
1990s, and we suddenly had the tool that map makers have 
needed for centuries to map the bare earth terrain every-
where; the 3DEP has been a huge success because of advanc-
es in topographic lidar. Bathymetric lidar, with green lasers, 
and topobathy lidar with both red and green lasers, came 
along to map subsurface bathymetry when waters are reason-
ably clear. The 3D Nation initiative will depend on topobathy 
lidar for mapping the Nation’s inland and nearshore bathym-
etry. I will closely monitor its progress after I retire.

Sonar: The world has long needed multibeam sonar to map 
the bottoms of rivers and oceans; but crewed vessels with 
multibeam sonar are very expensive to operate, leaving vast 
areas of our rivers, coastlines and oceans unmapped because 
of affordability issues.

I see USVs and ASVs as the solution to this dilemma, and 
I will also closely monitor the utilization of USVs and ASVs 
after I am retired.

Geophysics: My prior knowledge of geophysics was 
minimal. My only college course in geophysics concentrated 
on gravity. I learned that geodesists could use satellites to 
gather data on gravitational changes as they pass over points 
on the earth’s surface; on land, gravimeters measure the 
earth’s gravitational pull on a suspended mass. Dewberry has 
been fl ying gravimeters for years for NGS’ GRAV-D program 
needed to update our offi cial vertical datum from NAVD88 to 
the upcoming North American-Pacifi c Geopotential Datum 
of 2022 (NAPGD2022); then we can more-accurately convert 
ellipsoid heights (from GPS or airborne GPS measurements) 
into orthometric heights, commonly known as elevations. I 
studied very little about the earth’s magnetic fi eld and knew 
just enough to be dangerous. I knew that the earth’s magnet-
ic fi eld was continuously changing, and NOAA had a calcula-
tor for computing magnetic declinations shown on maps and 
charts. But when my boss, Sid Dewberry, asked me what 
Dewberry should do about the earth’s changing magnetic 
fi eld, I could not think of an answer.

Today, I am amazed to experience the use of magnetic and 
radiometric surveys for the earth MRI initiative. Being able 
to map the probable location of underground critical miner-
als and rare earth elements “blows me away.” In retirement, 
I also plan to follow the progress of this exciting initiative so 
vital for our future economy and security.

During my 60-year career, we’ve come a long way with all 
these technologies. I am proud to have been actively involved 
in the development and/or maturation of many of these tech-
nologies, and I am so grateful to see the major improvements 
in our profession.
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GIS &Tips     Tricks By

Simple Customizations can have a Large Impact

Al Karlin, Ph.D. CMS-L, GISP

Here is another Tips & Tricks column that comes by way of 
my GIS/Map Making Class at the University of Tampa. We 
were doing an exercise in Geocoding/Address Matching and I 
asked the class what local businesses they would like to geo-
code. Of course, fast-food restaurants were the most popular 
choices and we decided on McDonalds Fast Food Restau-
rants. So, we prepared a street locator using local street map 
data, opened a web-browser, navigated to the McDonald’s 
website and found addresses for a few of the local outlets. Of 
course, we could have just used the Mc Donald’s locator map, 
but that was not the point of the exercise. We copy/pasted 
those addresses into a spreadsheet and used ArcGIS Pro 3.0 
along with our locator to geocode the restaurants. 

The locator worked very well, and the resulting feature 
class displayed on the street map as default (4 point, green) 
point markers. Everyone was impressed that the technology 
works, but unimpressed with the display (Figure 1). This re-
minds me of one of my mantras… Never accept the defaults! 
Yes, they all knew that they could alter the display symbolo-
gy, but there are just a bunch of other, generic point markers 
in the Esri palette. So… what to do?

Tip — In ArcGIS Pro: Add a custom Picture Marker
ArcGIS Pro and ArcGIS Desktop can use several image formats 
including, .JPG, .TIF, PNG and/or .BMP as “Picture Markers”. 
For a McDonald’s picture marker, we GOOGLED “McDonald’s 
logo”, and selected a free-to-use transparent logo and saved it to 

a writable directory. The 
picture downloaded in 
.PNG format.

Selecting the McDonald’s 
geocoded layer in the 
Contents pane, either 
right-click and open 
the Symbology Pane 
(or double-click on the 
point marker to open the 
Symbology Pane), and 
double-click on the point 
marker in the Symbology 
Pane to get to the For-
mat Point Symbol menu, 
then open the Properties 
dialog (Figure 2). 

Note that the default 
is “Shape marker”, use 
the arrow to drop down 
the choices and select 
“Picture marker” (see 
Figure 2). This will open 
a new dialog box (Figure 
3). Choose “File…” and 
navigate to your picture 
marker. Once selected, 
you can change the size 
rotation, etc. on this 
menu; we made the pic-
ture marker 15 points. 
Pressing “Apply” at the 
bottom of this dialog 
box will apply your new 
Picture marker, to make 
a more customized map as in Figure 4.

Tip — In QGIS:  Add a custom Picture Marker
Adding a custom picture marker in a QGIS project uses a very 
similar workflow to that described above. QGIS, also recognizes 
the common graphic formats, .JPG, .TIF, .PNG and/or .BMP. 

Figure 2.  The Properties dialog box in the 
Symbology Pane in ArcGIS Pro.

Figure 3.  The Picture marker dialog box 
allows you to select a picture marker and 
manipulate the properties in ArcGIS Pro.

Figure 1.  Default display after geocoding McDonalds restaurants in the 
St. Petersburg, Florida Area.
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To add the custom picture marker, double-click on the sym-
bol in the Layers panel to open the QGIS Symbology panel. 
Here, notice that the default symbol marker is “Simple 
Marker”, click on the “Simple Marker” to open the Symbol 
Layer type menu (Figure 5), use the dropdown to select Ras-
ter Image Marker (Figure 6). 

Use the ellipses (…) or the dropdown arrow to navigate to 
the picture file to use as a marker (Figure 7) and adjust the 
size, and other properties as needed, then click “Apply” to 
change the marker and then “OK” to dismiss the Symbology 
Marker panel. The resulting map is identical to the ArcGIS 
Pro Map as in Figure 8.

We had so much fun with this little trick, students went on 
to construct maps with gopher tortoise, starfish, sharks, and 
octopi, not to mention Burger Kings, Chipotle’s, Starbucks, 
and other favorite places with little picture markers.

CAUTION: Many images found on the internet are copywrit-
ten by their owners. It is illegal to use some images without 
the direct, written consent of that owner, so be aware.

Send your questions, comments, and tips to GISTT@ASPRS.org.

Al Karlin, Ph.D., CMS-L, GISP is with Dewberry’s Geo-
spatial and Technology Services group in Tampa, FL. As a 
senior geospatial scientist, Al works with all aspects of Lidar, 
remote sensing, photogrammetry, and GIS-related projects. 
He also teaches beginning map making at the University of 
Tampa.

Figure 4.  The same map as in Figure 1, but with customized McDonald’s 
logo Picture markers.

Figure 5.  The Symbol Layer dialog in the Symbology panel in QGIS.

Figure 6. Selecting the Raster Image Marker from the Symbol Layer dialog 
in QGIS.

Figure 7. Navigating, selecting and applying a Raster Image Marker file in 
QGIS.

Figure 8.  The QGIS Map displaying the McDonald’s logo Raster Image 
Marker file. 
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BOOKREVIEW

The title might lead one to expect a description and assess-
ment of results found in their study of Tropical Forests. 
However, this is more of a “how-to” book than a “what-we-
learned” book. As a result, the book has infinitely more 
value to an aspiring remote sensing technologist. The book 
addressed a synoptic study of the tropical African forest. The 
magnitude of the problem becomes evident when the size of 
the study area is considered. The greatest width of the Afri-
can continent of interest is about 2800 nautical miles with 
an area of nearly 2 million square nautical miles. The book 
presents a detailed approach to how to select, prepare, and 
use your remote sensing tool suite for a monstrous problem.

Dr’s De Grandi wrote an extremely lucid book on how to 
conduct a remote sensing campaign. They describe their pro-
fessional journey through multiple generations (decades) of 
Synthetic Aperture Radar (SAR) development. Their purpose 
was a synoptic study of the African Tropical Jungle with a 
specific focus on anthropological impacts. Their approach 
was a monster-mosaic map on the scale described and super-
vised, well vetted computer analysis and classification. This 
is clearly unique, offering many benefits and challenges. 

The first four chapters describe the tools and products to 
achieve these ends. Hearing Dr’s De Gandi elaborate on 
the benefits and limitations of the various SAR satellites 
employed is a great lesson in knowing your tools. In image 
chain analysis, this understanding is referred to as radia-
tion / material interaction. The earlier SAR’s were medium 
to long wavelength. These long wavelength radars had real 
canopy penetration and showed geological patterns other-
wise obscured by canopy cover. The later SAR’s were phased 
array radars with polarization selectability. The use of po-
larization information in the scene demonstrates feature dis-
crimination not otherwise available. Finally, interferometric 
SAR is described with its unique signatures and capabilities 
for coherence matching. 

Continuing the theme of know your tools, the authors de-
scribe their need for scene revisit, management of noise in 
a SAR system and correction of the 1/R4 energy loss in an 
active imaging system. 

● The SAR satellites they could access all had a polar 
orbit. While this orbit is great for optical systems, the 
revisit rate for a SAR sensor to mid-latitude areas of 
interest is horrible; the author cited 30 days. Temporal 
changes on this scale had to be ignored. 

● Regarding noise, SAR systems have two noise contrib-
utors: Additive and multiplicative noise. The authors 
refer to additive noise as thermal noise and deal with 
characterizing and managing additive noise very well. 
Multiplicative noise is generally a force majeure of SAR 
processing and addressed with various apodization tech-

niques. Multiplicative noise is the result of transform 
functions on the phase history. A radar return results 
in a main lobe and sidelobes. The sidelobes can be large 
and distracting from the image interpretation. Apodiza-
tion is the process of squashing these sidelobes. As this 
study took place over a couple decades, apodization tech-
nology underwent huge changes. Based upon the study 
scale, apodization probably did not impact their analysis 
methods. This study involved very large impulse re-
sponses (IPR) the need for apodization could have been 
ignored. IPR is radar speak for smallest resolvable size, 

● The radar equation gives received power as proportional 
to the inverse of the range from the transmitter to scene 
to the fourth power. Occasionally, this can be reduced to 
1/R^3 from phase history compression. This difference of 

Spatial Analysis for Radar Remote 
Sensing of Tropical Forests 
Gianfranco D. Grandi and Elsa Carla De Grandi. 
Available from VitalSource Bookshelf, Taylor & Francis, 2021.

Reviewed by  Konrad Kern,  Mostly retired, image 
scientist who develops national technical means for 
the government of the US.  

Photogrammetric Engineering & Remote Sensing
Vol. 89, No. 3, March 2023, pp. 145-146.
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the energy loss across the huge swaths generated by these 
radar collections required a radiometric equalization. With-
out correction, the scene brightness differences across a 
swath would be a detriment to interpretation. Their radio-
metric compensation was well described and effective. 

The remaining six chapters are often analysis doublets. The 
first chapter in the pair describes the theoretical basis for 
an analytic technique. The second chapter in the pair shows 
the validation of the analytic technique using known ground 
truth and field application. Finally, the authors provide an 
appendix discussing wavelet theory and analysis. Read this 
first before enjoying the final six chapters. It is very good and 
will help you to understand the analysis chapters.

This was a fun book to read. For the Dr Gianfranco in the 
writer combination, this appears to be his lifework sayonara 

piece. As a result, his narrative is pleasantly light; but the 
math and analysis is rigorous. He offers a number of con-
cessions to the those who only understand optical systems; 
Resolution vs. IPR, Ground Plane presentation vs. Slant 
Plane collection, etc. I would have enjoyed more discussion of 
the magic in the middle of SAR; image formation processing 
from the phase history. Showing the integration of their ana-
lytical methods with image formation processing would have 
been interesting, but vastly increased the size of the book. 
Perspective is useful. Compared to the overall value of the 
book, my critical observations are inconsequential. If you are 
serious about practicing Remote Sensing, this is a must read.

The contents of this Book Review reflect the views of the author. The 
contents do not necessarily reflect the official views or policies of the 
American Society for Photogrammetry and Remote Sensing 
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FROM LOCAL TO GLOBAL — THE INCREASED 
INVOLVEMENT IN THE ASPRS VIRTUAL CONFERENCE

In the wake of the COVID-19 pandemic, the shift towards virtual events drastically 
changed the way conferences are conducted. With physical gatherings no longer 

being a viable option, virtual events became the primary means for professional and 
academic exchange, leading to an unprecedented surge in registrations. According 
to the registrations for the 2021 and 2022 ASPRS Virtual Conferences, the number of 
registrations in the student and individual membership levels has increased. These 
virtual conferences have been particularly beneficial for students, especially those 
from developing countries who previously faced barriers to attending international 
conferences due to travel and financial constraints. With virtual events, 
international students are now able to participate and network with professionals 
from around the world without incurring the costs of travel. 

While virtual events offer many benefits, in order 
to ensure a seamless and engaging experience 
for participants, there are technical challenges 
that must be addressed. However, with careful 
planning and preparation, these challenges can 
be effectively overcome. Conference organizers 
have successfully navigated these obstacles by 
implementing strong technical infrastructure, 
providing clear guidelines and technical support 
for participants, and adopting innovative solutions 
to improve the virtual event experience. These 
efforts have resulted in successful ASPRS virtual 
conferences with high levels of participant engage-
ment and satisfaction. 

The results of these conferences have been over-
whelmingly positive, with total registrations more 
than doubling compared to the previous year. This 
is a clear indication of the growing popularity and 
success of virtual events, particularly given that 
the 2020 conference was initially planned as an 
in-person event. One of the most notable outcomes 
of the virtual format is the increased participation 
from participants from all over the world. It was 
thrilling to see such a diverse group of attendees 
from countries such as Brazil, the UK, Norway, 
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Spain, France, Germany, Nigeria, Egypt, Australia, New 
Zealand, the UAE, Iran, India, China, Pakistan, Indonesia, 
the Philippines, Korea, and Taiwan. This broad represen-
tation highlights the global reach of virtual events and the 
opportunities they provide for cross-cultural exchange and 
collaboration. 

Another trend observed in the increased conference 
registration numbers is the dominance of participants from 
the United States, despite an increase in participants from 
other countries. Although the virtual format has made it 
easier for individuals from diverse locations to join in, the 
majority of participants still come from North America. 
This highlights the importance of continuing to expand our 
outreach and encourage participation from a wider range 
of countries. To encourage participation, we are delighted 
to announce that the call for abstracts for the 2023 ASPRS 
International Technical Symposium is open for submissions. 
More information can be found on the ASPRS website, www.
asprs.org or at https://my.asprs.org/2023Symposium/2023-
Symposium/Call-for-Abstracts.aspx.

It is also important to mention that in 2021 and 2022, 
ASPRS gave out $5000 worth of student presentation 
grants that included the conference registrations and if 
a registrant became a member, it also covered the cost of 
one-year membership to ASPRS. More information about 
the student grant for 2023 can be found at https://my.asprs.
org/2023Symposium/2023-Symposium/Student-Grants.aspx. 

In conclusion, the shift towards virtual events due to the 
COVID-19 pandemic has led to a significant increase in 
virtual participation, particularly among students. This 
shift has opened up new opportunities for students and 
professionals alike, breaking down barriers to participation 
and allowing individuals to connect and engage with their 
professional communities from anywhere in the world. While 
physical events will undoubtedly make a comeback, the 
virtual event trend is here to stay and is likely to continue 
to play an important role in the world of conferences and 
professional development.
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Andrew Aceves
Gazali Oluwasegun Agboola

Itiya P. Aneece
Lorilei Angle

Mostafa Arastounia, Ph.D., PE
Edwin Oluoch Awino

Amir Ayyash
Ray E. Barnes, III
Megan Blaskovich

Daira Brayley
Marc A. Canas
Jeremy Dancer

Jacob Davenport
Brett Edwards
Tayler Engel
Taylor Frye

Anthony Gaskill
Pedro Grijalba

Peaceibisia Jack

Justinn J. Jones
Jimmie Lee Kenyon, Jr.

Adrienne E. Kicker
Julie Lazor

Gary McKissick
William Nadal

Neil Pinto
Stephen Rector
Danny Roark

Michelle Roberts
Andrew Schwartz

Miguel Antonio Silva
Faezeh Soleimani Vostikolaei
Victoria Gyameraah Tanoh

George Varghese
Andrew  Verville

Eden Tsehaye Wasehun
Jun Yu

FOR MORE INFORMATION ON ASPRS MEMBERSHIP, VISIT 
HTTP://WWW.ASPRS.ORG/JOIN-NOW

PE&RS Correction
The title of the January 2023 Feature Article contained an error. 

A Different Point-of-View
Using Aerial Imagery to Build Stronger Cities

By Shelly Carroll, Vice President and General Manager, 
Public Sector, Nearmap

When it comes to aerial imagery, city governments often 
make do with sporadically updated captures that fail to 
provide the most up-to-date information about the chang-
ing landscape of their urban areas. While they understand 
and appreciate the value of collecting this data, the update 
cadence is often too infrequent to reveal vital changes. As a 
result, information that is essential to successful planning 
and ongoing operations can go unrecorded and unanticipated.

This era of cities having to “make do” with self-collected 
aerial data may be coming to an end, thanks to new and 
enhanced photogrammetric products and possibilities. 
Increasingly, municipalities are realizing that frequently 
refreshed and consistent aerial imagery is a requirement if 
they are to keep pace with fast-growing and quickly evolv-
ing communities.

To see the full article, visit https://doi.org/10.14358/
PERS.89.1.5.

http://www.asprs.org/Join-Now
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Journal Staff 2023 ASPRS INTERNATIONAL 
TECHNICAL SYMPOSIUM

ASPRS is happy to announce the dates of 
its virtual conference. The 2023 ASPRS 

International Technical Symposium will take place 
June 12-16, 2023. 

The symposium will consist of:
• 15-minute oral presentations
• 5-minute Ignite-style presentations
• Poster Gallery
• Sustaining Member Vendor Spotlights
• ASPRS Society Highlights

Sessions will run each day from 10:00 AM to 6:00 PM Eastern Daylight Time 
(UTC - 4). All sessions will be recorded and made available on-demand to 
conference registrants. Presenters are eligible to submit full manuscripts for 
publication in the ISPRS Archives.

Interested in Presenting? For more information or to submit an abstract visit 
https://my.asprs.org/2023Symposium/2023-Symposium/Call-for-Abstracts.aspx

• Submission deadline is May 1, 2023 
• Presenters will be notified of acceptance by May 8, 2023
• Presenters must be registered for the conference by May 22, 2023 to be 

included in the conference program

Registration Fees
• ASPRS Member $150 USD
• ASPRS Student Member $ 50 USD
• ASPRS Emeritus Member $ 25 USD
• Non Member   $250 USD

Sponsorship Opportunities
• Vendor Spotlight/Product Demo
• Day Sponsor
• Session Sponsor
• Workshop Sponsor

“We are happy to offer this educational opportunity 
to the geospatial community. Virtual events are 
an excellent way to exchanammunity without the 
cost and time constraints of travel,” said Karen 
Schuckman, ASPRS Executive Director
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Robust Guardrail Instantiation and Trajectory 
Optimization of Complex Highways Based on 

Mobile Laser Scanning Point Clouds
Xin Jia, Qing Zhu, Xuming Ge, Ruifeng Ma, Daiwei Zhang, and Tao Liu

Abstract
As a basic asset of highways, guardrails are essential objects in the 
digital modeling of highways. Therefore, generating the vectorial 
3D trajectory of a guardrail from mobile laser scanning (MLS) point 
clouds is required for real digital modeling. However, most methods 
limit straight-line guardrails without considering the continuity and 
accuracy of the guardrails in turnoff and bend areas; thus, a completed 
3D trajectory of a guardrail is not available. We use RANDLA-Net 
for extracting guardrails as preprocessing of MLS point clouds. We 
perform a region growth strategy based on linear constraints to obtain 
correct instantiations and a forward direction. The improved Douglas–
Puke algorithm is used to simplify the center points of guardrail, and 
the 3D trajectory of every guardrail can be vectorized using cubic 
spline curve fitting. The proposed approach is validated on two 3-km 
case data sets that can completely instantiate MLS point clouds with 
remarkable effects. Quantitative evaluations demonstrate that the pro-
posed guardrail instantiation algorithm achieves an overall precision 
and recall of 98.80% and 97.5%, respectively. The generated 3D tra-
jectory can provide a high-precision design standard for the 3D model-
ing of the guardrail and has been applied to a long highway scene.

Introduction
Accurate 3D highway information is important in the fields of 
transportation, road network construction, 3D digital modeling, and 
intelligent vehicles (Darnel 2012; Gomes 2013; Xiong et al. 2016). 
Guardrails are a fundamental asset of highways that provide informa-
tion about road boundaries to improve traffic order and reduce traffic 
accidents (Loprencipe et al. 2018). Currently, design modeling does 
not accurately describe the asset elements of highways, making them 
difficult to directly apply to the operation, maintenance, and asset 
management of highways. Mobile laser scanning (MLS), as a rapid 
development of high-tech surveying and mapping technology, can 
quickly describe the high-precision geometric information and texture 
information of the target object, providing more reliable and valuable 
measurements to extract highway information (Gargoum et al. 2017; 
Zeybek 2021). Lidar point clouds can provide the spatial constraint 
(Jokkola et al. 2008) of 3D trajectory information (Graham 2010; 
Zhou et al. 2021) for digital highway modeling. The digital model 

constructed by vector trajectory will markedly improve the authentic-
ity and reliability of the model. How to obtain the real 3D trajectory of 
the guardrail from point clouds has been an urgent demand for digital 
modeling of highways. Therefore, we directly extract the vector trajec-
tory of guardrails from MLS data to effectively improve the quality of 
digital modeling rather than design modeling.

Related Work
Accurately instantiating guardrails is the basis of generating a trajec-
tory. Many studies have focused on extracting highway guardrails from 
point clouds rather than instantiating them. These methods only seg-
ment guardrail objects from images or point clouds. Some scholars pro-
jected point clouds onto images for extraction using image processing 
techniques such as the sliding window threshold (Broggi et al. 2005; 
Matsumoto et al. 2019; Seibert et al. 2013; Scharwächter et al. 2014), 
but these methods are prone to interference from image noise, yielding 
low accuracy. Based on the spatial characteristics of the guardrail, seg-
mentation methods can be divided into traditional feature cluster meth-
ods and deep learning methods. The guardrail is extracted by setting 
specific geometric parameters of the guardrail (Jiang et al. 2016; Zhu 
and Guo 2018; Vidal et al. 2020). However, those methods can be used 
only for a guardrail of a specific shape and must set multiple thresholds 
and thus are not universal. Justo et al. (2021) proposed a pointwise 
supervised machine learning model for the classification of guardrails 
based on the work of Gressin et al. (2013). That method was effective 
only for simple highway scenarios. With the scan line information of 
the point clouds, researchers extracted the guardrail from the mutation 
point between the guardrail point and the road points (Lehtomaki et al. 
2010; Zhu and Guo 2018). However, these methods rely on scan line 
information and do not fully consider the morphological characteristics 
of guardrails, making them vulnerable to noise. Some scholars have 
proposed the binary coding voxel segmentation method (Huang et al. 
2020). The method of cluster slicing has also been used to identify the 
guardrail target in the highway scene, but the guardrail can be interrupt-
ed due to vehicle occlusion, which causes one guardrail to be detected 
as multiple guardrails, which cannot guarantee the completeness and 
continuity of the guardrail (Pu et al. 2011). Gao et al. (2020) detected 
guardrails from point clouds using multiple filters and modified DBSCAN 
clustering. However, their algorithm is not suitable for curved guardrail 
detection due to the use of straight-line fitting. Based on the work of 
Gao et al. (2020), Yue et al. (2021) added the refinement based on verti-
cality to find candidate guardrails. These methods can extract guardrails 
on both sides of the road but cannot distinguish between different kinds 
of guardrails. Recently, the deep learning method has been widely used 
in point cloud processing, in which point cloud semantic segmentation 
is an important step. Qi et al. (2017) proposed the novel method of 
PointNet, which directly used irregular primitive point clouds, which 
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improved computing efficiency, memory overhead, and precision 
beyond the vast majority of other methods that existed at that time. 
However, point features extracted by shared MLPs cannot capture the 
local geometry of the point clouds and the interaction between points 
and are not suitable for fine field spot cloud segmentation. Balado et al. 
(2019) used PointNet (Qi et al. 2017) to segment road elements, includ-
ing pavement, scarp, guardrail, fence, road marking, and road boundary. 
Researchers also proposed RandLA-net (Hu et al. 2020), which is more 
suitable for semantic segmentation of point clouds in large-scale scenes. 
However, oversegmentation still occurs, and each guardrail cannot 
be identified accurately. The above method has been applied in many 
practical applications to segment guardrails. Most existing methods 
focus on straight lines without describing a guardrail’s continuity and 
accurately instantiating in turnoff and bend areas. Thus, these results 
cannot meet the demand of digital modeling.

Fine vector lines and 3D models of highway guardrail are essential 
for various intelligent transportation applications. Similarly, there are 

(a) (b)

(c) (d)

Figure 1. Point clouds of a portion of the Du Wen highway. (a) Point cloud data collection. (b) Raw point clouds of the highway. (c) Guardrail 
point cloud annotation. (d) Partial guardrail point cloud display.

Figure 2. Point clouds of a portion of the Ya Xi highway.

Table 1. Specifications of the mobile laser scanning system.
Components Specifications

Laser scanner 
component

Laser scanning dot frequency: 500 000/s

Measurement range: 300 m

Scanner FOV: 360°

Scanner frequency: 100 lines/s

Ranging accuracy: 6 mm at 40 m

Laser type: Level 1 laser

Position and 
orientation 
system 
component

Heading: 0.012°

Roll and pitch: 0.005°

Horizontal/vertical: 0.02 m/s

Vehicle speed: 30 km/hr
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few studies on guardrail vectorization. We can learn from and refer 
to the relevant methods, which include vectorization of highway road 
marking and alignment. Atia et al. (2015) proposed a method about road 
centerlines that were extracted at first with the assistance of trajectory 
data. Subsequently, the parameters of horizontal features were deter-
mined according to a least-squares optimization of characteristic curves. 
Additionally, Gikas and Stratakos (2011) put an automated solution to 
estimate curvature diagrams and analyzed horizontal geometric features 
by using trajectory data. However, these methods depend mainly on the 
localization precision of GNSS signals, which can be impacted in GNSS 
weak/denied environments. Zhou et al. (2021) proposed an effective 
framework to extract highway alignments by minimizing an elaborate 
energy function and to reconstruct highway 3D models with the restric-
tions of alignments, such as straight lines, circular arcs, and clothoids. 
Meanwhile, Holgado-Barco et al. (2014) also did similar work, dividing 
different alignments according to road axis modeling and road design 
standards. Ma et al. (2019) put the development of a semiautomated 
driving line generation method based on MLS point clouds; estimating 
such road horizontal parameters based on the generated mathematical 
equations can remarkably improve the estimation precision and reduce 
the labor cost. Yue et al. (2021) made an inventory map, plotting guard-
rails on Google Earth using their coordinates. The start and end points 
of each guardrail were correctly verified in Google Street View, but they 
did not take into account the guardrails of complex highways, including 
the vectorization of turnoff areas. Processing large MLS point clouds in 
highway scenes is challenging. Additionally, during mobile measure-
ment, a discontinuous guardrail caused by the movement and occlusions 
of other vehicles makes detection and instantiation challenging. Other 
limitations arise from the structure of the guardrails during center point 
extraction and curve fitting. Such challenges add to the difficulty in 
generating guardrail 3D trajectories using MLS point clouds.

These considerations show that accurately describing the spatial 
distribution of a guardrail has essential research value and importance for 
the precise digital application demand of highway guardrails. To address 
these challenges, we summarize the limitations and shortcomings of 
existing methods and propose an effective framework for instantiating 

highway guardrails and generating high-quality trajectories from 
segmented point clouds. The primary contributions of this study are as 
follows:
1. We develop an efficient method for instantiating variant guardrails 

in complex highways, including straights, turnoffs, and bends of 
highways.

2. An optimized automated algorithm to generate a 3D trajectory is 
proposed according to instance labels and geometric features of 
guardrails.

Method Flow
Data Set
We use the Du Wen (DW) and Ya Xi (YX) highway data sets to verify 
and assess the practical properties in terms of the feasibility and ro-
bustness of the proposed approach (see Figures 1 and 2). Point clouds 
were collected by an MLS system. More information about the MLS 
system used in this study is shown in Table 1.

Robust Instantiation of the Guardrails
The strategy used in this study includes an instantiating process based 
on semantic segmentation and then identifying the guardrails with 
instance labels to fit curves. Although each point has a correspond-
ing label after the semantic segmentation, these points of guardrails 
still belong to the same objects without accurate instantiation (see 
Figure 3a). The points of guardrails with the semantic label cannot 
provide data support for generating trajectory lines accurately. The four 
guardrails in the two-way highway have not been instantiated, and the 
vector lines of each guardrails cannot be generated finely (see Figure 
3b). Thus, we propose a local region growth strategy based on linear 
constraints to assign accurate instance labels.

The primary steps of the proposed process are as follows: (1) 
extract the scan lines and normalize them, (2) establish a region growth 
strategy for instantiation, (3) eliminate noise around the guardrail (e.g., 
pavement, central guardrail platform, and so on) after semantic segmen-
tation, and (4) perform guardrail 3D trajectory fitting and optimization. 
A flowchart of this process is shown in Figure 4.

(a) (b)
Figure 3. Sematic segment of highway point clouds. (a) Highway point cloud semantic segment. (b) Guardrail lines without instantiation.

Figure 4. Flowchart of point cloud guardrail instantiation and vectorization method.
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Extracting the Scan Lines
The mobile laser scanner is a linear array and continuous scanning 
according to the scanning principle. Although the scanning prism 
rotates 360 degrees, it emits the laser signal only within the field angle 
range. Therefore, the same scan line has point clouds corresponding 
only to the field angle. The scanning angle difference of adjacent points 
in each scan line is fixed, related to the scanning angle resolution 
(Manandhar and Shibasaki 2001).

The proposed method divides MLS point clouds into a set of scan-
ning lines, each consisting of a highway cross section (Fang and Yang 
2013; Yang et al. 2013; Yan et al. 2016). The scanning lines Li − Ln are 
closely and continuously distributed. There is a relatively large time 
interval (∆T) from the end of one scanning line to the beginning of 
another scanning line, and different colors correspond to each scanning 
line. We analyze the actual collected point clouds, setting ∆T = 2000. 
According to the ∆T, we determined the two break points in each scan 
line so as to extract the scan line information of each point and organize 
the discrete scan points into a series of ordered 2D strips. The GPS time 
information normalizes according to the time interval (see Figure 5)

 GPSTki+1 – GPSTki > ΔT (1)

 GPSTki = (GPSTki – GPSTMIN)/(GPSTMAX – GPSTMIN) (2)

where GPSTki is the instantaneous time of point ki and ∆T is the GPS 
time difference between the last point of one scan line and the first 
point of the following scan line (as Equations 1 and 2). Each scan line 
of the point clouds can be extracted through experimental examples by 
taking four decimal places of the experimental data Li − Ln.

Region Growing Based on the Linear Constraints
Due to the spatial distribution characteristics of guardrails in different 
strips of road, there can be large spatial distance changes between two 
adjacent guardrails. The features of each scanning line are as follows: 
when there is a large distance between point ki and point ki+1, point 

ki is the dividing point, and points ki and point ki+1 belong to two dif-
ferent ground objects. Therefore, Euclidean distance segmentation is 
performed using the spatial distribution form of the guardrails. We set 
the distance threshold d = 8 m, which can be set according to the road 
width; divide each scan line into several subblocks through the thresh-
old d; and then start from the initial subblock to establish regional 
growth constraints. When the conditions are not met, the growth of the 
guardrail ends, the guardrail that has been grown is removed, and the 
growth steps of the proposed process are repeated from the remaining 
guardrail point clusters until all point cloud subblocks are traversed. 
Due to the shielding of other vehicles in the process of onboard laser 
movement measurement, the guardrail data are missing or broken, 
which affects the regional growth of the guardrail. The accuracy of the 
regional growth of the point clouds directly affects the accuracy of the 
monomer of the guardrail (Jiang et al. 2016).

Therefore, this study develops an efficient and robust regional 
growth strategy. First, we traverse the points from the initial subblock 
and then calculate the distance m between the subblock Ki of centroid 
oi and the subblock Ki+1 of centroid Oi+1. When m > mt = 1 m, we set 
the threshold mt = 1 m according to the geometric structure character-
istics of the guardrail (Xu et al. 2014) (Figure 5), which indicates that 
subblock Ki is different from subblock Ki+1. When m < mT , we cluster 
the subblock Ki+1 and the subblock Ki+1 into a cluster, retain Oi+1, and 
continue to compare with the subblock Ki+2 centroid Oi+2. We then 
repeat these steps. When the cluster has the geometric characteristics 
of the guardrail and the number of points is ≥5000, where 5000 is the 
initial number of clusters, the points of the guardrail still grow linearly 
in a small range. Therefore, the least-squares linear fitting of the cluster 
provides linear constraints (Atia et al. 2015; Biçici and Zeybek 2021) 
and improves the accuracy of point cloud area growth in Figure 6.

To accurately express the distribution characteristics and growth 
trend, we calculate the points of each scan line and the mean value. We 
set the radius r to extract the points on each scan line whose distance 
from the centroid is less than r. Linear least-squares fitting is performed 
with these points, which can obtain the linear equation parameters E 

(a) (b)

(c)

Figure 5. Scan line time-series extraction. (a) Laser scanning unit placement. (b) Point cloud scan. (c) Scan line segmentation.
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and F. The parameter F is used to build the growth boundaries (Guan 
et al. 2014; Yang et al. 2015). When the points of subblock Ki meet the 
boundaries, subblock Ki is classified into clusters. The points selected 
by the cluster are updated to obtain new parameters Ei and Fi and a 
new judgment of the next subblock. Until no new subblock within the 
growth limit meets the conditions, we stop the cluster growth and mark 
the cluster as the first split point cluster. The remaining guardrail point 

clouds also use the above steps to grow the guardrails. Finally, after 
traversing and calculating all subblocks, the process ends. A compari-
son of the proposed method and the DBSCAN (Ester et al. 1996) method 
shows that the process can ensure the integrity and continuity of the 
guardrail and provide guardrail direction (Table 2). The missing and 
interrupted guardrails due to the movement of other vehicles can be 
effectively identified (see Figure 7).

Extra Non-Guardrail Point Filtering
Via the above steps, the point clouds after the initial instance seg-
mentation contain some non-guardrail points, such as ground points 
and platform points (see Figure 8). The next process in the proposed 
process is to remove non-guardrail points.

There are primarily two types of noise: (1) ground points and (2) 
platform points (Huang et al. 2020). Because the guardrail has marked 
geometric characteristics, point clusters are arranged closely according 
to the scanning line. The distribution of ground points is discrete and 
random with no regularity between points. This article uses the statisti-
cal filtering method to eliminate marked outliers. The specific method 
calculates the distance distribution from the point to the adjacent point 
in the point clouds. We calculate the average distance from every point 
to all adjacent points, and then the points with an average distance 
outside the range can be defined as outliers and removed from the data. 
In this study, using the standard deviation as the judgment basis, we 
set the filtering parameters with experimental data. The knn parameter 
is the number of adjacent points (knn = 20), and the std parameter is 
the set standard deviation threshold (std = 1.0), which are according to 
the density of the point clouds. Experiments show that this method can 
effectively eliminate the ground points (see Figure 9a).

Figure 6. Example diagram of the point cloud area growth method.

Table 2. Comparing the clustering algorithm to the proposed method.

Method

Clustering Number

Section 1 Section 2

DBSCAN method 33 43

Proposed method 4 4

Real value 4 4

(a) (b)

(c) (d)

(e) (f)

Figure 7. Segment of the guardrail in a straight line section. (a) 3D display of guardrail in Section 1. (b) 3D display of guardrail in Section 2. 
(c) Result 1 of the DBSCAN cluster method. (d) Result 2 of the DBSCAN cluster method. (e) Result 1 of the proposed method. (f) Result 2 of the 
proposed method.
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(a)

(b) (c)

Figure 8. Two different types of noise. (a) Guardrail points contain some non-guardrail points. (b) Ground points. (c)Platform points.

(a) (b)

Figure 9. Fine segmentation of the guardrail. (a) Ground point elimination. (b) Platform point elimination.

Figure 10. Guardrail center point simplification process based on the improved Douglas–Puke (DP) algorithm. (a) The traditional DP algorithm. 
(b) The improved DP algorithm with Helen’s formula. (c) Step 1 of the flow. (d) Step 2 of the flow. (e) Step 3 of the flow. (f) Step 4 of the flow.

156 March 2023 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



Oversegmentation of the guardrail also generates platform noise. 
The platform closely connects with the guardrails and is easy to cluster 
into guardrails. Therefore, the proposed process eliminates the platform 
by setting the spatial distance threshold. Because the slope of the guard-
rail on the same scan line is the same, we traverse the points on each 
scan line of the guardrail and search the boundary points by calculating 
the slope and slope difference of adjacent points. If the slope difference 
changes markedly, the point is considered a platform boundary point. 
The slope of adjacent points is calculated as

  
(3)

where n(i+1)−i is the slope of point ki and the adjacent point ki+1 on the 
scan line and (x, y, z) represents the three coordinates of point ki on the 
scan line. The slope k of adjacent points of all scan lines is traversed 
conversely, and the slope difference ∆ni is calculated.

After the guardrail boundary points are determined through the 
above steps, the extracted lower boundary of the guardrail is determined. 
Therefore, we take the z coordinate of the boundary point as the bound-
ary standard and count all guardrail points with z coordinates greater than 
the boundary point to divide the guardrail and platform (see Figure 9b).

3D Guardrail Trajectory Fitting and Optimization
Compared with other methods, such as that of Soilán et al. (2021), that 
project the guardrail onto the XOY plane to extract 2D track points, we 
directly extract the 3D center points (Holgado-Barco et al. 2014) from 
the guardrails. This process is time consuming using the traditional 
Douglas–Puke (DP) algorithm to simplify the center points. It is thus 
necessary to calculate the linear equation of each interval and then cal-
culate the distance from the point to the straight line. We improve the 
DP algorithm with Helen’s formula to improve process efficiency. We 
convert the distance between point i and the line of two points a and b 
into the height hi of the spatial triangle Si formed by points i, a, and b 
(see Figure 10). These parameters can be defined as

  
(4)

  (5)

In Equations 4 and 5, Ai, Bi, and Ci are the lengths of the three sides 
of Si, and Pi is the perimeter. The specific process is as follows. The 
first and last points on the central line are connected with a straight line 
and can thus be used to calculate the distance between all points and 
the straight line. These calculations allow us to identify the maximum 
distance. Compared with Imax and tolerance I, if Imax < I, all the points 
on the central line are removed; if Imax ≥ I, the point is reserved, and the 
central line is divided into two parts with this point as the boundary. The 
method is repeated for these two parts (see Figure 10). We can control 
the degree of simplification by controlling I. Due to noise, the precision 
of the extracted center point is poor (see Figure 11a and 11b). The preci-
sion of the extracted center points is markedly improved after removing 
noise points via the proposed method (see Figure 11c). Comparing the 
trajectory fitting through two different center points, the track of point fit-
ting after noise removal is also smoother (see Figure 11d), while the track 
of point fitting without noise removal is not smooth (see Figure 11e).

We use the cubic spline function to generate the trajectory curve 
(Ma et al. 2019) to reduce data redundancy and smooth the curve (see 
Figure 12). Each subinterval node and the start and end break-point 
conditions are substituted into the matrix equation. The quadratic differ-
ential equation   is obtained to solve the matrix. The coefficient matrix 
is decomposed into a lower triangular matrix and upper triangular 
matrix using the Gaussian elimination method,

 Ax = (LU)x = (Ux) = Ly (6)

where A = LU, L is the lower triangular matrix, and U is the upper 
triangular matrix.

We then calculate the coefficients of the spline curve:

  

(7)

(a)

(b) (c) (d) (e)

Figure 11. Guardrail center points are extracted in two different cases. (a) Extraction guardrail center points. (b) Unoptimized center points. (c) 
Optimized center points. (d) Distorted curve fitting. (e) Smooth curve fitting.
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(a) (b) (c)

Figure 12. Curve fitting of the guardrail in the bend area of the highway. (a) Guardrail point cloud view. (b) Center point extraction. (c) Curve fitting.

Figure 13. DUWEN highway point cloud guardrail curve fitting view.

(a) (b) (c)

Figure 14. Three different special cases of point cloud guardrail. (a) Platform near the guardrails. (b) Gaps caused by vehicle occlusions. (c) 
Connection of the turnoff area.
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Experimental Results
The RANDLA-Net (Hu et al. 2020) used random sampling instead of far-
thest point sampling, greatly improving the efficiency. For the guardrails, 
a good segmentation effect is achieved with the local spatial coding mod-
ule and the self-attention mechanism. Therefore, we use RANDLA-Net for 
extracting highway guardrails as preprocessing of MLS point clouds.

The whole algorithm was implemented by the Python language 
and run on a PC (Intel Core CPU i7-6850K at 3.6 GHz and 64 GB ROM), 
and TensorFlow was used for network model training. Moreover, we 
used libraries such as NumPy, Open3D, SciPy, PyYAML, and pandas to 
construct the process framework. In data preprocessing, the voxel size 
was set to 0.06 m. The number of input point clouds was set to 65 536, 
the number of training rounds was set to 50, the initial learning rate was 
0.01, each round was reduced by 5%, batch size was set to 5, and the 
Adam optimizer was used.

Guardrail Instantiating and Curve Fitting
The proposed method is used to verify some sections of the DUWEN 
highway (see Figure 13). The point clouds of guardrails are segmented, 
and the problems in different areas are managed separately. The pro-
posed method can accurately extract the trajectory of each guardrail, 
which can be divided into 10 types of guardrails, and achieve accurate 
guardrail instantiation.

The proposed method performs effectively in complex environ-
ments. For example, the platform is near the guardrails (see Figure 
14a). The detected results also show that the proposed algorithm 
exhibits high robustness according to the traffic condition invariance. 
The gaps caused by vehicle occlusions (Soilán et al. 2020) are identi-
fied correctly by the proposed tracing algorithm (see Figure 14b). The 
turnoff area is well identified (see Figure 14c), and the noise from veg-
etation and dynamic vehicles can be filtered while generating guardrail 
feature points and tracing. We can quantitatively evaluate the proposed 
method by comparing the detection result with the manually labeled 
ground truth (see Table 2).

Two groups of different data verify the robustness and convergence 
of the proposed method: the guardrail data of lines, ramps, and curves 
with low or high noise. Semantic segmentation of segmented data was 
performed through experimental comparison, and then the guardrail was 
finely instantiated using the proposed method (see Figures 15 and 16).

(a)

(b)

(c)

Figure 15. Fine instantiation of guardrail. (a) Platform point 
elimination. (b) Straight and bend instantiation of guardrail. (c) 
Turnoff and bend instantiation of the guardrail.

Figure 16. Guardrail with noise divided into four sections of processing steps. (a) Instantiated segmentation of parts 1–4. (b) Midpoint 
extraction of parts 1–4. (c) Curve fitting of parts 1–4.
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We perform a second experiment to conduct robust tests for the guard-
rail with noise, divide it into four sections, instantiate each section, and ex-
tract the center point by merging each guardrail to fit the 3D trajectory (see 
Figure 16). Results show that this method is still valid, eliminates noise 
accurately, and can instantiate the guardrail accurately (see Figure 17).

Performance Analysis
We propose some performance evaluation criteria as follows:

  
(8)

  
(9)

  
(10)

where TP, FP, TN, and FN denote true positives, false positives, true 
negatives, and false negatives, respectively (as Equation (8), (9), (10) 
Figures 1b and 2 show the original data of these two data groups. The 
proposed method is used to verify instance segmentation according to 
the technical process to evaluate the accuracy. The quantitative and qual-
itative results are shown in Table 3 and Figures 13 and 17, respectively.

Table 3. Quantitative accuracy evaluation of guardrail segmentation 
results.
Test Data TP+FN TP+FP TP Accuracy (%) Recall (%)

DUWEN 1 450 123 1 445 203 1 430 952 99.0 98.6

YAXI 1 025 707 1 016 710 996 304 97.9 97.1

Discussion
In the article,since our main work is for instantiating guardrail and 
optimizing trajectory, which does not involve and discuss the semantic 
segmentation of point clouds. We extract guardrail by using RANDLA-
net to segment semantically MLS point clouds in highway scenes. The 
time complexity of the random sampling method in RANDLA-Net does 
not change with the increase of the number of point clouds. Using 
RANDLA-Net to extract guardrail points from massive point clouds can 
speed up time efficiency. Then the guardrail is instantiated on the basis 
of preprocessing process. There are some advantages to experimental 
verification. Despite missing point clouds caused by the movement 
and occlusion of other vehicles, we use a regional growth strategy with 
local linear constraints to improve robustness. Each guardrail has clear 
boundaries in straight and bent sections of highway scenes, and each 
guardrail can obtain specific instance information with a remarkable ef-
fect. There are also some limitations. Due to the connectivity between 
the guardrails, there is no clear boundary between guardrails in the 
turnoff areas. We can set the critical point of segmentation only accord-
ing to prior knowledge, and there are some deviations in this process. 
Subsequent research on the instance segmentation of the guardrail 
at turnoffs and bends will continue. For complex highway scenes, 
the proposed method first divides the point cloud data into several 

sections, each section is instantiated, and the center point is extracted 
by merging each guardrail to fit the 3D trajectory. We do not use paral-
lel processing in this process; thus, the next step is to consider parallel 
computing to improve efficiency.

Conclusion
In this study, a highway guardrail instantiating and trajectory fitting 
method of mobile laser point clouds is designed and shown to robustly 
instantiate the guardrail of banded asset elements, eliminate the noise 
during segmentation, and effectively preserve the integrity of guard-
rails. In preprocessing, we use libraries such as NumPy, Open3D, 
SciPy, PyYAML, and pandas to construct RANDLA-Net for extracting 
guardrails of MLS point clouds. Then we propose a region growth 
strategy based on linear constraints to assign accurate instance labels. 
The proposed process can finely instantiate guardrails in the straight 
road section and has a good effect in turnoff areas, fully describing 
the practicability of the proposed process. Further, we improve the 
DP algorithm by Helen’s formula to promptly extract center points of 
guardrails with correct instance labels. Finally, the trajectory is com-
pletely fitted according to the cubic spline function, which reduces data 
redundancy, makes the curve smoother, saves more storage space, and 
effectively improves the accuracy of data fitting. Experimental results 
show encouraging performance of the proposed approach.
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Use of Artificial Intelligence Toward  
Climate-Neutral Cultural Heritage

Tolga Bakirman, Bahadir Kulavuz, and Bulent Bayram

Abstract
Cultural heritage (CH) aims to create new strategies and policies for 
adapting to climate change. Additionally, the goals of sustainable 
development aim to protect, monitor, and preserve the world’s CH 
and to take urgent action to combat climate change and its effects. 
Therefore, developing efficient and accurate techniques toward 
making CH climate neutral and more resilient is of vital importance. 
This study aims to provide a holistic solution to monitor and protect 
CH from climate change, natural hazards, and anthropogenic effects 
in a sustainable way. In our study, the efficiency of deep learning 
using low-cost unmanned aerial vehicles and camera images for 
the documentation and monitoring of CH is investigated. The dense 
extreme inception network for edge detection and richer convolu-
tional feature architectures have been used for the first time in the 
literature to extract contours and cracks from CH structures. As a 
result of the study, F1 scores of 61.38% and 61.50% for both ar-
chitectures, respectively, were obtained. The results show that the 
proposed solution can aid in monitoring the protection of CH from 
climate change, natural disasters, and anthropogenic effects.

Introduction
Natural and cultural resources are fundamental heritages for human 
well-being. While natural resources are needed for survivorship, 
cultural resources provide largely nonmaterial, nonrenewable ben-
efits to humans, such as identity and culture. Cultural heritage (CH) 
is an essential bridge between the past and the present in terms of the 
architecture, social structure, development, and lifestyle of a society 
(Bakirman et al. 2020). National or regional strategies, cohesion poli-
cies, or spatial planning consider CH as resources for development, 
especially in relation to tourism (World Tourism Organization 2020). 
Besides its historical and educational role, CH provides an immediate 
value creation for the cultural enrichment of the individual and local 
identity and provides important evidence of the effects of past climate 
change and how humanity has adapted to these changes (Markham 
et al. 2016). The need to develop preparedness for climate change 
and natural disasters, national and regional adaptation strategies, and 
intersectoral risk management plans has become a strategic target for 
climate-neutral CH.

Climate change, as revealed by gradual changes in tempera-
ture, precipitation, atmospheric moisture, water warming, and wind 
intensity, as well as sea-level rise, coastal erosion, and changes in the 
occurrence of extreme events (tsunamis, earthquakes, and so on), are 
affecting CH sites. Other hazards related to climate change (e.g., global 
warming and anthropogenic effects), such as acid rains, extended dry 
seasons or floods, heavy storms, and forest fires, are threatening CH 
around the world (Sesana et al. 2021). Identification of new ways 
of raising benefits for the public and financing climate-neutral CH 
research while keeping high standards of monitoring and protection is 
needed. In order to avoid negative natural and anthropological effects 
on the CH while making it accessible to the public, CH management 

mechanisms should be established. The protection of CH should aim 
to control damage from human intrusion and environmental factors. 
Therefore, cost-effective, reliable, and accurate monitoring of CH 
constitutes a necessary step toward risk reduction and the pursuit of 
protection and preservation strategies.

A wide range of data and instruments can be used for digital docu-
mentation and monitoring of CH, such as terrestrial laser scanners, un-
manned aerial vehicles (UAVs), and cameras. Moreover, image process-
ing techniques, such as edge detection, can be exploited to determine 
current conditions and characteristics in the monitored structure and 
to automatically detect temporal damages on the surface by extraction 
of contours and cracks. The edge detection problem has been investi-
gated for many years in the field of computer vision. Many algorithms 
and methods have been developed for automatic edge detection in 
the literature (Figure 1). The Sobel operator (Sobel 1970), Laplacian 
of Gaussian (Marr and Hildreth 1980), zero crossing (Torre and 
Poggio 1986), and the Canny detector (Canny 1986) are classical edge 
detectors that are the pioneering methods in the field. Learning-based 
algorithms were proposed as technology developed. For example, the 
probability of boundary algorithm (Martin 2004) aims to extract edges 
using natural scenes (light, color, and detail) in images. The deriva-
tive of infinite symmetric exponential filter (McIlhagga 2011) and 
color boundary (Yang et al. 2013) methods were proposed over time 
and inspired by the boosted edge learning (Dollar et al. 2006), multi-
scale (Ren 2008), smoothing proximal gradient (Chen et al. 2012), 
and Canny methods. With the increase in the processing capacity of 
computers and the rise of artificial intelligence techniques, pointwise 
mutual information (Isola et al. 2014), DeepNet (Kivinen et al. 2014), 
neural network nearest neighbor fields (Ganin and Lempitsky 2014), 
and relaxed deep supervision (Liu and Lew 2016) algorithms using 
convolutional neural networks that provide deep learning (DL)–based 
automatic feature extraction have been developed. Many subsequent 
algorithms based on a particular backbone network—holistically-nest-
ed edge detection (HED) (Xie and Tu 2015), convolutional encoder-
decoder network (Yang et al. 2016), simultaneous edge alignment and 
learning (Yu, Liu, et al. 2018), richer convolutional features (RCF) 
(Liu et al. 2017), learning to predict crisp boundaries (Deng et al. 
2018), dense extreme inception network for edge detection (DexiNed) 
(Soria et al. 2020), bidirectional cascade network (He et al. 2019), 
and RefineContourNet (Kelm et al. 2019) architectures—have been 
developed in the literature with increasing edge detection accuracy. 
Architectures that do not need pretrained models—such as the fast 
inference network for edge detection (Wibison 2020); reflectance, 
illumination, normal, and depth net (Pu et al. 2021); pixel difference 
networks (Su et al. 2021); edge detection with transformer (Pu et al. 
2022); diverse deep super-vision (Liu et al. 2022); and lightweight 
dense convolutional neural network (Soria et al. 2022) architectures—
have also been designed recently (Jing et al. 2022).

There are also studies focusing on DL-based edge detection ap-
plications using three-dimensional point clouds. The edge-aware point 
set consolidation network (Yu, Li, et al. 2018) is a pioneer in this 
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field with its regression component and edge-sensitive loss function 
to strengthen point clouds. The joint semantic segmentation and edge 
detection network (Hu et al. 2020) performs the tasks of detecting 
semantic segmentation edge points from the point cloud. Wang et al. 
(2020) proposed a method that detects edge and corner points based on 
parametric curves. It works with a parameter based on a shape-depen-
dent differential information set created at different scales around each 
point in the developed parametric inference of point cloud edges net-
work. The edge detection capsule network (Bazazian and Pares 2021) 
network is used to structuralize the recently popular capsule networks 
for edge extraction. However, we do not dwell on these methods since 
they are out of the scope of this study.

Despite these developments in artificial intelligence and especially 
in the field of DL, the use of these networks on CH is quite limited in 
the literature (Fiorucci et al. 2020). Compared to the current litera-
ture, to the best of our knowledge, there are no up-to-date studies that 
propose DL-based edge detection to extract contours and cracks for CH 
monitoring. In this study, we investigate the use of state-of-the-art DL 
architectures, namely, DexiNed and RCF, for CH monitoring and docu-
mentation. Our main contributions to the literature can be summarized 
as follows:
• DL-based DexiNed and RCF architectures were exploited for the first 

time in the literature for the extraction of contours and cracks on CH.
• Our own labeled edge detection data set specifically for CH was 

generated.
• The proposed experimental setup and configuration was utilized 

for the first time in the literature, particularly for automatic edge 
detection on CH.

• In order to obtain well-detected edges, a new binarization postpro-
cessing procedure was proposed.

• A holistic and sustainable CH monitoring solution was proposed.
This article is structured as follows. In “Materials and Methods,” 

we explain how we created our data set and how the architectures 
function. In “Results and Discussion,” we provide comparative ac-
curacy metrics, postprocessing, and an independent CH example from 
Cappadocia. We conclude with final remarks and wider impacts on 
relevant directives.

Materials and Methods
Considering the climate and anthropogenic effects, it is necessary 
to change priorities from focusing solely on estimating impacts and 
vulnerabilities to include adaptive proactive and planned mitigation ap-
proaches in the planning process, the identification of the determinants 
of adaptive capacity, and the barriers to adaptation. Therefore, we 

proposed a DL-based solution to improve the monitoring, maintenance, 
and preparedness for new risks on CH.

The general workflow of the study is given in Figure 2. As a first 
step, our edge detection data set was generated specifically for CH us-
ing images from 89 historical buildings. Our data set consists of vari-
ous Internet, camera, and low-cost UAV images. The images have three 
bands (RGB) and 8-bit radiometric resolution. Sample images from the 
data set can be seen in Figure 3. All images are manually digitized for 
contours and cracks. The images were then split into 512×512 patches 
since the images do not have a fixed geometric resolution. The images 
that have an edge detail ratio of less than 2% within the image have 
been eliminated from the data set, and we have obtained 5380 image 
patches. The data set is then split into 90% (4880 image patches) and 
10% (500 image patches) for training and testing, respectively.

Most DL architectures require extensive amounts of data for train-
ing. Therefore, we have applied horizontal flip, gamma correction 
(0.30 and 0.60), and rotation (19°, 57°, 90°, and 180°) augmentations 
on the train images in order to increase data size. As a result, a total of 
146 400 images (512×512) are generated for the training set.

DexiNed and RCF architectures have been utilized for the first time 
in the literature in terms of the concept of our study to detect CH con-
tours and cracks on the created data set.

DexiNed architecture was created based on the Xception archi-
tecture. DexiNed consists of two basic structures: Dexi, an extremely 
dense initial layer, and USNet, a sampling layer (Figure 4). Dexi archi-
tecture consists of six main blocks. These blocks have different access 
layers. By feeding the feature maps obtained by these blocks, separate 
USNet architectures and six intermediate edge maps are produced. The 
resulting intermediate maps are combined, and a stack of learned filters 
is created. The features obtained at the end of the architecture are com-
bined, and the resulting edge map is created. The sampling network 
consists of two blocks. Using Block-2, the feature map dimensions 
are increased to two times the label size. Then the new feature map 
obtained is transmitted to Block-1. Block-1 has a Relu activation func-
tion, and the size of the feature map at the end of the block is matched 

Figure 1. Chronological representation of algorithms used for edge detection.

Figure 2. General workflow of the study.
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to the size of the label image using a 1×1 kernel. The main purpose of 
using sampling blocks is to obtain thin edges while visualizing edge 
maps (Soria et al. 2020).

The loss function used by DexiNed is given in Equation 1: 

 

(1)

 Here, the values |Y–| and |Y+| denote the edge and non-edge in the 
label, respectively, and are obtained by using the “Y” label image and 
the prediction image. Then the calculation is made with “X” input 
images. This loss function is designed based on HED architecture. In 
the equation, W is the collection of all network parameters, w is the n 
corresponding parameter, and δ is a weight for each scale level.

RCF architecture is based on the VGG16 architecture (Figure 5). 
Unlike DexiNed architecture, it consists of five blocks. The feature 
maps obtained from each block are collected with the help of the 
eltwise layer. Deconv layers are used to up-sample the feature maps 
obtained from the layers. The up-sampling layers in the blocks are 
connected to the sigmoid layer. The resulting edge map is produced by 
combining the feature maps obtained from each interconnected block 
(Liu et al. 2017).

The loss function used by RCF is given in Equation 2:

Figure 3. Editing the data set.

Figure 4. The general structure of the dense extreme inception network for edge detection architecture.
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(2)

 Here, The parameter λ is a constant used to balance the number of 
positive and negative samples. The ŋ hyperparameter acts as a thresh-
old and ignores negative samples. The values |Y–| and |Y+| denote the 
positive sample set and the negative sample set, respectively, and P(x) 
is used to represent the standard sigmoid function. The developed loss 
function is based on the loss function used in the HED architecture.

Results and Discussion
In this study, a workstation with an 11th-generation Intel Core i9-
11900 2.50-GHz processor and an NVIDIA Quadro RTX 5000 16-GB 
graphics card was used for training and testing of the DL architectures. 
The hyperparameters used in the training are shown in Table 1. In the 
training of the data set, we first investigated the effect of the used ep-
ochs on the accuracy. For this purpose, initial weights from Barcelona 
Images for Perceptual Edge Detection (BIPED) (BIPED 2020) and 
ImageNet (Deng et al. 2009) data sets have been used for training of 
DexiNed and RCF architectures on our data set for 10, 60, and 150 ep-
ochs, respectively. The results depicted that 10 epochs generated higher 
accuracy with a 44.12% F1 score. After the number of epochs was 
determined, the effect of the average RGB value that the DL architec-
tures demand was investigated and tested. According to assessments, 
it was observed that the demanded average RGB value depends on the 
used data set. Thus, we defined unique RGB average values for our data 
set as 131.2563, 136.4856, and 140.4427, respectively.

The accuracy results to be obtained by using the weight files be-
longing to the architectures and without using the initial weights were 

compared in the training. First, the DexiNed architecture was trained 
for 10 epochs with and without initial weights. Then the same process 
was carried out for the RCF architecture. However, the initial weights of 
the RCF architecture did not match the data set, and very poor predic-
tion results were obtained.

Testing was carried out for both architectures using the weights 
of the 4th and 10th epochs. After the testing phase, our binariza-
tion approach was implemented on the prediction images since the 
obtained results are not binary (Figure 6a). First, the Non-Maximum 
Suppression (NMS) method was applied, and the images were convert-
ed to binary images (Figure 6b). After performing NMS, some edges 
that were supposed to be extracted as strong edges were extracted as 
thin edges. To keep the continuity of strong edges, the strong edges 
(with the gray value of 255) and thin edges (with the gray values less 
than 255) were split (Figure 6c). The noisy thin edges were eliminated 
by utilizing eight-neighborhood pixel analysis, and suitable edges were 
merged with strong edges (Figure 3d).

The accuracy values calculated with the test data set can be seen 
in Table 2. It should be again noted that the RCF architecture’s initial 
weights created from ImageNet were not compatible with our data set, 
and transfer learning could not be applied. Table 2 shows that there 
is not a significant difference between the 10th and 4th epoch results. 
Furthermore, the 4th epoch accuracy results were slightly better in 
some accuracy metrics. The best F1 score values for DexiNed and RCF 
are 52.80% and 52.06%, respectively. It can be seen that the best ac-
curacy values are also obtained without the initial weights of DexiNed.

Figure 5. The general structure of the richer convolutional features architecture.

Table 1. Hyperparameters used in architectures.
Hyperparameters DexiNed RCF

Epoch 10 10

Learning rate  0.0001 1E-06

Activation function  ReLu ReLu

Optimizer  Adam SGD

Batch size  8 1

Number of images  146 400 146 400

Image sizes  512×512 512×512

DexiNed = dense extreme inception network for edge detection; RCF = richer 
convolutional features architecture.
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Prediction results that were generated with the highest F1 score for 
each experiment are given in Figure 7. The results show that DexiNed 
architecture produced more accurate results morphologically compared 
to the RCF architecture. On the other hand, it was observed that the 
edge details were more distinctive in the RCF architecture.

Image labeling was carried out by different operators with different 
thickness values manually. In order to investigate this effect on test 
accuracy, two additional test data sets were generated by balancing the 
edge thicknesses of the label images and their impact on the prediction 
images (Figure 8).

The results obtained are shown in Tables 3 and 4 for thin and 
thick labels, respectively. As can be seen from Table 3, while the use 
of thin labels marginally improved accuracy (~+0.5%) and precision 
(~+3.5%), it decreased IoU (~−2%), precision (~−4%) and F1 scores 
(~−2.5%) for both architectures. On the other hand, even though the 
use of thick labels marginally decreased accuracy (~−1%), it signifi-
cantly improved IoU (~+9%), precision (~+16.5%), recall (~+3%), and 
F1 scores (~+9.5%) for both architectures. Therefore, it can be clearly 
stated that thick labels help produce significantly better results. Based 
on the accuracy values (Table 4), both architectures seem to perform 
with similar efficiency even though these architectures focus on differ-
ent topics. Moreover, it was observed that high epoch number and train-
ing with initial weight had no significant effect on accuracy metrics.

We have also tested our proposed best solution with an independent 
low-cost UAV-derived orthoimage (Figure 9a). The orthoimage was 
created using 133 low-cost UAV images captured with DJI Mavic Mini 
2. The UAV has a 12-MP camera with 4000×2250 pixel resolution. This 

Table 3. Accuracy values for both architectures with the thin test data 
set. The best value for each accuracy value for each architecture is 
indicated in bold. 

DexiNed RCF

With Initial 
Weights

Without Initial 
Weights

Without Initial 
Weights

Epoch 4
Epoch 

10 Epoch 4
Epoch 

10 Epoch 4
Epoch 

10

Accuracy 0.9040 0.9052 0.9050 0.9062 0.9045 0.9053

IoU 0.3363 0.3358 0.3347 0.3342 0.3281 0.3278

Precision 0.5019 0.5085 0.5073 0.5142 0.5046 0.5091

Recall 0.5048 0.4970 0.4958 0.4885 0.4839 0.4794

F1 score 0.5034 0.5027 0.5015 0.5010 0.4941 0.4938

DexiNed = dense extreme inception network for edge detection; RCF = richer 
convolutional features architecture.

 Table 4. Accuracy values for both architectures with the thick test data 
set. The best value for each accuracy value for each architecture is 
indicated in bold. 

DexiNed RCF

With Initial 
Weights

Without Initial 
Weights

Without Initial 
Weights

Epoch 4
Epoch 

10 Epoch 4
Epoch 

10 Epoch 4
Epoch 

10

Accuracy 0.8851 0.8870 0.8870 0.8883 0.8873 0.8884

IoU 0.4409 0.4423 0.4428 0.4412 0.4441 0.4440

Precision 0.6159 0.6253 0.6250 0.6339 0.6262 0.6327

Recall 0.6082 0.6017 0.6030 0.5920 0.6042 0.5982

F1 score 0.6120 0.6133 0.6138 0.6123 0.6150 0.6150

DexiNed = dense extreme inception network for edge detection; RCF = richer 
convolutional features architecture.

Figure 6. Binarization process. (a) The raw prediction image. (b) Non-Maximum Suppression result. (c) Splitting edges. (d) Final edge map.

Table 2. Accuracy values for both architectures with the raw test data 
set. The best value for each accuracy value for each architecture is 
indicated in bold. 

DexiNed RCF

With Initial 
Weights

Without Initial 
Weights

Without Initial 
Weights

Epoch  
4

Epoch 
10

Epoch 
4

Epoch 
10

Epoch 
4

Epoch 
10

Accuracy 0.8978 0.8988 0.8990 0.9001 0.8996 0.9005

IoU 0.3571 0.3560 0.3587 0.3580 0.3511 0.3519

Precision 0.4682 0.4714 0.4727 0.4769 0.4739 0.4777

Recall 0.6008 0.5926 0.5980 0.5894 0.5753 0.5719

F1 score 0.5263 0.5251 0.5280 0.5272 0.5197 0.5206

DexiNed = dense extreme inception network for edge detection; RCF = richer 
convolutional features architecture.
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Figure 7. The resulting images of our data set.

Figure 8. Visualization of raw, thin and thick labels.
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monument, which dates back to circa the 12th century, is located in 
Bahceli village in the Cappadocia region of Türkiye. The prediction 
and postprocessing results are given in Figure 9b and 9c, respectively. 
It can be seen that the DL architecture was able to extract very compact 
edges from the facade.

On the other hand, there are some limitations and drawbacks of 
the proposed networks. Background and vegetation seem to affect 
extraction performance, as can be seen in the first column of Figure 10. 
Additionally, structural features or material characteristics of the stones 
decreased accuracy, which is visible in the second column of Figure 
10. However, higher F1 scores are obtained for objects with topologi-
cally homogeneous borders (the last two columns of Figure 10).

As the number of layers and blocks increases in the architecture 
of both networks, morphological detail is lost. Both networks do not 
generate binary images as edge and non-edge. This requires postpro-
cessing as we proposed. However, since the gray values of extracted 
edges may be similar with the background, it can lead to the loss of 
some details during postprocessing.

Conclusions
CH reflects the architecture, social structure, development, and lifestyle 
of a society. As they are vulnerable to disasters, climate change, tour-
ism, and human actions, it is vital to detect and monitor damages for 
sustainable management and preservation of cultural monuments. 
Accurate, efficient, and scalable CH management systems with new 
technologies are required to avoid natural and anthropogenic negative 
impacts or reduce their effects. In order to hand down the historical 
and natural heritage to future generations and to protect the world 
heritage and to overcome the need to develop systems for the detection 
of damage and the sustainable monitoring of the historical and natural 
heritage and with new technologies, the proposed DL-based approaches 
generated encouraging results.

Within the scope of the study, a labeled data set was generated 
specific to CH contour and crack details using images from different 
historical structures in order to automatically extract contours and 
cracks in historical buildings.

Figure 9. (a) Orthoimage. (b) Prediction. (c) Postprocessing result.

Figure 10. Effect of structural features or material characteristics on accuracy.
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Although various technologies are used for CH studies, the use 
of DL in the field is still limited. One of the most important scien-
tific contributions of the study is the use, for the first time, of novel 
architectures for contour and crack extraction for CH monitoring and 
documentation. This study presents a novel use-case example of DL for 
CH documentation and monitoring. It is observed that the developed 
architectures can also be used for CH in Türkiye and all over the world 
for sustainable detection and monitoring.

Conventional techniques are time consuming and may be applicable 
to large heritage or archaeological sites. UAVs can be a great cost-effec-
tive data source for CH. Another significant outcome of the study is that 
a combination of DL and UAVs can provide fast, accurate, and low-cost 
information by integration of DL. The proposed method can enable the 
generation of prediction models and strategies for climate-neutral CH 
and short-, mid-, and long-term risk assessment. Our solution can be 
used as a tool to generate strategies that can be identified for security, 
stabilization measures, and damage risk assessments, including short-, 
medium-, and long-term risk estimation and to eliminate the vulner-
ability of materials against climate change and natural disasters.

According to the literature review in the “Introduction” section, 
several solutions are proposed for edge detection from images that are 
focused mostly on the BSDS500 data set (Arbelaez et al. 2011) consist-
ing of various scene images. The obtained F1 scores in the literature 
vary between approximately 60% and 80%. Since our study focuses on 
contour and crack extraction from complex CH structure images, our 
results cannot be compared with the mentioned related studies due to 
the content of the target objects. Therefore, the proposed solution is a 
pioneer study tailored to our data set specifically for CH documentation 
and monitoring.

The DexiNed and RCF architectures have been used for the first 
time in the literature for this specific task. Additionally, the proposed 
study aims to create infrastructure for innovative digital technologies 
and to integrate them to ensure the sustainable use and protection of 
CH from natural disasters and climate change impacts, in line with 
UNESCO’s recommendations and with future research studies in the 
field of climate change and CH (Sabbioni et al. 2008).

Adaptation of CH to climate change is one of the new and important 
challenges, and research on this subject is limited (Sesana et al. 2018). 
The need to develop preparedness for climate change and natural 
disasters, national and regional adaptation strategies, and intersectoral 
risk management plans has become a strategic target. In 2015, the 
World Heritage Committee supported the United Nations Framework 
Convention on Climate Change to prevent the effects of climate 
change on heritage. These initiatives also include UNESCO’s advisory 
bodies: the International Center for the Conservation and Restoration 
of Cultural Property, the International Union for Conservation of 
Nature, and the International Council for Monuments and Sites, the 
last of which established a Climate Change and Heritage Working 
Group in 2017 to protect CH from the effects of climate change. In this 
context, one of the most important steps is the Adaptation to Climate 
Change strategy of the European Commission as part of the European 
Green Deal Commitment in 2021. Within the scope of strengthening 
the resilience of CH, the Paris Agreement recognizes adaptation as a 
global challenge and goal and adopts the 2030 agenda for sustain-
able development. In addition, Targets 11.4 and 13 of the Sustainable 
Development Goals aim to strengthen efforts to protect and preserve 
the world’s cultural and natural assets and to take urgent action to com-
bat climate change and its effects. Therefore, the proposed study can 
aid the monitoring process of CH protection against climate change, 
natural disasters, and anthropogenic effects.

In future studies, we aim to enlarge our data set and generate 
improved versions of the DexiNed and RCF architectures by structural 
alterations to obtain more accurate results specifically for CH.
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Validation of Island 3D-Mapping Based on  
UAV Spatial Point Cloud Optimization:  

A Case Study in Dongluo Island of China
Jian Wu, Shifeng Fu, Peng Chen, Qinghui Chen, and Xiang Pan

Abstract
The unmanned aerial vehicle (UAV) remote sensing is of small vol-
ume, low cost, fine timeliness, and high spatial resolution, and has 
the special advantage on island surveying. Focus on the inaccurate 
elevation of non-ground point cloud without lidar device, this study 
explored a methodology for island three-dimensional (3D) mapping 
and modelling based on spatial point clouds optimization with a 
K-Nearest Neighbors Adaptive Inverse Distance Weighted (K-AIDW) 
interpolation algorithm. By classifying the UAV point clouds into 
ground, vegatetation, and structure, the K-AIDW algorithm was ap-
plied to optimize the elevations of non-ground point clouds (vegeta-
tion and structure) to recalculate Z values.The aerophotogrammetry 
result was generated based on the optimized spatial point clouds. 
Finally, the 3D model of Dongluo Island was reconstructed and 
rendered in Metashape. The accuracy evaluation result shows that the 
max-errors of ground control points (–0.0154 in X, 0.0305 in Y, and 
0.0133 in Z) and the checkpoints (–0.091 in X, –0.176 in Y, and 0.338 
in Z) can meet the error-tolerance requirements of the correspond-
ing terrain on the 1:500 scale set by the national standard of GB/T 
23236-2009 in China. It is found that the K-AIDW algorithm displayed 
the best Z accuracy (root-mean-square error of 0.2538) compared 
with IDW (0.3668) and no-optimized (1.6012), proving it is an effec-
tive methodology for improving 3D-modelling accuracy of island.

Introduction
As a big maritime country with vast sea waters and numerous islands, 
China has over 11 000 islands accounting for 0.8% of China’s land 
area (MNR of the P.R.C. 2018). As one of the critical land resources, 
islands are pivotal for protecting the marine environment, maintain-
ing ecological balance, strengthening the marine economy, expanding 
the development space, and defending national rights and interests. 
Notably, most islands are uninhabited. Islands are generally far away 
from the mainland and are affected by inconvenient transportation, 
landing difficulties, steep terrain, dense vegetation, and poor communi-
cation signals, all of which result from the island’s unique geographi-
cal location. Hence, the island’s basic geographic information cannot 
be efficiently collected through traditional methods such as real-time 
kinematic (RTK) and total station surveys (Yuan et al. 2018).

UAV Remote Sensing
Unmanned aerial vehicle remote sensing (UAVRS), involving a platform 
of small volume, low cost, good timeliness, and high spatial resolu-
tion, is specifically advantageous in island monitoring and information 
acquisition (Wu et al. 2019). Therefore, it has become the leading low-
altitude remote sensing platform (Li et al. 2016). Spatial remote sensing 
information is obtained in an automatic, intelligent, professional, and 
rapid way by combining several technologies such as UAV, telemetry 

and telecontrol, communications, positioning, and orientation system 
(POS), a global positioning system (GPS), differential positioning, and 
remote sensing (RS). Furthermore, UAVRS also involves application 
technology, real-time processing, modelling, and analysis, providing 
an advanced aerial RS technology solution (Li et al. 2014). Recently, 
UAVRS has played an irreplaceable role in ecological environment mon-
itoring (Messinger et al. 2016; Hodgson et al. 2016), vegetation infor-
mation extraction (Dong et al. 2019; Mafanya et al. 2017), emergency 
disaster (Li et al. 2008), glacier monitoring (Bhardwaj et al. 2016), and 
other fields. UAVRS applications are quite broad, ranging from military 
to commercial and civil industries, which have attracted much research 
interest (Zhang et al. 2018a). However, due to the unique environment 
of the island, which is relatively independent and fragile, some disad-
vantages can be anticipated, including: strong winds, poor takeoff and 
landing conditions, poor signal, and irregular shorelines, all of which 
can create safety risks and technical difficulties in UAV application on 
the island relying on the development of photogrammetry as well as 
UAV remote sensing in the future. Consequently, careful planning is 
required, looking for periods of less wind, usually in the early morning. 
When wind speed exceeds tolerance requirements (usually Grade 6), it 
is unsafe for UAV flight. For another, large water bodies such as sea area 
along the shoreline can hinder the application of matching techniques. 
In these cases, masking techniques are usually applied to avoid these 
areas being used in point matching (Gonçalves et al. 2015).

Previous UAV Research of 3D Mapping
The photogrammetric potential of UAVRS has been evaluated recently 
in several studies (Zarco-Tejada et al. 2014; O'Driscoll 2018 ; Gevaert 
et al. 2017; Siebert and Teizer 2014; Gonçalves et al. 2015), which is 
of great importance to various applications including topographic mod-
elling, mapping, engineering, construction environmental monitoring, 
agriculture, etc. (Ajayi et al. 2018). Three-dimensional (3D) visualiza-
tion modelling, as an indispensable technical asset and a component of 
the digital land and earth, is playing an essential role in island monitor-
ing and information management. Much research has been conducted 
in UAV photogrammetry for 3D mapping and modelling. For example, 
Siebert and Teizer (2014) evaluated a UAV system that was built to 
rapidly and autonomously acquire mobile 3D mapping data. Hudzietz 
and Saripalli (2011) successfully used structure from motion (SfM) 
techniques for the reconstruction of aerial imagery from landscapes. 
Jizhou et al. (2004) designed and implemented an algorithm for 3D re-
construction of city buildings from multiple images using a single UAV. 
Different photogrammetry software packages optimize and improve 
the aerotriangulation algorithm uniquely, aiming to improve speed and 
accuracy. Some are free and open-source, such as Bundler and CMVS 
(Furukawa and Ponce 2010) or Apero and Mic-Mac (Deseilligny and 
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Clery 2011) and some are commercial. Typically, the core algorithm of 
a commercial software is proprietary and classified.

Precisely modelling can intuitively display geological disasters on 
islands, collect island vegetation information, quantitatively estimate 
vegetation parameters, and monitor the island shoreline erosion along 
with the status of its development and use. Until now, UAVRS have 
provided an alternative for the remote monitoring of island from lower 
altitudes unaffected by cloud coverage. To date, several studies have 
focused on island topographic information extracting and monitoring 
(Yuan et al. 2018; Zhang et al. 2018b). However, references to the use 
of UAVs for island 3D mapping and precisely-modelling are still scarce 
in the scientific literature. In view of studies have been mentioned 
above, research generally focuses more on the 3D reconstruction algo-
rithm optimization, visual effect, and processing efficiency of UAVRS, 
with less concern on validation of modelling accuracy. Nevertheless, 
the problem of the “non-ground” point cloud elevation calculated by the 
aerotriangulation algorithm is the surface elevation rather than the ter-
rain height, which will reduce the digital mapping accuracy of Digital 
Elevation Model (DEM) to some extent.

To this point, building on experience from previous research, the 
present study explored an island 3D-mapping and modelling meth-
odology with spatial point clouds optimization extracted from UAV. A 
K-Nearest Neighbors (K-NN) adaptive inverse distance weighted (Yan 
et al. 2020) interpolation algorithm was applied to recalculate the “non-
ground” point cloud elevation to improve the 3D mapping accuracy. 
The experimental results demonstrated that this methodology can 
obviously improve the elevation accuracy of “non-ground” point cloud 
and reconstruct the 3D-visual model for Chengzhou Island, which is an 
effective technique for the rapid and precise monitoring of islands.

Methods
Study Area
This study was carried out in Dongluo Island which is situated at the 
East Sea area of Niutou Bay, Songxia Town, Changle City, Fujian 
Province (see Figure 1). It is located at 25°45.8' N, 119°40.3' E, and 

is about 3.5 km away far from the mainland. As the largest island in 
Dongluo Archipelago, Dongluo Island is surrounded by the islands 
Xiaoluo, Xiaolun, Dalun, Dalun North, Dalun South, and Dongyin, 
which is uninhabited and is the size of about 1.26 km long (north to 
south) and 0.47 km wide (east to west), with a coastline of about 5.6 km 
and an area of about 0.63 km2. The terrain of Dongluo Island is flat as 
most slope is under 20 degrees. The altitude increases from the north-
east to the southwest ranging from 0.88 m to 64.09 m. The Dongluo 
Island is the subtropical monsoon zone with relatively high temperature 
and abundant rainfall throughout the year. The mean annual tempera-
ture is 19.3 °C and the average annual maximal and minimal tem-
perature is 38.7 °C and –1.2 °C, respectively. Rain events concentrate 
seasonally from May to September. The prevailing wind direction of 
this area is NNE–ENE, with annually average wind speed of 4.1 m/s.

Methodological Framework
The core operating process of UAV aerophotogrammetry lies in the 
analytical aerial triangulation technology, called aerotriangulation for 
short, which originates from computer vision research. Specifically, 
relying on the stereophotogrammetry principle, the same feature points 
are extracted from overlapping photos, the photo’s exterior orientation 
elements are solved, and the coordinates of unknown points are calcu-
lated using ground control points (GCPs) coordinates to reconstruct the 
3D geographical space (Zhang et al. 2018b).

In this current study, Metashape from Agisoft was used for 
3D-modelling. Based on multi-view 3D reconstruction technology, it is 
essentially automated commercial software and the workflow algo-
rithms are not fully documented. According to the relevant literature 
(Gonçalves et al. 2015; Agisoft 2021), it adopts an algorithm called 
the SfM, which differs from the traditional aerial survey software. The 
Scale Invariant Feature Transform (SIFT) operators are used to extract 
the same feature points from each photo in SfM, and the corresponding 
descriptors are obtained. Then, the descriptors are matched using the 
random sample and consensus (RANSAC) algorithm, aiming to limit 
gross errors and mismatching. Finally, A camera model specifies the 
transformation from point coordinates in the local camera coordinate 

Figure 1. The location of Dongluo Island in China.
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system (x, y) to the pixel coordinates in the image frame (x', y'). The 
mathematical formulation is given as (Agisoft 2021):

  (1)

  (2)

where . Then the pixel projected coordinates (col, row) of 
the point will be:

 col = 0.5w + Cx + x'f + x'B1 +  y'B2  (3)

  row = 0.5h + Cy + y'f  (4)

where (col, row) are the projected point coordinates in the image 
coordinate system, (x, y) are point coordinates in the local camera 
coordinate system, (x', y') are point coordinates in the image coordinate 
system, f is the focal length, (Cx, Cy) is principal point offset, (k1, k2, k3, 
k4) is radial distortion coefficients (dimensionless), (P1, P2) is tangential 
distortion coefficients (dimensionless), (B1, B2) is affinity and non-
orthogonality (skew) coefficients (in pixels), and (w, h) is image width 
and height (in pixels).

This objective of this study is aimed to: (i) evaluate the potential of 
UAVRS to island 3D mapping and (ii) improve the altitude accuracy of 
3D by “non-ground” point cloud. In order to achieve the precise digital 
terrain model (DTM) of “non-ground” point cloud such as buildings, 
vegetation, and other structures instead of digital surface model (DSM), 
a K-NN adaptive inverse distance weighted (K-AIDW) interpolation 
algorithm was applied to the spatial point cloud optimization. This al-
gorithm can take both spatial correlation and heterogeneity into account 
simultaneously and improve the interpolation accuracy without the 
needs of parameters input for users. Firstly, the sample data is divided 
into three classes (high, medium, and low) according to the statistical 
characteristics, the formula equation is as follows:

  

(5)

where Hi, Li is the classification threshold of each point. According to 
the classification result, the different weight adjustment coefficient of αi 
is computed as:

 αi = (ki /w)/Di
2 (6)

where αi is the weight adjustment coefficient, w is the total number of 
the first order neighboring sample points, Di is the Euclidean distance 
between unknown point and sample point, and ki is the number of each 
class. Then the K-AIDW interpolation algorithm is construed as:

  

(7)

where z(x) is the point calculated by the K-AIDW algorithm, zi, zj, zk is 
the attribution of each class point, and  di, dj, dk respectively, denotes 
the Euclidean distance of each class point.

The methodology of this study can be summarized as: data acquisi-
tion, spatial point cloud processing, accuracy validation, and 3D 
mapping and modeling, with the corresponding technical flowchart 
illustrated in Figure 2. GCPs and UAV aerial surveys were carried out. 
Flight POS data and aerial images were obtained for input in Trimble 
Business Center (TBC) for aerotriangulation. Once the accurate image 
orientation was calculated, dense point clouds were obtained and were 

classified as vegetation, structure, ground, and noise. Spatial point cloud 
optimization to enhance elevation of non-ground points (vegetation 
and structure) was conducted using the K-AIDW algorithm. Z accuracy 
assessment of 12 checkpoints was compared with the conventional IDW 
algorithm and no optimization. Subsequently, digital maps of digital 
orthophoto map (DOM), DTM, and DSM were generated and collected for 
3D reconstruction and modeling in Metashape.

Data Acquisition
The UAV platform involved is Trimble’s UX5 fixed-wing UAV. It 
weighs 2.9 kg, has a flight altitude of 75–750 m with the Ground 
Sample Distance (GSD) of 1.0–10.5 cm, has a maximum cruising speed 
of 80 km/h, and its endurance is about 40 minutes in a single flight. 
The UAV can fly stably up to a wind scale of six. The catapult-assisted 
take-off and belly-landing mode are adopted, and the landing area is 
50×50m. Thus, this UAV is especially suitable for flight monitoring in 
remote medium/small islands due to its features. The UAV is equipped 
with a SONY NEX-5T miniature SLR camera calibrated by the manu-
facturer, with the main parameters presented in Table 1.

Table 1. The parameters of NEX-5T.
Parameters Features Parameters Features

Pixel 16 MP (4912 × 3264) Focal length 15 mm

Sensor APS-C CMOS (23.5 × 15.6mm) Aperture 4.5–22

Shutter 1/4000 ～ 30 S FOV 110.4°

Weight 218 g — —

The flight was performed on the morning of 18 November 2017 at 
the east sea area of Songxia Town of Fujian Province, P.R.C. with the 
wind level was 2–3, covering the Dongluo Island and its surrounding 
sea areas. The survey area is about 1.15 km2 requiring 22 flight strips 
and the flight altitude was 180 m during about 30 minutes and 627 pho-
tos were obtained with a forward and side overlap of 80% (see Figure 
3). Eight GCPs were set in this study, as shown in Figure 4.

Figure 2. The flowchart of the proposed methodology. IDW = 
inverse distance weighted; K-AIDW = K-NN adaptive inverse distance 
weighted; 3D = three-dimensional.
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Data Processing
The software INPHO® affiliated to Trimble company, developed 
by Prof. Ackermann, is a famous digital photogrammetry system in 
Europe, which has a robust automatic point matching and high-preci-
sion point prediction ability (Zhang et al. 2016) and integrates many 
proceeding functions such as aerotriangulation, image matching and 
correction, DTM/DSM extraction, orthophoto mosaicking, and so on. 
Trimble Business Centre (TBC), integrating most of INPHO functions 
into its photogrammetry sub-module, is the supporting software for 

UX5 data processing. In this study, TBC is applied for aerotriangulation 
and Metashape is used for 3D-visual modelling.
• Project setup. Firstly, China Geodetic Coordinate System 2000 

(CGS2000) with 3 degree was defined as the project coordinate 
system. The POS data as well as the GCPS were imported into TBC 
to generate the flight information (Figure 5). There are 22 strips for 
the arial triangulation and the area has a planimetric extent of about 
1660 × 1411 m.

• Relative adjustment of the survey stations. The bundle adjustment 
was applied (Wang et al. 2017) and the tie points were automati-
cally calculated by combining the feature-based matching and 
least-squares matching algorithm. As is shown in Figure 6, there are 
23 335 tie points in the project, and the point size and color reflects 
the number of images containing the point.

• Absolute adjustment of GCPs. The artificial signals were placed in 
the survey area and the locations were shown in Figure 4. The GCPs 
are provide to the image orientation and accurate georeferencing. 
The accurate coordinate measurements were performed with a 
Trimble SPS985 global navigation satellite system (GNSS) receiver 
which is capable of supporting existing and planned GNSS satellite 
signals, including GPS, GLONASS, Galileo, Quasi Zenith Satellite 
System, and Compass that can operate in RTK mode using a data 
connection to a permanent GNSS network. The China Geodetic 
Coordinate System 2000 (CGCS2000) is the unified coordinate 
system used in P.R.C. The GCPS survey of this study was carried 
out in a sunny day with fine network and satellite signal. Normally, 
the position accuracy is very high, especially in an unobstructed 
environment that more than 15 satellites were used in each GCPs 
determination. The predicted accuracy was always better than 0.8 
cm in horizontal and better than 1.5 cm in vertical which were 
confirmed with repeatedly tests.

Figure 3. The flight overview.

Figure 4. The distribution map of Ground Control Points.

Figure 5. The strips and survey stations overview.

Figure 6. The tie points distribution.

Figure 7. The spatial point clouds of Dongluo Island.
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• Spatial point cloud generation. The spatial point clouds were gener-
ated based on the absolute adjustment result (see Figure 7).

• Spatial point cloud optimization. The spatial point clouds were 
imported and edited in UASMaster module of TBC software to 
classify into four types as shown in Figure 8 through the spatial 
filtering tool. Then the K-AIDW algorithm, adopted to recalculate 
the elevation of non-ground points, such as vegetation and structure 
based on the surrounding ground points, that retains specific terrain 
details better reflecting the terrain changes so as to improve DEM 
accurate .The results are illustrated in Figure 9 and Figure 10.

• The final digital image results are generated based on the optimized 
spatial point cloud data (Figure 11) such as DOM and DTM.

Results and Discussion
3D Modelling
The aerotriangulation algorithm mainly comprises the following steps 
(Zhang et al. 2018a): (a) Camera calibration to determine the interior 
orientation elements; searching/matching feature points; (b) Camera 
point adjustment based on feature points and POS data to solve the Figure 8. The classification of spatial point clouds.

Figure 9. The optimization of structure point clouds: (a) (before) and (b) (after) in Z profile, (c) (before) and (d) (after) in XY profile.

Figure 10. The optimization of vegetation point clouds: (a) (before) and (b) (after) in Z profile, (c) (before) and (d) (after) in XY profile.
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exterior orientation elements and restore the photo position and at-
titude; (c) control point adjustment to generate spatial point clouds; and 
(d) generation of the DSM/DTM as well as the DOM through point clouds.

Metashape is a 3D modelling software that exploits computer vi-
sion techniques, developed by the Russian Agisoft Company, formerly 
known as Photoscan. This software generates a natural and exquisite 
3D model affording real visual effects through digital 3D reconstruction 
and texture mapping.We used Metashape for 3D modelling of island.

There are several step-wise procedures as follows: (1) data import; 
(2) align photos; (3) geo-referencing; (4) build dense clouds; (5) build 
geometry; (6) build texture; (7) render 3D model; (8) export result. 
Each step gave several possibilities to adjust parameters, which have 

influence on the accuracy and structure of the results and the process-
ing time. As to this research, the aerotriangulation result was directly 
imported into Metashape to build a 3D visualization scene. Then, the 
adaptive texture was generated and 3D texture mapping was carried out 
in the UV mode and a refined 3D model were constructed and exported. 
The 3D model of Dongluo Island is rendered in real-time, with the final 
effects illustrated in Figure 12.

Accuracy Evaluation
The accuracy of the proposed research is verified by the mean error 
(M), standard deviation (SD), and root-mean-square error (RMSE), 
which is given by:

Figure 11. The digital orthophoto map (Ground Sample Distance ((GSD) = 5 cm) and digital terrain model maps.

Figure 12. A real-time rendering of three-dimensional visualization model.
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  (8)

  (9)

  (10)

where ∆i represents the difference between the calculated and the mea-
sured value, and n is the number of measurements.

Aerotriangulation Accuracy
According to the adjustment report, the aerotriangulation's sigma 
naught in this regional network is 0.66. Table 2 and Figure 13 provide 
the terrain points' overall accuracy and the projection center's SD per 
station, respectively.

The adjustment report for the entire project involving all survey 
stations is generated. As is shown in Figure 13, the SD of each sta-
tion on the island is very small, while stations with a large SD are 
concentrated at the edge of the survey area located above the sea area 
around Dongluo Island. The SD values of these stations are high due to 
objective factors such as the low photo overlap rate and the inaccurate 
extraction of water tie points. The spatial point clouds corresponding 
to these stations are eliminated during the post-processing spatial point 
cloud optimization to improve the aerotriangulation accuracy.

Control Point Accuracy
The position of eight GCPs are shown in Figure 4 and accuracy of GCP 
is evaluated, with M values presented in Table 3.

Checkpoint Accuracy
According to the Chinese technical standard of CH/T 9008.1-2010, 
the "Digital Products of Fundamental Geographic Information 1:500, 
1:1000, and 1:2000 Digital Line Graphs" divides the topography into 
four types: flat land (slope <2°), hilly land (2° ≤ slope < 6°), mountain-
ous land (6° ≤ slope < 25°) and alpine land (slope ≥25°).

In Figure 14b, we selected a total of 12 checkpoints for accuracy 
verification including four ground checkpoints (JC05, JC06, JC07, 
JC09), four vegetation checkpoints (JC02, JC03, JC11, JC12), and four 
structure checkpoints (JC01, JC04, JC08, JC10). As to Figure 14a, the 
checkpoints were classified into three types with the slope map based 
on the National Standard of CH/T 9008.1-2010, which were hilly 
(JC05, JC09, JC10), mountainous (JC03, JC04, JC06, JC07, JC08, 
JC12), and alpine (JC01, JC02, JC11). The checkpoints information 

Table 2. The standard deviation of terrain points.
X Y Z TOTAL

0.0415 0.0520 0.1247 0.1414

Figure 13. The standard deviation map of projection centers.

Table 3. The mean errors of ground control points.
ID X/m Y/m Z/m

KZ01 0.0070 0.0305 –0.0071

KZ02 0.0004 –0.0044 –0.0007

KZ03 –0.0035 –0.0012 –0.0027

KZ04 –0.0002 –0.0005 0.0017

KZ05 0.0072 –0.0015 –0.0005

KZ06 –0.0016 0.0008 0.0016

KZ07 0.0062 –0.0043 –0.0054

KZ08 –0.0154 –0.0193 0.0133

RMSE 0.0070 0.0130 0.0058

Figure 14. The distribution of checkpoints: (a) locations in slope map; (b) locations in digital orthophoto map.
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summary and accuary assessment as well as the mean-error distribution 
of K-AIDW were illustrated in Table 4 and Figure 15, respectively.

Error Comparison of the Z Values
Z-error comparison of the checkpoints was performed to quantita-
tively assess and validate the K-AIDW algorithm. The brush tool of 
UASMaster, based on the conventional IDW algorithm, can interpolate 
and optimize point cloud elevation to edit the terrain. This study used 
the checkpoints interpolated by this tool in UASMaster to explain the 
improvement of K-AIDW. Checkpoints directly exported from the aero-
triangulation results were as well applied to verify the validity. Table 4 
and Figure 16 illustrate the comparison results and error distribution.

Specifically, checkpoints of JC05, JC06, JC07, and JC09 were 
ground points that did not require recalculation by algorithms, whose 
mean error as well as error coefficient were consistent that were not 
introduced for comparison. Compared to non-optimized, it revealed 
that Z-error of JC04 was enhanced the most after optimization using 
K-AIDW, with the mean error decreasing from 2.4 to –0.285 and the 
error coefficient from 21.28% to 2.53%. Moreover, the JC01 was also 
notably improved, with the mean error reducing from 2.15 to 0.216 and 
the error coefficient from 18.12% to 1.82%, both of which are struc-
tures. Figure 16 reveals that the error coefficient of each checkpoint is 
under 5% after optimized by K-AIDW, indicating a satisfactory accuracy 
of the Z-values, and the structure checkpoints (JC01, JC04, JC08, and 
JC10) are better improved with the error coefficient than the optimized 
vegetation checkpoints (JC02, JC03, JC11, and JC12). Meanwhile, all 
checkpoints were improved obviously. With the conventional IDW algo-
rithm, the Z-errors optimized with the K-AIDW algorithm were generally 
more accurate, except for JC08, whose error coefficient was 2.06% 
when compared with IDW of 1.88%. With vegetation checkpoints 
(JC02, JC03, JC11, and JC12), the error coefficient of K-AIDW ranged 
from 0.73% to 0.96% indicating a better result compared with IDW of 
1.02% to 1.76%. It was found that mean errors of IDW were all positive 
(0.396 to 0.621), reflecting the concern of less optimization of vegeta-
tion points, which were all positive from 0.396 to 0.621, decreasing the 
Z accuracy when compared to K-AIDW (–0.315 to 0.338). Referring to 
the structures (JC01, JC04, JC08, and JC10), the K-AIDW and IDW algo-
rithms displayed similar precision in which average error coefficients 
were 2.045% and 2.69%, respectively. The K-AIDW RMSE (0.2538) was 
less than with IDW (0.3668) as shown in Table 4, demonstrating better 
optimization and accuracy with the K-AIDW algorithm.

Analysis and Discussion
Until now, there have been several national standards and techni-
cal specifications of aerial photogrammetry in China, such as 
"Specifications for Aerotriangulation of Digital Aerophotogrammetry" 
(GB/T 23236-2009), "Digital Products of Fundamental Geographic 
Information 1:500, 1:1000, and 1:2000 Digital Elevation Model" 
(CH/T 9008.2-2010), "Digital Products of Fundamental Geographic 
Information 1:500, 1:1000, and 1:2000 Digital Orthophoto Maps" 
(CH/T 9008.3-2010), and "Specifications for Office Operation of Low-
altitude Digital Aerophotogrammetry" (CH/Z 3003-2010). By compar-
ing the different references, this study used the one with the highest 
accuracy requirements of GB/T 23236-2009 for accuracy evaluation 
and verification, as presented in Table 5.

Considering the ground control points, the max-errors of XY and Z 
of 0.0305 m and 0.0133 m, respectively, were much smaller than the 
required values on the 1:500 scale for any land type. Therefore, GCP 
accuracy requirements on the 1:500 scale were met.

As shown in Table 4, the 12 checkpoints had been classified into 
three landform types, alpine, mountainous, and hilly. Alpine land (JC01, 
JC02, and JC11), max-errors of XY and Z of –0.061 m and –0.315 m, 
respectively, were much smaller than the required values on the 1:500 
scale (0.35 m in XY, 0.6 m in Z), indicating checkpoint accuracy was 
met. With regard to the mountainous land (JC03, JC04, JC06, JC07, 
JC08, and JC12), max-error of XY and Z of –0.176 m and 0.338 m, 
respectively, was smaller than the required values on the 1:500 scale 

Figure 15. The mean error of K-NN adaptive inverse distance 
weighted in XYZ profiles.

Figure 16. The Z-error comparison of the checkpoints (only non-
ground checkpoints).
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(0.35 m in XY, 0.4 m in Z), confirming they met accuracy requirements. 
For hilly regions (JC05, JC09, and JC10), it was found that XY max-
error of –0.018 m and Z max-error of –0.256 m were smaller than the 
requirements on the 1:500 scale (0.175 m in XY, 0.28 m in Z), which 
fulfilled accuracy requirements. Consequently, accuracy validation of 
classified checkpoints based on terrain met the requirements for 1:500 
scales of national standard (GB/T 23236-2009) in China.

By analyzing the M values as illustrated in Figure 15, the structure 
checkpoints are the most accurate than the other two types of check-
points with the X errors between 0.001 (JC10) to 0.048 (JC04), while 
the vegetation is the lowest with the X errors between 0.046 (JC11) to 
0.091 (JC03). As to the Y error, the ground checkpoints are the most 
precise with the M errors between 0.006 (JC09) to 0.05 (JC06) than the 
two other types of checkpoints, while the structure is the lowest with 
the errors between 0.006 (JC10) to 0.176 (JC08).

Focusing on comparison of checkpoints in Table 4, it was concluded 
that the K-AIDW algorithm had the best accuracy with minimal RMSE 
of 0.2538, while the IDW result was 0.3668, and maximal RMSE of 
1.6012 in non-optimized. As analyzed above, the phenomenon of less 
optimization of vegetation with the IDW algorithm led to the large posi-
tive value of Z-error, decreasing Z accuracy. In structure checkpoints, 
the two algorithms had a similar Z-error, except in JC08, the Z-error 
of IDW was less than that of K-AIDW, indicating a better Z accuracy. In 
comparison with the non-optimized checkpoints, the Z-error coefficient 
of the K-AIDW algorithm had been remarkably improved, particularly 
in structure checkpoints, which were more precise than vegetation 
checkpoints. Results for Z-errors of checkpoints found that ground 
checkpoint errors were between 0.1 and 0.2 m, structure checkpoint 
errors were between 0.2 to 0.3 m, and vegetation checkpoint errors 
were between 0.3 to 0.4 m. Among the checkpoint locations shown in 
Figure 14, JC02 and JC03, both vegetation checkpoints had the most 

significant Z-errors of –0.312 and 0.338, respectively. JC06 and JC07, 
both ground checkpoints, had the lowest Z-errors of 0.108 and 0.116, 
respectively.

As elevations of vegetation checkpoints could meet mapping 
requirements for the 1:500 scale of National Standard (GB/T 23236-
2009) after recalculation and optimization by the K-AIDW algorithm, 
revealing elevation accuracy of these points have been greatly im-
proved. However, the Z accuracies of vegetation checkpoints were still 
lower than the structure and ground checkpoints due to the influence 
of objective factors such as low signal and position accuracy in the 
grove and sampling points layout subject to the natural conditions on 
the island. In brief, the accuracies of non-ground points were notably 
raised, indicating that Z-values of non-ground points could be advanced 
with the K-AIDW algorithm of the developed optimization procedure. 
Additionally, the overall checkpoints' accuracy in XY is higher than in 
the Z direction. In terms of Z profile, except for the vegetation check-
points, the other checkpoint ‘s Z accuracy is less than 0.3m, indicating 
the high modelling accuracy.

Conclusions
Considering Dongluo Island as the study area, this study developed an 
island 3D mapping and modelling method using UAV spatial point cloud 
optimization. Precisely, UAV aerotriangulation was calculated in TBC. 
Then the point clouds were imported and edited in UASMaster. By 
eliminating the noise and false points, the remaining point clouds were 
classified into ground, structure, and vegetation by spatial filtering tools. 
After that, the "non-ground" points (structure and vegetation) were op-
timized and recalulated with K-AIDW algorithm to obtain the true terrain 
height and the digital mapping outcomes (DOM, DSM, and DTM) were re-
lied on the optimized spatial point clouds. Finally, the aerotriangulation 

Table 4. The checkpoints summary and error analysis.

ID Type Landform

X/m Y/m Z/m

mean 
errors

mean 
errors

Optimized by K-AIDW Optimized by software tool No Optimized

mean 
errors

error  
coefficient (%)**

mean 
errors

error  
coefficient (%)**

mean 
errors

error  
coefficient (%)**

JC01 Structure Alpine 0.001 –0.029 0.216 1.82 –0.332 2.8 2.15 18.12

JC02 Vegetation Alpine –0.061 0.039 –0.312 0.87 0.415 1.17 1.98 5.57

JC03 Vegetation Mountainous –0.091 0.026 0.338 0.96 0.621 1.76 2.20 6.22

JC04 Structure Mountainous 0.047 0.116 –0.285 2.53 0.341 3.02 2.40 21.28

JC05 Ground Hilly –0.018 –0.01 –0.189 0.52 –0.189 0.52 –0.189 0.52

JC06 Ground Mountainous 0.057 0.05 0.108 1.15 0.108 1.15 0.108 1.15

JC07 Ground Mountainous –0.004 –0.024 0.116 0.33 0.116 0.33 0.116 0.33

JC08 Structure Mountainous –0.048 –0.176 –0.292 2.06 –0.266 1.88 1.63 11.53

JC09 Ground Hilly –0.014 –0.006 –0.128 0.25 –0.128 0.25 –0.128 0.25

JC10 Structure Hilly –0.008 0.006 –0.256 1.77 –0.442 3.06 0.86 5.95

JC11 Vegetation Alpine 0.046 0.051 –0.315 0.73 0.575 1.32 2.14 4.93

JC12 Vegetation Mountainous –0.052 –0.085 0.326 0.84 0.396 1.02 1.89 4.86

RMSE - - 0.0458 0.0710 0.2538 - 0.3668 - 1.6012 -

** Error Coefficient = | (Calculated Value-Measured Value)/Measured Value | × 100%; K-AIDW = K-NN adaptive inverse distance weighted.

Table 5. The tolerance errors of different scales in Specifications for Aerotriangulation of Digital Aerophotogrammetry (GB/T 23236-2009).

SCALE TYPE

Tolerance Errors of Plane Tolerance Errors of Altitude

Flat Hilly Mountainous Alpine Flat Hilly Mountainous Alpine

1:500

ground control points 0.13 0.13 0.2 0.2 0.11 0.20 0.26 0.4

checkpoints 0.175 0.175 0.35 0.35 0.15 0.28 0.4 0.6

common points 0.35 0.35 0.55 0.55 0.3 0.56 0.7 1.0

1:1000

ground control points 0.3 0.3 0.4 0.4 0.20 0.26 0.4 0.75

checkpoints 0.5 0.5 0.7 0.7 0.28 0.4 0.6 1.2

common points 0.8 0.8 1.1 1.1 0.56 0.7 1.0 2.0
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result was imported to Metashape to rebulid the 3D-visual model of 
Dongluo Island, enhancing a better 3D-visual effect.

In this study, the sigma naught of aerotriangulation was 0.66, less 
than one pixel, while average standard deviations of terrain points were 
0.0415 m (X), 0.0520 m (Y), and 0.1247 m (Z). The max-errors of GCPs 
were –0.0154 m in X, 0.0305 m in Y, and 0.0133 m in Z. For the check-
points, the accuracy in XY was higher than that in Z, and the max-
errors were –0.091 m in X, –0.176 m in Y, and 0.338 m in Z, which ful-
filled the error-tolerance requirements of their corresponding landforms 
on the 1:500 scale as set by the national standard of "Specifications for 
Aerotriangulation of Digital Aerophotogrammetry" (GB/T 23236-2009) 
in China. Moreover, according to the error coefficient, Z accuracies 
of non-ground (vegetation and structure) point clouds were notably 
enhanced after optimization with the proposed K-AIDW algorithm as 
compared with non-optimization. The K-AIDW algorithm produced a 
better effect in vegetation optimization compared with the conventional 
IDW algorithm. Consequently, based on accurate POS data calculation, 
GCPs measurement combined with spatial point clouds optimization, 
low-altitude UAVRS met island 3D mapping and modelling require-
ments on the scale of 1:500 and the K-AIDW algorithm proved to be an 
effective and feasible approach for interpolation and optimization of the 
elevation of non-ground point clouds from UAV.

Currently, the UAVRS technology is developing at a rapid pace. 
Further research shall focus on accurately restoring the aerial attitudes 
of photos and correcting POS data using machine learning,, post-
processing kinematic technology, and software intelligent optimiza-
tion. New methods such as oblique photogrammetry and lidar can be 
adopted to extract high-density and high-precision spatial point clouds 
and achieve more terrain features. Such approaches will reduce the 
manual processing workload, improve working efficiency and quality, 
so as to increase the 3D mapping and modelling accuracy.
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MCAFNet: Multi-Channel Attention  
Fusion Network-Based CNN for  

Remote Sensing Scene Classification
Jingming Xia, Yao Zhou, Ling Tan, and Yue Ding

Abstract
Remote sensing scene images are characterized by intra-class diversity 
and inter-class similarity. When recognizing remote sensing images, 
traditional image classification algorithms based on deep learning only 
extract the global features of scene images, ignoring the important role 
of local key features in classification, which limits the ability of feature 
expression and restricts the improvement of classification accuracy. 
Therefore, this paper presents a multi-channel attention fusion network 
(MCAFNet). First, three channels are used to extract the features of 
the image. The channel “spatial attention module” is added after the 
maximum pooling layer of two channels to get the global and local 
key features of the image. The other channel uses the original model to 
extract the deep features of the image. Second, features extracted from 
different channels are effectively fused by the fusion module. Finally, 
an adaptive weight loss function is designed to automatically adjust the 
losses in different types of loss functions. Three challenging data sets, 
UC Merced Land-Use Dataset (UCM), Aerial Image Dataset (AID), and 
Northwestern Polytechnic University Dataset (NWPU), are selected for 
the experiment. Experimental results show that our algorithm can ef-
fectively recognize scenes and obtain competitive classification results.

Introduction
With the advancement of remote sensing technology in recent years, 
the resolution of remote sensing images obtained from remote sensing 
satellites has steadily increased. However, the features of high-resolu-
tion images contain a great deal of redundant information, which leads 
to the problems of intra-class differences and inter-class similarity of 
remote sensing images, and thus brings great challenges to the accurate 
classification of remote sensing scene images. Intra-class diversity 
manifests itself, for instance, in the port scene as differences in size, 
color, shape, and background of different ports, which may lead to mis-
classification. The inter-class similarity indicates that different catego-
ries of scenes share similar texture characteristics. For instance, sparse 
residential area, medium residential area, and dense residential area are 
frequently difficult to classify. Consequently, it is easy to misclassify 
these images during the process of scene classification.

In recent years, the classification of remote sensing images has made 
extensive use of deep learning. Convolutional Neural Network (CNN) is 
an important deep learning technology. As a powerful image process-
ing tool, CNN has achieved excellent application performance in variety 
of fields (Guan et al. 2022; Jiang et al. 2022; Krizhevsky et al. 2012; 
Long et al. 2015; Ren et al. 2015), especially in image classification 
(He et al. 2016; Huang et al. 2017; Zheng et al. 2021). The convolu-
tional layer is the central component of a convolutional neural network 
(CNN), which extracts feature information by fusing spatial and channel 

information of local receptive fields. In the fields of image classification 
and object detection, models such as Visual Geometry Group Network 
(VGGNet) (Simonyan and Zisserman 2015), DenseNet (Huang et al. 
2017), GoogleNet (Szegedy et al. 2015) and MobileNetV2 (Sandler 
et al. 2018) have achieved good performance over the years. Penatti 
et al. (2015) applied CNN to the classification of remote sensing image 
scene and extracted high-level visual features using CNN’s end-to-end 
feature learning, demonstrating the network's strong generalization 
ability. However, this is only a preliminary application of CNN to 
remote sensing image classification and does not make good use of 
all the capabilities of CNN. Therefore, two-stage deep feature fusion 
convolutional neural network was proposed by Liu et al. (2017). The 
network is capable of adaptively fusing the feature information of the 
intermediate layer and the fully connected layer, making full use of the 
abundant information in the shallow layer, and effectively enhancing 
the classification accuracy. However, a large number of parameters are 
generated during training, in order to reduce the number of parameters 
and improve the model’s accuracy. Zeng et al. (2018) proposed an end-
to-end convolutional neural network that combines global contextual 
features and local object features, which achieves good accuracy in 
scene classification and effectively reduces network complexity.

However, although single-channel CNN can be used as a basic 
model for classification, their ability to extract features is limited by a 
certain depth. This prompts us to use multi-channel structure to extract 
features from images and fuse the features of different channels to im-
prove the feature representation. Numerous studies have demonstrated 
that the multi-channel structure enables the network to extract and fuse 
different feature maps on multiple channels, thereby enhancing the 
performance of remote sensing image classification. Shi et al. (2020) 
proposed a bilinear-based method for feature extraction that combines 
depthwise separable convolution and standard convolution to extract 
image features and fuses the features extracted by the two channels. 
The complexity of the model is greatly reduced. To improve the clas-
sification accuracy of the model, Ma et al. (2020) designed a two-
branch interactive spatial channel collaborative attention augmentation 
network (SCCA-net) for multi-resolution classification to improves the 
classification accuracy of the model. The sampling angle is adapted 
adaptively based on the texture distribution of homogeneous regions in 
order to capture neighborhood information that is more advantageous 
for classification. Shi et al. (2021) therefore proposed a convolutional 
neural network based on an attention mechanism and a multi-branch 
structure, which combined the attention mechanism with hybrid 
convolutions and attained good classification performance. Li et al. 
(2021) proposed an attention-based convolutional neural network for 
multi-layer feature aggregation due to the large number of parameters 
that are generated during training. In order to improve scene classifica-
tion performance, the network aggregates valuable information from 
multi-layer convolutional features based on the semantic regions it has Jingming Xia, Yao Zhou, and Yue Ding are with the School of 
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learned. Although the above methods use multi-branch structure to 
extract image features, their fusion method is only achieved by channel 
splicing or numerical addition, and the extracted features cannot be 
well fused.

The problem of intra-class diversity and inter-class similarity in 
remote sensing image classification requires attention to the global and 
local key features of the image. Numerous studies have shown that add-
ing an attention module to a convolutional neural network can improve 
the network's performance. This strategy enables the convolutional 
neural network to focus on the target region and obtain more detailed 
information regarding the target, while ignoring irrelevant informa-
tion. By establishing interdependencies between channels, Hu et al. 
(2018) designed squeeze and excitation networks (SENet) to improve the 
model’s feature response. The squeeze operation enables the network to 
squeeze features spatially and obtain a global receptive field through a 
global average pooling operation. The excitation operation is performed 
through two consecutive fully connected layers. SENet is a separate sub-
structure that can be embedded in various network structures. However, 
embedding inevitably adds some parameters and computation in some 
classification networks. Therefore, Wang et al. (2020) proposed a 
lightweight efficient channel attention (ECA) module to replace the fully 
connected computation in SENet, using one-dimensional convolution to 
learn the relationship between local channels. Global average pooling 
to aggregate each channel significantly reduces the number of param-
eters. To enable the classification network to achieve higher perfor-
mance after adding the attention module, Woo et al. (2018) developed 
a convolutional block attention module (CBAM). By providing an 
intermediate feature map, the attention weights are sequentially inferred 
along the two dimensions of space and channel, and then multiplied 
with the original feature map to adaptively adjust the features, thereby 
improving the performance of the model. Wang et al. (2018) developed 
an attention mechanism for CNN and introduced it into scene classifica-
tion in order to highlight critical information in remote sensing images 
and discard irrelevant information. This method reduces the number 
of learned parameters by reducing high-level semantic and spatial 
features. Sun et al. (2022) proposed an encoder-decoder network for 
remote sensing image classification that fuses spatial attention and 
spectral channel attention. The network encodes spatial and spectral 
multi-channel contextual information and achieves good classification 
results. The intra-class diversity problem refers to the frequent misclas-
sification of the same scene type in remote sensing image classification, 
due to differences in size, background, etc. The aforementioned studies 
demonstrate that the attention mechanism can alleviate this problem by 
increasing the network's focus on the region of interest while ignoring 
background features. However, the above work does not focus on the 
location of global and local key features in the image at the same time, 
so the accurate classification cannot be achieved.

To overcome these difficulties, a high-performance multi-channel 
attention fusion network (MCAFNet) is designed for remote sensing im-
age scene classification. The main contributions are as follows.
(1) Aiming at the problem that the feature extraction ability of 

single channel is insufficient and the extracted features cannot be 

reasonably fused, a multi-channel extraction structure is designed 
based on VGG16 to obtain more effective features. The feature 
dimension and feature redundancy are reduced by reducing the con-
volution kernel. At the same time, through the feature fusion algo-
rithm, the features extracted from different channels are effectively 
fused by strengthening the weight of the extracted feature map.

(2) Aiming at the problem of inter-class similarity and intra-class diver-
sity in remote sensing images, this paper proposes a global-local at-
tention module, which uses channel attention and spatial attention to 
pay attention to the global features and local key features of images.

(3) In actual classification, some data sets have class imbalance 
problems. This paper designs an improved adaptive weight loss 
function, increased tuning parameters can make the function more 
flexible.

Method
Overall Framework
VGG16 (Simonyan and Zisserman 2015) is a deep learning network mod-
el. VGG16 contains five convolutional modules and three fully connected 
layers. After each convolution module is a max-pooling layer, the number 
of convolution channels starts from 64 in the first layer, and doubles after 
each max-pooling layer until 512. Each convolution module contains 
multiple convolutional layers with 3 × 3 convolution kernels.

Based on VGG16, we design a new convolutional neural network for 
image classification. The network adopts a multi-channel structure and 
adds an attention mechanism module to two of the channels, and then 
uses fusion method to fuse the features extracted by the multichannel. 
Its original structure is shown in Figure 1.

Firstly, feature extraction is performed on the image using multi-
channel structure. The first channel can make better use of the original 
features, the second channel can be more sensitive to image changes, 
and the third channel is the original VGG16 network, which can extract 
image details.

Secondly, the attention module is added after the first and third 
maximum pooling layers of VGG16, which solves the problem of 
information loss due to network depth when extracting image features. 
Attention module includes channel attention module and spatial at-
tention module. The former obtains the global features of the image, 
which enhances the effective information in the channel and suppresses 
the invalid information. The latter is used to extract the features of the 
area of interest; that is, the local key features in the task body related 
to the classification of remote sensing images, so as to improve the 
recognition accuracy of the model for similar scenes. Adding an atten-
tion module after the first maximum pooling layer allows the underly-
ing feature mapping to contain more image information. An attention 
module is added after the third maximum pooling layer to enhance the 
ability to represent intermediate features.

Finally, if stitching fusion is used directly to fuse features extracted 
from multiple channels, the result must be highly redundant. Therefore, 
we halve the number of convolution cores in the model and use the 

Figure 1. The overall framework of multi-channel attention fusion network (MCAFNet).
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fusion module to enhance the features extracted from the three channels 
by weighting them, then fuse them. After the fusion module, the feature 
fusion results are sent to the classifier to get the classification results.

Attention Module
Channel Attention Module
Channel attention is to focus on the importance of each feature channel 
of the input image, and then enhance or suppress different channels 
for different tasks. As shown in Figure 2, for an input feature F of size 
H×W×C, the global average pooling and global maximum pooling are 
first used for the feature map F to aggregate the global information of 
the feature map and obtain the channel descriptions of two 1×1×C, the 
average pooling feature Fc

avg and the maximum pooling feature  . Then 
the features Fc

avg and Fc
max output from the two channels are add fused 

to obtain more discriminative features. Then a multi-layer perceptron 
with hidden layers is added to obtain the weighted channels of each 
feature for learning the final channel attention feature map Mc(F). 
To reduce the parameter overhead, the size of the hidden layer is set 
to C/r, where r is the compression ratio. Finally, the input feature 
map and the channel weights are multiplied to enhance the effective 
features. The weight coefficients are obtained by the sigmoid activa-
tion function. The equation of Channel Attention Module (CAM) is as 
follows.

  
(1)

where σ is the sigmoid activation function, W0∈R(C/r)×C,  W1∈RC ×(C/r), W0 
and W1 are the weights of the Multi Layer Perception (MLP), and F is 
the input feature map.

Spatial Attention Module
The spatial attention module finds the most important part of the 
network for processing, which can effectively improve the feature 
representation. As shown in Figure 3, to focus on semantically similar 
features in the spatial neighborhood, for the input features of size 
H×W×C, first, local average pooling and local maximum pooling are 
applied along the respective channels to obtain the feature maps FLAP 

and FLMP, respectively, and obtain the neighborhood information of  . 
Then, the channel information of the feature graph is aggregated us-
ing global maximum pooling and global average pooling on the two 
channels, respectively. Then they are concatenated separately to obtain 
a better feature representation capability. To mitigate the feature loss 
due to multiple pooling operations, the features are further learned 
using 3×3 convolution, respectively. Then the respective weights are 
multiplied with FLAP and FLMP, respectively, to obtain feature maps F'LAP 
and F'LMP, enhance the effective features. Then concatenation is per-
formed to obtain a better feature representation. Finally, upsampling is 
performed by deconvolution to obtain a spatially attentive feature map 
Ms(F) with the same scale as the original input image or feature map. 
The equation of Spatial Attention Module (SAM) is as follows:

 F'LMP = f 3×3[Maxpooling(FLMP); Avgpooling(FLMP)] (2)

 F'LAP = f 3×3[Maxpooling(FLAP); Avgpooling(FLAP)] (3)

 Ms(F) = σ(fd
1×1[F'LMP; F'LAP]) (4)

where σ is the sigmoid activation function, f 3×3 represents 3×3 convolu-
tion, fd

1×1 represents 1×1 deconvolution, and F is the input feature map.

Combine Channel Attention Module and Spatial Attention Module
Given a feature map, attention complementation is performed in paral-
lel using the attention module CAM and SAM calculations. The former 
determines the importance of each feature channel, and the latter finds 
the key features in the network. As shown in Figure 4, the overall 
computation process can be summarized as follows:

 F'= σ(SAM(CAM(F)7F)7F)7F (5)

where σ is the sigmoid activation function, SAM represents local spa-
tial attention, and CAM represents the global channel attention.

Loss Function
In order to automatically adjust the weight of the ground object loss, 
this paper improves an adaptive weight algorithm based on the cross-
entropy loss function to improve the loss evaluation ability of the 

Figure 2. Channel Attention Module.

Figure 3. Spatial Attention Module.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING March 2023 185



model. Cross-entropy was mainly used to evaluate the difference infor-
mation between two probability distributions, which can be understood 
as the difference between the information entropy during fitting and the 
information entropy of the sample annotation, which is expressed as:

  
(6)

  

(7)

where
 z = wx + b (8)

where Loss represents the loss value, x represents the sample, y rep-
resents the actual value, a represents the output value, and n repre-
sents the number of samples. Then the parameter σ(z) – y indicates 
the distance between the output value and the actual expected value. 
When the error is larger, the corresponding gradient is larger, and the 
parameters w and b are adjusted faster, which can speed up the train-
ing speed. High-resolution images are characterized by intra-class 
diversity and inter-class similarity. To solve this problem, Paszke et al. 
(2016) designed an adaptive weight calculation method. In this paper, 
the method is improved by adding adjustment parameters to make the 
adaptive weight function more flexible. The improved class weight 
function is defined as:

  
(9)

where wclass represents the weight of different categories, Pclass rep-
resents the proportion of samples of this class, and α and β are two 
hyperparameters used to adjust the shape and range of the weight func-
tion, During the experiment, α is set to 1.1 and β is set to 0.35.

Experimental Analysis and Discussion
Data Sets
This paper selects three data sets (UC Merced Land-Use Dataset (UCM) 
(Yang and Newsam 2012), Aerial Image Dataset (AID) (Xia et al. 2017), 
and Northwestern Polytechnic University Dataset (NWPU) (Cheng et al. 
2017)) to train MCAFNet and conduct comparative image classification 
experiments in order to validate the performance of the algorithm.

The UCM data set contains a total of 2100 scene images of 21 cat-
egories, 100 images per category, the size of the images is 256 × 256 
pixels, and the spatial resolution is 0.3 m. The AID data set contains 
a total of 10 000 scene images of 30 categories, 220–420 images per 
category, the size of the images is 600 × 600 pixels, and the spatial 
resolution is 0.5–8 m. The NWPU data set contains 31,500 images 
divided into 45 categories, with each category contains 700 scene im-
ages with an image size of 256 × 256 pixels. Image resolution between 
0.2 m and 30 m.

Experimental Setup
The experiments were carried out under the Ubuntu Pytorch frame-
work, running on an NVIDIA 2080Ti with 11 GB of video memory. 
Adam was used as the optimizer in the training process. All models 

were trained for 100 epochs, the batch size was set to 64, and the initial 
learning rate was 0.001. To improve the reliability of classification 
results, all experiments were repeated 10 times and three data sets were 
randomly divided. For UCM data set, 50% and 80% training samples 
are used in the experiment. For the AID data set, 20% and 50% training 
samples were used in the experiment. For the NWPU data set, 10% and 
20% training samples are used in the experiment.

Evaluation Metrics
(1) Overall Accuracy (OA): Refers to the ratio between the number of 

correctly classified samples and the number of all samples.
(2) Standard Deviation (STD): It is a reflection of the difference between 

all values and their mean values. The performance of the model var-
ies with each training session. Therefore, the reliability of the model 
requires multiple experiments to calculate the standard deviation.

(3) Confusion Matrix (CM): Confusion matrix is a two-dimensional table, 
which is used to analyze the classification error and confusion degree 
between classes and visualize the performance of the algorithm.

Compared to State-of-the-Art Methods
In this section, in order to evaluate the performance of our method, 
we compared it with some advanced methods in recent years on three 
remote sensing scene image data sets, namely UCM, AID, and NWPU, as 
shown in Table 1 to Table 3.

Table 1 shows the classification performance comparison between 
our method and advanced method on UCM data set. The UCM data set 
was divided into 80% training ratios. After analyzing the existing ad-
vanced methods, it is found that the classification accuracy will reach 
98% in 2018 and 99% in 2022, and the classification accuracy will 
gradually become saturated. Compared with 99%, our method achieves 
a higher accuracy of 99.14%, which is 0.14% higher. This fully shows 
that our method can distinguish the importance of different features, 
improve the performance of features, and thus improve the classifica-
tion accuracy.

Table 1. Overall accuracies (%) of different methods with 80% training 
ratio in the UCM data set.
Methods Training Ratio (80%)
VGG-VD-16 (Xia et al. 2017) 95.21
MCNN (Liu et al. 2017) 96.66
Two-Stream (Yu and Liu 2018) 98.02 ±1.03
MDFR (Zhang et al. 2019) 98.02 ± 0.51
conv5-MSP5-FV (Zheng et al. 2019) 98.60
Attention GANs (Yu et al. 2020) 97.69 ± 0.69
SAFF (Cao et al. 2021) 97.02 ± 0.78
Attention CNN + H-GCN (Gao et al. 2021) 99.00 ± 0.43
Ours 99.14 ± 0.27

Table 2 shows the classification performance comparison between 
our method and advanced method on AID data set. The AID data set 
was divided into 20% and 50% training ratios. It can be seen from 
the table that our method achieves 93.72% and 96.06% classification 
accuracy, respectively. Compared with the advanced methods in recent 
years. Our method has obtained significant classification results, and 
the classification accuracy has been improved by 0.66% and 0.28%, 
respectively, higher than previous advanced methods.

Figure 4. Combine Channel Attention Module (CAM) and Spatial Attention Module (SAM).
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Table 3 shows the classification performance comparison between 
our method and advanced method on NWPU data set. NWPU data set is 
the data set with the largest data volume and category number in our 
experiment. The AID data set was divided into 10% and 20% train-
ing ratios. It can be seen from the table that our method achieves the 
classification accuracy of 91.97% and 93.86%, respectively. At the 
training rate of 10%, the overall accuracy is 1.22% and 0.58% higher 
than the previous advanced methods of Combined CNN and GCN and 
Attention CNN + H – GCN, respectively. At the training rate of 20%, the 
overall accuracy is 0.99% and 0.24% higher than that of the previous 
advanced methods of Combined CNN and GCN and Attention CNN + H 
– GCN, respectively.

Reports of Confusion Matrix
In order to understand the effect of our method, the confusion matrix 
is drawn to discuss the advantages and disadvantages of the proposed 
method. In order to show the recognition effect in more detail, the con-
fusion matrix of recognition results on the three data sets of UCM, AID, 
and NWPU is drawn, as shown in Figure 5–Figure 9. In this confusion 
matrix, the values on the diagonal are all correct prediction results, and 
the remaining values are all wrong prediction results caused by model 
misjudgment. Each row of the matrix represents the real category, while 
each column of the matrix represents the prediction label of the model.

Figure 5 shows the confusion matrix with a training ratio of 80% 
on the UCM data set. It can be seen from the figure that most of the 21 
scene categories have achieved 100% classification accuracy, and sev-
eral categories with poor effects have also achieved more than 90% ac-
curacy. Medium dense residential areas are wrongly classified as dense 
residential areas. This is because the shape and texture features of the 
two categories are too similar. This makes it difficult to distinguish 
models effectively, but our model is still valid. For example, highways, 
intersections, overpasses, and runways are roads. We succeeded in 
classifying them correctly.

Figure 5. Confusion matrix of our method on UCM data set under the training ratio of 80%.

Table 2. Overall accuracies (%) of different methods with 20% and 
50% training ratio in the AID data set.

Methods
Training 
Ratio (20%)

Training 
Ratio (50%)

VGG-VD-16 (Xia et al. 2017) 86.59 ± 0.29 89.64 ± 0.36
MCNN (Liu et al. 2017) — 91.80 ± 0.22
Two-Stream (Yu and Liu 2018) — 94.65 ± 0.33
MDFR (Zhang et al. 2019) 90.62 ± 0.27 93.37 ± 0.29
conv5-MSP5-FV (Zheng et al. 2019) — 93.90
Attention GANs (Yu et al. 2020) 92.30 ± 0.24 94.93 ±0.21
SAFF (Cao et al. 2021) 90.25 ± 0.29 93.83 ± 0.28
Attention CNN + H-GCN (Gao et al. 2021) 93.06 ± 0.26 95.78 ± 0.37
Ours 93.72 ± 0.28 96.06 ± 0.29

Table 3. Overall accuracies (%) of different methods with 10% and 
20% training ratio in the NWPU data set.

Methods
Training 
Ratio (10%)

Training 
Ratio (20%)

VGG-VD-16 (Xia et al. 2017) 87.15 ± 0.45 90.36 ± 0.18
Two-Stream (Yu and Liu 2018) — 83.16 ± 0.18
MDFR (Zhang et al. 2019) 83.37 ± 0.26 86.89 ± 0.17
Attention GANs (Yu et al. 2020) 86.11 ± 0.22 89.44 ± 0.18
SCCov (He et al. 2020) 89.30 ± 0.35 92.10 ± 0.25
SAFF (Cao et al. 2021) 84.38 ± 0.19 87.86 ± 0.14
Combined CNN and GCN (Liang et al. 2021) 90.75 ± 0.21 92.87 ± 0.13
Attention CNN + H-GCN (Gao et al. 2021) 91.39 ± 0.19 93.62 ± 0.28
Ours 91.97 ± 0.24 93.86 ± 0.17
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Figure 6. Confusion matrix of our method on AID data set under the training ratio of 20%.

Figure 7. Confusion matrix of our method on AID data set under the training ratio of 50%.
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Figure 8. Confusion matrix of our method on NWPU data set under the training ratio of 10%.

Figure 9. Confusion matrix of our method on NWPU data set under the training ratio of 20%.
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Figure 6 and Figure 7 show the confusion matrix when the training 
rate of AID data set is 20% and 50%, respectively. In the confusion 
matrix with a training rate of 20%, the worst effect is Pond, which has 
only achieved 65% accuracy, 32% of it is incorrectly identified as port, 
because the two categories are highly similar in some areas. In the 
confusion matrix with a training rate of 50%, only the classification 
accuracy of three categories is lower than 90%, and good results have 
been achieved.

The confusion matrix of NWPU data set is shown in Figure 8 and 
Figure 9 shows that when the training rate is 10% and 20%, the clas-
sification accuracy of 35 and 40 categories is higher than 90%. Under 
the two different training rates, the accuracy rate of medium dense 
residential areas is low, and the training accuracy is kept at 85%, which 
shows that with the increase of training data, the accuracy rate has not 
improved, and the model has not learned from the data. This is due to 
the extremely similar architectural style and layout between categories.

Ablation Study
Attention Position Ablation Study
The location of attention modules has an important impact on the 
performance of the network. In this paper, attention modules are added 
after the different maximum pooling layers of VGG16, and the best loca-
tion for adding modules is selected through experiments. VGG16 has 
five maximum pooling layers. The model for adding attention modules 
after the first maximum pooling layer is VGG-AM1, and the model for 
adding attention modules after the second maximum pooling layer is 
VGG-AM2, and so on.

In this paper, five network structures from VGG-AM1 to VGG-
AM5 are used for experiments on three data sets, namely UCM, AID, 
and NWPU. The experimental results are shown in Table 4. VGG-AM1 
achieves the best precision on the UCM data set. On the AID data set, 
VGG-AM2 has the best recognition accuracy; on the NWPU data set, VGG-
AM3 has the best recognition accuracy. CNN extracts the depth of image 
features, but the feature mapping after depth extraction becomes ab-
stract. Adding the attention module in the shallow layer is beneficial to 
feature mapping to obtain better feature representation. The results show 
that the attention module can enhance the features of more interesting 
visual areas in similar scenes, thus improving the recognition accuracy.

Figure 10 shows the accuracy curve of VGG-AM3 on the AID data set 
and the NWPU data set. It can be seen from the figure that the recogni-
tion accuracy is relatively stable. Although the accuracy of VGG-AM3 
is not the highest, after multi-layer feature extraction, the model filters 
the redundant information of the image, and the obtained feature map 
excludes more interference information, indicating that VGG-AM3 has a 
better network structure.

Multi-Channel Fusion Ablation Study
To obtain a more comprehensive feature map, this paper proposes a 
three-channel feature extraction model.

In the experiments on NWPU, VGG-AM1 achieved the best results in 
five classification comparisons, and VGG-AM3 achieved better accuracy 
in five classification comparisons. Therefore, VGG-AM1 and VGG-AM3 
are selected as two channels of feature extraction structure in this pa-
per. The first channel is VGG-AM1; the second channel is VGG-AM3; and 
the third channel is VGG16. There is no attention module in this chan-
nel, and the features obtained are more abstract, which can fully retain 
the texture and detail information of the image. The multi-channel 
mechanism gives consideration to both the deep details of the image 
and the more interesting information in the vision.

This paper proposes two multi-channel feature fusion methods: 
Multichannel1 and Multichannel2. Multichannel1 fuses the features 
of the final three channels through add, and then transfers them to the 
classifier. Multichannel2 splices the features of the final three channels 
through concatenation, and then transfers them to the classifier.

In order to verify the performance of Multichannel1 and 
Multichannel2, the recognition results of the multi-channel network are 
compared with those of the best VGG-AM1 and VGG-AM2. The results 
show that Multichannel2 has the best recognition effect on the three 
data sets, as shown in Table 5.

The recognition accuracy of Multichannel2 on NWPU data set is 
91.83%, which is 4.48% higher than VGG-AM1; The recognition ac-
curacy of Multichannel2 on AID data set is 94.96%, which is 2.31% 
higher than VGG-AM2. Therefore, this paper selects Multichannel 2 as 
the feature fusion method of multi-channel modules.

Figure 11 shows the decline chart of precision and loss function 
of experimental results under AID data set. In Figure 7a, the accuracy 
curve of Multichannel2 tends to be stable at about time period = 70, 
and the loss curve is more stable than VGG-AM1. Although the recogni-
tion accuracy of Multichannel2 and VGG-AM2 is only 0.05% different, 
the value of VGG-AM2 is oscillatory.

Table 4. Experimental results of attention module.

Methods
UCM (%) AID (%) NWPU (%)

80 20 50 10 20
VGG-AM1 91.69 89.37 91.66 85.42 87.35
VGG-AM2 91.61 89.42 92.65 86.16 87.09
VGG-AM3 91.53 88.76 91.25 86.32 87.13
VGG-AM4 91.38 88.63 90.41 84.24 86.69
VGG-AM5 90.48 87.95 90.62 84.19 86.27

Table 5. Experimental results of multi-channel network.

Models
UCM (%) AID (%) NWPU (%)

80 20 20 10 20
VGG-AM1 91.69 89.37 91.66 85.42 87.35
VGG-AM2 91.61 89.42 92.65 86.16 87.09
Multichannel1 97.15 91.68 93.47 89.36 91.34
Multichannel2 98.03 92.18 94.96 90.58 91.83

Figure 10. Accuracy curve of VGG-AM3.
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The experimental results show that the multi-channel feature 
extraction structure has stable performance and better recognition ac-
curacy than the single channel pattern. However, because the network 
structure based on Multichannel2 fusion method is more complex than 
VGG-AM, the iteration speed is reduced in the training process.

Loss Function Ablation Study
Compared with the Multichannel2 using the traditional cross entropy 
loss function, MCAFNet uses the improved loss function and achieves 
better results. The results are shown in Table 6.

Visualization
To better illustrate the impact of the proposed algorithm on remote 
sensing scene classification, and to make the performance of the pro-
posed MCAFNet method more intuitive, we visualize the remote sensing 
images in the data set using the Grad-CAM method, as shown in Figure 
12. It can be seen from the figure that the recognition accuracy of the 
visualization results without the attention module in the main part of 
the recognition task is low, and our method can give good consider-
ation to both the global features and local key features of the image, so 
we get a good visualization effect.

Table 6. Loss function ablation experiment results.

Loss
UCM (%) AID (%) NWPU (%)

80 20 50 10 20
Mean-Squared Error Loss 96.56 91.68 94.37 87.25 90.32
Mean-Absolute Error Loss 97.35 91.14 93.71 89.46 90.61
Cross Entropy Loss 98.03 92.18 94.96 90.58 91.83
MCAFNet 99.14 93.72 96.06 91.97 93.86
MCAFNet = multi-channel attention fusion network.

Figure 11. Recognition accuracy of three network structures.

Figure 12. Grad-CAM visualization results of some remote sensing image samples.
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Conclusion
For the intra-class diversity and inter-class similarity problems in urban 
remote sensing scenes, a CNN-based MCAFNet is proposed in this paper. 
The network is based on VGG16, and the attention module is added after 
different pooling layers to obtain global and local key features of im-
ages, and a multi-channel feature extraction and fusion structure is used 
to obtain effective image features. Meanwhile, the recognition difficul-
ties caused by category imbalance are mitigated by adaptive loss func-
tions. The experimental results show that our method can effectively 
recognize complex and similar scenes in urban remote sensing images.

Acknowledgments
We acknowledge the support from Jiangsu Province Industry-
Academia-Research Fund (Grant: BY2022459). The remote sensing 
image classification data sets used in this study can be obtained from 
the following websites: https://hyper.ai/datasets/5431, https://hyper.ai/
datasets/5446, https://hyper.ai/datasets/5449.

References
Cao, R., L. Fang, T. Lu and N. He. 2021. Self-attention-based deep feature 

fusion for remote sensing scene classification. Journal of IEEE 
Geoscience and Remote Sensing Letters 18(1):43–47.

Cheng, G., J. Han and X. Lu. 2017. Remote sensing image scene classification: 
Benchmark and state of the art. Journal of Institute of Electrical and 
Electronics Engineers 105(10):1865–1883.

Gao, Y., J. Shi, J. Li and R. Wang. 2021. Remote sensing scene classification 
based on high-order graph convolutional network. Journal of European 
Journal of Remote Sensing 54(1):141–155.

Guan, Z., X. Miao, Y. Mu, Q. Sun, Q. Ye and D. Gao. 2022. Forest fire 
segmentation from aerial imagery data using an improved instance 
segmentation model. Journal of Remote Sensing 14(13):31–59.

He, K., X. Zhang, S. Ren and J. Sun. 2016. Computer vision and pattern 
recognition. Deep residual learning for image recognition. Pages 770–778 
in Proceedings of the 2016 IEEE Conference on Computer Vision and 
Pattern Recognition, held in Las Vegas Nev.: 27–30 June 2016.

He, N., L. Fang, S. Li, J. Plaza and A. Plaza. 2020. Skip-connected 
covariance network for remote sensing scene classification. Journal 
of IEEE Transactions on Neural Networks and Learning Systems 
31(5):1461–1474.

Hu, J., L. Shen and G. Sun. 2018. Computer vision and pattern recognition. 
Squeeze-and-excitation networks. Pages 7132–7141 in Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition, held in 
Salt Lake City, Utah, 18–23 June 2018.

Huang, G., Z. Liu, L. Van Der Maaten and K. Q. Weinberger. 2017. Densely 
connected convolutional networks. Pages 4700–4708 in Proceedings of 
the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 
held in Honolulu, Hawaii, 9–12 November 2017.

Huang, Z., Z. Pan and B. Lei. 2017. Transfer learning with deep convolutional 
neural network for SAR target classification with limited labeled data. 
Journal of Remote Sensing 9(9):17–28.

Jiang, M., L. Xu and D. A. Clausi. 2022. Sea ice–water classification of 
radarsat-2 imagery based on residual neural networks (RESNET) with 
regional pooling. Journal of Remote Sensing 14(13):63–79.

Krizhevsky, A., I. Sutskever and G. E. Hinton. 2012. Imagenet classification 
with deep convolutional neural networks. Journal of Advances in Neural 
Information Processing Systems 25(1):84–90.

Li, M., L. Lei, Y. Tang, Y. Sun and G. Kuang. 2021. An attention-guided 
multilayer feature aggregation network for remote sensing image scene 
classification. Journal of Remote Sensing 13(16):31–47.

Liang, J., Y. Deng and D. Zeng. 2021. A deep neural network combined CNN 
and GCN for remote sensing scene classification. Journal of Selected 
Topics in Applied Earth Observations Remote Sensing 13(2):4325–4338.

Liu, Y., Y. Liu and L. Ding. 2017. Scene classification based on two-stage deep 
feature fusion. Journal of IEEE Geoscience and Remote Sensing Letters 
15(2):183–186.

Long, J., E. Shelhamer and T. Darrell. 2015. Fully convolutional networks for 
semantic segmentation. Journal of IEEE Transactions on Pattern Analysis 
and Machine Intelligence 39(4):640–651.

Ma, W., J. Zhao, H. Zhu, J. Shen, L. Jiao, Y. Wu and B. Hou. 2020. A 
spatial-channel collaborative attention network for enhancement of 
multiresolution classification. Journal of Remote Sensing 13(1):19–36.

Paszke, A., A. Chaurasia, S. Kim and E. Culurciello. 2016. International 
conference on learning representations. Enet: A deep neural network 
architecture for real-time semantic segmentation. Pages 1–10 in 
Proceedings of the International Conference on Learning Representations, 
held in Toulon Var, France, 24–26 April 2016.

Penatti, O. A., K. Nogueira and J. A. Dos Santos. 2015. Computer vision and 
pattern recognition workshops. Do deep features generalize from everyday 
objects to remote sensing and aerial scenes domains. Pages 44–51 in 
Proceedings of the 2015 IEEE Conference on Computer Vision and 
Pattern Recognition Workshops, held in Boston, Mass., 7–12 June 2016.

Ren, S., K. He, R. Girshick and J. Sun. 2015. Faster R-CNN: Towards real-time 
object detection with region proposal networks. Journal of Advances in 
Neural Information Processing Systems 28(1):91–99.

Sandler, M., A. Howard, M. Zhu, A. Zhmoginov and L. Chen. 2018. Computer vision 
and pattern recognition. Mobilenetv2: Inverted residuals and linear bottlenecks. 
In 4510–4520 in Proceedings of the 2018 IEEE Conference on Computer 
Vision and Pattern Recognition, Salt Lake City, Utah, 18–22 June 2018.

Shi, C., T. Wang and L. Wang. 2020. Branch feature fusion convolution network 
for remote sensing scene classification. Journal of Selected Topics in 
Applied Earth Observations and Remote Sensing 13(4):5194–5210.

Shi, C., X. Zhao and L. Wang. 2021. A multi-branch feature fusion strategy 
based on an attention mechanism for remote sensing image scene 
classification. Journal of Remote Sensing 13(10):19–34.

Simonyan, K. and A. Zisserman. 2015. Very deep convolutional networks for 
large-scale image recognition. Journal of IEEE Transactions on Pattern 
Analysis and Machine Intelligence 17(6):379–490.

Sun, J., J. Zhang, X. Gao, M. Wang, D. Ou, X. Wu and D. Zhang. 2022. 
Fusing spatial attention with spectral-channel attention mechanism for 
hyperspectral image classification via encoder–decoder networks. Journal 
of Remote Sensing 14(9):19–31.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. 
Vanhoucke and A. Rabinovich. 2015. Conference on computer vision 
and pattern recognition. Going deeper with convolutions. Pages 1–9 in 
Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, held in Boston, Mass., 7–12 June 2015.

Wang, Q., B. Wu, P. Zhu, P. Li, W. Zuo and Q. Hu. 2020. Conference 
on computer vision pattern recognition. Eca-net: Efficient channel 
attention for deep convolutional neural networks. Pages 11531–11539 
in Proceedings of the IEEE Conference on Computer Vision Pattern 
Recognition, held in Seattle, Wash., 16–21 June 2020.

Wang, Q., S. Liu, J. Chanussot and X. Li. 2018. Scene classification with 
recurrent attention of VHR remote sensing images. IEEE Transactions on 
Geoscience and Remote Sensing 57(2):1155–1167.

Woo, S., J. Park, J.-Y. Lee and I. S. Kweon. 2018. CBAM: Convolutional block 
attention module. Journal of European Computer Vision:3–19.

Xia, G.-S., J. Hu, F. Hu, B. Shi, X. Bai, Y. Zhong, L. Zhang and X. Lu. 2017. 
Aid: A benchmark data set for performance evaluation of aerial scene 
classification. Journal of IEEE Geoscience and Remote Sensing Letters 
55(7):3965–3981.

Yang, Y. and S. Newsam. 2012. Geographic image retrieval using local 
invariant features. IEEE Transactions on Geoscience and Remote Sensing, 
51(2):818–832.

Yu, Y. and F. Liu. 2018. A two-stream deep fusion framework for high-
resolution aerial scene classification. Journal of Computational 
Intelligence and Neuroscience. https://doi.org/10.1155/2018/8639367.

Yu, Y., X. Li and F. Liu. 2020. Attention GANS: Unsupervised deep feature 
learning for aerial scene classification. Journal of IEEE Transactions on 
Geoscience and Remote Sensing 58(1):519–531.

Zeng, D., S. Chen, B. Chen and S. Li. 2018. Improving remote sensing scene 
classification by integrating global-context and local-object features. 
Journal of Remote Sensing 10(5):7–21.

Zhang, J., M. Zhang, L. Shi, W. Yan and B. Pan. 2019. A multi-scale approach 
for remote sensing scene classification based on feature maps selection 
and region representation. Journal of Remote Sensing 11(21):2504.

Zheng, X., T. Gong, X. Li and X. Lu. 2021. Generalized scene classification 
from small-scale datasets with multitask learning. Journal of IEEE 
Transactions on Geoscience and Remote Sensing 60(1):1–11.

Zheng, X., Y. Yuan and X. Lu. 2019. A deep scene representation for aerial 
scene classification. Journal of IEEE Transactions on Geoscience and 
Remote Sensing 57(7):4799–4809.

192 March 2023 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



 
 

 

    

 
After more than 15 years of research and writing, the Landsat Legacy 
Project Team published, in collaboration with the American Society 
for Photogrammetry and Remote Sensing (ASPRS), a seminal work on 
the nearly half-century of monitoring the Earth’s lands with Landsat. 
Born of technologies that evolved from the Second World War, 
Landsat not only pioneered global land monitoring but in the process 
drove innovation in digital imaging technologies and encouraged 
development of global imagery archives. Access to this imagery led 
to early breakthroughs in natural resources assessments, particularly 
for agriculture, forestry, and geology. The technical Landsat remote 
sensing revolution was not simple or straightforward. Early conflicts 
between civilian and defense satellite remote sensing users gave 
way to disagreements over whether the Landsat system should 
be a public service or a private enterprise. The failed attempts 
to privatize Landsat nearly led to its demise. Only the combined 
engagement of civilian and defense organizations ultimately saved 
this pioneer satellite land monitoring program. With the emergence 
of 21st century Earth system science research, the full value of the 
Landsat concept and its continuous 45-year global archive has 
been recognized and embraced. Discussion of Landsat’s future 
continues but its heritage will not be forgotten. 

The pioneering satellite system’s vital history is captured in this 
notable volume on Landsat’s Enduring Legacy.  

Landsat Legacy Project Team
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