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ASPRS is happy to announce the dates of its virtual conference. The 2023 ASPRS 
International Technical Symposium will take place. 

The symposium will consist of:
• 15-minute oral presentations
• 5-minute Ignite-style presentations
• Poster Gallery
• Sustaining Member Vendor Spotlights
• ASPRS Society Highlights

Sessions will run each day from 10:00 AM to 6:00 PM Eastern Daylight Time (UTC - 4). All sessions will be recorded and 
made available on-demand to conference registrants. Presenters are eligible to submit full manuscripts for publication in 
the ISPRS Archives.

Interested in Presenting? For more information or to submit an abstract visit https://my.asprs.org/2023Symposium/2023-
Symposium/Call-for-Abstracts.aspx

• Submission deadline is May 1, 2023 
• Presenters will be notified of acceptance by May 8, 2023
• Presenters must be registered for the conference by May 22, 2023 to be included in the conference program

Registration Fees
• ASPRS Member $150 USD
• ASPRS Student Member $ 50 USD
• ASPRS Emeritus Member $ 25 USD
• Non Member   $250 USD

Sponsorship Opportunities
• Vendor Spotlight/Product Demo
• Day Sponsor
• Session Sponsor
• Workshop Sponsor

“We are happy to offer this educational opportunity to the 

geospatial community. Virtual events are an excellent way 

to exchanammunity without the cost and time constraints of 

travel,” said Karen Schuckman, ASPRS Executive Director

2023 ASPRS 
InteRnAtIonAl technIcAl 
SymPoSIum

June 12-16, 2023
vIRtuAl

httPS://my.ASPRS.oRg/2023SymPoSIum/

https://my.asprs.org/2023Symposium/
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INDUSTRYNEWSTo have your press release published in PE&RS, 
contact Rae Kelley, rkelley@asprs.org.

ANNOUNCEMENTS

2023 William T. Pecora Award Nominations Now Being 
Accepted through May 1, 2023—The William T. Pecora 
Award is presented annually to individuals or groups who 
have made outstanding contributions toward understanding 
the Earth by means of remote sensing.  The Department of 
the Interior (DOI) and the National Aeronautics and Space 
Administration (NASA) jointly sponsor the award. 

The award was established in 1974 to honor the memory of 
Dr. William T. Pecora, former Director of the U.S. Geological 
Survey and Under Secretary, Department of the Interior.  
Dr. Pecora was a motivating force behind the establishment 
of a program for civil remote sensing of the Earth from space.  
His early vision and support helped establish what we know 
today as the Landsat satellite program. 

The Award Committee must receive nominations for the 
2023 award by May 1, 2023.  Additional information can be 
found at www.usgs.gov/pecora or on the attached flyer; and 
questions can be directed to the Executive Secretary and 
Committee at pecora@usgs.gov.  

 ¼½¼½ 

Esri, the global leader in geographic information system 
(GIS) and location intelligence, honored select partners for 
their outstanding application of GIS software during the 
Plenary session at the Esri Partner Conference (EPC) held at 
the Palm Springs Convention Center in Palm Springs, CA. 
The award-winning companies are organizations in the Esri 
Partner Network and are recognized for their innovation 
and excellence in helping customers succeed with ArcGIS 
technology.

EPC award categories and winners include the following:

Analytics to Insights Award—Delivering analytics and in-
sights to users through location intelligence: Dewberry and 
StreetLight Data.

ArcGIS Marketplace Award—Outstanding presence on Arc-
GIS Marketplace: VertiGIS North America.

ArcGIS SaaS Adoption Award—Evolving customers and 
solutions to ArcGIS using SaaS: Pandell Technology and 
Pro-West & Associates.

ArcGIS Software Adoption Award—Demonstrating high-
ly-aligned solutions built with ArcGIS software products: 
Arora Engineers and Geo Data AG.

Cloud System Implementation Award—Ensuring customer 
success through comprehensive implementation of the ArcGIS 
system in the cloud: Axim Geospatial and ROK Technologies.

Creative Content Award—Delivering creative content to Arc-
GIS users: Nearmap and Vexcel Imaging.

GIS for Diversity Award—Leveraging GIS in service to di-
versity, equity, inclusion, and belonging: GISetc, a division of 
Critical Think and Timmons Group.

GIS for Good Award—Compelling use of Esri technology to 
make an impact on current issues around the world: Dymap-
tic and Nelson Intelligence Solutions.

Innovation Award—Use of ArcGIS system in an innovative or 
disruptive way: Houseal Lavigne and vGIS

Partner-to-Partner Collaboration Award—Innovative tech-
nical or business collaboration between partners: Datastory, 
GeoMarvel, and SymGEO.

Sustainable Development Award—Helping customers meet 
global sustainable development goals by understanding their 
needs, mapping their work, measuring impact, analyzing 
performance, and engaging stakeholders: Blue Raster and 
Codex Remote.

Top Co-Sell Partner Award—Positively influences the 
adoption of Esri technology through solution sales, software 
implementation, and/or consulting engagements: Geographic 
Technologies and SSP Innovations.

Top Solution Partner Award—Drives the use of Esri tech-
nology through the sales of commercial solutions: Motorola 
Solutions and VertiGIS GmbH.

Top Startup Partner Award—Substantial opportunities for 
growth with Esri: ICEYE.

The Esri Partner Conference was held March 4–6, 2023. 
During this event, organizations in the Esri partner commu-
nity collaborate and network, hear about Esri’s vision and 
new opportunities, build business relationships, learn from 
Esri experts, exchange ideas, discover the latest technology 
releases, and make plans for growing their businesses.

To learn more about the Esri Partner Network, visit go.esri.
com/EsriPartnerNetwork.

 ¼½¼½

Woolpert was a huge winner at the annual Geo Week 
conference in Denver, taking home multiple top awards. Geo 
Week combines the International Lidar Mapping Forum, 
SPAR 3D Expo & Conference, and AEC Next conferences to 
provide the geospatial industry’s keystone event.

Literally chief among those honored was Woolpert Vice Pres-
ident and Chief Scientist Qassim Abdullah, who received the 
Lidar Leader Outstanding Personal Achievement Award. In 
addition to helping write standards upon which the indus-
try is based, Abdullah serves as an advisor for agencies like 
NOAA and the Transportation Research Board, teaches 

mailto:rkelley@asprs.org
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INDUSTRYNEWS
graduate students at Penn State University and the Univer-
sity of Maryland Baltimore County, and writes a monthly 
Mapping Matters Column for the PE&RS. Through these 
and countless other efforts, Abdullah continues to advance 
the lidar industry. He has been an immensely valued leader 
at Woolpert for more than 10 years.

Woolpert also received the Lidar Leader Outstanding Inno-
vation in Lidar Award. The award was for the firm’s Bathy-
metric Unmanned Littoral LiDar for Operational GEOINT 
technologies and sensor, also known as BULLDOG. Woolpert 
was granted a U.S. patent for its “Airborne Topo-Bathy Li-
dar System and Methods Thereof,” and a lidar sensor system 
was developed by a multidisciplinary research and develop-
ment team incorporating these technologies. These technolo-
gies enable the collection of high-resolution topographic and 
bathymetric data at a higher altitude, resulting in a broader 
swath than previously developed lidar systems. The Joint 
Airborne Lidar Bathymetry Technical Center of Expertise 
(JALBTCX) contracted with Woolpert to develop BULLDOG.

“Commercially available airborne lidar bathymetry sys-
tems currently operate at low altitudes, which are far below 
the altitudes of topographic lidar systems,” Woolpert Vice 
President Nathan Hopper said. “Increasing the operational 
altitude of airborne lidar bathymetry systems to 10,000 feet 
presented several challenges that required novel approaches. 
This patent covers the proprietary technology developed to 
overcome the many challenges associated with high-altitude 
topography and bathymetry.”

Hopper, Woolpert Senior Vice President and Geospatial 
Leader Joseph Seppi, Woolpert Vice President Mark Smits, 
and Chris Macon, a physical scientist for the U.S. Army 
Corps of Engineers, were instrumental to this technology 
and were on hand to accept the award. Collaboration with 
JALBTCX was key to this groundbreaking technology.

Woolpert also was honored with the MAPPS Membership 
Choice Award for a project that involved mission-critical 
data delivery for geohazard defense in Barry Arm, Alaska. 
The award recognized the work of eTrac, a Woolpert Compa-
ny, and its immediate response to emergency request from 
U. S. Geological Survey and the Alaska Division of Geologi-
cal and Geophysical Surveys.

The team acquired and expedited the delivery of bathymetric 
survey data to support accurate modeling of the seafloor and 
the region’s steep continental slope, which was at risk for 
tsunami-generating submarine landslides that could lead to 
catastrophic loss of life and property. Woolpert Senior Vice 
President Jeff Lovin accepted the award on behalf of Woolp-
ert Market Director and Certified Hydrographer Dave Neff.

Finally, Woolpert Vice President and Survey Discipline 
Leader David Kuxhausen received the ASPRS Outstand-
ing Service Award. Kuxhausen’s experience in photo-
grammetric and geodetic surveys, UAS data collection and 
analysis, and mobile lidar applications is unparalleled. He 
has been an outstanding leader and mentor at Woolpert for 
24 years.

 ¼½¼½

Request for Public Comment on a Draft Standard 
Ocean Mapping Protocol—The National Ocean Mapping, 
Exploration, and Characterization (NOMEC) Council and 
the Interagency Working Group on Ocean and Coastal Map-
ping (IWG-OCM) request public comment from all interested 
parties on the IWG-OCM’s draft Standard Ocean Mapping 
Protocol (SOMP). The draft SOMP was developed in accor-
dance with Objective 2.1 of the National Strategy for Ocean 
Mapping, Exploring, and Characterizing the United States 
Exclusive Economic Zone (National Strategy). Objective 
2.1 directs the IWG-OCM to establish a SOMP to encour-
age consistency in data acquisition, stewardship and data 
management across a subset of ocean sensing capabilities for 
seafloor mapping, including bathymetry (acoustic and air-
borne), seabed backscatter, water column backscatter, side 
scan sonar imagery, sub-bottom profiling, and magnetometer 
data readings.

Comments must be received via email by 5:00 PM (ET) on 
June 2, 2023.

https://www.federalregister.gov/documents/2023/02/24/2023- 
03795/request-for-public-comment-on-a-draft-standard-
ocean-mapping-protocol.

CALENDAR

• 5 May,  ASPRS GeoByte — SeaSketch 2.0: A New, Free and Open Source software Service for Map-based Sur-
veys and Collaborative Geodesign. For more information, visit https://www.asprs.org/geobytes.html.

• 12-16 June,  ASPRS 2023 International Technical Symposium. For more information, visit https://my.asprs.
org/2023Symposium/.

• 16-19 October, GIS-Pro 2023, Columbus, Ohio. For more information, visit www.urisa.org/gis-pro.
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211 A GPU-Accelerated PCG Method for the Block Adjustment of Large-Scale High-
Resolution Optical Satellite Imagery Without GCPs
Qing Fu, Xiaohua Tong, Shijie Liu, Zhen Ye, Yanmin Jin, Hanyu Wang, and Zhonghua Hong

The precise geo-positioning of high-resolution satellite imagery (HRSI) without ground control points (GCPs) is an 
important and fundamental step in global mapping, three-dimensional modeling. In this article, to improve the 
efficiency of large-scale bundle adjustment (BA), we propose a combined Preconditioned Conjugate Gradient (PCG) 
and Graphic Processing Unit (GPU) parallel computing approach for the BA of large-scale HRSI without GCPs. 

221 Identification of Drought Events in Major Basins of Africa from GRACE  Total Water 
Storage and Modeled Products
Ayman M. Elameen, Shuanggen Jin, and Daniel Olago

Terrestrial water storage (TWS) plays a vital role in climatological and hydrological processes. Most of the 
developed drought indices from the Gravity Recovery and Climate Experiment (GRACE) over Africa neglected 
the influencing roles of individual water storage components in calculating the drought index and thus may 
either underestimate or overestimate drought characteristics. In this article, we proposed a Weighted Water 
Storage Deficit Index for drought assessment over the major river basins in Africa (i.e., Nile, Congo, Niger, 
Zambezi, and Orange) with accounting for the contribution of each TWS component on the drought signal. 

233 Lightweight Parallel Octave Convolutional Neural Network for Hyperspectral 
Image Classification
Dan Li, Hanjie Wu, Yujian Wang, Xiaojun Li, Fanqiang Kong, and Qiang Wang

Although most deep learning-based methods have achieved excellent performance for hyperspectral image 
(HSI) classification, they are often limited by complex networks and require massive training samples in practical 
applications. Therefore, designing an efficient, lightweight model to obtain better classification results under 
small samples situations remains a challenging task. To alleviate this problem, a novel, lightweight parallel 
octave convolutional neural network (LPOCNN) for HSI classification is proposed in this article. 

245 Model-Driven Precise Degradation Analysis Method of Highway Marking Using 
Mobile Laser Scanning Point Clouds
Ruifeng Ma, Xuming Ge, Qing Zhu, Xin Jia, Huiwei Jiang, Min Chen, and Tao Liu

Highway markings (HMs) are representative elements of inventory digitalization in highway scenes. The 
accurate position, semantics, and maintenance information of HMs provide significant support for the 
intelligent management of highways. This article presents a robust and efficient approach for extracting, 
reconstructing, and degrading analyzing HMs in complex highway scenes. 
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As early as the 1930s, researchers noticed that odd, milky-white patches of 
water sporadically discolor the generally bluer and shallow waters of the 
Bahama Banks. Sampling the discolored water patches made clear that these 
whiting events were caused by an abundance of fine-grained calcium carbonate 
particles suspended in the water.

However, why surges of calcium carbonate end up suspended in the water 
at particular times has never been clear. Some experts have argued that it is 
mainly a mechanical process, with currents dredging up calcium carbonate sed-
iments. Others have proposed that phytoplankton blooms and other biological or 
chemical processes might be key to triggering whiting events.

“But in actuality, there is no scientific consensus on what cause them,” ex-
plained Chuanmin Hu, an oceanographer at the University of South Florida.

The Operational Land Imager (OLI) on Landsat 8 captured this natural-color 
image of a whiting event off the west coast of Great Bahama Bank on April 4, 
2015. The bright spots—whitings—are surrounded by shallow water. Whiting 
events generally persist for a few days to three months; the event shown here 
lasted for about two months before fading away.

In a recent attempt to better understand what causes whiting events, a team of 
University of South Florida researchers, led by Hu, developed a machine learning 
model that analyzed thousands of satellite images of the Bahama Banks collect-
ed by NASA’s Aqua satellite between 2003-2020. In doing so, the research team 
assembled the longest and most detailed monthly, seasonal, and annual records 
of Bahama Bank whiting events ever created, according to Hu. The results were 
recently published in Remote Sensing of Environment.

The researchers reported stark seasonal patterns in the timing of whiting 
events, with significantly more of them happening in the spring and winter. They 
found large variations in the size of individual whiting patches, from 0.1 to 226 
square kilometers, with the average size being 2.4 square kilometers for the 
Great Bahama Bank, roughly the size of 450 American football fields.

Most striking, the team observed what they termed a “mysterious” increase in 
the total area affected by whiting events, which rose from an average of about 
25 square kilometers in 2003 to as much as 300-350 square kilometers in 2014-
2015. After 2015, the total area affected began to decline gradually, returning to 
about 25 square kilometers by 2020. The cover image shows an event during the 
peak of whiting activity in January 2015.

“I wish I could tell you why we saw that peak in activity, but we’re not there 
yet,” said Hu. “We do see some interesting relationships between environmen-
tal conditions, such as the pH, the salinity of water, and the behavior of winds 
and currents, but we can’t yet say what exact mechanical, biological, or chemi-
cal processes were responsible for that peak in activity. Ultimately, we need to 
do more field experiments and pair that with remote sensing research like this 
to better understand the formation processes.”

For more information, visit https://landsat.visibleearth.nasa.gov/view.
php?id=150866.

NASA Earth Observatory image by Joshua Stevens, using Landsat data from the 
U.S. Geological Survey. Story by Adam Voiland.

http://www.asprs.org
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Introduction

The Infrastructure Master Plan (IMP) of the Operations Support Group, 
Kuwait Oil Company (KOC) is responsible for developing a Master 
Plan to manage the oil field’s surface footprint. IMP produces and 
maintains the data used for planning, operations and Health, Safety & 
Environment (HSE) activities. IMP primarily uses the data from land 
survey to create a basemap. However, areas that are hazardous and in-
accessible to surveyors create data voids. IMP supplements the missing 
details with data compiled using photogrammetry techniques. IMP uti-
lizes DATEM Summit Evolution with ArcGIS and ArcGIS Pro for stereo 
visualization and photogrammetry data compilation.

Mapping Approach
Aerial data acquisition for photogrammetry data compilation 
was performed using Leica RCD 30 Digital Imagery Sensor 
mounted on a Rockwell International 690A aircraft. The 
details of Aerial acquisition of the project were published in 
Photogrammetric Engineering & Remote Sensing, Vol. 87, 
No. 5, May 2021, pp. 313-317, DOI: 10.14358/PERS.87.5.313.

Mapping KOC assets involves coincident activities such 
as land survey and photogrammetry data compilation which 
were carefully planned so there were not duplication of effort 
or areas creating data voids. KOC fully understands that the 
utilities within inaccessible areas cannot be mapped by land 
surveyors. For instance, the extents of oil lakes which were 
created due to oil spills from the invasion of Iraq, the vital 
KOC assets within oil lake boundaries, etc., the access to 
which could pose life threatening risks to land surveyors.

Challenges during Photogrammetry  
Data Compilation
The industry experts would agree that photogrammetry data 
compilation, though sounds easy, is quite a tedious task influ-
enced by various external factors. The experience of IMP was 
no exception. Some of the challenges faced during the project 
life cycle and mitigation steps were:
1. Manpower mobilization- Kuwait has a small 

Photogrammetry industry in comparison to other third-
world countries where there are many more photogram-
metry production suppliers. Identifying experienced 
photogrammetry data compilers within the State of 
Kuwait posed to be a major challenge. The project could 
not be outsourced due to data sensitivity. In order to 
complete the task, manpower with experience in similar 
projects from the Middle East region were selected. With 
the onset of the COVID 19 pandemic, the selected man-
power could not be mobilized on time due to the closure 
of international borders. In order to mitigate the risk of 
delay, locally available manpower was trained and used 
for data compilation. When International borders were 
open for foreigners to enter Kuwait, specialized manpower 
was mobilized 

2. Changing the order of Survey- The project was concep-
tualized with photogrammetry data compilation as the 
first step, followed by land survey to update the attribute 
information. Since the photogrammetry data compila-
tion schedule was pushed ahead, due to non-availability 
of manpower and other resources, the priority of areas of 
land survey had to be changed.

3. Updating Attribute information- Photogrammetrically 
compiled data does not have all the attribute information 
which are otherwise collected by field surveyors. Updating 
missing and/or incorrect attribute information to the com-
piled data was a challenge as some of the infrastructure 
had changed or were removed over time.

4. Connecting Above ground and Underground features- 
KOC’s infrastructure such as pipelines, instrumentation 
cables, electric lines, etc., are both above and under-
ground. Data compilation is possible for features vis-
ible and identifiable on stereo aerial images. However, 
underground assets can only be collected by field survey 
techniques. Working with data continuity from two 
sources is often a challenge. In order to overcome this, 
surveyors are provided with maps of areas where photo-
grammetry data compilation was completed. Changes to 
the above ground assets and connectivity of underground 
assets were updated.

5. Data currency- Aerial Images used for data compilation 
dates back to 2019, meaning the changes to the infra-
structure post aerial acquisition date are not reflected 
in the images, making it difficult for surveyors to use 
the data in all areas. In order to overcome this, priority 
was given to areas within close vicinity of facilities such 
as Gathering Centers (GC) and Booster Stations (BS) 
where there would be little change to the infrastructure. 
Additionally, since the general topography within the oil 
fields have not changed much over the past three-years, 

Photogrammetric Engineering & Remote Sensing
Vol. 89, No. 4, April 2023, pp. 197–201.
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and Remote Sensing
doi: 10.14358/PERS.89.4.197
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the data was also used to generate a Digital Terrain 
Model (DTM).

Software
The selection of Software was another important step in the 
project’s life cycle. KOC uses ESRI ArcGIS to create, edit, and 
store data. The ease of data integration within the enterprise 
GIS system could not be overlooked. Therefore, DATEM for 
ArcGIS and ArcGIS Pro software were selected for 3D visual-
ization and data compilation. The selected software allows the 
user to edit, add, delete, and modify the features in the data-
base concurrently. In addition, the data from feature compila-
tion could be directly integrated to the enterprise GIS system.

Photogrammetry Data Compilation
The primary goal of the project was to update the digital 
database that users’ access to manage the assets, analysis 
for modeling purposes, as well as produce hard-copy maps. 
In addition to KOC assets, to depict the terrain as per the 
required accuracy standards, breaklines are also being cap-
tured. Breaklines are compiled to support 1-meter contour 
interval. The data compilation is being carried out using 
digital photogrammetric vector data acquisition methods, 
skilled photogrammetry compilers, following strict quality 
control (QC) procedures. Data processing techniques, the 
algorithms used in the topographical structuring of the data, 
the processing sequence and the procedures employed in the 
production of the final dataset are in strict accordance with 
KOC specification.

The process involved in data compilation is shown in 
Figure 2:
• Input data consists of aerial images, exterior orienta-

tion (EO) parameters, camera details, etc. The number of 
images are checked against the corresponding EO file to 
ensure completeness.

• Project setup is completed in DATEM Summit Evolution 
and in ArcGIS Pro. The project setup in DATEM Summit 
Evolution is carried out by creating the camera file refer-
ring to ADS 30. A control file is created by importing the 
EO parameters obtained after the completion of the aerial 
triangulation process. The project is set to UTM Zone 
38 N projection of WGS 84. In ArcGIS Pro, a new geoda-
tabase is created followed by a mosaic dataset. Camera 
details are entered and the EO parameters from summit 
evolution are imported. Stereo models are built for data 
compilation. 

• QC of the project setup involves verifying that   the cor-
rect camera file is being used, checking if all the images 
are imported to the project, checking the stereo model 
footprint, checking the project parameters, etc.

• Data compilation is carried out adhering to KOC’s 
specification and using the Enterprise Geodatabase. 
Tools within DATEM Summit Evolution such as contour 
generation and seamless update during data compilation 
come in handy during the production of the DTM. Only 
supplementary breaklines to support contours of 1-meter 
interval were compiled..

Figure 1. Photogrammetry Data Compilation.

Figure 2. Process flow.
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Stereo QC 
• Stereo QC is performed on all compiled models for inter-

pretation, omissions, and any other compilation errors.
• Checking the compiled data for positional and elevation 

accuracies.
• Checking the data for the correct usage of data structure/

feature classes.
• Checking the edge match of the compiled model with 

adjacent models. 
• Generating contours at 1-meter interval and checking for 

DTM quality.

Non-Stereo QC
• Verify model limits, buffer limits, and area limits to check 

completeness.
• Check for data connectivity and continuity between adja-

cent stereo models. 
• Perform automated topological checks for overlaps, gaps, 

duplicates, etc., and perform corrections where required.
• Ensure uniform height in closed water polygons. 

Metadata Creation
The Federal Geographic Data Committee’s (FGDC) Content 
Standard for Digital Spatial Metadata (CSDGM) is a well-
known metadata standard that is being used around the 
world. With ArcGIS 10, the metadata editor is capable of cre-
ating and publishing FGDC CSDGM metadata. Information 
such as Data Quality Information, Spatial Reference 
Information, Entity and Attribute Information, Distribution 
Information, Time Period Information, Contact Information, 
etc., are embedded into the metadata file.

Advantages of Photogrammetric Data 
Compilation Over Land Survey
1. Data compilation in hazardous areas- The upstream 

process of oil and gas production in KOC involves several 
steps starting from exploration, extraction to production 
of crude oil and natural gas. One of the activities dur-
ing production of crude oil is to burn gases that usually 
accompany oil. This process is called flaring. The area 
around smokestacks or flares have high level of toxic 
gases making it hazardous for the surveyors to be exposed 
to. However, this vital infrastructure must be mapped and 
the information included in the database. Mapping data 
through photogrammetry techniques allows this in a safer 
and faster way without having to physically visit areas 
with high levels of toxins. An illustration of one such area 
is shown in Figure 3. 

2. Data compilation within inaccessible areas- The vital 
installations of KOC are often secured by a fence and 
require special permission for access. Also, these areas are 
not always accessible due to security reasons. Mapping 
assets within such installations through land survey 
techniques poses a challenge. In order to obtain informa-
tion in these areas, photogrammetry techniques are used 
(See Figure 4).

3. Data collection in a faster way- Features such as pipe-
lines over large areas would require surveyors to spend 
more time in the field collecting the data.  Whereas, the 
same data, when collected photogrammetrically, saves 
a significant amount of time. To quantify the efforts, 
photogrammetry compilation takes about 30% of the time 
in comparison to field survey. The surveyors could use 
the vector data and update the attribute information thus 
saving several man-hours.

4. Creation of DTM- Compiling data photogrammetrically 
enhanced the creation of an accurate digital terrain model 
by delineating hard and soft breaklines; such as ridge 
lines, hilly areas, wadis, drains, hydrographic features, 
etc. The DTM thus created, is used to create contours on 
the fly and terrain information is updated in areas where 
the DTM does not accurately represent the ground. 

Conclusion
Photogrammetry data compilation has helped KOC in op-
timizing their use of human resources to a great extent. In 
addition to mapping the KOC field assets faster, it also helps 
in keeping the working environment safe for the surveyors. 
This is done by mapping KOC assets photogrammetrically 
in hazardous and inaccessible areas, which would otherwise 
be not possible for the surveyors. It can be argued that the 
data compiled photogrammetrically would be less accurate in 
comparison with the field survey data. However, the purpose 
of this exercise was to fill in the missing information within 
hazardous and inaccessible areas which would be adequate 
for infrastructure planning purposes. The collected data was 
updated in the central enterprise geodatabase. 

Figure 3. Hazardous area.
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Data collected by field survey Additional data collected 
photogrammetrically

Dry Oil Lake

Figure 4. Inaccessible areas.

Figure 5. An example of pipelines over large areas. 
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GIS &Tips     Tricks By

Buffers Everywhere but Where You Want Them?

Al Karlin, Ph.D. CMS-L, GISP

Here is yet another Tips & Tricks column that comes by way 
of my GIS/Map Making Class at the University of Tam-
pa.  About mid-way through the semester, after we have 
gone through discussion of map projections and coordinate 
systems, we start on introductory spatial analyses with the 
introduction of the “buffer”.  We construct buffers around 
points, lines, and polygons and use them to count objects 
within their limits.  

Creating buffers with any of the GIS software packages is 
easy; just find the tool (usually called, “Buffer”), identify 
the object to buffer, a buffer distance, set a few parameters 
(rounding, dissolved, etc.) and voila… a pretty instant spa-
tial analysis.  The buffer polygon can be used for spatial joins 
to count objects within, to select objects, and/or to clip other 
features.  So, students gravitate to using and creating buf-
fers for every analysis.  However, in my classes, we generally 
start with some US Census Bureau data base map or some 
other layer that is in geographic coordinates, and therein lies 
the problem and this month’s tip… Remember to change the 
coordinate system and projection before your make a buffer.  
The following example is from ArcGIS Pro 2.9, but the issues 
are similar with all GIS software programs.

In Figure 1, I started with some local hospitals (the blue 
“H”s) and Federal Qualified Health Centers (FQCHs: red 
crosses) in the Pittsburg, PA area (blue polygon).  Then I 
constructed a 3-mile buffer (orange, semi-transparent ovals) 
around each hospital to analyze the number of FQCHs with-
in 3 miles of the hospitals.  The data originated from the US 
Census Bureau in geographic coordinates (not a projection 
system), so when I specified a 3-mile buffer radius, the buf-

fers appear as ovals with the major axis along the latitude 
and the minor axis along the latitude, in North America.  
This confuses students to no end; the buffers should be cir-
cles not ovals!

There are a few different approaches to making “circular” 
buffers, but they all revolve around having the data in a 
projected coordinate system.  Hence, my GIS class does not 
make buffers until they understand projections.    

Photogrammetric Engineering & Remote Sensing
Vol. 89, No. 4, April 2023, pp. 203-204.

0099-1112/22/203-204
© 2023 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.89.4.203

Figure 1.  3-mile Oval “buffers” around Hospitals resulting from the geographic coordinates (latitude/longitude) of the 
Hospital layer.
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individuals or organizations pursuing knowledge of imaging and geospatial information science and 
technology, and their applications across the scientific, governmental, and commercial sectors.

Support the Foundation, because when he is ready so will we.

asprsfoundation.org/donate

Tip #1 — Project the source data BEFORE constructing 
the buffers.  Most GIS software systems allow you to both 
specify a coordinate system (geographic or projected) for a 
data layer.  In this case, the data layer should be defined as 
Geographic Coordinates with the North American Datum 
of 1983 (NAD83) or North American Datum of 1983 (2011).  
At most scales, the difference is negligible for our purposes.  
Then constructing the buffer using the appropriate 
geoprocessing tool will result in circular buffers as in Figure 
2.  In this case, I projected the geographic data into the 
Pennsylvania State Plane South (NAD 1983 (2011) FIPS 
3702 (US Feet) coordinate system.

Tip #2 — Although not a preferred method, if you choose 
to maintain the DATA (point locations, buffers, etc.) in 
geographic coordinates, then you will get the same resulting 
map if you change the Data Frame coordinate system to 
the projected system.  While the results will look the same, 
remember that distances may not be preserved by any on-
the-fly projection calculations.  So, for a “quick and dirty” 
map, just change the data frame coordinate system, but 
remember that the DATA are still in geographic coordinates.  

Send your questions, comments, and tips to GISTT@ASPRS.org.

Al Karlin, Ph.D., CMS-L, GISP is with Dewberry’s Geospa-
tial and Technology Services group in Tampa, FL.  As a 
senior geospatial scientist, Al works with all aspects of Lidar, 
remote sensing, photogrammetry, and GIS-related projects.  
He also teaches beginning map making at the University of 
Tampa.

Figure 2.  3-mile circular “buffers” around Hospitals resulting from the projected coordinates (northings/eastings) of the 
Hospital layer.
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SECTORINSIGHT:.org
Education and ProfEssional dEvEloPmEnt in thE GEosPatial information sciEncE and tEchnoloGy community .org
History
This Sector Insight article is based on international coop-
eration and shared geospatial data – all without a major 
exchange of international funding. This approach for sharing 
data and resources, across an international border, can be 
applied to almost any large area or complex monitoring pro-
gram – as demonstrated here. 

The seeds for this project were planted in the 1990’s by the 
Great Lakes Information Network or GLIN (https://www.glc.
org/glin). Roger Gauthier, with the Great Lakes Commission, 
led a series of Regional Data eXchange (RDX) Conferences 
with the goal of fostering the exchange of geospatial data 
between Canada and the US.

In 2010, the author was granted a Radarsat-2 data grant 
from the Canadian Space Agency SOAR Program to inves-
tigate the use of satellite imagery for wetland mapping in 
collaboration with the University of Minnesota. This grant 
also  reignited a collaboration with Dr. Brian Brisco with the 
Canada Centre for Remote Sensing (CCRS).  In 2015, I was 
sent to Ottawa to renew collaborations that grew out of the 
Great Lakes Information Network.

Significance
The Great Lakes make up about 84% of North America’s 
freshwater surface area and about 21% of the world’s fresh-
water surface area. The total surface area of the Great Lakes 
Basin is about 244,106 square kilometers (93,971 square 
miles), which is about 0.2% of the Earth’s total surface area 
of about 510.1 million square kilometers (196.9 million 
square miles). In the future, when the freshwater Greenland 
and polar ice caps melt into the saltwater oceans, the 21% of 
the planet’s freshwater surface area increases to about 50%.  
Thus making the Great Lakes System an important freshwa-
ter resource to monitor for future generations. 

Wetlands are one of the most dynamic and significant land-
scape features which help store and filter freshwater flowing 
into the Great Lakes. Due to human and climate actions, 
Great Lakes citizens and government leaders are observing 
rapid change in both interior and coastal wetland habitats 
around the Great Lakes Basin. Government, business and 
academic stakeholders are asking for rapid, seasonal views 
of the basin where they can take direct action to fix these 
problems.  

Satellite and aerial images are essential tools used to track 
and observe wetland and associated habitat changes over 
time for large areas like the Great Lakes Basin.  These im-
ages can come from a variety of optical, RADAR, lidar  and 
SONAR sensors which now require petascale computing to 
ingest and process derived products due to the frequency of 
collection and the higher resolution of the sensors.

Glars Project
Starting in 2016, the University of Minnesota, Michigan 
Tech University, Minnesota Department of Natural Resourc-
es, SharedGeo.org, the Canada Centre for Remote Sensing 
and Environment and Climate Change Canada joined 
forces to develop a set of complex wetland and surface water 
mapping products led by the U.S. Fish & Wildlife Service 
and funded by the Great Lakes Restoration Initiative. With 
significant Blue Waters supercomputer support from the 
National Science Foundation, MAXAR commercial satel-
lite imagery was accessed and processed via the National 
Geospatial-intelligence Agency (NGA) NextView Program. 
The team was able to process and create a variety of remote 
sensing demonstration products across pilot areas as well as 
the entire Great Lakes Basin.

For example, all available, stereo, sub-meter, MAXAR optical 
satellite imagery for the Great Lakes Basin were processed 
to create 2-meter surface vegetation elevation models as 
depicted in Figure 1. 

The optical stereo satellite imagery were also classified for a 
variety of wetland derived products over a dozen pilot sites 
as depicted in Figure 2.

Figure 2 shows the pre- and post-herbicide treatment of 
Phragmites Australis (an invasive plant), from 2016 to 2017 
near Saginaw, Michigan, using high-resolution MAXAR 
satellite imagery. The lower right map derived from the 
7/19/2017 satellite image shows a dark purple triangular 
shaped area in the upper left portion of the map that was 

Brian Huberty, SharedGeo

Great Lakes Remote Sensing:  Binational, Petascale, Wetlands and Habitats Change Mapping

Photogrammetric Engineering & Remote Sensing
Vol. 89, No. 4, April 2023, pp. 205-207.
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Figure 2. 

Figure 1. 

missed with herbicide treatment 
from the previous year. This example 
illustrates how land managers can be 
more accurate with treating wetlands 
to help eradicate an invasive plant.

Figure 3, taken between Michigan 
and Ontario, northeast of Detroit, 
of monthly Radarsat-2 images were 
collected and processed from 2016 
through 2021. The objective was to 
show the dynamic water level rise 
over this six-year period as well as 
the duration of water saturation 
which is defined as a hydroperiod. A 
variety of fish and wildlife habitats 
are linked to these saturation zones.
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What is the Future for Great Lakes Remote Sensing?
As a consequence of this project, the Great Lakes Alliance for 
Remote Sensing (GLARS) was formed to help further bina-
tional remote sensing of the Great Lakes and data distribu-
tion. The examples shown in this Sector Insight article can 
all be accessed at https://glars.org.

The Great Lakes Restoration Initiative funded this project to 
demonstrate the next generation tools from optical and radar 
imagery for submeter, high resolution, multi-temporal image 
products. The challenge for the future will be to develop 
this into a binational program to monitor and sustain the 
Great Lakes. Such an approach as this results in good, solid 
applications based on teamwork and cooperation rather than 
competition. Given the importance of the Great Lakes to 
Canada, the US, and the planet, it should be expected that 
this work will lead to an on-going, dedicated program.

Dedication
This column is dedicated to the late Dr. Brian Brisco, Cana-
da Centre for Remote Sensing, Natural Resources Canada.  
Unfortunately, Brian passed away in September of 2022 

after bravely battling illness for many years. Brian led the 
CCRS research and development for radar research and ap-
plications for surface and water features. His interest is not 
surprising since he was an avid muskie fisherman and duck 
hunter. Brian was the recipient of the Canadian Remote 
Sensing Society’s Larry Morley Gold Medal Award in 2017.

Author
Brian Huberty is an ASPRS Certified Mapping Scientist 
who is currently assisting SharedGeo (a geospatial non-prof-
it) with a variety of remote sensing projects. Over the last 
four decades, he has applied remote sensing and geospatial 
assessment technologies for the Minnesota Department of 
Natural Resources, USDA Forest Service, USDA Natural 
Resources Conservation Service, U.S. Geological Service 
and the U.S. Fish & Wildlife Service.  Mr. Huberty has B.S. 
and M.S. degrees from the University of Minnesota, College 
of Natural Resources specializing in geospatial resource in-
ventory systems. Brian has held leadership positions within 
ASPRS and ISPRS.

Figure 3. 
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A GPU-Accelerated PCG Method for the Block 
Adjustment of Large-Scale High-Resolution 

Optical Satellite Imagery Without GCPs
Qing Fu, Xiaohua Tong, Shijie Liu, Zhen Ye, Yanmin Jin, Hanyu Wang, and Zhonghua Hong

Abstract
The precise geo-positioning of high-resolution satellite imagery (HRSI) 
without ground control points (GCPs) is an important and fundamental 
step in global mapping, three-dimensional modeling, and so on. In 
this paper, to improve the efficiency of large-scale bundle adjustment 
(BA), we propose a combined Preconditioned Conjugate Gradient 
(PCG) and Graphic Processing Unit (GPU) parallel computing ap-
proach for the BA of large-scale HRSI without GCPs. The proposed 
approach consists of three main components: 1) construction of a BA 
model without GCPs; 2) reduction of memory consumption using the 
Compressed Sparse Row sparse matrix format; and 3) improvement 
of the computational efficiency by the use of the combined PCG and 
GPU parallel computing method. The experimental results showed 
that the proposed method: 1) consumes less memory consumption 
compared to the conventional full matrix format method; 2) demon-
strates higher computational efficiency than the single-core, Ceres-
solver and multi-core central processing unit computing methods, 
with 9.48, 6.82, and 3.05 times faster than the above three methods, 
respectively; 3) obtains comparable BA accuracy with the above three 
methods, with image residuals of about 0.9 pixels; and 4) is superior 
to the parallel bundle adjustment  method in the reprojection error.

Introduction
A large number of high-resolution optical satellites have been launched 
in the world and in China, such as SPOT-5 (Poli, Zhang, and Gruen 
2004), IKONOS (Toutin and Cheng 2000), QuickBird (Noguchi et 
al. 2004), GeoEye (Fraser and Ravanbakhsh 2009), and Ziyuan-3 
(ZY-3) (Tang et al. 2013; Jiang et al. 2015; Liu et al. 2016; Tong et al. 
2015a; Tong et al. 2015b; Gong et al. 2017; Yang et al. 2017), which is 
China’s first civil stereo surveying and mapping satellite. The ground 
resolution and geo-positioning accuracy of these systems are constant-
ly being improved. The precise geo-positioning of high-resolution opti-
cal satellite imagery (HRSI) without ground control points (GCPs) is the 
premise for large-scale remote sensing mapping applications, includ-
ing global mapping (Gong et al. 2017), three-dimensional modeling 
(Yang et al. 2017), and so on. However, there are two critical issues in 
large-scale block adjustment (BA) without GCPs: 1) how to improve the 
accuracy (Zhang et al. 2016; Chen et al. 2016; Wang et al. 2017; Ma et 
al. 2017; Jiao et al. 2018; Cao et al. 2019) of BA without GCPs; and 2) 
how to improve the calculation efficiency (Zhang et al. 2014; Zheng et 

al. 2016; Gong et al. 2017; Yang et al. 2017; Wang et al. 2017; Sun et 
al. 2019) of large-scale BA.

The main HRSI systems, such as SPOT-5, IKONOS, and QuickBird, 
do not have a high accuracy of direct positioning (Zhang et al. 
2016; Gong et al. 2017; Wang et al. 2017). The Rational Polynomial 
Coefficient (RPC) parameters contain obvious systematic errors, so that 
it is necessary to establish a corresponding error compensation model 
(Tao and Hu 2001; Fraser and Hanley 2005). Grodecki and Dial (2003) 
analyzed the systematic error of the RPC model and used an affine 
transformation model to correct the systematic errors; Zhang et al. 
(2016) improved the BA accuracy of SPOT-5 satellite images from 13.7 
m to 5 m in the planar, and from 9 m to less than 5 m in the elevation; 
and Tong, Liu, and Weng (2009) studied a method of RPC systematic 
error correction and RPC parameter refinement and regeneration and 
assessed the accuracy of QuickBird satellite stereo images (Tong et al. 
2010). In order to improve the BA accuracy of HRSI without GCPs, re-
searchers have carried out a series of related studies. Yao et al. (2018) 
adopted a BA method based on repeated satellite images covering the 
same area, which improved the BA accuracy without GCPs. In addition, 
Pan et al. (2017) achieved better BA results by using other satellite im-
age or aerial image with a higher geo-positioning accuracy as control 
information. Moreover, the geocoded information data, such as digital 
orthophoto models and digital elevation models (DEMs), can also be 
used as control data for the combined BA of satellite images (Zhang 
et al. 2016). For example, Zhou et al. (2018) used Shuttle Radar 
Topography Mission data to interpolate the elevation values of ground 
points corresponding to tie points as the initial adjustment values, 
which improved the BA accuracy, especially in the elevation direction. 
In addition, multi-source control information, such as synthetic aper-
ture radar imagery (Zhang et al. 2021), high-precision optical satellite 
imagery (Pan et al. 2017), high geo-positioning aerial images (Song et 
al. 2021), or laser altimetry data (Jiao et al. 2018; Zhang et al. 2021) 
can also be introduced to carry out combined BA. Another approach 
is to use an independent model method (Chen et al. 2016), minimum 
height difference method (Chen et al. 2016), or other methods to match 
a certain number of virtual control points between the original images 
and the public geographic information data to improve the BA accuracy 
without GCPs (Zhang et al. 2016; Chen et al. 2016; Tong et al. 2020).

Due to the large number of images in large-scale BA and the 
complex structure of BA networks, large-scale BA without GCPs needs 
further study in practical applications. For large-scale BA, scholars 
have carried out some related research, including optimizing the 
minimum bandwidth to reduce the memory consumption of the nor-
mal equation (Wang et al. 2017). Although there are some effective 
computing methods for matrix decomposition, the inversion of large 
matrices (Agullo et al. 2011), the memory consumption of the normal 
equation, and the BA computing efficiency are all issues that need to 
be solved. Among the different methods, Zheng et al. (2016) proposed 
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a method based on DEM-assisted BA to improve the mapping accuracy 
for large numbers of images, and they carried out a BA experiment 
using ZY-3 and GF-1 images covering Jiangxi province of China. 
D’Angelo and Reinartz (2012) presented rational function model (RFM) 
to improve the BA accuracy of 414 pairs of CartoSat-1 stereo images 
covering northern Italy; Zhang et al. (2014) used the rigorous imaging 
geometry model to carry out a BA experiment without GCPs for ZY-3 
three-line array (TLA) stereo images with a maximum length of 3000 
km, in which, compared with the geo-positioning accuracy of forward 
intersection, the BA accuracy without GCPs for the ZY-3 satellite was 
greatly improved, reaching a planar accuracy of 8.3 m and an elevation 
accuracy of 5.0 m; Wang et al. (2017) used a conjugate gradient (CG) 
method to estimate the BA results, and a BA experiment without GCPs 
for 8802 ZY-3 TLA stereo images covering the whole of mainland 
China was carried out, which needed only two iterations to converge 
and cost about 15 min on a standard computer for the BA estimation 
(Gong et al. 2017; Yang et al. 2017); and Sun et al. (2019) proposed a 
multi-threaded parallel computing method based on RFM, which uses 
the OpenMP parallel computing method, and the time cost of the BA 
estimation was less than 7.5 min for the experimental area covered by 
5241 ZY-3 satellite images. However, BA model estimation is still a 
time-consuming task in HRSI without GCPs, especially in the large scale. 
Furthermore, relatively few studies have combined the Preconditioned 
Conjugate Gradient (PCG) and Graphic Processing Unit (GPU) parallel 
computing methods for the large-scale BA of HRSI without GCPs.

In recent years, with the development of high-performance parallel 
GPU computing devices, the application of GPUs has not been confined 
to the field of the graphics display. Many CPU computing tasks can 
also be accomplished with parallel GPU computing devices, and GPUs 
can provide a computing performance that is tens or even hundreds of 
times faster than that of a CPU in the Single Instruction Multiple Data 
operations. As a result, GPU devices have been widely used in the field 
of high-performance computing for non-graphical displays. Before 
this, there had been lots of research work on BA using GPU devices 
in the computer vision community (Agarwal et al. 2010; Choudhary, 
Gupta, and Narayanan 2010; Wu et al. 2011; Liu, Gao, and Hu 2012; 
Hänsch, Drude, and Hellwich 2016; Zheng et al. 2017), which mainly 
focused on close-range photogrammetric digital images and unmanned 
aerial vehicle images. Zheng et al. (2017) used a combined PCG and 
GPU computing method for the BA of a data set with about 4500 digital 
images from the  Community Photo Collections (CPC) project, where 
nine million image points could be processed in only 1.5 minutes while 
achieving a subpixel accuracy. Combining PCG and a high-performance 
GPU parallel computing method for the large-scale BA of HRSI without 
GCPs faces with three main problems: 1) estimation of the BA based on 
the PCG method; 2) the memory consumption of the error equation based 
on the Compressed Sparse Row (CSR) (Nathan and Garland 2009) sparse 
matrix format; and 3) the GPU-accelerated PCG method for BA estimation.

Therefore, in this paper, we present a combined PCG and GPU paral-
lel computing method for the large-scale BA of HRSI without GCPs. 
In the proposed approach, the PCG method is used to calculate the 
unknown parameter results after BA model construction, which avoids 
the direct inversion of the design matrix of the normal equation. In 
addition, the CSR sparse matrix format is used to reduce the memory 
consumption of the normal equation, especially for large-scale BA ex-
periments, and the combined PCG and GPU parallel computing method is 
used to further improve the computational efficiency of the BA model.

Methodology
Figure 1 shows the overall technical flowchart of the proposed BA 
method, i.e., the combined PCG and GPU parallel computing method for 
the large-scale BA of HRSI without GCPs, which consists of three main 
components, as follows:
(1) Construction of the BA model based on RFM, which is the premise 

of large-scale BA estimation for HRSI without GCPs.
(2) The PCG method is used to calculate the normal equation, the CSR 

sparse matrix format is used to save the memory consumption, and 
to accelerate the matrix operations of the correlation coefficients.

(3) The combined PCG and GPU parallel computing method is adopted 
to improve the efficiency of the whole BA estimation process.

Construction of the BA Model Based on RFM Without GCPs
The Rational Function Model
The imaging geometric model represents the geometric physical rela-
tionship between the image point coordinates and the ground point co-
ordinates, which is the prime of the high-precision geo-positioning of 
remote sensing images. RFM is a more general expression of the sensor 
model and is suitable for all kinds of sensors (Tong et al. 2010; Chen 
et al. 2016; Zhang et al. 2016; Gong et al. 2017; Yang et al. 2017). 
From a numerical calculation point of view, RFM can be understood as 
a functional relationship, with the ground point coordinates as the in-
dependent variables and the image point coordinates as the dependent 
variables. The basic form is shown in Equation 1 (Tao and Hu 2001; 
Grodecki and Dial 2003; Fraser and Hanley 2005):

  

(1)

where the dependent variable (r, c) represents the normalized image 
point coordinates in the scan direction and flight direction, and the 
independent variable (P, L, H) represents the normalized ground point 
coordinates. NumL, DenL, NumS, and DenS are general polynomials 
for different combinations of (P, L, H). In a polynomial, the power of 
each independent variable is no more than three, and the sum of the 
independent variables’ power is also no more than three (Tao and Hu 
2001; Grodecki and Dial 2003). Therefore, each polynomial is the sum 
of 20 different combinations of independent variables. The coefficients 
of the four polynomials and the normalized coefficients constitute the 
RFM coefficients (RPC) (Fraser and Hanley 2005; Tong et al. 2010).

Normalizing can improve the stability of solving the RFM coef-
ficients and is used to reduce the data rounding errors caused by the 
large difference of the data series in the calculation procedure (Tong 
et al. 2010; Zhang et al. 2016; Gong et al. 2017; Yang et al. 2017). 
Normalizing is achieved by a translation and scaling procedure. 
The normalized equation is shown in Equation 2 (Tao and Hu 2001; 
Grodecki and Dial 2003; Fraser and Hanley 2005):

  

(2)

where r0, c0, P0, L0, H0 are the normalized translation parameters, and 
rs, cs, Ps, Ls, Hs are the normalized scaling coefficients.

Construction of the BA Model Without GCPs
The systematic errors of the RFM are corrected by the additional com-
pensation model in the image space (Tong et al. 2010; Zhang et al. 2016; 
Gong et al. 2017; Yang et al. 2017). Equation 1 can then be rewritten as:

  

(3a)

  
(3b)

where Δr, Δc are the systematic error correction parameters of the opti-
cal satellite imagery in the scan and flight directions, respectively; and 
(a0, a1, a2, b0, b1, b2) are the compensation parameters of the systematic 
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errors. a0 and b0 are mainly used to compensate the system offset errors 
caused by model drift. a1 and b1 can be approximated to eliminate the 
model scanning direction errors caused by roll attitude. a2 and b2 can 
be used to eliminate the flight direction errors caused by pitch attitude 
(Tao and Hu 2001; Grodecki and Dial 2003). Due to the imaging char-
acteristics of satellite platforms, the attitude compensation values are 
usually small (Fraser and Hanley 2005; Tong et al. 2010).

Equation 3a can be linearized by Taylor series expansion (Grodecki 
and Dial 2003), the matrix form is as follows:

 V = At + Bx – L, P (4)

where V represents the residual error vectors of the tie point measure-
ments in the scan and flight directions; A, B are the corresponding 
coefficient matrices; x represents the correction vectors of the ground 
point coordinates corresponding to the tie points; t represents the 
correction vectors of the systematic error; L is the constant vector 
calculated from the initial value; and P represents the corresponding 
weight matrices.

According to the theory of least squares, the observed error equa-
tion can be further modified. Equation 4 can then be written as:

  
(5)

The normal equation matrix described in Equation 5 is a symmetric 
banded matrix. Therefore, in the BA estimation procedure, because 
there are too many unknowns, it is necessary to separate the affine 
transformation coefficients from the coordinate corrections of the 
ground points. In other words, we first eliminate a class of unknowns 

(generally the coordinate corrections of ground point x (Gong et al. 
2017; Yang et al. 2017)), and we obtain the modified normal equation 
containing only the parameters of the affine transformation coefficients  
t. After eliminating x, the solution of t can be shown as:

 Nt × t = Rt (6)

where Nt = ATPA – ATPB × (BTPB)–1 × BTPA is the Schur complement 
matrix, which is a symmetric matrix, Nt = ATPL – ATPB × (BTPB)–1 × 
BTPL.

After calculating the corrections of the affine transformation param-
eters of each image, according to the calculation results of the modified 
normal equation, the corrections of the ground point coordinates x 
corresponding to the tie points are solved by replacing the normal 
Equation 5, and then the solution of x can be shown as:

 x = (BTPB)–1 × (BTPL – BTPA × t) (7)

The BA solution is an iterative procedure. When the results of two 
BA solutions are less than the set threshold, the iterative procedure is 
stopped (Chen et al. 2016; Gong et al. 2017; Yang et al. 2017; Tong et 
al. 2020).

In addition, the virtual control points are generated from the initial 
RPC files in a regular grid (Yang et al. 2017).

Estimation of the Modified Normal Equation  
Based on Sparse Matrix and PCG Method
Storage and Compression of the Sparse Coefficient Matrix
The coefficient matrix of the normal equation in the large-scale BA mod-
el has obvious sparsity. For the large-scale sparse matrix, if a full-matrix 

Figure 1. Flowchart of the proposed block adjustment (BA) method. (The red box represents the calculation process in Graphic Processing Unit 
(GPU) device).
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storage format is used to store the dense matrix, its storage requirement 
and computational time cost will be very high, and it will cost lots of un-
necessary memory space. If a compressed storage format method is used 
to store the sparse coefficient matrix, it will not only reduce memory 
consumption, but will also reduce the computational time cost.

The common storage formats for sparse matrices include 
Coordinate (COO), Compressed Sparse Column, and Compressed 
Sparse Row (CSR) (Nathan and Garland 2009; Cheng, Tian, and Ma 
2018). The COO format stores a sparse matrix by using the three arrays 
of values, rows, and columns index (colind), as shown in Figure 2a. 
CSR uses the three arrays of values, rows pointer (rowptr), and colind 
to store a sparse matrix, as shown in Figure 2b, which is suitable 
for the coefficient matrix storage and parallel matrix computing. At 
the same time, the value can be obtained from the row’s pointer and 
columns index in the GPU device, respectively, then the sparse design 
matrix stored in the CSR format can better meet the characteristics of 
GPU parallel computing. In this study, we used the CSR storage format 
to compress the sparse design matrix of the modified normal equation.

Estimation of the Modified Normal Equation Based on the PCG Method
The CG method can make full use of the sparsity of the normal matrix 
and can be calculated without pre-estimating other parameters. In ad-
dition, the calculation required in each iteration is mainly the operation 
between vectors, which is convenient and easy for parallelization. The 
convergence speed of the CG method is closely related to the condi-
tion number of the design matrix (Zheng et al. 2017). The CG method 
can obtain high-precision approximate calculation results in fewer 
iterations. However, when the condition number of the design matrix is 
very large, the convergence speed is very slow. In the preconditioned 
conjugate gradient (PCG) method, after introducing the preconditioner 
matrix M through an appropriate preconditioning method, the eigen-
value distribution of the matrix is more centralized and the condition 
number of the design matrix is greatly reduced, so as to further im-
prove the convergence speed. The PCG method is a very effective and 
efficient iterative method for solving large-scale sparse linear equations 
(Peng, Liu, and Wei 2021).

There are many preconditioning methods for symmetric positive 
definite linear equations, such as the diagonal preconditioner matrix 
(Wathen and Silvester 1993), the Jacobi preconditioning method 
(Byröd and Åström 2010), incomplete matrix decomposition (Bru 
and Tůma 2008), the multi-scale preconditioning matrix (Byröd and 
Åström 2009), etc. However, there is no general method that can be 
used to all the computational problems in which the condition number 
of the sparse design matrix is obviously different. The PCG method 
does not need to decompose the coefficient matrix, which can effec-
tively reduce the memory consumption and improve the computational 
efficiency. The block Jacobi preconditioning matrix (Wu et al. 2011) 
is very simple, easy to calculate, and the preconditioned matrix is very 
stable, which satisfies the selection principle of the preconditioned ma-
trix. Therefore, in this study, the block Jacobi preconditioning matrix 
was used to estimate the normal equation for the large-scale BA.

In Equation 6,  Nt is an n-order positive definite symmetric matrix, 
and t and Rt are n-dimensional column vectors. If M is a precondi-
tioner matrix, the PCG method is listed in Algorithm 1.
Algorithm 1: The preconditioned conjugate gradient (PCG) method
For k = 0;
Initial parameters: t(0) = 0, r(0) = Rt – Ntt(0), d(0) = M–1t(0)

do
1: α(k) = rk

T M–1r(k)/dk
T Ntd(k)

2: t(k+1) = t(k) + α(k)d(k)

3: r(k+1) = t(k) + α(k)d(k)

4: β(k) = rT
k+1

 M–1t(k+1)/rk
T M–1r(k)

5: d(k+1) = M–1r(k+1) + β(k)d(k)

6: k = k + 1
while d(k)2 > ε
Return t(k+1)

If the value of d(k)2 is within a predetermined threshold, the iterative 
procedure is stopped; otherwise, go to step 1.

The Combined PCG and GPU Computing Method for BA Estimation
The problem of BA estimation mainly includes the calculation of repro-
jection error, Jacobian matrix, preconditioner matrix, and multiplica-
tion between matrix and vector.

GPU Accelerated BA Parallel Computing Optimization Method
(1) Parallel computation optimization of the reprojection errors L

The constant vector represents the reprojection errors of the tie 
points corresponding to the ground point on its corresponding im-
age, which is only related to the coordinates of the ground points 
corresponding to the image points and the corresponding image 
parameters. The reprojection errors of different image points are 
independent of each other (Figure 3).

To realize the parallel calculation of reprojection error, each 
thread is responsible for calculating one reprojection. The number 
of threads is the same as that of reprojections, and each thread 
completes one reprojection error calculation independently. Then 
the parallel calculation of reprojection errors is converted into 

(a)

(b)

Figure 2. The storage formats for the sparse design matrix (adapted 
from (Cheng, Tian, and Ma 2018)). (a) Coordinate (COO) format; (b) 
Compressed Sparse Row (CSR) format.

Figure 3. Reprojection errors. BWD represents the backward image, 
FWD represents the forward image. A represents the ground point 
coordinate, a1 and a2 represent the image point coordinates on 
the BWD and FWD images respectively, a1' and a2' represent the 
reprojection coordinates of the image points on the BWD and FWD 
images, respectively. Reprojection errors are only related to the 
ground points corresponding to the image points and each image 
parameters, and image points are independent of each other.
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multi-threads to obtain the corresponding reprojection at the same 
time. The RPC parameters are obtained by the image index, the 
object coordinates of tie points are located by the image point 
index, and the image coordinates of tie points are located by the 
thread index in the projection procedure. Each thread obtains the 
corresponding parameters from the texture memory, and then ac-
cording to the reprojection formula, the reprojection errors can be 
calculated in parallel.

(2) Parallel computing optimization of the Jacobian matrix J and 
preconditioner matrix M
The calculation of the Jacobian matrix J can be divided into the 
solution of image parameters and three-dimensional (3D) point 
coordinate parameters, i.e., J = [Jc, Jp], to solve the partial deriva-
tive Jc of image parameters and the partial derivative Jp of 3D point 
coordinates.

For each image point, the partial derivative matrix Jc of its cor-
responding image parameters can be represented by 12 values, and 
the partial derivative matrix Jp of corresponding 3D points can be 
represented by six values. Taking nine scenes of ZY-3 01 satellite 
images for an example, the number of corresponding ground points 
is 90 and the number of the image points is 351. The structure of 
the Jacobian matrix J is shown in Figure 4.

Similar to solving the reprojection errors, the parallel solution of the 
Jacobian matrix J is to establish the relationship between each thread 
and image parameter and 3D point coordinate. Firstly, the projection 
values are obtained in the global memory, and then the image param-
eters are located by the image index in the projection. Then, the 3D 
point coordinates are obtained from the global memory by the 3D 
point index in the projection. Finally, the Jacobian matrix J is obtained 
through the partial derivative formula.

The solution of the preconditioner matrix M can be transformed 
into solving the Jc

TJc and Jp
TJp matrix. The multiplication of the Jc

T 
and Jc matrix is the dot product of the Jc column vector. For example, 
the value of the first row and second column of the Jc

TJc matrix is the 
dot product of the first and second columns of the Jc matrix. Therefore, 
the product of matrix and matrix is decomposed into the dot product of 
vector and vector. The dot product between different column vectors 
is independent and is especially suitable for parallel calculations. The 
product of each dimension has no effect on the product of other dimen-
sions, which can be calculated by compute unified device architecture’s 
(CUDA's) parallel reduction function. The structure of the Jc

TJc and 
Jp

TJp matrix is shown in Figure 5.
Besides, the parallel calculation of the Jc

TJc matrix can be carried 
out directly without storing the Jc

T matrix. Considering that there are 
36 groups of column vector multiplication, every six threads are used 
to calculate one dimension of the column vector product; that is, every 
six threads are used to process a row of the Jc

T matrix and obtain 36 
values. Because the 36 values obtained by every six threads, which are 
one-dimensional of a column vector, thus the CUDA parallel reduction 
function is used to add up the 36 values obtained by all the six threads 
in a group to get the result of the whole column vector dot product, 
that is, the result of the Jc

TJc matrix. Besides, making full use of the 
symmetry of the Jc

TJc matrix can further reduce about half of the 
computation and reduce the access to shared memory on the GPU de-
vice. Similarly, the parallel calculation of the Jc

TJc matrix can also be 
calculated according to this method, except that the thread block size is 
different, that is, nine values obtained by every three threads.
(3) Parallel computing optimization of the product of the Jacobian 

matrix J and constant vector L
The multiplication of the Jc

TL matrix can be decomposed into the 
dot product of column vector and reprojection error vector. The 
dot product between different column vector and reprojection error 
vector is independent and can be computed in parallel, and the 
process of vector dot product can be operated by the CUDA parallel 
reduction function.

The parallel computation of the Jc
TL matrix is carried out 

directly without storing the Jc
T matrix. Taking the parallel solu-

tion of the Jc
TL matrix for an example, a two-dimensional thread 

block dimBlock(n + 1, 2) is defined. Define the thread grid as 

dimGrid(cam_num). Each thread block is responsible for one im-
age, and each thread is used to calculate the product of three values 
in the Jc

T matrix and the corresponding reprojection error.
Each thread block contains 2 * (n + 1) threads. Each thread 

calculates the product of three values in the JcT matrix and the cor-
responding reprojection error L. The 2 * (n + 1) threads are called 

Figure 4. The structure of the Jacobian matrix J. The blue points 
represent the values of non-zero elements. nz represents the number 
of non-zero elements.

(a)

(b)

Figure 5. The structure of the Jc
TJc and Jp

TJp matrix. The blue points 
represent the values of non-zero elements. (a) The structure of the 
Jc

TJc matrix; (b) The structure of the Jp
TJp matrix. nz represents the 

number of non-zero elements.
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repeatedly until the JcTL matrix is calculated, and each thread is 
responsible for calculating three results. Then, 6 * (n + 1) results of 
2 * (n + 1) threads are stored into shared memory. Finally, the par-
allel reduction calculation is completed in shared memory to obtain 
the Jc

TL matrix of each image. The calculation results of the whole 
Jc

TL matrix can be obtained by solving several thread blocks at 
the same time. Besides, thread synchronization statements should 
be used. The _syncthreads function is used to synchronize threads 
to ensure that all threads have been stored into the shared memory 
before performing parallel reduction operations.

GPU Accelerated PCG Parallel Computing Optimization Method
Each step in the PCG method is serial, which involves two times of 
sparse matrix and vector multiplication, one time of preconditioner 
matrix and vector multiplication, two times of dot product of two 
vectors, three times of vector updating, and two times of scalar divi-
sion. The data-level parallel operation can be used to matrix-vector 
multiplication, vector-vector multiplication, and vector updating. As a 
result, the GPU-accelerated PCG method can be used for large-scale BA 
estimation. The GPU device is used for parallel computation between 
matrix and vector, and vector and vector, before and during each itera-
tion. The CPU is used to control the iteration cycle, the convergence 

condition judgment, and the scalar division. NVIDIA’s CUDA Sparse 
Matrix Library cuSPARSE (NVIDIA 2019a) provides operations for 
sparse matrices, which can be multiplied between vectors by using the 
CusparseDcsrmv function in the cuSPARSE library. The CublasDdot 
function in the cuBLAS (NVIDIA 2019b) library can be used to imple-
ment the operation of the dot product of two vectors. The CublasDaxpy 
function in the cuBLAS library is used to update the vector. In this 
way, the complete PCG method can be realized by using the correlation 
functions of the cuSPARSE library and the cuBLAS library.

The workflow of the combined PCG and GPU parallel computing 
method for large-scale BA estimation is shown in Figure 6.

Experiments and Discussion
Study Area and Data Sets
In this study, the BA experiment was carried out using two data sets, 
namely 132 scenes of Ziyuan-3 (ZY-3) 01 images of Taihu Basin and 
829 scenes of ZY-3 01 images of almost the whole Jiangxi Province 
in China (as shown in Figure 7), which cover areas of about 240 × 
310 km and 520 × 650 km, respectively. The software environment 
used in the experiment was the Windows 10 64-bit operating system, 
Microsoft Visual Studio 2017 (VC++), and CUDA 10.2. The hardware 
was a Dell high-performance graphics workstation (the graphics 
workstation was equipped with a 6-core i7-8700 CPU @ 3.2GHz, 32 GB 
memory, and an NVIDIA Quadro P2000 professional graphics card with 
5 GB global memory).

Two sets of data were used to test the proposed method and the 
other methods. Details of the data used in this study are provided in 

Figure 6. The Preconditioned Conjugate Gradient (PCG) and Graphic 
Processing Unit (GPU) combined parallel computing method. (The 
GPU operation is marked in red).

(a)

(b)

Figure 7. ZY-3 01 satellite image coverage of the two data sets. 
(a) ZY-3 01 image coverage in the data set A; (b) ZY-3 01 image 
coverage in the data set B.
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Table 1. Data set A contained 132 scenes of ZY-3 01 satellite images, 
in which the terrain was plain and hilly. Data set B included 829 scenes 
of ZY-3 01 images, in which the terrain was hilly and mountainous. 
The ZY-3 01 satellite images of the two areas were captured between 
2015 and 2020. Each image was attached with the RPC vendor file. A 
certain overlap also existed between adjacent images. The survey areas 
included mountainous, hilly, plain, and other topographic areas, with a 
maximum and minimum elevation difference of 2500 m.

According to the automatic image-matching methods, such as the 
scale-invariant feature transform algorithm and k-nearest neighbor 
matching strategy (the nearest distance threshold is set to 0.8), tie 
points are acquired from adjacent images, and then the OpenMP paral-
lel matching strategy is adopted to improve the matching efficiency. 
The number of tie points obtained from the image matching algorithm 
is very high without a tie point selection strategy and exits some obvi-
ous gross errors. In order to solve this issue, we adopted the random 
sample consensus gross error detection and elimination method, which 
is effective at reducing the influence of gross errors in the BA results. 
63 528 uniform tie points were matched after the use of the above 
method in the data set A, which cost about one hour, and 158 961 uni-
form tie points were matched in the data set B, which cost nearly eight 
hours. The distribution of the tie points of the two data sets is shown in 
Figure 8.

In order to verify the performance of the proposed method in 
memory consumption, computational efficiency, and BA accuracy, we 
compared it with the Single-core CPU and multi-core CPU computing 
methods. Besides, in order to reduce the statistical error, 10 repeated 
experiments were carried out and the average value was calculated.

Experimental Results and Discussion
Results of the Memory Consumption Comparison  
Between the Proposed Method and the Existing Ones
The conventional dense matrix storage format, the CSR sparse matrix 
storage format, including the single-core CPU, multi-core CPU comput-
ing, Ceres-solver, parallel bundle adjustment  (PBA) (Wu et al. 2011), 
and the proposed method were used to process the two groups of 
experimental data. The memory consumption of the five methods was 
recorded, respectively. The results of the memory consumption during 
the BA procedure are listed in Table 2.

From Table 2, it can be seen that the memory consumption of the 
CSR sparse format is clearly lower than that of the conventional full 
matrix. When the number of images is 132 (data set A), the full matrix 
storage format needs at least 80 GB of memory in theory, which will 
eventually lead to the failure of the BA, because of the inability of a 
standard computer to allocate such a large amount of memory. After 
using the CSR format of matrix for the normal equation, only about 
maximum 345 MB memory space is needed to store all the data needed 
in the BA.

If the number of images continues to increase, the memory required 
by the full matrix format will continue to increase. When the number 
of images increases to 829 (data set B), the full matrix storage format 
needs at least 1000 GB of memory, in theory. After using the CSR 
format of matrix for the normal equation, only about maximum 562 MB 
memory space is needed. However, the memory consumption of the 
PBA and the proposed methods are higher than that of the single-core 
CPU, multi-core CPU computing, and Ceres-solver methods, because of 
the introduction of the GPU device. In addition, the memory consump-
tion of the proposed method is lower than that of PBA method, because 
of Jacobian transpose matrix Jc

T is not stored, and the matrix Jc
TJc 

is a symmetric matrix and only needs to calculate the upper triangu-
lar. Meanwhile, a temporary vector stored in the shared memory is 
calculated in each thread for the multiplication of the matrix Jc

T and 
matrix Jc, which not only saves global memory consumption, but also 
improves matrix multiplication computing efficiency.

Comparison of the Computational Time Costs  
Between the Proposed Method and the Existing Ones
The time costs and computational speedup by the five methods for the 
two data sets are listed in Table 3. As can be seen from Table 3, when 

(a)

(b)

Figure 8. Distribution of the tie points in the two data sets. (a) 
Distribution of the tie points in the data set A; (b) Distribution of the 
tie points in the data set B.

Table 1. Details of the test data sets.
Data 
Set Source Topography

Capture 
Time

Number 
of Images

Number of 
Tie Points

A ZY-3 01 plain and hilly 2015–2016 132 63 528

B ZY-3 01 hilly and 
mountainous 2017–2020 829 158 961

Table 2. Memory consumption of the different methods.

Data 
Set

CSR Sparse Matrix (Units: MB)

Single-core 
CPU

Multi-core 
CPU Ceres-solver PBA

The Proposed 
Method

A 184 195 189 356 345

B 340 352 346 583 562

CSR = Compressed Sparse Row; MB = megabytes; CPU = central processing 
unit; PBA = parallel bundle adjustment.

Table 3. Computational time costs of the different methods (units: 
seconds).
Data 
Set

Single-Core 
CPU

Multi-Core 
CPU Ceres-Solver PBA

The Proposed 
Method

A 3.21 1.78 2.06 0.56 0.63

B 41.90 13.47 30.15 4.01 4.42

CPU = central processing unit; PBA = parallel bundle adjustment.
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the number of images is 132, the conventional full matrix storage 
method fails in BA because of the limitation of the memory consump-
tion. And the efficiency of the multi-core CPU computing and Ceres-
solver methods are higher than that of the single-core CPU computing 
method, whereas the calculation efficiency of the PBA method is the 
highest and the proposed method is comparable with PBA method. The 
computational time costs of the mentioned above five methods are 3.31 
s, 1.78 s, 2.06 s, 0.56 s, and 0.63 s in the data set A, and in the data set 
B, the computational time costs of the five methods are 41.90 s, 13.47 
s, 30.15 s, 4.01 s, and 4.41 s, respectively.

As can be seen from Table 4, when the number of images is small 
(data set A), the computational speedup of the multi-core CPU comput-
ing method is a little faster than that of the single-core CPU computing 
method, namely 1.86 times, while when the number of images is large 
(data set B), the computational speedup of the multi-core CPU comput-
ing method is 3.11 times faster than that of the single-core CPU com-
puting method. But the computational speedup of the proposed method 
is obviously faster than that of the single-core CPU computing method, 
namely 5.25 and 9.48 times faster in the two data sets, respectively. 
In addition, the computational speedup of the PBA method is obvious 
faster than that of the single-core CPU computing method, namely 5.73 
and 10.45 times faster in the two data sets, respectively.

Table 4. Computational speedup of the different methods.

Data 
Set

Single-Core 
CPU

Multi-Core 
CPU Ceres-Solver PBA

The 
Proposed 
Method

A 1 1.80 1.56 5.73 5.10

B 1 3.11 1.39 10.45 9.48

CPU = central processing unit; PBA = parallel bundle adjustment.

Comparison of BA Accuracies Between the  
Proposed Method and the Existing Ones
The PBA method and proposed method were found to be superior to the 
single-core CPU, multi-core CPU computing, and Ceres-solver methods 
in the computational efficiency. In order to further verify the perfor-
mance of the proposed method in BA accuracy, we compared the BA 
accuracy of the above methods. The two groups of data were processed 
by the methods mentioned above, and the BA accuracy was compared 
and analyzed.

The BA accuracy was measured by the relative accuracy, i.e., the 
reprojection residuals of the tie points. Analysis of the reprojection 
residuals of the tie points can evaluate the accuracy and stability of 
the BA, which can also reflect the relative geo-positioning accuracy 
of the images to a certain extent. The BA accuracies of the data set A 
are shown in Table 5, and the residual errors in the x- and y-directions 
after the BA by the methods are shown in Figure 9.

The relative geo-positioning accuracy in the data set A is shown in 
Figure 9, before and after the application of the proposed BA method. 
The residual errors of the tie points are shown in Table 5, before and 
after the BA. As can be seen from Table 5, the BA accuracy of the pro-
posed method is comparable to that of the single-core CPU, multi-core 
CPU computing, and Ceres-solver methods. The maximum reprojection 
image point residual of the forward intersection used RPC vendor file 
is 7.973 pixels, the root-mean-square error (RMSE) is 1.725 pixels in 
the x- (flight) direction, the maximum residual is 10.204 pixels, and 
the RMSE is 2.466 pixels in the y- (scan) direction. After BA with the 
proposed method, the maximum residual is 3.787 pixels, the RMSE 
is 0.561 pixels in the x- (flight) direction, the maximum residual is 

7.167 pixels, and the RMSE is 0.752 pixels in the y- (scan) direction. 
Meanwhile, the BA accuracy of the proposed method is superior to that 
of the PBA method. The reason is that the threshold value is larger and 
fewer iterations in the PBA method, which causes the PBA method more 
efficient than the proposed method.

Conclusions
In this paper, in view of the challenges encountered in the large-scale 
BA of HRSI without GCPs, we have presented a combined PCG and GPU 
parallel computing method to estimate the BA results, which can reduce 
the memory consumption and computational time cost while ensur-
ing the BA accuracy. The PCG method is used to estimate the normal 
equation, the CSR sparse matrix storage format is adopted to reduce the 
memory consumption, and a GPU parallel computing method is used to 
improve the computational efficiency of the proposed approach. Two 
sets of real data, made up of 132 scenes of ZY-3 01 satellite remote 
sensing images in Taihu Basin and 829 scenes of ZY-3 01 images 
almost in the whole of Jiangxi Province of China, were used for the 

Table 5. The root-mean-square error (RMSE) of the different methods (units: pixels)

Data 
Set

Single-Core CPU Multi-Core CPU Ceres-Solver PBA The Proposed Method

x y xy x y xy x y xy x y xy x y xy

A 0.375 0.630 0.733 0.375 0.630 0.733 0.375 0.630 0.733 0.381 0.674 0.774 0.376 0.631 0.734

B 0.561 0.750 0.936 0.561 0.750 0.936 0.561 0.750 0.936 0.659 0.791 1.03 0.561 0.752 0.938

(a)

(b)

Figure  9. Reprojection error of the tie points in the data set A. (a) 
Reprojection error in the x-direction; (b) Reprojection error in the 
y-direction. BA = bundle adjustment.
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comparative experiments. Through the comparative analysis of the 
experimental results, the following conclusions could be drawn:
(1) Compared with the conventional full matrix storage format, the 

CSR format was found to be able to reduce the memory consump-
tion, and when the number of satellite images reached 829 (data 
set B), the tie point number reached 158 961, and the memory 
consumption of the proposed method was 562 MB, while the full 
matrix storage method failed in the memory application.

(2) The computational speed of the proposed method was found to be 
much faster than that of the single-core CPU computing method. 
When the number of images was increased to 132 (data set A), 
the computational speed of the proposed method was 6.21 times 
faster than that of the single-core CPU computing method. When 
the number of images was increased to 829 (data set B), the time 
costs of the proposed method, the single-core CPU and multi-core 
CPU computing methods being 4.42 s, 13.47 s, and 41.90 s, and 
the computational speedup of the proposed method and multi-core 
CPU computing methods was 9.48 and 3.11 times faster than that of 
the single-core CPU computing method, respectively, while the full 
matrix storage method failed in the BA estimation because of the 
high memory consumption. While the computational efficiency of 
the proposed method is comparable with that of the PBA method.

(3) The proposed method was able to obtain almost the same BA ac-
curacy as the other methods. When the number of images was 829 
in the data set B, the reprojection residuals of the tie points of the 
proposed method, the single-core CPU, multi-core CPU computing, 
Ceres-solver, and PBA methods were 0.938, 0.936, 0.936, 0.936, 
and 1.03 pixels, respectively. Moreover, the BA accuracy of the 
proposed method is superior to that of the PBA method.
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Identification of Drought Events in  
Major Basins of Africa from GRACE  

Total Water Storage and Modeled Products
Ayman M. Elameen, Shuanggen Jin, and Daniel Olago

Abstract
Terrestrial water storage (TWS) plays a vital role in climatological and 
hydrological processes. Most of the developed drought indices from 
the Gravity Recovery and Climate Experiment (GRACE) over Africa 
neglected the influencing roles of individual water storage components 
in calculating the drought index and thus may either underestimate 
or overestimate drought characteristics. In this paper, we proposed a 
Weighted Water Storage Deficit Index for drought assessment over the 
major river basins in Africa (i.e., Nile, Congo, Niger, Zambezi, and 
Orange) with accounting for the contribution of each TWS component 
on the drought signal. We coupled the GRACE data and WaterGAP Global 
Hydrology Model through utilizing the component contribution ratio 
as the weight. The results showed that water storage components 
demonstrated distinctly different contributions to TWS variability 
and thus drought signal response in onset and duration. The most 
severe droughts over the Nile, Congo, Niger, Zambezi, and Orange 
occurred in 2006, 2012, 2006, 2006, and 2003, respectively. The 
most prolonged drought of 84 months was observed over the Niger 
basin. This study suggests that considering the weight of individual 
components in the drought index provides more reasonable and 
realistic drought estimates over large basins in Africa from GRACE.

Introduction
Droughts have increased in frequency and severity due to cli-
mate change throughout the world’s river basins in recent decades 
(Forootan et al. 2019). According to the sixth assessment report of the 
International Panel for Climate Change (IPCC), global temperatures 
have risen by ~1°C since industrialization, which may further amplify 
by 1.5°C between 2030 and 2050 as a result of human activities 
(IPCC 2018). As the population grows and water demand increases, 
droughts are triggered and aggravated by anthropogenic activities such 
as deforestation and the construction of dams (Schlosser et al. 2014; 
AghaKouchak 2015; Omer et al. 2020; Sarfo et al. 2022). To prioritize 
adaptation actions in global hot spots, it is essential to characterize 
droughts.

Although the continent has abundant water resources with meeting 
its ecological and agricultural needs, climatic extremes are becoming 

increasingly perilous, endangering the valuable water supply and mil-
lions of lives on the continent (Masih et al. 2014; IPCC 2022). Two of 
the biggest drought tragedies ever documented in history occurred in 
the Sahel region in 2007 and the Nile basin in 1984. These droughts 
caused the death of approximately 750 000 people (Vicente-Serrano 
et al. 2012). Future projections indicate that the probability of drought 
occurrence will increase across the entire African continent, leading to 
significant regional implications (Ahmadalipour and Moradkhani 2018; 
IPCC 2022). Additionally, excessive water demand may lead to the 
overuse of freshwater resources, which might result in disputes among 
water users during dry spells. This may increase the risk of hydro-polit-
ical tension in Africa, as the Transboundary Rivers represent 64% of the 
entire region’s landmass (United Nations Environment Program 2010). 
Monitoring the drought situation in Africa is crucial for prioritizing 
adaptations to avert water scarcity and disputes.

Long and uninterrupted in situ hydro-climatic observations are 
required for drought monitoring. Yet Africa’s land-based observation 
network has been deteriorating with time, having only one-eighth of the 
minimum density required by the World Meteorological Organization 
and with only 22% of stations fully meeting the Global Climate 
Observing System requirements (Dobardzic et al. 2019). Due to the 
insufficiency of in situ data records in Africa, monitoring hydrologi-
cal drought in the continent’s basins has been limited (Ferreira et al. 
2018). Additionally, a substantial financial and political commitment is 
required to record and share in situ observations, both of which are fre-
quently missing. Remote sensing observations represent an alternative 
source to counter data deficiencies in many data-poor regions world-
wide. Moreover, satellite-borne sensors have featured as an effective 
tool for tracking droughts, considering their capacity to offer regional-
to-global coverage (Jiao et al. 2021).

Several remote sensing–based products have been used globally 
to assess and detect drought situations. Among these are Moderate 
Resolution Imaging Spectroradiometer (MODIS)–based evapotrans-
piration, soil moisture from Sentinel-1 and the Soil Moisture Active 
Passive radiometer, and the Normalized Difference Vegetation Index 
from Landsat (West et al. 2019; Modanesi et al. 2020). Although these 
measurements could deliver valuable information about agricultural 
and meteorological droughts, the task of assessing hydrological drought 
remains daunting (Papa et al. 2022) since they can capture only surface 
and shallow subsurface conditions. Also, it is problematic to evaluate 
droughts based only on surface measurements (e.g., precipitation and 
soil moisture), as the reduction of water from the deepest aquifers may 
continue even after the surface storage has dried up (Leblanc et al. 
2009). After launching the Gravity Recovery and Climate Experiment 
(GRACE) satellite mission in 2002, the potential time-variable gravity 
measurement offered an integrated perspective for drought monitoring 
since it can capture vertically integrated terrestrial water storage (TWS) 
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changes (i.e., from the top surface water to the deepest groundwater) 
(Ndehedehe et al. 2018).

The unique potential of GRACE measurements offered hydrologists a 
new dimension to develop new GRACE-based drought indices (Hassan 
and Jin 2014; Jin and Zhang 2016). Therefore, numerous studies have 
applied GRACE-based indicators for drought analysis and monitoring. 
For example, Kumar et al. (2021) evaluated the drought severity over 
the Godavari basin using the GRACE Combined Climatologic Deviation 
Index. Liu et al. (2020) proposed a GRACE-based Drought Severity 
Index and assessed the drought variations for China’s large basins. 
Khorrami and Gunduz (2021) proposed an Enhanced Water Storage 
Deficit Index to observe drought conditions in Turkey. Wu et al. (2021) 
characterized the drought over southwest China using the GRACE-
derived Total Storage Deficit Index. Cui et al. (2021) developed a 
multiscale Standardized Terrestrial Index of water storage to assess the 
global hydrological droughts.

A number of studies have been performed to track droughts in 
Africa using different drought indices. Examples of earlier investiga-
tions and the indices used by different authors are listed in Table 1. The 
majority of used indices either originated from a single TWS component, 
such as surface water (precipitation) or were created primarily to take 
into account the total TWS components, including surface, soil, ground, 
snow, and canopy water. The influence role of the individual TWS 
components in drought index is not taken into account in these previous 
studies. Each water storage component is an essential hydrological 
variable to comprehend drought occurrences, according to Lopez et al. 
(2020). Since the TWS-based drought indicator considers all compo-
nents together, the primary problem is abstract. As a result, it is more 
reasonable to analyze these components separately since one of them 
(e.g., groundwater) could alleviate the drought impact. Therefore, this 
study aims to consider the role of individual TWS components and their 
relative contributions to drought index computing, which might lead to 
a more reasonable and realistic drought evaluations.

Answering the topic of how different water storage elements 
respond to drought conditions throughout Africa’s major river ba-
sins is the main goal of this study. To do this, we used the Weighted 
Water Storage Deficit Index (WWSDI) (Wang et al. 2020), which was 
developed from the GRACE WSDI but also considered the influence of 
the individual TWS components to provide further reliable droughts as-
sessment. We used the WWSDI to identify the critical drought charac-
teristics (i.e., severity, intensity, and duration) over five Africa’s major 
river basins (Nile, Congo, Niger, Zambezi, and Orange) (see Figure 
1) during the 2003–2016 period. We further compared the analysis of 
WWSDI against the GRACE-based Water Storage Deficit Index (WSDI) 
and the commonly used indicators—the self-calibrated Palmer Drought 
Severity Index (scPDSI), the Standardized Precipitation Index, and the 
Standardized Precipitation Evapotranspiration Index—to assess its 
efficiency. The understudied river basins in this article represent the 
major sources of temporal fluctuations of hydrological masses across 
the continent. They lie between 32.6°S to 31.4°N and 11.5°W to 39.8°E 
and cover a broad range of different sizes, and climate zones vary from 
humid to semiarid. More details regarding these basins are provided in 
Table 2. Further details on the data sets, the methods used, and results 
are highlighted in subsequent sections.

Materials and Methods
Data Sets
In this section, we provide a brief introduction of the data used in this 
study. Table 3 provides a tentative summary.

Precipitation
The study of droughts requires a thorough grasp of precipitation. 
This study uses monthly precipitation of 0.25° × 0.25° from 2003 
to 2016, acquired from the seventh version of the Tropical Rainfall 
Measurement Mission (TRMM 3B43) (Huffman et al., 2007). Numerous 
studies (Ferreira et al. 2018; Abd-Elbaky and Jin 2019) have been con-
ducted over Africa using this data set. Moreover, Awange et al. (2016) 
reported that TRMM was suitable for hydrometeorological applications 
over most parts of Africa.

Potential Evapotranspiration
The present study utilizes monthly potential evapotranspiration (PET) 
retrieved from the MOD16A2 sensor, publicly available worldwide at 
8-day temporal resolutions and 500-m spatial resolution (Running et 
al. 2017). We select MODIS16A2 data sets due to their relatively lower 
magnitude of uncertainty and rather good performance over the region 
(Andam-Akorful et al. 2015; Mekonnen et al. 2022). MODIS16A2 PET 
data extraction was conducted using Google Earth Engine (GEE). The 
8-day PET data were averagely weighted to obtain the monthly PET 
values for this study.

GRACE-Derived TWS Anomalies
GRACE measurements (Jin et al. 2011; Ndehedehe et al. 2020) provide 
useful information for hydrological studies since they offer a quan-
titative assessment of monthly variations of water in lakes, rivers, 
reservoirs, snow, soil, and aquifers. The present study employs the 
sixth release of the spherical harmonics coefficient solutions processed 
by the Center for Space Research (CSR) at the University of Texas at 
Austin (Zhang et al. 2018), to derive gridded terrestrial water storage 
anomaly (TWSA) data over the selected river basins from 2003 to 2016 
at a spatial resolution of 1°.

The coefficients were processed by being truncated at degree and 
order 60. They were then filtered and destriped using a 400-km-radius 
Gaussian filter. The leakage reduction and averaging approach (Khaki 
et al. 2018) were used in this study to minimize the leakage error con-
tributions over the understudied river basins. The missing months in the 

Table 1. Different drought indices employed in previous studies.
River
Basin Drought Indices/Data Inputs References

Nile

GRACE TWSD Hasan et al. (2021)
SPI, SPEI, SSI

Nigatu et al. (2021)

MSDI
PDSI
GRACE WSDI
GRACE CCDI
GRACE GGDI

Congo

SPI, SRI Ndehedehe et al. (2019)
SPI, GRACE TWS change, MERRA 
TWS change Ndehedehe et al. (2017)

SPEI, GRACE-TWS change Ndehedehe et al. (2020)

Niger

De-seasoned GRACE TWS change Ferreira et al. (2018)
SPI, SPEI, SRI Oguntunde et al. (2018)
SPI, GRACE TWS change, MERRA 
TWS change Ndehedehe et al. (2017)

Zambezi
GRACE WSD Thomas et al. (2014)
SPI, TSDI

Hulsman et al. (2021)
WLDI

Orange SPI, SPEI Abiodun et al. (2019)
CCDI = Combined Climatologic Deviation Index; GGDI = GRACE 
Groundwater Drought Index; GRACE = Gravity Recovery and Climate 
Experiment; MSDI = Precipitation and Soil Moisture Integrated Index; 
PDSI = Palmer Drought Severity Index; SPEI = Standardized Precipitation 
Evapotranspiration Index; SPI = Standardized Precipitation Index; SRI = 
Standardized Runoff Index; SSI = Soil Moisture Index; TSDI = Total Storage 
Deficit Index; TWSD = total water storage deficit; WLDI = Water-Level Deficit 
Index; WSD = water storage deficit; WSDI = Water Storage Deficit Index.

Table 2. Area, length, climate, and mean annual precipitation of river 
basins selected in this study.
River 
Basin

Area 
(105 km2)

Length 
(km) Climate

Mean Annual 
P (mm)

Elevation 
(m)

Nile 31.8 6700 Semiarid 678 726
Congo 37.5 4667 Humid 705 737
Niger 21.8 4200 Semiarid 1504 419
Zambezi 13.8 2650 Semiarid 975 1003
Orange 9.7 2300 Semiarid 359 270
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time series were filled using linear interpolation via averaging the prior 
and subsequent months (Yang et al. 2017).

scPDSI Gridded Data Sets
This study utilizes monthly scPDSI (Wells et al. 2004) time-series 
(v4.04) data sets for the period 2003–2016, with a spatial resolution 
of 0.5°. The data sets were collected from the Climate Research Unit 
(CRU) at the University of East Anglia, United Kingdom.

WaterGAP Global Hydrology Model
This study uses the WaterGAP Global Hydrology Model (WGHM) to 
separate the components of GRACE TWS data (i.e., surface water storage 
[SWS], soil moisture storage [SMS], groundwater storage [GWS], snow 
water equivalent [SWE], and plant canopy water storage [CWS]). Given 
that the SWS and GWS are taken into account, the WaterGAP model has 
an advantage over the Global Land Data Assimilation System (GLDAS) 
(Huang et al. 2019). Moreover, climate fluctuations and anthropogenic 
influences on water availability are also considered (Wang et al. 2020). 
The recent model version (WaterGAP 2.2d) at a resolution of 0.5° is used 

in this study (Müller Schmied et al. 2021). The data are available from 
January 2000 to December 2016.

Methodology
Processing Standardized Drought Indices
Standardized indices are widely used to quantify droughts worldwide. 
We employ SPI, SPEI, and scPDSI to assess the effectiveness of WWSDI 
in characterizing drought events over the chosen basins for this study. 
SPI is a meteorological drought index that is based only on precipita-
tion (Satish Kumar et al. 2021). To compute SPI, the monthly TRMM 
precipitation is normalized by utilizing an equal probability function. 
SPEI is an expansion of SPI, as it includes the influence of evapotrans-
piration on drought under changing environments. SPEI is computed 
by subtracting precipitation from potential evapotranspiration using 
climatic water balance. Hence, TRMM precipitation and MOD16 PET 
products were employed to calculate SPEI. It required long-term obser-
vations to reliably calculate SPI and SPEI; however, many studies, such 
as Sun et al. (2018), have successfully used the available GRACE term 

Figure 1. Map showing the location of river basins selected in this article and the elevations along the basins.

Table 3. Data sets used in this study.

Categories Data/Model
Time 
Span

Spatial 
Resolution Data Sources

GRACETWS CSR-SH (RL06) 2003–2016 1°×1° http://www2.csr.utexas.edu/grace/
Precipitation TRMM 2003–2016 0.25°×0.25° https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7
Surface water WGHM 2003–2016 0.5°×0.5° https://doi.pangaea.de/10.1594/PANGAEA.918447
Soil moisture WGHM 2003–2016 0.5°×0.5° https://doi.pangaea.de/10.1594/PANGAEA.918447
Snow water equivalent WGHM 2003–2016 0.5°×0.5° https://doi.pangaea.de/10.1594/PANGAEA.918447
Canopy water WGHM 2003–2016 0.5°×0.5° https://doi.pangaea.de/10.1594/PANGAEA.918447
Potential evaporation MOD16A2 2003–2016 500 m https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD16A2
scPDSI CRU 2003–2016 0.5°×0.5° https://crudata.uea.ac.uk/cru/data/drought/
CRU = Climate Research Unit; CSR = Center for Space Research; GRACE TWS = Gravity Recovery and Climate Experiment terrestrial water storage; scPDSI = 
self-calibrated Palmer Drought Severity Index; TRMM = Tropical Rainfall Measurement Mission; WGHM = WaterGAP Global Hydrology Model.
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to characterize drought phenomena. Both indicators can be obtained 
at different timescales (1, 3, 6, 9, 12, and 24 months). However, each 
timescale reflects a distinct condition. For example, 1 month could 
indicate meteorological types of droughts, 3 months could reflect the 
soil moisture conditions, 6 months may indicate anomalies in land 
water storage, and 9 months could depict the agricultural droughts 
well. Hence, to provide a solid validation for WWSDI performance, the 
6-month timescale was employed since it can effectively demonstrate 
the TWS deficit that was monitored by WWSDI (Sun et al. 2018; Wang et 
al. 2020). Another widely used meteorological drought index is the scP-
DSI, which is developed based on the Palmer Drought Severity Index 
(PDSI) using a physical water balance model. The scPDSI timescale is 
fixed unlike the two indices previously described.

Processing Components Estimation
As mentioned previously, TWSA is composed of the following:

 TWSA = GWSA + SMSA + SWEA + SWSA + CWSA (1)

In this study, TWSA is estimated from Grace, whereas soil moisture 
storage anomalies (SMSA), snow water equivalent anomalies (SWEA), 
surface water storage anomalies (SWSA), and canopy water storage 
anomalies (CWSA) are the anomalies of SMS, SWE, SWS, and CWS, 
deduced from the WGHM. Groundwater storage anomalies (GWSA) are 
estimated via subtracting TWSA from the WGHM-derived components in 
Equation 1. Note that the SWEA and CWSA have minimal contribution 
to TWSA over African basins. Thus, they are assumed to be negligible 
and not considered in groundwater storage anomalies computation, as 
indicated in Equation 1 (further description provided in “Results and 
Analysis”). SMSA and SWSA are expanded into the spherical harmonic 
coefficients, truncated to 60°, ordered, and filtered by Gaussian filter. 

Component Contribution Ratio
We utilized the component contribution ratio (CCR) to determine the 
mean percentage contribution of a single water storage component 
to the temporal variability of the total TWS (Huang et al. 2019). CCR 
is calculated as the ratio of the mean absolute deviation (MAD) of a 
storage component to the total TWS variability (TV), as expressed by 
(Zhang et al. 2019)

  
(2)

where MADs =   , S denotes the single storage components,

and TV is the total variability, calculated as summation of all 
components MADs ( ).

Processing the WWSDI
In this study, in order to depict drought in the five large Africa’s basins, 
we adopted the WWSDI developed by Wang et al. (2020). WWSD is 
based on WSD, which represents the difference between TWSA time 
series and the monthly means of TWSA values (Thomas et al. 2014) and 
is computed as

 WSDu,v = TWSAu,v – TWSAv (3)

where TWSAu,v is the value of TWSA time series for the vth month of the 
uth year and twsav is the mean value of the vth month of TWSA dur-
ing the study period. A negative deviation represents storage deficits. 
Furthermore, three continuous negative months or longer is considered 
a drought event (Thomas et al. 2014). In order to make comparisons 
against SPI, SPEI, and scPDSI in this study, the WSD is normalized to 
WSDI by the zero-mean normalization method, based on the expression

  
(4)

where σ and μ indicate standard deviations and the mean of the WSD 
time series, respectively. In order to construct WWSD, we incorporated 

different TWS components (i.e., GWS, SWS, and SMS) to the drought in-
dex by weighting these components through their CCR using Equation 
2. We subsequently calculated the water deficit for each component 
(i.e., groundwater storage deficit [GWSD], surface water storage 
deficit [SWSD], and soil moisture storage deficit [SMSD]) like the WSD. 
Thereafter, WWSD was generated by combining these water compo-
nents’ deficits after multiplying them by their respective weights,

 WWSD = ω1GWSD + ω2SWSD + ω3SMSD (5)

where ωi (= 1, 2, 3) represent the derived weight from Equation 2. Finally, 
WWSDI is achieved by normalizing WWSD, as shown in Equation 4.

Results and Analysis
Distribution of Precipitation, Terrestrial Water Storage, and Its Components
The monthly averaged TWSA variation and its individual components 
other than precipitation over 14 years (from January 2003 to December 
2016) are illustrated in Figure 2. A clear seasonal cycle as well as 
interannual variation in the amount of TWSA, GWSA, SMSA, SWSA, and 
precipitation are visible for all the basins. CWSA and SWEA variations 
were observed to be minimal over all the basins. Thus, the latter two 
components are not considered in the following analysis.

Figure 2. Time series of monthly precipitation, the terrestrial water 
storage anomaly (TWSA), and the terrestrial water components 
storage anomaly (WCSA) in the (a) Nile, (b) Congo, (c) Niger, (d) 
Zambezi, and (e) Orange river basins.
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A comparison of precipitation and the TWSA seasonal cycle is 
shown in Table 4. It can be observed that both the Nile and the 
Niger basins followed broadly similar seasonal cycle variation 
since they have similar climatological/hydrological characteristics. 
Also, the Zambezi and Orange basins revealed similar pattern of 
the rainiest and driest months in terms of precipitation and TWSA.

It is clear from Figure 2 that a time lag exists between the 
peak of precipitation and TWSA as well as between the individual 
components of TWSA. Herein, the lag between TWSA, GWSA, SMSA, 
SWSA, and precipitation is further quantified via calculating the 
Pearson correlation coefficients among these storage components 
as well as the respective perception for different time lags (i.e., 
0–12 months). Subsequently, the value of the maximum correla-
tion coefficient between each two variables and the lags (numbers 
in brackets) corresponding to those maximum values are identified and 
shown in Figure 3.

The results from Figure 3 suggest a time lag of 0 to 2 months 
between TWS anomalies derived from GRACE and precipitation over 

the five basins. In general, the change in TWS was clearly noticeable in 
the season following the precipitation change over all basins (see Table 
4). This result is consistent with the findings of Abd-Elbaky and Jin 
(2019) and Zhang et al. (2019). Concerning the lags between individual 

Table 4. Wet and dry seasons of precipitation and terrestrial water storage 
anomalies (TWSA) over large African river basins.

River 
Basin

Wet Months Dry Months

Precipitation 
(mm)

TWSA 
(mm)

Precipitation 
(mm)

TWSA 
(mm)

Nile Jun–Aug (101.5) Sep–Nov (48.3) Dec–Feb (14.5) Mar–May (−41.9)

Congo Sep–Nov (154.4) Dec–Feb (32.8) Jun–Aug (7.9) Sep–Nov (−47.2)

Niger Jun–Aug (136) Sep–Nov (75.7) Dec–Feb (2.6) Mar–May (−64.8)

Zambezi Dec–Feb (204.6) Mar–May(49.7) Jun–Aug (2.8) Sep–Nov (−188.6)

Orange Dec–Feb (60.7) Mar–May(6.45) Jun–Aug (7.09) Sep–Nov (−9.33)

Figure 3. Maximum Pearson correlation coefficients between monthly terrestrial water storage anomalies (TWSA), the individual components of 
TWSA, and precipitation in the (a) Nile, (b) Congo, (c) Niger, (d) Zambezi, and (e) Orange river basins. The numbers in brackets represent the 
corresponding lag months.
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components of the TWSA and precipitation, the largest correlation coef-
ficients were observed corresponding to 2 to 3 months of lag in terms 
of GWSA and 0 to 1 month in terms of SWSA and SMSA, respectively. 
The lags between GWSA, SMSA, and SWSA against precipitation can be 
arranged as GWSA > SMSA ≥ SWSA. These findings further supported the 
assertion of precipitation as a key driver of water storage, with immense 
control over the hydrological cycle in these basins.

In each basin, the lags between TWSA, individual components of 
TWSA, and precipitation are attributed mainly to each basin’s peculiar 
geographical and climatological characteristics.

Figure 4 illustrates the calculated component contribution ratio 
(CCR) of GWSA, SMSA, and SWSA for the five major rivers in Africa. 
The results revealed that the highest contribution to total water storage 
variability over the five river basins was induced mainly by the GWS 
anomaly accounting (56%, 61%, 47%, 64%, and 78%), followed by 
SMSA (34%, 32%, 25%, 26%, and 18%) and SWSA (10%, 21%, 14%, 
10%, and 4%) for the Nile, Congo, Niger, Zambezi, and Orange basins, 
respectively. Furthermore, SMSA and SWSA peaks and troughs are not 
necessarily coincident with the peaks and troughs of TWSA, as shown in 
Figures 2 and 3. This difference is attributed mainly to the different time 
lags between precipitation falling and the response of the single TWS 
components against the precipitation. These findings denote that differ-
ent TWS components exhibit different amplitude, phase, and contribu-
tions to TWS change. This further confirms that different components 
contribute distinctly to TWS changes over the understudied basins. 
Given their unique contributions to the shift in TWS, it is natural to won-
der whether these water components react differently to the incidence of 
drought over those basins. Further answers and analysis are provided in 
the following section.

Deficit of Terrestrial Water Components in the Major Basins of Africa
Figures 5 and 6 demonstrate the time series of the derived terrestrial 
water components storage deficit (WCSD) (including GWSD, SMSD, and 
SWSD) and terrestrial water storage deficit indices (WCSDI) (includ-
ing GWSDI, SMSDI, and SWSDI) from January 2003 to December 2016 
for the five major African basins. According to Figure 5, the overall 
correlation between GWSD and WSD for the five basins ranged from 
0.91 to 0.99. SMSD and SWSD followed different patterns from that of 
GWSD during different periods in the time series. For example, over the 
Congo basin (Figure 5b), from January 2009 to January 2013, GWSD 
recorded a declining trend of −1.03 mm, whereas SMSD and SWSD 
exhibited rising trends of 0.3 mm and 0.15 mm, respectively.

To better understand the drought dynamics over the considered 
basins in this study, WCSD was also utilized as an indicator to identify 
drought events based on 3 months or more of continuous negative 
deficits (from January 2003 to December 2016), as shown in Figure 7. 
The results clearly show that different WCSD indicators detected varied 
onset, duration, and drought occurrences during the study period. 
For example, over the Nile basin (Figure 7a), groundwater storage 
deficit (GWSD) exhibited six drought events, whereas SMSD and SWSD 
exhibited 12 and 7 events, respectively, between January 2003 and 
December 2016. Moreover, a noticeable prolonged drought state in 
terms of groundwater storage (GWSD) was observed from January 2003 
to February 2007, January 2003 to December 2009, January 2003 to 
July 2008, and January 2003 to January 2006 over the Nile, Niger, 
Zambezi, and Orange basins, respectively, separated by nearly one 
wetting month. The drought trends depicted from (Figure 7a, 7c, 7d, 
and 7e) are consistent with GWSDI (Figure 6a, 6c, 6d, and 6e). The late 
response of GWS to recharge from SWS and/or the increased ground-
water withdrawal can support this finding. Furthermore, the Niger 
basin had the most prolonged GWS drought state among all the basins 
recording 7 years. Previous work by Ferreira et al. (2018) on a water 
storage (TWS) drought signal over West Africa (including the Niger 
basin) found a long drier period between 2003 and 2008. These find-
ings are consistent with the results presented in this study. According 
to the analysis of the 2003–2008 period presented in this article, the 
water storage (TWS) based drought trend is related to groundwater 
storage, where most of the TWS (i.e., 61%) in the Niger basin is induced 
mainly by GWS (Figures 4 and 7c). Ferreira et al. (2018) reported that 

Figure 4. Component contribution ratios of groundwater storage 
anomalies (GWSA), soil moisture storage anomalies (SMSA), and 
surface water storage anomalies (SWSA) to the total water storage 
anomalies (TWSA) in the major river basins of Africa.

Figure 5. Time series of water storage deficit (WSD) and water 
components storage deficit (WCSD) in the (a) Nile, (b) Congo, (c) 
Niger, (d) Zambezi, and (e) Orange river basins.
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the rainfall increasing trend between 2003 and 2008 over West Africa 
is associated with a drought period. They attributed this to the unsus-
tainable influencing of rainfall recovery to the water-storage increase 
across West Africa, in the early 2000s. Consequently, the occurrence of 
the long GWS drought state in the Niger basin may be attributed to the 
minimal or late influences of surface water on the groundwater storage 
in the early 2000s.

The results also demonstrate that SWSD and SWSDI over the Orange 
basin (Figures 6e and 7e) exhibited a long drier period from March 
2013 to December 2016 except for February and June 2013. This find-
ing is in line with an early study conducted over the South African dry-
ing signal (Munday and Washington 2019). The latter linked the decline 
in precipitation with local surface temperature change since increased 
subsidence is linked to clearer skies and higher net solar radiation. Also, 
the reduction in precipitation magnitude is correlated to the changing 
patterns of tropical sea surface temperatures. Furthermore, the exceed-
ing demand for surface water may cause the surface water shortage, 
where the water of the Orange basin is heavily utilized, and most of the 
riparian states rely on the Orange basin’s water resources for com-
mercial crop irrigation; in addition, 29 dams are operated over the river 
(Mgquba and Majozi 2020), which may cause large water abstractions.

The results acquired from WCSD and WCSDI analysis concluded that 
different water components responded differently to drought events 
over the basins in this study. Thus, these parameters can be considered 
for a more realistic and reliable drought evaluation over the major 
African basins.

Figure 6. Time series of water storage deficit index (WSDI) and water 
components storage deficit index (WCSDI) in the (a) Nile, (b) Congo, 
(c) Niger, (d) Zambezi, and (e) Orange river basins.

Figure 7. Temporal extents of identified drought events based 
on water storage deficit (WSD), water components storage deficit 
(WCSD), and weighted water storage deficit (WWSD) in the (a) Nile, 
(b) Congo, (c) Niger, (d) Zambezi, and (e) Orange river basins. 
The yellow values denote wet month, while the dark blue values 
represent drought month.
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Evaluation of WWSD Relative to WSD
As previously shown, different water components play different roles 
in response to drought events over the basins in the study. The findings 
of this article have implications for how to provide a more realistic 
drought evaluation considering the individual TWS components and 
their relative contributions to the drought index. Therefore, to further 
demonstrate the rationality behind utilizing WWSD in this study, the 
performance of WWSD and WSD in terms of drought events identifica-
tion has been assessed an is shown in Figure 7. Despite both indicators 
appearing to behave similarly, the data show some discrepancies in 
the observed onset and drought duration between WWSD and WSD. For 

example, in the Nile basin (Figure 7a), WWSD recorded one drought 
between April 2004 and October 2006, whereas WSD monitored the 
drought from March 2004 to November 2006. In the Congo basin 
(Figure 7b), WSD detected a drought event from November 2008 to 
January 2009; however, WWSD failed to identify this event. This result 
indicates that WWSD has varied sensitivity to drought events compared 
to WSD. These discrepancies, however, are explained by the weight 
given to a single TWS component in the WWSD. In conclusion, these 
findings suggest that accounting the influencing roles of these compo-
nents storage in drought index are expected to provide more accurate 
drought characteristics estimation over major basins in Africa.

Figure 8. Scatterplots of correlation between the Weighted Water Storage Deficit Index (WWSDI) and Water Storage Deficit Index (WSDI), the 
Standardized Precipitation Index (SPI), the Standardized Precipitation Evapotranspiration Index (SPEI), and the self-calibrated Palmer Drought 
Severity Index (scPDSI) for the (a) Nile, (b) Congo, (c) Niger, (d) the Zambezi, and (e) Orange river basins. An asterisk indicates that the 
correlation is not significant. 
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WWSDI Identification of Droughts
In this study, the efficacy of WWSDI was identified by making compari-
sons with WSDI and other commonly used drought indices (i.e., SPI, SPEI, 
and scPDSI). The scatterplots in Figure 8 represent the correlation between 
WWSDI and WSDI, SPI, SPEI, and scPDSI over the five African river basins.

High positive correlations between WWSDI and WSDI are observed 
over the Nile, Congo, Niger, Zambezi, and Orange basins estimated 
at 0.98, 0.95, 0.98, 0.99, and 0.98, respectively. This strong relation 
between WWSDI and WSDI is due to their high sensitivity to GRACE TWS 
and the inclusion of TWS in their calculation procedures. However, 
the differences in correlation are attributed to the consideration of 
the weight of a single TWS component in WWSDI. WSDI is based on a 
single variable (GRACE TWSA); on the other hand, WWSDI is based on 
combining the TWS estimation from GRACE and WGHM using the CCR of 
individual TWS compartments as the weight. However, despite the fact 
that WWSDI and WSDI operate quite similarly, there is a distinction, as 
discussed in the previous section.

When comparing the WWSDI with other commonly used drought 
indices, we discovered that WWSDI is significantly correlated with SPI 
at a 0.05 significance level. The highest positive correlation (r = 0.69) 
between the two indices was observed in the Orange basin, while the 
lowest was detected in the Congo basin. WWSDI exhibited a significant 

correlation with the SPEI and scPDSI in the Nile, Congo, Zambezi, and 
Orange basins but a weak correlation in the Niger basin (Figure 8c).

In order to undertake a more thorough study, we further evaluated 
the temporal trends of these time series in Figure 9 in light of the fact 
that the association between the WWSDI and SPI, SPEI, and scPDSI was 
strongest in some situations while being less in others. As shown in 
Figure 9, the performance of WWSDI and its response to climate change 
correspond to the peaks and troughs of SPI, SPEI, and scPDSI over most 
basins. For example, all indicators showed that the biggest troughs 
occurred in the Orange basin in 2003 and across the Nile and Zambezi 
basins in 2006. However, in several cases, WWSDI was not fitting well 
with SPI, SPEI, and scPDSI; for example, the drought identified by WWSDI 
in 2004 over the Niger basin was not detected by SPI, SPEI, and scPDSI. 
The variations in relationships among SPI, SPEI, scPDSI, and WWSDI 
are most likely due to the differences in hydrological components 
and algorithms. For example, the high correlation between the scPDSI 
against WWSDI in the Nile basin reflects the significant influence of soil 
moisture on the TWS. Some recent studies also reported the significant 
correlation between soil moisture and TWS over the Nile basin (e.g., 
Abd-Elbaky and Jin 2019). In contrast, the weak correlation of SPEI and 
scPDSI with WWSDI in the Niger basin reveals that TWS was not much 
affected by evapotranspiration and soil moisture. In this context, the 
Niger basin was previously characterized as having a long-term high re-
duction in water storage between 2002 and 2008 (Ferreira et al. 2018), 
which corroborates our findings (Figure 7c). Thus, the availability of 
the stored water was less in the Niger basin, which affects the weak 
correlation of WWSDI against SPEI and scPDSI. Overall, WWSDI showed a 
good consistency with SPI, SPEI, and scPDSI in drought monitoring over 
most of the basins, which verifies the reliability of WWSDI in this study.

Analysis of Droughts in the Major Basins of Africa
Figure 10 displays the WWSDI-obtained droughts events for the major 
African basins from January 2003 to December 2016. Table 5 repre-
sents the magnitude, intensity, and duration characteristics of WWSDI 
for all the basins. The magnitude is calculated as accumulated WWSDI, 
and the intensity is calculated as the ratio of magnitude to duration 
(i.e., magnitude/duration) (Zargar et al. 2011; Wang et al. 2020).

Four drought events were detected in the Nile basin for 73 months 
during 2003, 2004–2006, and 2009–2011. In addition, two wet events 
occurred during 2006–2008 and 2011–2016; however, wet events be-
came frequent after 2011. The most severe droughts (intensity of −1.15) 
occurred during 2004–2006 period, which is in line with the conclusions 
of previous studies conducted on the Nile basin (Hasan et al. 2021; 
Nigatu et al. 2021). The second and third severe drought events that 
took place during the 2009–2011 and 2003 regimes are consistent with 
the findings of Nigatu et al. (2021). However, in the current study, the 
results indicate that the identified drought episodes using WWSDI exhib-
ited less magnitude than what was reported by Nigatu et al. (2021), who 
used WSDI. Moreover, the current study witnessed more recovery peri-
ods, particularly during the 2014–2016 period, than that of Nigatu et al. 
(2021). These differences can be attributed to the GRACE data period and 
to the fact that treating the weight of different TWS components equally 
may overestimate the severity and duration of drought conditions in the 
Nile basin. In the Congo basin, six drought events over 79 months were 
observed during the 2004, 2005–2006, 2007, 2010–2012, 2013–2014, 
and 2015 periods; in addition, five wet events were identified during 
the 2003–2004, 2008, 2009–2010, 2014, and 2015–2016 periods. The 
years 2010–2012 exhibited the highest frequency of droughts (with an 
intensity of −1.23). Our findings are in line with those of who observed 
the big drought occurrences that occurred over the Congo basin in 2005, 
2006, and 2012. In the Niger basin, two prolonged drought episodes for 
84 months were detected during 2003–2007 and 2007–2009; in addi-
tion, two significant wet events were observed between 2010–2011 and 
2012–2016. However, after the 2009 period, there was a transition from 
dry to wet conditions. The severest drought event (intensity of −1.02) 
occurred during the 2003–2007 period, which is consistent with the 
findings of Ferreira et al. (2018), who carried out a study on the Niger 
basin. In the Zambezi basin, three drought events for 76 months were 
observed during the 2003–2004, 2005–2007, and 2015–2016 periods. 
Moreover, extended wet periods with water gain that began gradually in 

Figure 9. Time series of the Weighted Water Storage Deficit Index 
(WSDI), the Water Storage Deficit Index (WSDI), the Standardized 
Precipitation Index (SPI), the Standardized Precipitation 
Evapotranspiration Index (SPEI), and the self-calibrated Palmer 
Drought Severity Index (scPDSI) for the (a) Nile, (b) Congo, (c) 
Niger, (d) Zambezi, and (e) Orange river basins.
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2008 and greatly escalated from 2010 until the second half of 2015 were 
found. The severest drought event (intensity of −1.02) occurred during 
the 2003–2004 period. In their retrospective analysis of the Zambezi 
basin, Hulsman et al. (2021) equally confirmed that drought events 
occurred in the 2003–2004, 2005–2007, and 2015–2016 periods. In the 
Orange basin, five drought events over a total of 76 months were identi-
fied during the 2003–2006, 2007, 2009, 2010–2011, and 2015–2016 
periods. In addition, four wet events were observed during the 2006, 
2007–2008, 2009–2010, and 2011–2015 periods. The severest drought 
event (intensity of −1.08) occurred during 2003–2006. Additionally, the 
identified drought events over the region in 2004, 2005, 2007, 2011, and 
2013 are in agreement with the findings of Masih et al. (2014).

The deviations in our drought evaluation results, along with those 
of previous studies, could be attributed to the period of the data sets 
and the utilized index method (WWSD). Our results indicated long-term 
drought occurrence from 2003 to 2006 over the Nile basin, from 2003 
to 2009 over the Niger basin, and from 2003 to 2008 over the Zambezi 
basin, with the inclusion of few wetting months. This article’s findings 
confirmed a general wetting tendency for the Nile, Niger, Zambezi, and 
Orange basins. Also, a mild trend (close to 0 mm) over the Congo basin 
was observed. The onset of the drought recovery period was consis-
tent with the precipitation trends over the five river basins. However, 
considering the impacts of temperature increases, Africa’s vulnerability 
to large-scale droughts may continue to increase (Ahmadalipour and 
Moradkhani 2018). The weather circulations in Africa have also been 
strongly influenced by large-scale atmospheric modes, such as the 
Indian Ocean Dipole (Anyah et al. 2018; Ni et al. 2018).

Discussion
Since GRACE observations can track changes in large-scale water stor-
age, they are an essential tool in hydro-climatological investigations. 
Although established drought indices based on GRACE TWS (such as the 
WSDI and DSI) can identify vertically integrated water storage deficits, it 
can be challenging to estimate how much groundwater, surface water, 
or soil moisture deficits contribute to the overall water loss (Emerton et 
al. 2016). Thus, they reflect only integrated drought conditions, includ-
ing groundwater drought. Furthermore, under the influence of climate 
change, the change characteristics (e.g., magnitude, variability, and 
duration) of each component are quite different (Wang et al. 2022). As 
a result, rather than evaluating all components as a whole, it is required 
to study the influence of each component separately in order to better 
comprehend the effects of climate change. In this study, a comprehen-
sive drought index (WWSDI) was applied to evaluate drought events 
over the five large basins in Africa. The constructed index considers 
the contribution of a single component of the TWS deficit (i.e., surface, 
soil moisture, and groundwater) to the total water loss. The WWSDI has 
been successfully applied to the Yangtze basin as a case study scenario 
(Wang et al. 2020). Contextually, we determined a significant consis-
tency among WWSDI and GRACE WSDI, SPI, SPEI, and scPDSI over the 
five African basins. This may indicate solid evidence on the applicabili-
ty and capability of WWSDI over the river basins of Africa. Our research 
revealed that various TWS components contributed differently to TWS 
change and responded differently to drought patterns across all basins. 
Findings also provides more granular and differentiated information 
that can help improve researchers’ knowledge of the hydrological fac-
tors and how they contribute to the overall characteristics of drought 
occurrences in the region. Therefore, it is seen to be more trustworthy 
to develop drought indices from GRACE when considering water com-
ponents individually and in a differently weighted manner.

In order to provide decision makers with unique information for 
planning and management, we have, for the first time, evaluated the 
deficiency change of TWS components and their reaction to climate 
change in vast African basins. However, until this study was con-
ducted, analysis of water components in major African river basins 
was uncommon or rare. We acknowledge that some shortcomings and 
uncertainties remain existed in this study. First, the WWSDI time series 
is only 13 years, which is insufficient to conclude a robust finding from 
a climatic perspective; however, longer-term data (at least 30 years) 
are needed to determine the baseline of the occurrence and severity 

Figure 10. Drought events during 2003–2016 based on the Weighted 
Water Storage Deficit Index (WWSDI) for the (a) Nile, (b) Congo, (c) 
Niger, (d) Zambezi, and (e) Orange river basins.

Table 5. Drought characteristics in the major river basins in Africa 
identified by the Weighted Water Storage Deficit Index (WWSDI).
River 
Basin No. Period Magnitude Intensity Duration

Nile

1 Feb 2003–Jun 2003 −2.39 −0.48 5
2 Sep 2003–Dec 2003 −1.45 −0.36 4
3 Apr 2004–Oct 2006 −35.78 −1.15 31
4 Jan 2009–Sep 2011 −22.36 −0.68 33

Congo

1 Jan 2004–Nov 2004 −4.25 −0.39 11
2 Jan 2005–Nov 2006 −24.85 −1.08 23
3 Mar 2007–Jul 2007 −1.55 −0.31 5
4 Dec 2010–Oct 2012 −28.40 −1.23 23
5 Jan 2013–Jan 2014 −8.01 −0.62 13
6 Jan 2015–Apr 2015 −2.38 −0.60 4

Niger
1 Jan 2003–May 2007 −54.01 −1.02 54
2 Jul 2007– Dec 2009 −19.64 −0.65 30

Zambezi
1 Jan 2003– Dec 2004 −24.34 −1.02 24
2 Jan 2005– Dec 2007 −28.62 −0.79 36
3 Sep 2015– Dec 2016 −15.7 −0.98 16

Orange

1 Jan 2003–Jan 2006 −40.07 −1.08 37
2 Mar 2007–Nov 2007 −8.50 −0.95 9
3 Apr 2009–Jul 2009 −1.30 −0.32 4
4 Jun 2010–Jan 2011 −5.05 −0.63 8
5 Jul 2015– Dec 2016 −12.89 −0.72 18

230 Apr i l  2023 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



of water storage deficits (Liu et al. 2020). Furthermore, analysis of 
the severity of drought events based on three or more continuous 
negative values of WWSDI is not suitable for monitoring all drought 
events, particularly short-term drought (Wu et al. 2021). Additionally, 
it worth noting that using linear interpolation to fill the GRACE time 
series’ missing values would also induce errors in drought estimation 
(Andam-Akorful et al. 2015; Sun et al. 2018). However, despite this 
approach being simple and widely used to handle missing data, other 
construction techniques, such as artificial neural networks, may pro-
vide more accurate data in the future (Ahmed et al. 2019).

Second, using WGHM outputs to separate water components from 
GRACE TWS might be subject to large uncertainty (Wang et al. 2020). 
Regarding the former, most of the existing global models, including 
WGHM and even local land surface models, are uncalibrated and unable 
to predict TWS components accurately, specifically groundwater storage 
(Hosseini-Moghari et al. 2020). This is mainly because of the intricate 
interplay between the aquifer and surface water hydrology. Nevertheless, 
Ferreira et al. (2020) introduced a unique reconstruction method that 
combines remotely sensed and modeled data in order to estimate the 
water compartments from TWS. This method may also improve the preci-
sion of WWSDI. Although GRACE measurements are found to be effective 
to monitor large- or global-scale drought, the resolutions of the GRACE 
observations are associated with certain limitations for use at the subbasin 
scale or submonthly time periods (Kumar et al. 2016; Li et al. 2019). 
Data assimilation techniques have been proposed in future studies to im-
prove the limitations of the GRACE data and WWSDI estimates by assimi-
lating the GRACE/FO observation into hydrological models. Thus, finer 
drought maps than of GRACE scale (around 150 000 km2 at midlatitudes) 
could be generated, which is crucial for accurate drought monitoring.

Conclusion
In recent decades, severe droughts have affected many river basins 
worldwide, causing environmental and social damage. Prioritizing 
adaptation measures requires drought evaluation over large river basins 
around the world. In this study, we generated the WWSDI based on 
combined TWS from GRACE and WGHM utilizing the CCR of each com-
ponent as their weight to assess the occurrences of drought throughout 
the major African basins from January 2003 to December 2016. The 
main findings of the study are summarized as follows:
• Precipitation is the primary hydrologic input for the TWS change, 

and the distribution of both parameters showed a significant sea-
sonal change in the five river basins.

• Regarding CCR, SMS and SWS rank the second and third, while GWS 
change ranks the first and accounts for 56%, 61%, 47%, 64%, and 
78% of TWS change in the Nile, Congo, Niger, Zambezi, and Orange 
basins, respectively. These results showed that different water com-
ponents contribute distinctly to TWS change over those basins.

• According to WCSD and WCSDI distribution, different water com-
ponents play different roles in response to drought events in the 
basins. The WSDI, SPI, SPEI, and scPDSI are correlated significantly 
against WWSDI over the Nile, Congo, Zambezi, and Orange basins. 
In the Niger basin, SPI is significantly correlated with WWSDI. 
Overall, our findings indicate that the WWSDI can successfully 
detect drought events over major basins in Africa.

• Based on WWSDI, the most severe droughts occurred in 2006, 2012, 
2006, 2006, and 2003 in the Nile, Congo, Niger, Zambezi, and 
Orange basins, respectively. A significant wetting tendency was 
detected over the Nile, Niger, Zambezi, and Orange basins, while a 
mild trend was observed in the Congo basin.

The study of this nature may be helpful to policymakers and managers 
with seeking to promote sustainable water resource management and 
development
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Lightweight Parallel Octave Convolutional Neural 
Network for Hyperspectral Image Classification

Dan Li, Hanjie Wu, Yujian Wang, Xiaojun Li, Fanqiang Kong, and Qiang Wang

Abstract
Although most deep learning-based methods have achieved excel-
lent performance for hyperspectral image (HSI) classification, they 
are often limited by complex networks and require massive training 
samples in practical applications. Therefore, designing an efficient, 
lightweight model to obtain better classification results under small 
samples situations remains a challenging task. To alleviate this 
problem, a novel, lightweight parallel octave convolutional neural 
network (LPOCNN) for HSI classification is proposed in this paper. 
First, the HSI data is preprocessed to construct two three-dimensional 
(3D) patch cubes with different spatial and spectral scales for each 
central pixel, removing redundancy and focusing on extracting 
spatial features and spectral features, respectively. Next, two non-
deep parallel branches are created for the two inputs, which design 
octave convolution rather than classical 3D convolution to facilitate 
light weighting of the model. Then two-dimensional convolutional 
neural network is used to extract deeper spectral-spatial features 
when fusing spectral-spatial features from different parallel lay-
ers. Moreover, the spectral-spatial attention is designed to promote 
the classification performance even further by adaptively adjusting 
the weights of different spectral-spatial features according to their 
contribution to classification. Experiments show that our suggested 
LPOCNN acquires a significant advantage on classification perfor-
mance over other competitive methods under small sample situations.

Introduction
Hyperspectral image (HSI) is acquired by an imaging spectrometer 
with high spectral resolution and contains multiple dense and continu-
ous narrow band his. HSI is a three-dimensional cube that records both 
spatial and rich spectral information of ground objects and accurately 
reflects the spatial and spectral characteristics of the target (Vantaram 
et al. 2015; Zabalza et al. 2015; Zhang et al. 2019). Therefore, the ad-
vantage of providing rich spectral-spatial information makes HSI play a 
rather important role in various fields, such as land cover classification 
(Hosseini et al. 2012; Khan et al. 2018), mineral exploration (Du et al. 
2016; Peyghambari and Zhang 2021), military reconnaissance (Bitar 
et al. 2019), and environmental detection (Ghamisi et al. 2018; Yu et 
al. 2021a). In these above HSI applications, there is such a fundamental 
problem as HSI classification (Chen et al. 2014; Fauvel et al. 2013; He 
et al. 2018; Prabukumar et al. 2018), aiming to classify all the pixels in 
HSI to confirm their true categories.

In the past decades, various traditional HSI classifiers based on 
manually extracted features have been introduced. However, HSI clas-
sification faces a challenge called “curse of dimensionality” because 

of the high-dimensional nature of HSI. To address the above challenge, 
researchers propose a series of dimensionality reduction methods for 
HSI classification, e.g., principal component analysis (PCA) (Kang et al. 
2017), the maximum noise fraction (He et al. 2019), and band selec-
tion (Wang et al. 2017). These dimensionality reduction algorithms 
mentioned above map the high-dimensional HSI to the lower-dimen-
sional feature space while retaining distinguishability between different 
land-cover classes. In general, there are two main classes of traditional 
HSI classifiers according to whether they use spatial context informa-
tion: (1) HSI classification methods based on spectral information only, 
e.g., random forest (Crawford et al. 2004; Ham et al. 2005; Xia et 
al. 2016b), extreme learning machine (Yu et al. 2021b), and support 
vector machines (SVM) (Heydari and Mountrakis 2019; Tarabalka et al. 
2010; Xia et al. 2016a; Yan et al. 2013); (2) HSI classification methods 
based on spectral-spatial information, e.g., extended morphological 
profiles (Dalla Mura et al. 2011; Wu et al. 2017), SVM with composite 
kernels (SVMCK) (Camps-Valls et al. 2006; Marconcini et al. 2009; 
Peng et al. 2015), the joint sparse representation classifiers (Cao et 
al. 2019), and 3D-Gabor phase coding classifiers (Chen et al. 2021). 
However, all these classification algorithms mentioned above require 
hand-designed feature extraction strategies to obtain easily distinguish-
able features, and the performance of these classification algorithms 
also depends on the researchers' experience working in the field of HSI 
classification. Therefore, designing an effective traditional hyperspec-
tral classification algorithm takes a lot of time.

Recently, deep learning-based methods (Audebert et al. 2019; Guo 
and Zhu 2021; Liu et al. 2017; Ma et al. 2015) have demonstrated 
excellent practical achievements for HSI classification since they can 
automatically learn nonlinear deep semantic features of complex data 
without manually designing feature extraction strategies. The stacked 
autoencoder (SAE) (Chen et al. 2014) pioneers his exploration of deep 
learning algorithms for HSI classification, followed closely by deep 
belief networks (DBN) (Chen et al. 2015). However, the classification 
results achieved are limited when applying SAE and DBN to HSI clas-
sification, because they require the input data format to be one-dimen-
sional, resulting in a large amount of discarded useful information. To 
solve this problem, convolutional neural network (CNN) (Chen et al. 
2017; Hu et al. 2015; Liu et al. 2018; Yu et al. 2018) is applied to HSI 
classification by researchers. It can automatically extract deep spectral 
and spatial features with multiple convolutional layers and achieve 
good classification results when applied to HSI classification. At first, 
researchers apply two-dimensional CNN (2DCNN) (Bhatti et al. 2022; 
Salman and Yuksel 2016; Song et al. 2018) to HSI classification, and 
then propose three-dimensional CNN (3DCNN) (Feng et al. 2019; Kang 
and Kim 2021; Liu et al. 2018) that is more suitable for three-dimen-
sional hyperspectral images. 3DCNN can select a 3D block around the 
central pixel as the input of this network and can explore 3D spectral-
spatial features of HSI concurrently. Nevertheless, there is a problem of 
gradient disappearance when training deeper 2DCNN or 3DCNN. To al-
leviate this problem, residual learning is introduced into CNN-based HSI 
classification networks. The spectral–spatial residual network (SSRN) 
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(Zhong et al. 2018) is proposed to address the pitfall of gradient disap-
pearance by introducing residual learning into the 3DCNN. Pu et al. 
(2021) applies graph convolution networks to HSI classification, which 
can act directly on hyperspectral maps and use their structural informa-
tion. However, there is still a challenge of how to convert hyperspectral 
images into graph structures and uncover the connections between dif-
ferent nodes in the graph. Lei et al. (2021) propose deep convolutional 
capsule neural network, which introduces the capsule structure into 
convolutional neural networks to retain useful location information for 
classification tasks that is lost in traditional CNNs.

Currently, a new convolution strategy is proposed by Chen et al. 
(2019), which is octave convolution. They consider that not only im-
ages in the natural world comprise low-frequency and high-frequency 
channels, but also the feature map in CNN comprises both low-frequen-
cy channels and high-frequency channels where the former contains 
global information about the image and the latter contains detailed 
information about the image. Xu et al. (2020) therefore applies octave 
convolution to HSI classification, effectively alleviating the spatial 
redundancy problem by dividing the frequency of the image and then 
halving the low-frequency information in the image. But this approach 
still demands massive training samples due to using multi-scale con-
volutional networks which adds numerous network parameters. Zhu et 
al. (2021) introduce the attention mechanism into the residual network 
to emphasize the features that contribute more to the classification. 
Despite the promising classification performance achieved by the deep 
learning-based methods described above, they still have a disadvantage 
of requiring massive training samples when used for real-world sce-
narios. These deep networks above need to tune numerous parameters, 
so massive labeled samples are necessary to train these deep networks. 
However, obtaining labeled samples for hyperspectral images can 
be very expensive in practice, which means that we only have a very 
limited number of labeled samples available. These methods will 
have overfitting problems under small sample situations due to so few 
training samples and too many network parameters, which leads to un-
desirable classification results. Therefore, it is still a challenging task to 
design an efficient lightweight network to alleviate the requirement for 
the number of labeled samples and to obtain better classification results 
under small sample situations.

In this paper, a novel lightweight parallel octave convolutional 
neural network (LPOCNN) for HSI classification is proposed. First, the 
HSI data is preprocessed to construct two 3D patch cubes with different 
spatial and spectral scales for each central pixel, removing redun-
dancy and focusing on extracting spatial features and spectral features 
respectively. Next, two non-deep parallel branches are created for the 
two inputs, which design octave convolution rather than classical 3D 
convolution to facilitate light weighting of the model. Then 2DCNN is 
used to extract deeper spectral-spatial features when fusing spectral-
spatial features from different parallel layers. Moreover, we also design 
the spectral-spatial attention to promote the classification perfor-
mance even further, by adaptively adjusting the weights of different 
spectral-spatial features according to their contribution to classifica-
tion. Eventually, fused and adjusted discriminative features enter fully 
connected networks to get the final classification results. Experiments 
are conducted on three publicly available hyperspectral data sets and 
the results show that our suggested LPOCNN acquires a significant ad-
vantage on classification performance over other competitive methods 
under small sample situations.

The major contributions in our work are outlined below:
(1) We construct two 3D inputs with different spatial and spectral 

scales for the two parallel branches, removing redundancy and 
focusing on extracting spatial and spectral features separately.

(2) To alleviate the requirement for massive, labeled samples, two non-
deep parallel branches are created for the two inputs, which design 
octave convolution rather than one single deep convolutional 
branch to facilitate the light weighting of the model.

(3) Also in the feature fusion stage, we design the spectral-spatial 
attention to promote the classification performance even further, 

by adaptively adjusting the weights of different spectral-spatial 
features according to their contribution to classification.
The remaining sections of the article are structured below. 2DCNN, 

3DCNN, and attention mechanism are described in the section “Related 
Works” to review related work. The flowchart and the specific pro-
cess of our suggested LPOCNN method are presented in the section 
“Proposed Methods”. The classification results for three publicly avail-
able HSI data sets are given in the section “Experiments and Analysis”. 
The conclusion of our work is offered in the last section.

Related Works
2D and 3D Convolution
With their superior performance in the field of computer vision, convo-
lutional neural networks (Gu et al. 2018; Liu et al. 2015; Makantasis 
et al. 2015) are increasingly applied in visual image processing. In 
practical applications, there are two most representative structures of 
convolutional neural networks, 2DCNN (Karim et al. 2018) and 3DCNN 
(Ben Hamida et al. 2018) , which can be illustrated in Figure 1. And 
the formulas of 2D convolution and 3D convolution can be expressed 
as follows:

  
(1)

  
(2)

where m denotes the index of the feature map in layer (i–1). H, W, and 
R represent the size of the convolution kernel, khw

ijm denotes the weight 
of the jth convolution kernel at position (h, w, r) on the mth feature 
map in layer i, and bij means the bias.

From Figure 1, we can clearly see that 2D convolution operation 
only considers the spatial correlation of each feature map in the image, 
so it lacks the information of the relationship between channels. In 
contrast, 3D convolution overcomes the shortcomings of 2D convo-
lution and is able to simultaneously extract the 3D features by 3D 
convolution kernels, but makes the model complex and requires more 
computational cost. Therefore, using only 3DCNN or 2DCNN is not the 
best choice for 3D inputs such as hyperspectral images.

Attention Mechanism
Attention mechanism (Chen et al. 2016; Liang et al. 2019; Xu et al. 
2018) is a mimicry of the human visual attention mechanism, which is 
essentially a resource allocation mechanism. Human visual attention 
can receive a region on a picture at high resolution and perceive its 
surrounding regions at low resolution. In other words, human eyes find 
a target region to focus on with a quick scan of global images and then 
allocates more attention to this region, aiming to acquire more insight-
ful information about the target but ignore other irrelevant information. 
Attention mechanism is inspired by this and aims to automatically 
learn locally important features in an image through a deep network. 
Attention mechanism models the interdependencies between features 
and then uses a neural network to generate a mask. The values on 
the mask represent the weight of various areas on feature maps, and 

Figure 1. Illustration of two-dimensional (2D) and three-dimensional 
(3D) convolution: (a) 2D convolution; (b) 3D convolution.
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then the importance of different regions on feature maps is adaptively 
reclassified based on the weight values.

Proposed Methods
The flowchart of our proposed method is shown in Figure 2, and the 
main steps are briefly described as follows.

Construction of Inputs with Different Scale
To fully mine the spatial and spectral information contained in original 
HSI data set, two inputs with different scale are constructed for each 
pixel. Suppose the HSI data set be denoted as χ∈RH×W×D, where H, W, 
and D mean the spatial height, spatial width and the number of spectral 
bands, respectively. The details of how to construct two inputs with 
different scale are explained below.
(1) Dimensionality reduction. The PCA method is firstly applied on the 

original HSI data set to remove redundancy and reduce comput-
ing complexity. By PCA, two data sets with different number of 
the reduced spectral dimension are obtained, where γ∈RH×W×D1 and 
γ∈RH×W×D2, R1, R2 are the number of reduced spectral dimension in γ 
and λ, respectively.

(2) Two inputs with different scale. Suppose that γ contains l pixels X 
=[x1, x2, …, xl]∈R1×1×R1. For a pixel xi in X, i = 1, …, l, its corre-
sponding 3D patch cubes Se∈RA1×A1×R1 can be formed by neighbor-
ing cubes centered at the pixel xi, where A1 is the width of the 3D 
patch cube Se. Similarly, suppose that λ contains l pixels Y =[y1, 
y2, …, yl]∈R1×1×R2. For a pixel xj in Y, j = 1, …, l, its corresponding 
3D patch cubes Sa∈RA2×A2×R2 can be formed by neighboring cubes 
centered at the pixel xj, where A2 is the width of 3D patch cube 
Sa. Moreover, as shown in Figure 2, it is notable that Se has more 
spectral dimensions, but it has a smaller spatial window, aiming to 
focus more on extracting the spectral information. In contrast, Sa 
has a larger spatial window, but it has fewer spectral dimensions 
aiming to focus more on extracting spatial information.
Therefore, we construct two 3D patch cubes with different spatial 

and spectral scales for each central pixel, removing redundancy and fo-
cusing on extracting spatial features and spectral features, respectively.

Non-Deep Parallel Branches with Octave Convolution
We consider that the feature map in CNN comprises both low-frequency 
channels and high-frequency channels just like natural images, where 
the former contains global information about the image and the latter 
contains detailed information about the image. However, the features 
in the low-frequency part are basically smoother, so the low-frequency 
feature map does not need the same spatial dimension as the high-
frequency map to express the information of the image. In other words, 
when using traditional convolution, the high-frequency feature map 

contains quite a bit more information than the low-frequency feature 
map under the same spatial perception field, which indicates that there 
is redundant information in the low-frequency feature map. Therefore, 
as shown in Figure 2, we design two non-deep parallel branches 
while using octave convolution instead of traditional 3D convolution, 
to compress the spatial dimension for low-frequency feature map to 
reduce network parameters.
(1) Octave-Convolution-Based Spectral Branch: As shown in Figure 

2, for Se with more spectral dimensions, we design a branch of 3D 
octave convolution, aiming to reduce the model complexity while 
concentrating on mining spectral features. The major steps are 
specified in following description.

Step 1: For Se∈RA1×A1×R1, we separate Se into the high-frequency compo-
nent Se

h∈RA1×A1×R1 and the low-frequency component Se
l∈Ra×a×R1 by using 

two different scales of 3D convolution. The specific process can be 
calculated as follows:

 Se
h = f3D(Se*WhÞh + bhÞh) (3)

 Se
l = f3D(Avgpool(Se, a)* WhÞl + bhÞl) (4)

where f3D represents the 3D convolution, Avgpool(Se, a) denotes the 
average pooling that reduces the spatial size to a×a. WhÞh and WhÞl are 
two different scales of convolution kernels respectively. bhÞh and bhÞl 
are the bias of two different 3D convolutions, respectively.

Step 2: After obtaining the high-frequency components Se
h, we con-

tinue the frequency decomposition of Se
h by using 3D convolution 

and average pooling, to obtain further high-frequency components 
fe(hÞh)∈RA1×A1×R1 and low-frequency components fe(hÞl)∈Ra×a×R1. The 
specific process can be formulated as:

 fe(hÞh) = f3D(Se
h*WhÞh + bhÞh) (5)

 fe(hÞl) = f3D (Avgpool(Se
h, a)* WhÞl + bhÞl) (6)

Similarly, after obtaining the low-frequency components Se
l, we 

apply upsampling and 3D convolution to Se
l, to obtain further high-fre-

quency components fe(lÞh)∈RA1×A1×R1 and low-frequency components 
fe(lÞl)∈Ra×a×R1, respectively. The specific process can be formulated as:

 fe(lÞh) = upsample(f3D(Se
l*WlÞh + blÞh), A1) (7)

 fe(lÞh) = f3D (Se
l*WlÞl + blÞl) (8)

Figure 2. Structure diagram of our proposed method lightweight parallel octave convolutional neural network for hyperspectral imaging 
classification. PCA = principal component analysis; 3D-Conv = three-dimensional convolution; 2D-Conv = two-dimensional convolution.
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where upsample(•, A1) denotes the up-sampling operation using the 
nearest interpolation method to expand the spatial size to A1 × A1. WhÞh 
and WhÞl are two different scales of convolution kernels, respectively, 
bhÞh and bhÞl are the corresponding bias, respectively.

Step 3: We take into account the need to update not only intra-
frequency information but also inter-frequency information. Therefore, 
the two high-frequency components fe(hÞl) and fe(lÞl) are added to 
facilitate the fusion of high-frequency information between frequen-
cies, obtaining the new high-frequency components Me

h∈RA1×A1×R1. And 
the two low-frequency components fe(hÞl) and fe(lÞl) are added to 
facilitate the fusion of low-frequency information between frequencies, 
obtaining the new low-frequency components Me

l∈Ra×a×R1. The process 
can be expressed by the equation:

 Me
h = fe(hÞh) + fe(lÞh) (9)

 Me
l = fe(hÞl) + fe(lÞl) (10)

Next, we continue applying the average pooling and the 3D 
convolution to Me

h, aiming to obtain f o
e(hÞl)∈Ra×a×R1 with the reduced 

spatial size. Meanwhile, we apply the 3D convolution to Me
l and obtain 

f o
e(lÞl)∈Ra×a×R1. Finally, f o

e(hÞl) and f o
e(lÞl) are added to acquire final 

low-frequency feature maps Oe
l∈Ra×a×R1. The process can be expressed 

by the equation:

 f o
e(hÞl) = f3D (Avgpool(Me

h, a)* WhÞl + bhÞl) (11)

 f o
e(lÞl) = f3D(Me

l * WlÞl + blÞl) (12)

 Oe
l = f o

e(hÞl) + f o
e(lÞl) (13)

(2) Octave-Convolution-Based Spatial Branch: For Sa with larger 
spatial window, we design a branch of 3D octave convolution, aim-
ing to reduce the model complexity while concentrating on mining 
spatial features. As shown in Figure 2, the process of Sa is similar to 
that of Se. Likewise, we also obtain the low-frequency feature map 
Oa

l∈Ra×a×R1.
Finally, Oe

l and Oa
l are concatenated to facilitate the integration of 

spectral and spatial features, obtaining the output Oe
l∈Ra×a×(R1+R1) after 

connecting the two branches. Actually, the design of non-deep parallel 
network instead of deep network facilitates the light weighting of the 
model, which improves the generalization performance of the model to 
obtain better classification accuracy under small samples situations.

Spectral -Spatial Attention
After acquiring the output Ol, we use 2D convolution to fuse spectral-
spatial features from different parallel layers. In the 2D convolution, 
it is noteworthy that we use the convolution kernel with size {1 × 1} 
instead of the commonly used convolution kernel with size {3 × 3}, 
which reduces the number of input channels with fewer parameters. 
Therefore, we obtain the output U after the 2D convolution. Moreover, 
we design the spectral-spatial attention after 2DCNN to promote the 
classification performance even further by adaptively adjusting cor-
responding weights of different spectral-spatial features according 
to their contribution to classification. The spectral-spatial attention 
mechanism is presented in Figure 3.

As shown in Figure 3, after the spectral-spatial attention, we can 
obtain the output V = U7Ue7Ua. And the obtaining of Ue and Ua can 
be expressed by the equation:

Ue = sigmoid(f2D(f2D (Ue
avg *W1 + b1)*W2 + b2) + f2D(f2D (Ue

max *W1 + b1)*W2 + b2) (14)

 Ua = sigmoid(f2D((Ue
avg, Ue

max)*W3 + b3) (15)

where Ue
max and Ue

avg represent the feature maps gained by the global 
max pooling and the global average pooling over the spatial dimension 
respectively, squeezing the spatial dimension. Ua

max and Ua
avg represent 

the feature maps gained by the global max pooling and the global aver-
age pooling over the channel dimension respectively, squeezing the 
channel dimension. f2D represents the 2D convolution, and W1, W2, W3 
indicate the convolution kernel. b1, b2, and b3 represent the correspond-
ing bias.

Finally, the discriminative spectral–spatial features V adjusted by 
the spectral-spatial attention enter the fully connected network to get 
the final classification results.

Experiments and Analysis
In this chapter, the classification performance of the suggested LPOCNN 
method is evaluated on three real HSI data sets. We first briefly intro-
duce the three applied HSI data sets and then describe the accompanying 
experimental configurations. Next, we analyze the impact of the main 
parameters of the suggested LPOCNN method on classification perfor-
mance. Finally, the superiority of the suggested LPOCNN method is veri-
fied by comparing it with various competitive classification methods.

Data Set Description
Indian Pines (IP), University of Pavia (UP), and Salinas (SA) are the 
HSI data sets adopted in our experiment. Figures 4, 5, and 6 show their 
false-color images and ground-truth images, respectively. Tables 1–3 
list the ground-truth category of these three HSI data sets, and their 
brief descriptions are shown as follows.
(1) IP: The IP data set is captured by the AVIRIS sensor at the agricultur-

al experimentation area in Indiana. This scene contains 16 represen-
tative ground truth classes. The spatial dimension of IP data set is 
145 × 145, and it contains 224 bands in the spectral range from 400 
to 2500 nm. In our experiments, 24 bands with noise are discarded.

(2) UP: The UP data set is captured by a spectrograph sensor in 
northern Italy. This scene contains nine representative ground truth 
classes. The spatial dimension of UP data set is 610 × 340, and it 
contains 115 bands in the spectral range from 4300 to 8600 nm. In 
our experiments, 12 bands with noise are discarded.

(3) SA: The SA data set is captured by a hyperspectral sensor in 
California. This scene contains 16 representative ground truth 
classes. The spatial dimension of SA data set is 512 × 217, and it 
contains 224 bands. In our experiments, 20 bands with noise are 
discarded.

Experimental Configuration
All our experiments are implemented on hardware devices with a 
Nvidia GeForce RTX2060 GPU and an AMD Ryzen 7 4800H CPU. 
Pytorch 1.2.0 and Windows 10 systems are used as the software envi-
ronment for the experiments.

Specifically, in all our experiments, the training set for each HSI 
data set is created by randomly selecting only five labeled samples 
from each category, and the remaining samples are served as the test-
ing set. Detailed divisions of the training and testing sets for each HSI 
data set are listed in Tables 1–3. In our experiments, we use the overall 
accuracy (OA), average accuracy (AA), Kappa coefficient (Kappa), and 
accuracy of per class to comprehensively evaluate the classification 
performance of each model.

 Analysis of Parameters
In the suggested LPOCNN method, the three main parameters, learning 
rate, spectral dimension, and spatial size, have significant impacts on 
classification performance. We analyze the classification results when 

Figure 3. Illustration of the spectral-spatial attention.
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these three main parameters vary, to demonstrate their respective ef-
fects on the final accuracy.
(1) Learning rate: Since the learning rate controls the convergence 

speed and convergence ability during the model training, we evalu-
ate the impacts of the learning rate on classification performance in 
the suggested LPOCNN method. In the following experiments, we 
consider the set of learning rates {0.00005, 0.0001, 0.0003, 0.0005, 
0.001, 0.003, 0.005, 0.01}, to observe the influence of learning 
rates on classification performance for all the three HSI data sets. 
The experimental results are presented in Figure 7.
From Figure 7, we can observe that the OA increases gradually with 

the learning rate ranging from 0.00005 to 0.001 for all the three HSI data 
sets. However, as the learning rate continues to increase from 0.001 to 
0.01, the classification accuracy for these three data sets decreases rapid-
ly. The main reason is that if the learning rate is too small, the loss func-
tion changes very slowly, which can greatly increase the convergence 
complexity of the network and can easily get trapped in local minima. 
However, if the learning rate is too large, it may cause the model to 
cross the global optimum directly or even not converge. Based on the 
above experimental results, the learning rate is fixed to 0.001 for all the 
three HSI data sets to obtain the optimal classification performance.
(2) Spectral dimension: Since Se contains more spectral information 

and less spatial information, we evaluate the effect of spectral 
dimension of Se on the classification performance in our proposed 
method. In our experiments, we consider the set of spectral dimen-
sion {80, 90, 100, 110, 120, 130, 140} for IP and SA, and {5, 10, 
15, 20, 25, 30, 35} for UP, to observe the influence of spectral 
dimension on classification performance. The experimental results 
are presented in Figure 8.

Figure 4. Indian Pines; (a) The false-color image; (b) The ground-
truth image.

Figure 5. University of Pavia; (a) The false-color image; (b) The 
ground-truth image.

Figure 6. Salinas; (a) The false-color image; (b) The ground-truth image.

Table 1. Number of training and testing samples for Indian Pines (IP).
Class Name Train Test Total 

1 Alfalfa 5 41 46

2 Corn-notill 5 1423 1428

3 Corn-mintill 5 825 830

4 Corn 5 232 237

5 Grass-pasture 5 478 483

6 Grass-trees 5 725 730

7 Grass-pasture-mowed 5 23 28

8 Hay-windrowed 5 473 478

9 Oats 5 15 20

10 Soybean-notill 5 967 972

11 Soybean-mintill 5 2450 2455

12 Soybean-clean 5 588 593

13 Wheat 5 200 205

14 Woods 5 1260 1265

15 Buildings-Grass-Trees-Drives 5 381 386

16 Stone-Steel-Towers 5 88 93

Total 80 10 169 10 249

Table 2. Number of training and testing samples for University of 
Pavia (UP).
Class Name Train Test Total 

1 Asphalt 5 6626 6631

2 Meadows 5 18 644 18 649

3 Gravel 5 2094 2099

4 Trees 5 3059 3064

5 Painted metal sheets 5 1340 1345

6 Bare Soil 5 5024 5029

7 Bitumen 5 1325 1330

8 Self-Blocking Bricks 5 3677 3682

9 Shadows 5 942 947

Total 45 42 731 42 776

Table 3. Number of training and testing samples for Salinas (SA).
Class Name Train Test Total 

1 Brocoli_green_weeds_1 5 2004 2009

2 Brocoli_green_weeds_2 5 3721 3726

3 Fallow 5 1971 1976

4 Fallow_rough_plow 5 1386 1394

5 Fallow_smooth 5 2673 2678

6 Stubble 5 3954 3959

7 Celery 5 3574 3579

8 Grapes_untrained 5 11 266 11 271

9 Soil_vinyard_develop 5 6198 6203

10 Corn_senesced_green_weeds 5 3273 3278

11 Lettuce_romaine_4wk 5 1063 1068

12 Lettuce_romaine_5wk 5 1922 1927

13 Lettuce_romaine_6wk 5 911 916

14 Lettuce_romaine_7wk 5 1065 1070

15 Vinyard_untrained 5 7263 7268

16 Vinyard_vertical_trellis 5 1802 1807

Total 80 54 049 54 129

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING April 2023 237



As can be seen from Figure 8, OA gradually increases with the 
spectral dimension ranging from 80 to 110 for IP and SA, and from 
5 to 20 for UP. However, the classification accuracy of these three 
data sets gradually decreases as the spectral dimension grows further. 
The main reason is that initially, as the spectral dimension increases, 
more and more spectral information available for classification is 
retained. However, if the spectral dimension grows further, some 

noisy information will also be retained, thus reducing the classification 
accuracy. Moreover, a larger spectral dimension will further increase 
the computational complexity of the model. Based on the above 
experimental results, the spectral dimension of Se is fixed to 110 for 
IP and SA, 20 for UP to obtain the optimal classification performance. 
Specially, since Sa contains less spectral information, the spectral di-
mension of Sa is preset to 11 for all the three HSI data sets, ensuring the 
basic spectral information and reducing computation complexities.
(3) Spatial size: Since Sa contains more spatial information and less 

spectral information, we evaluate the impact of the spatial size of Sa 
on the classification performance in the suggested LPOCNN method. 
In the following experiments, we consider the set of spatial size 
{19 × 19, 21 × 21, 23 × 23, 25 × 25, 27 × 27, 29 × 29, 31 × 31} 
to observe the influence of spatial size on classification perfor-
mance for all the three HSI data sets. The experimental results are 
presented in Figure 9.
From Figure 9, we can observe that OA gradually increases with 

the spatial size ranging from 19 to 25 for all the three HSI data sets. 
However, as the spatial size continues to increase from 25 to 31, the 
classification accuracy for these three data sets gradually decreases. 
The main reason for this is that at first, as the spatial size increases, the 
spatial structure information available for classification becomes more 
and more adequate. However, if the spatial size is too large, pixels that 
are not in the same class as the central pixel will also be included more 
often, which reduces the classification accuracy. Based on the above 
experimental results, the spatial size of Sa is fixed to 25 × 25 for all the 
three HSI data sets to obtain the optimal classification performance. 
Specially, since Se contains less spatial information, the spatial size of   
is preset to 11 × 11 for all three HSI data sets, reducing computation 
complexities and guaranteeing the basic spatial structure information.

Comparisons to the State-of-the-Art Methods
In this section, we provide a comparison of our proposed LPOCNN 
method with six advanced methods: a traditional method SVM, and five 
deep learning-based methods, SSRN, hybrid spectral CNN (HybridSN) 
(Roy et al. 2020), residual spectral-spatial attention network (RSSAN), 
dual-channel capsule generation adversarial network (DcCapsGAN) 
(Jianing et al. 2022), and cross-scale graph prototypical network 
(X-GPN) (Xi et al. 2022). SVM is a traditional method for HSI classifi-
cation using only spectral features. SSRN introduces 3D convolution 
to concurrently mine spectral-spatial features for 3D HSI. HybridSN 
is a hybrid convolutional network using 3D-2DCNN to extract joint 
spectral-spatial features. RSSAN uses the attention mechanisms to 
emphasize features that contribute more to the classification. We also 
compare it with the latest deep learning-based method X-GPN, which 
introduces graph convolutional networks to address the problems of 
model overfitting and performance degradation. Specially, to validate 
the advantages of the suggested LPOCNN method under small sample 
situation, we also compare it with DcCapsGAN, which enhances the clas-
sification performance under small samples situations by combining 
CapsNet with generative adversarial network. The parameters in SVM, 
SSRN, HybridSN, RSSAN, DcCapsGAN, and X-GPN for these comparisons 
above are set to their optimal values.

In this section, the division of training and testing samples is 
controlled to be consistent for all the above classification methods, 
as shown in Tables 1–3. In addition, for all the three HSI data sets, the 
quantitative average classification results of all compared methods are 
presented in Tables 4–6, and the corresponding classification maps of 
each classification method are depicted in Figures 10–12, respectively.

As can be seen from Tables 4–6, the suggested LPOCNN method 
achieves the best classification results compared to the other compet-
ing models. In addition, our proposed method still achieves 76.64% 
OA for IP, 81.59% OA for UP, and 91.71% OA for SA, with only five 
training samples per class, which validates the superiority of our pro-
posed method. Although the latest deep learning-based method X-GPN 
introduces graph convolutional networks to address the problem of 
model overfitting and performance degradation under small samples 
situations, and the DcCapsGAN method also aims to improve the HSI 
classification accuracy under small samples situations, the suggested 

Figure 7. Effects analysis of the learning rate in our proposed method.

Figure 8. Effects analysis of the spectral dimension in our proposed method.

Figure 9. Effects analysis of the spatial size in our proposed method.
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LPOCNN method still shows superior classification accuracy than them. 
The main reason is that our method constructs two 3D patch cubes 
with different spatial and spectral scales for each central pixel, remov-
ing redundancy and focusing on extracting spatial features and spectral 
features, respectively. Under small samples situations, extracting more 
adequate spectral-spatial information is very effective in improving the 
classification accuracy. In addition, to alleviate the requirement for the 
number of labeled samples, our method design two non-deep parallel 
branches, while using octave convolution instead of traditional 3D con-
volution in a two-branch structure to reduce the network parameters. 
This design of parallel shallow network instead of deep network in our 
method facilitates the light weighting of the model, which improves 
the generalization performance of the model to obtain better classifica-
tion accuracy under small sample situations. Meanwhile, in the feature 
fusion stage, we design the spectral-spatial attention to promote the 
classification performance even further, by adaptively adjusting the 
weights of different spectral-spatial features according to their contri-
bution to classification. As can be seen in Figures 10–12, the suggested 

LPOCNN method achieves more accurate classification maps compared 
to other competing models, which also shows its superior classifica-
tion performance. In addition, the computational efficiency of all the 
above methods is tested for the three HSI data sets. It can be seen from 
Tables 4–6 that the computation time of our suggested LPOCNN method 
is much less than that of other deep learning-based methods for all 
the three data sets. The main reason is that these deep learning-based 
methods require training numerous parameters because of complex 
networks, resulting in more computational time consumption. But in 
our proposed LPOCNN method, two non-deep parallel branches are 
created for the two inputs, which design octave convolution rather than 
classical 3D convolution to facilitate light weighting of the model. 
Therefore, taking into account the classification performance and 
computation time, our method shows a clear superiority over various 
competitive classification methods.

Ablation Study
In this subsection, we compare the LPOCNN method with three other 
classification methods for the ablation analysis of our proposed 

Figure 10. Classification maps obtained by each method for Indian Pines (IP): (a) SVM, (b) SSRN, (c) HybridSN, (d) RSSAN, (e) DcCapsGAN, 
(f) X-GPN, (g) Proposed Method. SVM = support vector machines; SSRN = spectral–spatial residual network; HybridSN = hybrid spectral 
convolutional neural network; RSSAN = residual spectral-spatial attention network; DcCapsGAN = dual-channel capsule generation adversarial 
network; X-GPN = cross-scale graph prototypical network.

Figure 11. Classification maps obtained by each method for University of Pavia (UP): (a) SVM, (b) SSRN, (c) HybridSN, (d) RSSAN, (e) 
DcCapsGAN, (f) X-GPN, (g) Proposed Method. SVM = support vector machines; SSRN = spectral–spatial residual network; HybridSN = hybrid 
spectral convolutional neural network; RSSAN = residual spectral-spatial attention network; DcCapsGAN = dual-channel capsule generation 
adversarial network; X-GPN = cross-scale graph prototypical network.

Figure 12. Classification maps obtained by each method for Salinas (SA): (a) SVM, (b) SSRN, (c) HybridSN, (d) RSSAN, (e) DcCapsGAN, 
(f) X-GPN, (g) Proposed Method. SVM = support vector machines; SSRN = spectral–spatial residual network; HybridSN = hybrid spectral 
convolutional neural network; RSSAN = residual spectral-spatial attention network; DcCapsGAN = dual-channel capsule generation adversarial 
network; X-GPN = cross-scale graph prototypical network.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING April 2023 239



Table 4. Classification results obtained by each method for Indian Pines (IP). The results shown in bold format represent the optimal value in each row.
Class SVM SSRN HybridSN RSSAN DcCapsGAN X-GPN Our
1 83.21 ± 9.23 94.33 ± 3.95 92.11 ± 2.43 46.12 ± 18.54 100.00 ± 0.00 98.39 ± 2.08 97.78 ± 2.99
2 27.86 ± 7.34 51.59 ± 10.21 35.85 ± 10.26 63.88 ± 9.82 49.98 ± 0.28 52.48 ± 15.46 66.55 ± 11.13
3 37.43 ± 11.26 51.65 ± 7.05 31.93 ± 17.06 64.05 ± 12.17 44.66 ± 0.14 57.07 ± 17.89 70.76 ± 11.42
4 59.28 ± 12.43 88.98 ± 9.50 85.59 ± 9.15 44.23 ± 11.61 47.01 ± 0.52 88.92 ± 12.60 89.78 ± 11.46
5 68.02 ± 8.41 64.26 ± 10.46 86.74 ± 9.19 78.67 ± 9.89 64.98 ± 0.23 81.70 ± 7.48 80.53 ± 8.26
6 72.50 ± 13.47 62.88 ± 14.11 93.61 ± 5.61 91.02 ± 6.31 84.02 ± 0.11 95.89 ± 3.11 93.88 ± 5.36
7 90.24 ± 6.68 98.87 ± 2.12 100.00 ± 0.00 32.11 ± 15.40 100.00 ± 0.00 98.52 ± 4.67 100.00 ± 0.00
8 67.68 ± 14.91 96.61 ± 4.27 99.86 ± 0.08 97.64 ± 4.11 79.95 ± 0.19 90.11 ± 11.58 96.37 ± 7.58
9 91.45 ± 12.84 95.71 ± 6.26 99.92 ± 0.12 25.78 ± 16.39 100.00 ± 0.00 99.15 ± 2.29 100.00 ± 0.00
10 54.02 ± 12.55 58.07 ± 5.25 61.1 ± 11.97 58.21 ± 8.71 62.45 ± 0.35 63.64 ± 12.74 75.98 ± 6.29
11 35.98 ± 9.74 53.11 ± 11.38 53.98 ± 16.54 68.98 ± 7.76 64.83 ± 0.21 50.26 ± 14.65 65.19 ± 10.83
12 34.62 ± 9.02 70.10 ± 8.27 82.74 ± 2.74 52.04 ± 15.39 49.54 ± 0.41 66.01 ± 15.92 67.81 ± 12.53
13 87.78 ± 5.32 94.99 ± 7.12 98.63 ± 1.03 88.33 ± 14.33 98.99 ± 0.06 96.88 ± 7.17 99.23 ± 1.50
14 61.39 ± 7.89 71.38 ± 12.39 73.83 ± 7.42 95.37 ± 4.62 94.75 ± 0.26 74.15 ± 16.82 89.59 ± 6.36
15 29.1 ± 6.14 74.22 ± 8.11 69.84 ± 13.95 65.26 ± 13.85 36.89 ± 0.82 85.07 ± 11.28 83.69 ± 11.87
16 89.44 ± 5.07 98.64 ± 1.89 97.98 ± 3.27 71.17 ± 16.01 98.76 ± 0.36 98.69 ± 3.42 98.31 ± 3.19
OA 48.23 ± 5.85 63.54 ± 4.94 63.68 ± 5.06 66.95 ± 4.79 66.71 ± 0.08 67.16 ± 4.17 76.64 ± 3.31
AA 61.88 ± 4.03 76.59 ± 3.82 79.01 ± 3.49 65.18 ± 3.31 73.55 ± 0.11 81.06 ± 1.41 85.89 ± 1.79
Kappa 42.76 ± 5.91 59.07 ± 5.37 59.33 ± 6.13 63.47 ± 5.24 62.18 ± 0.05 62.93 ± 4.46 73.78 ± 3.60
Computational time (s) 8.47 534.56 51.34 824.69 2431.68 1291.77 33.74
SVM = support vector machines; SSRN = spectral–spatial residual network; HybridSN = hybrid spectral convolutional neural network; RSSAN = residual spectral-
spatial attention network; DcCapsGAN = dual-channel capsule generation adversarial network; X-GPN = cross-scale graph prototypical network.

Table 5. Classification results obtained by each method for University of Pavia (UP). The results shown in bold format represent the optimal value in each row.

Class SVM SSRN HybridSN RSSAN DcCapsGAN X-GPN Our
1 50.02 ± 12.74 54.95 ± 10.64 57.90 ± 7.41 75.46 ± 10.37 36.58 ± 5.33 61.38 ± 13.95 78.13 ± 12.34
2 44.37 ± 13.05 57.04 ± 12.09 63.39 ± 9.11 77.35 ± 12.05 75.02 ± 0.68 70.10 ± 12.70 83.24 ± 10.10
3 61.89 ± 15.65 71.68 ± 9.47 61.65 ± 8.60 69.04 ± 14.26 78.09 ± 1.49 75.59 ± 10.41 86.81 ± 7.16
4 87.12 ± 10.18 93.54 ± 5.82 81.71 ± 5.59 95.97 ± 4.47 98.30 ± 0.09 81.88 ± 5.26 84.23 ± 10.19
5 96.31 ± 7.07 99.49 ± 0.78 99.82 ± 0.09 99.85 ± 0.95 100.00 ± 0.00 99.87 ± 0.19 99.94 ± 0.17
6 53.07 ± 12.85 72.21 ± 14.09 80.94 ± 5.66 79.13 ± 14.83 53.98 ± 0.41 74.13 ± 15.88 81.44 ± 11.38
7 73.26 ± 19.11 94.36 ± 2.71 99.09 ± 1.92 92.45 ± 8.20 97.96 ± 0.57 96.47 ± 3.93 94.37 ± 5.80
8 49.17 ± 13.97 72.53 ± 11.87 74.80 ± 6.36 79.76 ± 16.61 70.01 ± 3.13 71.55 ± 16.22 61.75 ± 12.63
9 94.11 ± 6.86 86.80 ± 6.58 92.55 ± 4.27 86.90 ± 4.79 100.00 ± 0.00 81.72 ± 11.82 87.94 ± 10.97
OA 54.16 ± 6.41 67.08 ± 5.81 70.17 ± 6.15 79.94 ± 6.03 70.09 ± 1.12 72.50 ± 5.26 81.59 ± 3.49
AA 67.71 ± 4.06 78.07 ± 4.01 79.55 ± 3.74 83.98 ± 3.68 78.88 ± 0.71 79.18 ± 2.71 84.20 ± 2.19
Kappa 45.05 ± 6.14 59.47 ± 5.93 62.89 ± 6.76 73.78 ± 6.59 63.15 ± 1.14 65.61 ± 5.83 76.37 ± 4.02
Computational time (s) 38.11 221.77 42.62 659.75 1088.61 775.06 34.43
SVM = support vector machines; SSRN = spectral–spatial residual network; HybridSN = hybrid spectral convolutional neural network; RSSAN = residual spectral-
spatial attention network; DcCapsGAN = dual-channel capsule generation adversarial network; X-GPN = cross-scale graph prototypical network.

Table 6. Classification results obtained by each method for Salinas (SA). The results shown in bold format represent the optimal value in each row.
Class SVM SSRN HybridSN RSSAN DcCapsGAN X-GPN Our
1 96.95 ± 1.58 98.69 ± 1.22 97.15 ± 2.43 98.21 ± 3.59 96.98 ± 2.16 98.79 ± 3.04 98.87 ± 2.21
2 96.06 ± 2.50 93.62 ± 6.38 99.89 ± 0.28 99.32 ± 1.21 99.94 ± 0.11 98.30 ± 3.21 98.95 ± 2.06

3 70.12 ± 15.47 71.19 ± 15.51 99.07 ± 3.11 95.94 ± 1.86 100.00 ± 0.00 95.11 ± 13.83 99.15 ± 2.52
4 98.52 ± 3.24 98.86 ± 0.24 99.23 ± 1.26 96.02 ± 3.62 99.79 ± 0.06 99.20 ± 0.85 97.95 ± 2.65
5 94.41 ± 6.77 96.52 ± 1.96 88.74 ± 5.85 96.96 ± 2.17 96.42 ± 0.22 91.72 ± 8.19 94.89 ± 3.67
6 98.98 ± 0.41 99.23 ± 0.28 80.22 ± 4.97 99.63 ± 0.52 100.00 ± 0.00 98.26 ± 3.05 99.07 ± 1.98
7 98.47 ± 2.05 97.43 ± 3.60 99.57 ± 1.04 98.81 ± 1.24 99.75 ± 0.18 96.20 ± 9.81 98.97 ± 0.99
8 59.64 ± 16.67 61.49 ± 14.62 69.91 ± 12.96 82.05 ± 4.88 62.77 ± 0.48 67.38 ± 14.88 83.97 ± 11.00
9 96.31 ± 0.88 96.02 ± 2.66 99.45 ± 0.81 99.27 ± 0.72 99.88 ± 0.05 99.51 ± 1.27 99.65 ± 0.73
10 77.04 ± 5.19 82.95 ± 4.78 44.25 ± 18.71 89.95 ± 4.03 79.65 ± 0.23 79.89 ± 14.92 88.45 ± 10.89
11 94.25 ± 2.87 92.31 ± 7.10 99.64 ± 1.12 93.10 ± 3.11 98.10 ± 0.17 99.93 ± 0.08 99.70 ± 0.70
12 82.69 ± 21.23 92.88 ± 7.53 63.72 ± 18.24 97.72 ± 4.27 99.86 ± 0.06 90.62 ± 6.38 94.75 ± 6.98
13 97.56 ± 0.84 98.06 ± 1.14 48.68 ± 22.16 93.04 ± 6.59 99.62 ± 0.04 93.45 ± 12.47 98.08 ± 3.18
14 90.11 ± 6.29 92.47 ± 2.66 89.10 ± 6.68 92.44 ± 9.68 99.51 ± 0.09 93.19 ± 6.85 92.50 ± 6.64
15 59.97 ± 14.30 65.62 ± 10.24 66.63 ± 13.23 65.51 ± 10.22 40.09 ± 1.72 70.95 ± 15.74 76.88 ± 11.92
16 84.83 ± 6.69 82.78 ± 6.56 92.34 ± 4.33 99.47 ± 1.10 97.64 ± 0.10 94.65 ± 6.17 96.25 ± 4.93
OA 80.62 ± 2.18 83.06 ± 2.32 81.12 ± 3.52 86.45 ± 2.27 82.15 ± 0.20 86.27 ± 2.24 91.71 ± 1.42
AA 87.23 ± 1.95 88.76 ± 1.60 83.78 ± 1.95 93.59 ± 1.22 91.87 ± 0.17 90.71 ± 0.91 94.88 ± 0.96
Kappa 79.69 ± 2.40 82.11 ± 2.38 78.95 ± 3.71 85.86 ± 2.63 81.06 ± 0.21 84.71 ± 2.43 90.78 ± 1.57
Computational time (s) 50.14 547.84 84.55 957.68 2598.43 1378.59 72.90
SVM = support vector machines; SSRN = spectral–spatial residual network; HybridSN = hybrid spectral convolutional neural network; RSSAN = residual spectral-
spatial attention network; DcCapsGAN = dual-channel capsule generation adversarial network; X-GPN = cross-scale graph prototypical network.
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method. Among these three compared methods, the first one is method 
(A), which removes both the octave convolution module and the 
spectral-spatial attention module in LPOCNN method, and the second 
one is method (A+ SS-Attention), which adds the spectral-spatial at-
tention module to method A, and the third one is method (A+ Octave), 
which adds the octave convolution module to method A. As can be 
seen in Tables 7–9, firstly, method (A+ SS-Attention) shows a promis-
ing improvement on classification accuracy relative to method A for 
all the three HSI data sets. This proves that the spectral-spatial attention 
can promote the classification performance by adaptively adjusting 
corresponding weights of different spectral-spatial features according 
to their contribution to classification. In addition, the classification 

accuracy of method (A+ Octave) for all the three HSI data sets is much 
higher than that of method A. This proves that the utilization of octave 
convolution facilitates the light weighting of the model and can obtain 
better classification accuracy under small samples situations. Moreover, 
our proposed LPOCNN method takes full advantage of the octave con-
volution module and the spectral-spatial attention module and achieves 
the highest classification accuracy. The above ablation study quite com-
prehensively verifies that different modules of our proposed LPOCNN 
method are effective in improving the classification performance.

Analysis of the Number of Training Samples
Finally, to further validate the superiority of our proposed method 
under small sample situation, we test the impacts of the number of 
training samples on the classification performance. For all the three HSI 
data sets, we set the number of training samples for each class to 3, 7, 
and 9, respectively.

As can be observed from Figure 13, the suggested LPOCNN method 
still achieves the best classification accuracy with these three sampling 
strategies. Specially, the superiority of our proposed method over other 
competing methods is greater when the number of training samples 
is smaller. Thus, our suggested LPOCNN method is very advantageous 
over other competitive classification methods under small sample 
situations.

Conclusions
This paper proposes a novel lightweight parallel octave convolutional 
neural network (LPOCNN) for HSI classification. The HSI data is first 
preprocessed to construct two different inputs for each central pixel, 
focusing on extracting spatial features and spectral features respec-
tively. Next, two non-deep parallel branches with octave convolu-
tion are created for the two inputs to facilitate light weighting of the 
model. Moreover, the spectral-spatial attention is designed to promote 
the classification performance even further, by adaptively adjusting 
the weights of different spectral-spatial features according to their 

Table 7. Results of the ablation analysis for Indian Pines (IP) data set.

Class A
A+ 

SS-Attention A+ Octave LPOCNN

1 99.05 ± 1.28 96.95 ± 2.54 97.22 ± 1.85 97.78 ± 2.99

2 35.88 ± 17.11 50.56 ± 15.27 65.94 ± 9.48 66.55 ± 11.13

3 47.34 ± 13.29 68.90 ± 11.84 50.24 ± 15.27 70.76 ± 11.42

4 41.63 ± 9.64 97.36 ± 9.81 97.80 ± 13.24 89.78 ± 11.46

5 83.09 ± 7.17 67.02 ± 10.97 70.82 ± 6.51 80.53 ± 8.26

6 99.04 ± 10.08 91.67 ± 7.21 95.69 ± 9.48 93.88 ± 5.36

7 83.33 ± 8.52 99.95 ± 0.45 100 ± 0.00 100 ± 0.00

8 70.89 ± 12.26 60.68 ± 10.34 96.21 ± 7.46 96.37 ± 7.58

9 100 ± 0.00 90.02 ± 14.84 100 ± 0.00 100 ± 0.00

10 74.90 ± 5.31 61.95 ± 12.19 57.48 ± 10.08 75.98 ± 6.29

11 28.31 ± 18.84 48.34 ± 20.07 60.16 ± 16.41 65.19 ± 10.83

12 43.46 ± 10.16 56.78 ± 12.69 89.71 ± 15.42 67.81 ± 12.53

13 98.87 ± 0.98 99.18 ± 1.45 99.06 ± 2.35 99.23 ± 1.5

14 70.34 ± 8.43 77.77 ± 14.87 93.94 ± 7.14 89.59 ± 6.36

15 76.96 ± 15.29 97.87 ± 5.03 90.16 ± 11.47 83.69 ± 11.87

16 97.26 ± 8.24 98.12 ± 4.16 96.39 ± 6.35 98.31 ± 3.19

OA 55.72 ± 5.91 64.99 ± 5.77 73.98 ± 4.01 76.64 ± 3.31

AA 71.89 ± 5.04 78.95 ± 4.81 85.05 ± 1.85 85.89 ± 1.79

Kappa 51.49 ± 6.16 61.20 ± 5.89 70.69 ± 4.76 73.78 ± 3.60

LPOCNN = lightweight parallel octave convolutional neural network; OA = 
overall accuracy; AA = average accuracy; Kappa = Kappa coefficient.

Table 8. Results of the ablation analysis for University of Pavia (UP) 
data set.

Class A
A+ 

SS-Attention A+ Octave LPOCNN

1 44.57 ± 12.47 76.02 ± 9.85 21.92 ± 16.31 78.13 ± 12.34

2 47.89 ± 9.19 74.10 ± 12.91 86.60 ± 8.64 83.24 ± 10.10

3 75.35 ± 5.82 97.13 ± 2.08 91.96 ± 5.47 86.81 ± 7.16

4 82.50 ± 9.08 94.50 ± 1.56 79.31 ± 13.36 84.23 ± 10.19

5 99.58 ± 0.25 99.92 ± 0.24 99.87 ± 0.10 99.94 ± 0.17

6 97.21 ± 11.36 44.81 ± 16.27 81.25 ± 10.56 81.44 ± 11.38

7 99.77 ± 4.71 99.45 ± 1.14 97.80 ± 4.42 94.37 ± 5.80

8 84.44 ± 5.81 16.94 ± 15.21 73.34 ± 6.13 61.75 ± 12.63

9 74.07 ± 16.95 85.06 ± 8.96 89.86 ± 14.62 87.94 ± 10.97

OA 63.96 ± 5.12 70.43 ± 4.81 75.40 ± 4.06 81.59 ± 3.49

AA 78.37 ± 4.37 76.42 ± 3.66 80.21 ± 3.17 84.20 ± 2.19

Kappa 56.97 ± 5.34 61.99 ± 4.98 68.62 ± 4.54 76.37 ± 4.02

LPOCNN = lightweight parallel octave convolutional neural network; OA = 
overall accuracy; AA = average accuracy; Kappa = Kappa coefficient.

Table 9. Results of the ablation analysis for Salinas (SA) data set.

Class A
A+ 

SS-Attention A+ Octave LPOCNN

1 93.07 ± 5.02 98.14 ± 2.96 98.69 ± 3.16 98.87 ± 2.21

2 99.92 ± 1.83 99.97 ± 1.20 98.76 ± 2.52 98.95 ± 2.06

3 99.78 ± 1.95 99.02 ± 0.96 99.91 ± 1.97 99.15 ± 2.52

4 97.84 ± 4.26 97.99 ± 5.21 99.64 ± 1.24 97.95 ± 2.65

5 92.67 ± 6.08 95.70 ± 3.09 87.87 ± 4.08 94.89 ± 3.67

6 79.82 ± 7.37 99.95 ± 1.64 98.95 ± 3.71 99.07 ± 1.98

7 77.68 ± 6.82 99.83 ± 0.47 99.97 ± 0.82 98.97 ± 0.99

8 81.44 ± 3.17 60.15 ± 12.98 66.46 ± 16.27 83.97 ± 11.00

9 99.53 ± 0.65 99.26 ± 1.28 99.11 ± 1.19 99.65 ± 0.73

10 66.74 ± 14.18 73.85 ± 12.24 87.65 ± 8.83 88.45 ± 10.89

11 99.67 ± 0.55 99.47 ± 0.62 99.23 ± 0.44 99.70 ± 0.70

12 86.22 ± 4.98 65.31 ± 8.33 95.99 ± 4.38 94.75 ± 6.98

13 98.68 ± 1.83 98.98 ± 2.36 99.04 ± 1.08 98.08 ± 3.18

14 57.13 ± 11.69 59.19 ± 9.94 79.70 ± 15.91 92.50 ± 6.64

15 58.67 ± 8.26 89.77 ± 6.76 90.97 ± 7.72 76.88 ± 11.92

16 95.17 ± 3.82 85.97 ± 7.24 87.78 ± 8.68 96.25 ± 4.93

OA 83.36 ± 3.43 85.87 ± 2.06 89.37 ± 1.75 91.71 ± 1.42

AA 86.50 ± 1.72 88.91 ± 1.35 93.11 ± 1.19 94.88 ± 0.96

Kappa 81.38 ± 3.64 84.38 ± 2.27 88.21 ± 1.92 90.78 ± 1.57

LPOCNN = lightweight parallel octave convolutional neural network; 
OA = overall accuracy; AA = average accuracy; Kappa = Kappa 
coefficient.
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contribution to classification. Eventually, fused and adjusted discrimi-
native features enter fully connected networks to finish the classifica-
tion work. Experiments are conducted on three publicly available 
hyperspectral data sets and the results show that our suggested LPOCNN 
acquires a significant advantage on classification performance over 
other competitive methods under small sample situations. In our future 
work, we would like to design novel lightweight models that pro-
mote the classification performance even further under small samples 
situations.
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Model-Driven Precise Degradation Analysis 
Method of Highway Marking Using Mobile Laser 

Scanning Point Clouds
Ruifeng Ma, Xuming Ge, Qing Zhu, Xin Jia, Huiwei Jiang, Min Chen, and Tao Liu

Abstract
Highway markings (HMs) are representative elements of inventory 
digitalization in highway scenes. The accurate position, semantics, and 
maintenance information of HMs provide significant support for the 
intelligent management of highways. This article presents a robust and 
efficient approach for extracting, reconstructing, and degrading ana-
lyzing HMs in complex highway scenes. Compared with existing road 
marking extraction methods, not only can extract HMs in presence of 
wear and occlusion from point clouds, but we also perform a degrada-
tion analysis for HMs. First, the HMs candidate area is determined 
accurately by sophisticated image processing. Second, the prior knowl-
edge of marking design rules and edge-based matching model that le-
verages the standard geometric template and radiometric appearance 
of HMs is used for accurately extracting and reconstructing solid lines 
and nonsolid markings of HMs, respectively. Finally, two degradation 
indicators are constructed to describe the completeness of the marking 
contour and consistency within the marking. Comprehensive experi-
ments on two existing highways revealed that the proposed methods 
achieved an overall performance of 95.4% and 95.4% in the recall 
and 93.8% and 95.5% in the precision for solid line and nonsolid line 
markings, respectively, even with imperfect data. Meanwhile, a data-
base can be established to facilitate agencies’ efficient maintenance.

Introduction
Three-dimensional (3D) spatial virtual construction technology is of 
great significance for the development of smart highways. The accurate 
position and semantics of highway markings (HMs) provide significant 
support for highway digital operation, maintenance, and intelligent 
management. Highway marking is a representative element for the 
digitization of highway inventory and is also necessary to realize high-
way alignment extraction and modeling (Zhou et al. 2021).

In recent years, airborne light detection and ranging (lidar) scan-
ning technologies have been widely used to acquire dense point clouds 
for various applications, such as 3D city modeling and digital eleva-
tion model generation (Guan et al. 2014; Yang et al. 2017; Zhu et al. 
2022). However, mobile laser scanning (MLS) efficiently, reliably, and 

cost-effectively acquires high-density, high-precision, and multi-detail 
3D point clouds of corridor scenes (Guan et al. 2014; Mi et al. 2021; 
Rastiveis et al. 2019; Wang et al. 2017; Yan et al. 2016; Zai et al. 
2018), which provides convenience for road surface features (e.g., road 
marking) extraction and reconstruction for timely road maintenance. 
An MLS is the integration of several devices, including a laser scanner, 
a global navigation satellite system (GNSS), an inertial measurement 
unit (IMU), high-resolution cameras, and a computer control device 
(Kumar et al. 2014). In complex highway scenes, due to severe noise, 
diverse terrain, and the existence of varying wear, occlusion, robust 
extraction, and reconstruction of HMs using MLS point clouds still have 
some unsolved problems in current engineering applications (Jung et 
al. 2019; Mi et al. 2021).

A great number of methods discussed in the section “Related Works” 
have been developed for automatic extraction, classification, and recon-
struction based on the geometric features and reflection intensity of the 
MLS point clouds in corridor scenes, which also improved the automa-
tion level of HM extraction to a certain extent. However, most methods 
including raster-based and point-based both currently use bottom-up 
strategies, which are sensitive to imperfect raw data and difficult to ap-
ply for extracting HMs in complex highway scenes. Moreover, in exist-
ing methods, there are few reports on conducting a degradation analysis 
of the highway markings for further maintenance. This study presents 
an automatic method for extraction and degradation analysis of HMs by 
MLS point clouds. The proposed method extracts the candidate area of 
solid lines and nonsolid markings (including dashed lines and various 
types of complicated arrow markings) from the intensity feature map 
generated by pavement point clouds. The prior knowledge of marking 
design rules and edge-based matching is used for accurately extracting 
and reconstructing solid lines and nonsolid markings, respectively. Two 
degradation indicators are constructed to describe the completeness of 
the marking contour and consistency within the marking, which can be 
useful for authorities to further assess maintenance. The main contribu-
tions of the proposed method are as follows:
(1) A new framework that not only achieves the fine reverse modeling 

of HMs at the digital dimension but also implemented degradation 
analysis for actual operation of highway marking is presented.

(2) After projecting the MLS point clouds to feature map, a dynamic 
threshold segmentation is designed to identify candidates for high-
way marking. Within the candidate, the model-driven strategy and 
the road marking design rules are adopted to accurately extract and 
reconstruct highway marking in terms of good robustness to severe 
noise, the uneven density of the point clouds, wear, and occlusion 
of highway markings.

(3) Two degradation indicators from different aspects are constructed to 
reflect the condition of marking objects for further maintenance.
The remainder of this paper is organized as follows. After introduc-

ing the related work in the section “Related Works”, we describe the 
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proposed method in the “Methods” section. We report the results and 
discussion of experiments and associated analysis in the section “Results 
and Discussion” and present our conclusions in the final section.

Related Works
Generally, the material of road markings is a highly reflective sub-
stance attached to the road of asphalt or concrete. Therefore, road 
markings have a higher intensity than their surroundings on the road 
surface and have regular shapes. Accordingly, a variety of methods 
for road marking extraction are mainly categorized into two classes 
depending on semantic knowledge (e.g., shape) and MLS intensity 
properties (Bello et al. 2020; Guan et al. 2016; Ma et al. 2018): (1) 
raster-based methods and (2) point-based methods. Moreover, we 
review some work in terms of degradation analysis of road marking. 
These methods are discussed in the following subsections.

Extraction of Pavement Marking in Point Clouds
Raster-Based Methods
Raster-based methods convert the intensity or range of the point cloud 
into a two-dimensional (2D) feature image, which is then processed by 
the sophisticated algorithm of image processing to extract the mark-
ings. The point cloud index then uses a featured image of intensity 
to retrieve the markings from the original point cloud (Cheng et al. 
2017; Cheng et al. 2020;Guo et al. 2015; Jung et al. 2019; Riveiro 
et al. 2015; Yang et al. 2012; Yao and Hu 2014). This method takes 
advantage of the characteristic that the road has a local near-plane, 
which treats the road surface as a regular two-dimensional image and 
extracts road markings quickly and efficiently through image threshold 
segmentation. However, the MLS point clouds provide an intensity at-
tribute that depends not only on the marking material but also the range 
and incidence angle of the laser beam (Kashani et al. 2015). Therefore, 
it is difficult to accurately extract markings by relying on only a single 
threshold value. To solve this problem, the intensity correction and 
normalization of the original point clouds are performed based on the 
assumption of a relatively consistent geometry of the point cloud on 
the road, taking into account the influence of the measured distance 
and angle of incidence (Fang et al. 2019; Guan et al. 2015a; Guan 
et al. 2015  b; Jaakkola et al. 2008; Kumar et al. 2014; Soilán et al. 
2017; Yan et al. 2016; Zhang 2016). Another method that is used to 
extract markings is by combining the relationship between the intensity 
and the scanning distance. This method can be used to overcome 
the issue of uneven intensity and varying density due to the varying 
scanning modes (Guan, et al. 2015 b ; Kumar et al. 2014; Soilán et al. 
2017; Yu et al. 2017). Unfortunately, raster-based image methods are 
prone to causing information loss when converting point clouds into 
raster images. Moreover, it is difficult to accurately extract complex 
types of road markings. In addition, Wen et al. (2019) present a deep, 
learning-based framework for road marking extraction, classification, 
and completion for MLS point cloud. U-Net was adopted to segment 
the intensity raster image into a binary image with foreground and 
background. The foreground blocks were further classified into kinds 
of road marking categories, and a completion operation GAN based was 
applied for incomplete objects. Chen et al. (2021) proposed a dense 
feature pyramid network-based deep learning model, by considering 
the particularity and complexity of road marking. However, image-
based deep learning methods require many labeled samples, labeling 
training samples is time-consuming and sometimes even impossible.

Point-Based Methods
Raster-based methods are commonly used to extract road markings by 
MLS point clouds, but this method is not ideal for accurately extract-
ing markings from complex road sections. Several studies have been 
conducted to develop a method that can directly extract road mark-
ings from point clouds (Chen et al. 2009; Ma et al. 2019; Soilán et al. 
2020; Yan et al. 2016; Yang et al. 2017; Yang et al. 2018). Although 
point-based methods can avoid the drawback of converting point 
clouds to images, they require a large computational and time cost. To 
overcome the shortcoming of point-based methods, k-dimensional tree 

is introduced to organize the data structure of point clouds to improve 
efficiency. In addition, according to the MLS scan time, the point cloud 
is first partitioned into a scan-by-scan line (Chen et al. 2009; Yan et 
al. 2016; Yang et al. 2018), and then parallel computing is used to 
improve the efficiency of the algorithm (Che et al. 2019). However, 
the automatic extraction of road markings from the massive MLS point 
clouds is still a very difficult task. Recently, many studies have been 
conducted on automatic road marking classification by using deep 
learning-based neural networks (e.g., PointNet and PointCNN) (Han et 
al. 2021; Li et al. 2018; Qi et al. 2017; Yao et al. 2020) in large-scale 
scenes, and the performance has enhanced significantly compared 
with hand-designed feature based methods (Ge et al. 2019). However, 
deep learning-based methods also have some challenges, i.e., (1) deep 
learning methods are typically data-hungry and require many labeled 
samples; and (2) more fundamental issues include numerous geometric 
instances, data imbalance, and extreme scale variations between differ-
ent categories in large-scale MLS point clouds scenes

Degradation Analysis
The completeness and luminous reflectance of road markings has a 
significant impact on its function (such as driving safety). It is there-
fore urgent that the road maintenance department regularly conducts 
an assessment of markings to ascertain any degradation or damage and 
perform timely maintenance where necessary. In recent years, a series 
of methods for degradation analysis and damage assessment based on 
digital images (Spencer Jr et al. 2019) or laser measurement (Zhang 
et al. 2019) have been presented in various studies to enhance the 
efficiency of road maintenance. Numerous studies have used image-
based to efficiently inspect damage or cracks in roads and bridges 
(Cha et al. 2018; Kawano et al. 2017; Kheyrollahi and Breckon 2012). 
Although image-based methods provide satisfactory inspection results 
for damage under well-lit and are generally less expensive than laser 
techniques, results obtained by these image-based approaches easily 
suffered from several factors such as variation of the illumination, 
weather conditions, and shadow.

Lidar is an alternative technique that is less sensitive to ambient 
light conditions for carrying out degradation analysis by modeling the 
relation between intensity and retroreflective luminance (Burghardt 
et al. 2021). In Soilán et al. (2022), a methodology was proposed that 
defines a road marking degradation model, which estimates the coef-
ficient of retroreflected luminance using the intensity attribute of 3D 
point clouds. Jung et al. (2019) proposed a line association process to 
consider poorly worn lane markings such that the data can help agen-
cies assess the condition of each individual stripe. Guo et al. (2015) 
computed the sum of absolute differences (SAD) value to provide the 
completeness of the road markings. The user could then undertake 
repair judgments based on the SAD values.

Methods
The proposed framework is illustrated in Figure 1. The main steps of 
automatic extraction and reconstruction of HMs in existing highway 
scenes based on MLS point clouds include (1) preprocessing and pave-
ment extraction; (2) identifying objects of candidate markings; and (3) 
HM extraction and reconstruction; (4) highway markings degradation 
analysis.

Point Cloud Preprocessing and Pavement Extraction
Firstly, we carried out the intensity value revised in the preprocessing. To 
overcome the effect of scanning distance (angle of incidence) on the inten-
sity of point clouds, we use the trajectory obtained by the MLS to correct 
the intensity value based on the distance from each point to the trajectory 
to revise pointwise. Then, highway pavement was extracted after project-
ing point cloud to image based on the various attribute of the point.

Point Cloud Intensity Revision
The point cloud intensity values are corrected pointwise using the dis-
tance to the trajectory. According to Korpela et al. (2010), the intensity 
of the point cloud was revised and normalized by the following equation:

 IRan=(R/RRef)a·Iraw (1)
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where IRan is the range normalized intensity; R is the range; RRef is a 
mean reference range; α ∈ [2,4] is the exponent that is, according to 
theory, dependent on the target geometry.

Intensity Raster Image Extraction of Pavement
Before extracting a raster image of pavement, it is necessary to filter 
the point cloud and generate multi-feature maps. To distinguish ground 
points and nonground points (guardrails, vegetation, vehicles, etc.), 
we use a bending energy filtering algorithm (Han et al. 2014) to filter 
ground and nonground points to generate multi-feature maps. Figure 
2 shows the MLS point clouds collected in the complex environment 
highway scenes. Figure 3 shows filtering results.

 Point cloud conversion to raster means that the 3D point cloud of 
pavement neglects the influence of elevation and approximates a 2D 
structure, in which the gray value of the 2D map can be obtained from 
the attribute characteristics of the point clouds. After point cloud filter-
ing, we exploit a method for extracting pavement based on a multi-
feature image (Pan et al. 2019). In this method, the intensity, elevation, 
and point density features of the point clouds are projected onto the 2D 
plane and generate grayscale feature maps for extracting raster images 
of pavement. The point clouds acquired by the mobile measuring sys-
tem (MMS) are Pi(Xi, Yi, Zi, Ii), (Xi, Yi, Zi) are 3D coordinates of point i,  

and Ii is the intensity value. We take the intensity Ii as an example and 
project Pi onto the plane by neglecting their z coordinate components 
as follows:
 (xi, yi)planar = s(Xi, Yi) (2)

where (xi, yi) are the positions after projection and s is the scale param-
eter between the point clouds and projected points. We rasterize the 
point cloud and represent it as a grid:

  (3)

where ci and ri are the image coordinates of each grid, and Rpixel is the 
grid size, which determines the size and level of detail of the produced 
image. When there are no projected points on a grid, 0 is used instead of 
the reflected intensity; when there is more than one projected point on 
grid, the pixel value is the average reflected intensity value of all points.

Based on the results of ground and nonground points filtered, the 
grid size Rpixel of the feature map is set according to the point cloud 
density when collected. The feature image Z non–g

avg  of nonground points 

Figure 1. The framework of the proposed method.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING April 2023 247



is generated by point elevation, and the feature images Ig
avg and Dg

avg of 
ground points are generated by the intensity and number of unit grid 
points, respectively. Figure 4 shows the generated feature map.

Equations 4 and 5 represent the workflow for extracting pavement 
intensity images based on the generated multiple feature maps. First, 
to generate the gradient image of denoised, median filtering and the 
Sobel operator are used to remove noise and extract edges from the 
nonground elevation feature map, respectively. Then, the nonground 
gradient binary map and point density binary map are generated by the 
nonground elevation gradient image and ground point density image 
using the max entropy thresholding method, respectively, in which 
slope and point density are set to 1 when they are greater than the 
threshold, and the rest are set to 0. Finally, according to the nonground 
gradient binary and point density binary maps, the nonroad area of 

the intensity map was removed, in which the area with a large slope 
or sparse points was considered the area of nonroad in the ground. 
According to the results above, the pavement grid of intensity was 
retrieved on the intensity map of the ground. Moreover, the small-area 
noise was removed using area filtering, which used the number of 
pixels as a criterion.

  
(4)

  
(5)

Figure 2. Mobile laser scanning (MLS) point cloud for complex environment highway scenes.

(a) (b) (c)

Figure 3. Point cloud filtering. (a) Original point cloud; (b) Ground points; (c) Nonground points.

(a) (b) (c)

Figure 4. Multi-feature raster map. (a) Intensity image of ground points; (b) Elevation image of nonground points; (c) Density image of ground points.
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Where 9 is the operator; MF, SO, and ME are the median filter, 
Sobel operator, and max entropy algorithm, respectively; and Znon–g

medianF,  
Znon–g

sobel , and Znon–g
bin  are the nonground elevation images after median filter-

ing, Sobel edge image, and max entropy binary image, respectively. 
Dg

bin is the ground intensity image after the max entropy thresholding 
method; Iavg

road is the extracted intensity image of pavement. Figure 5 
shows the generated pavement intensity map.

Candidate Marking Identification
To overcome the severe noise and wear in existing highways and 
improve the robustness of the proposed method, we adopt a dynamic 
threshold segmentation algorithm to segment the pavement image into 
a binary image, further optimize the results using a morphological 
operator, and label the object of the extraction result using connected 
component analysis (CCA). Subsequently, the bounding box of each 
object is calculated to obtain the coarse positioning of the marking 
candidate area.

Binary Image Generation for Pavement  
Images Based on Dynamic Thresholding
The intensity revision of the points is performed by taking into account 
the distance from the original cloud point to the trajectory according 
to Equation 1. Although this process overcomes the effects of scanning 
distance as much as possible, it is not ideal for images with a large area 
when using the global threshold to obtain a binary image. In this paper, 
the divide-and-conquer strategy is adopted to overcome drawbacks us-
ing the global threshold. First, the image is partitioned into subblocks, 
and then, the max entropy method is used to automatically obtain the 
optimal threshold for each subblock. Although the dynamic thresh-
old algorithm is used to preserve the candidate pixel of the road as 
completely as possible, a mass of nonmarking noise is also preserved. 
Therefore, we use morphology operators to optimize the results and 
obtain candidate objects of road markings by shape size.

Morphological Image Processing and Object Clustering
There are also various small size noises in the pavement binary image, 
and disconnected objects can also be caused by worn markings. To 
solve this problem, we use the morphological closing operation, which 
effectively connects different objects in the vicinity and makes the 
highway marking candidates more complete. Morphological process-
ing can effectively optimize the binary image and connect disconnect-
ed and incomplete objects that belong to the same candidate region and 
make the candidate object more complete (see Figure 6).

After the morphological processing of the binary map, the im-
age object remains an image object, not a candidate object for road 

(a)

(b)

(c)

Figure 5. Pavement point cloud segmentation. (a) Original point 
cloud; (b) Pavement point cloud; (c) Pavement intensity image.

(a) (b) (c)

Figure 6. Results of morphological image processing. (a) Original binary image; (b) Image after the dilation operation; (c) Image after the closed 
operation.
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marking. To solve this issue, the seed filling algorithm based on the 
CCA is used to cluster the neighboring image pixels into various candi-
date objects of HMs. After clustering, there is still small noise, which is 
removed by setting a certain number of pixel thresholds (area filtering). 
As shown in Figure 7, different colors represent different clustering 
objects and different candidate objects for HMs.

Refined Extraction and Reconstruction
After the clustering process has been completed, each image object 
becomes a candidate object for HMs. However, the HMs have not been 
extracted accurately and reconstructed. To overcome the flaws of the 
bottom-up strategy adopted by most existing research, we propose 
integrating rule-based methods and edge-based matching methods for 
HM refined extraction and construction.

Rule-Based Extraction and Reconstruction for Solid Line Marking
Solid line markings are lane lines on both sides of a highway that are 
continuous solid lines. Usually, solid line markings are large HMs; 
therefore, we use the geometric information to recognize the solid line 
marking. Some geometric variables are adopted, including minimum 
bounding box with length a, width b, aspect ratio σ1, and the ratio of 
the area of the point cloud to the area of its external rectangle is σ2. 
According to the highway specification, the standard width of the solid 
line is set as solidwidth and the clustering candidates that also satisfy the 
following equation are classified as a solid line type.

  (6)

where φ1 is a constraint on the length-width ratio of the minimum 
bounding box in the candidate object of highway markings, and the 
solid line highway marking aspect ratio should be set to a larger thresh-
old, namely, set as φ1 = 8. φ2 indicates the restriction on the rectan-
gularity of the clustering; φ3 reflects the allowed difference in width 
between the clustered objects and the design dimensions.

The solid line marking was classified by the processing above. The 
solid line marking is obviously a continuous solid line; however, for 

some reasons (wear and occlusion), they are sometimes broken. When 
breakage occurs, we connect and complete solid line markings based 
on the highway marking design rules (see Figure 8).

Edge-Based Matching for Precise Extraction  
and Reconstruction of Nonsolid Marking
After identifying the solid line markings, the remaining candidate ob-
jects of the nonsolid markings are grouped into different dashed lines 
and arrow highway markings. Firstly, the bounding box is extracted ac-
cording to the clustering object of nonsolid markings (see Figure 10b), 
and then the intensity map is clipped according to the bounding box of 
each candidate area, and the small clipped image includes the complete 
object of nonsolid HMs. Finally, an edge-based matching algorithm is 
used to refine the extraction and reconstruction for nonsolid line HMs 
in a small image. Before carrying out matching, we constructed the 
template database according to the highway markings specification, 
including several highway templates such as the straight-ahead arrow, 
left-turn arrow, right-turn arrow, straight ahead or left-turn arrow, and 
straight ahead or right-turn arrow (see Figure 9). Using the top-down 
strategy above, only small images need to be searched without blind 
matching for the whole image, thus improving the efficiency and ac-
curacy of HM extraction. Moreover, the edge-based matching algorithm 
overcomes the effects of wear and the intensity of noise; therefore, the 
extraction results are more robust to the intensity of noise. Figure 10 
shows the refined extraction and reconstruction results for nonsolid 
line highway marking.

In the matching process, the template model should be compared to 
the search image at all locations using a similarity measure. The idea 
behind the similarity measure is to take the sum of all normalized dot 
products of gradient vectors of the template image and search the im-
age overall points in the model data set. This results in a score at each 
point in the search image. This can be formulated as follows.

  (7)

where Gxi
T and Gyi

T are the gradient values of the x- and y-directions of 
the template image, respectively; GxS

(u + Xi, v + Yi) and GyS
(u + Xi, v + Yi) are the 

gradient values of the x- and y-directions of the corresponding points 
of the search image; and n is the number of edge points.

If there is a perfect match between the template model and the 
search image, this function will return a score of 1. The score cor-
responds to the portion of the object visible in the search image. If the 
object is not present in the search image, the score will be 0.

Highway Marking Degradation Analysis
To evaluate the condition of HMs, we quantitatively describe the degra-
dation of HMs in terms of the completeness of the marking contour and 
the consistency within the marking combining the geometric appear-
ance and radiation information of HMs. According to the section “Edge-
Based Matching for Precise Extraction and Reconstruction of Nonsolid 
Marking”, the score of the best edge-based template matching (SEM) 
is calculated by the similarity measure using the sum of all normal-
ized dot products of gradient vectors and is obtained to estimate the 
completeness of the marking contour. The more severe the wear or the 
missing parts occurring on the marking contour, the lower the SEM is. 
According to the marking intensity map which has a strong relation to 
the radiation information of marking materials, the consistency within 
markings is estimated by the score of area-based template matching 
(SAM), which uses the sum of the normalized difference of squares 
matching method for calculations. The formula of SAM is modified for 
the binary map as follows.

  (8)

(a) (b)

Figure 7. Illustration of object clustering and area filtering. (a) 
Morphological processing results; (b) Object clustering results.

Figure 8. Solid line marking reconstruction based on the highway 
marking design rule.
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where T(x' + y') and I(x + y) are the template and search image, respec-
tively. The value of SAM matches the results and shows the similarity 
of the highway marking to the corresponding template. The larger 
the SAM value is, the better the consistency within the marking. For 
example, the drop in the SAM value might indicate wear and uneven 
intensity existing on the marking; simultaneously, and the marking 
requires repair.

Results and Discussion
Data Set Description
The efficiency of the proposed method was evaluated with two data 
sets, in which highway point clouds were both collected in Sichuan 
Province, Southwest China. An overview of the two sites is shown in 
Figure 12. The length of data sets A and B are 3.964 km and 12.854 
km, respectively. Data set A was collected in the alpine and gorge 
areas, where there is a lot of rain all year round, and the heavy traffic 
of trucks causes serious wear on the markings. At the same time, there 
are many curves and highway marking types (see Figure 12a and 12c). 
Data set B was collected in a town adjoined by a city and country with 
heavy traffic causing a great many occlusions and wear (see Figure 12b 
and 12d). Table 2 provides quantitative descriptions of the two data 
sets. Compared with most existing studies, which have focused on ex-
tracting pristine markings on relatively new road surfaces, the highway 
in the two data sets is very challenging because it is used for a long 

period with various wear markings and severe noise and is thus found 
to be adequate for demonstrating feasibility and reliability. Figure 11a 
shows the working process of the iScan MMS, and Figure 11b shows 
the panorama camera and laser scanner carried on the MMS. Table 1 
lists the performance index of the MLS system. As shown in the scan-
ner configuration, the scanner orientation was set to –30° (see Figure 

dashed line 1 dashed line 2 straight-ahead arrow left-turn arrow right-turn arrow straight ahead or right-turn arrow
Figure 9. Example of non-solid line highway marking template.

(a) (b) (c)

Figure 10. Refined extraction and reconstruction results for nonsolid line highway marking. (a) Object clustering results; (b) Results of nonsolid 
line highway marking; (c) Precise extraction of nonsolid line highway marking.

Table 1. Performance index of the mobile laser scanning (MLS) system.
Parameters Scan Point Frequency Scanning Frequency Measuring Distance Field of View Distance Measurement Accuracy

Performance index ≥50 million points/second ≥200 Hz 300 m ≥360° ≤6 mm ~40 m

Figure 11. (a) Scanner configuration of iScan mobile measuring 
system (MMS); (b) Enlarged view of panorama and laser scanner; (c) 
Highway scene point cloud colored by intensity values.
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11a), which is the angle between the perpendicular direction and scan 
line, to provide adequate coverage of the transverse at fast speeds, 
and trajectory data were obtained by the GNSS and IMU carried on the 

MMS. Figure 11c illustrates the collected point clouds color-coded by 
intensity values.

Experimental Results Analysis
Extraction and Reconstruction Results
We implemented all the programs in C++ with the open-source Point 
Cloud Library and Open Source Computer Vision Library (OpenCV). 
All experiments were carried out on a standard computer with 64 

Table 2. Quantitative descriptions of the data sets A and B.
Data Sets Road Length (km) Scenario

A 3.964 the alpine and gorge areas

B 12.854 village area with overpasses

(a)

(b) (c)

(d)

Figure 12. Overview of two test sites. (a) View of the scenario for data set A; (b) View of the scenario for data set B; (c) Data set A; (d) Data set B.

252 Apr i l  2023 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



GB RAM and an AMD Ryzen 7 5800X 8-Core Processor 3.80 GHz. 
In the section “Methods”, several parameters and thresholds were 
introduced. In Table 3, we summarized and described them together 
with the values used for the validation of the method. The value of 
the parameters comes from previous knowledge of the problem, such 
as geometric properties of highway markings and standard value of 
highway specification, and an empirical verification that is needed in 
every methodology heavily based on heuristics. Figure 13 and Figure 
14 show qualitative illustrations of the extraction and reconstruction 
results for HMs using the proposed approach from data sets A and B in 
complex highway scenes, respectively, where the global overviews are 
displayed and several typical road stretches are enlarged for detailed 
inspection. Figure 15 shows the HM extraction and reconstruction 
results using the proposed approach on a typical road stretch, where 
the HMs marked by the red rectangle are of wear and occlusion. Figure 
16 shows the HM extraction and reconstruction results for a complex 
existing road stretch with various point densities and intensities.

Table 3. Descriptions and settings of vital parameters.
Parameter Description Value

α Exponent depending on the target geometry 3

Rpixel Grid size of the feature map 0.8

φ1

The length-width ratio of the minimum bounding box in the 
candidate object of highway markings (the solid line highway 
marking aspect ratio should be set to a larger threshold)

8

φ2 Restriction on the rectangularity of the clustering 0.6

φ3
Allowed difference in width between the clustered objects 
and the design dimensions

0.2

Tlow Low threshold 10

Thigh High threshold 100

Smin Minimum score 0.85

g Coefficient of greed 0.8

Figure 13. Highway marking extraction and reconstruction of 
data set A: a global overview; (a) and (b) are the enlarged typical 
stretches for detailed inspection.

Figure 14. Highway marking extraction and reconstruction of data 
set B: a global overview; (a)–(c) are the enlarged typical stretches 
for detailed inspection.

(a)

(b)

Figure 15. Highway marking extraction and reconstruction with wear and occlusion. (a) The raw point clouds displayed in radiometric 
rendering; (b) The extracted and reconstructed highway marking point clouds.
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The HM extraction and reconstruction results demonstrate that the 
proposed combination of the bottom-up and top-down methods is 
robust to complex highways with different densities, intensities, wear, 
and occlusion. On the one hand, most existing bottom-up approaches 
for HM extraction from point clouds use the local intensity difference 
between the pixel of marking and background to set the threshold, 
which depends heavily on intensity quality and uniformity. However, 
intensity quality and uniformity suffer from some factors, includ-
ing the scanning mechanism of MLS, the performance period of the 
highway, and other reasons, such as road humidity and dust. Moreover, 
if adopting a top-down strategy completely, the mass volume of the 
point cloud leads to a low efficiency for HM extraction, especially in 
highway scenes owing to its long distance. Based on these challenges 
of the two strategies above, the proposed approach integrates them 
for HMs extraction and reconstruction from point clouds in complex 
highway scenes. First, the bottom-up strategy is adopted to coarsely 
detect highway marking candidates, which ensures the completeness of 
the marking objects for improving the recall rate. Simultaneously, the 
efficiency and accuracy are greatly enhanced by point conversion to 
featured maps and sophisticated image processing. Then, according to 
the specification template of the HMs, edge-based matching is adopted 
to accurately extract and reconstruct the HMs after obtaining the coarse 
marking candidate objects, a process that constructs the edge models 
of different highway marking templates and computes the similarity 
between the edge point of the template in models and the highway 
marking object in the searching image for scoring to select optimal 
matching. Therefore, in the proposed approach, we take into account 
the characteristics of both extraction strategies and the complexity of 
the existing highway scenes. The method combines the complexity of 
the existing highway, radiometric appearance, and overall geometric 
features of the HMs. In contrast to the existing bottom-up approach, 
we proposed that the process is less sensitive to raw data quality and 
improves robustness and efficiency.

The quantitative evaluation metrics for HM extraction are precision, 
recall, and F1-score:

  (9)

  (10)

  (11)

where TP, FP, and FN are the number of true positives in the extracted 
results, the number of false positives in the extracted results, and the 
number of false negatives in the ground truth, respectively.

Manually extracted highway marking points were compared to the 
results extracted by the present method, and the evaluation measures 

of data sets A and B are shown in Table 4 and Table 5, respectively. 
For solid line markings, the meter is used as the evaluation unit of 
the identified length, while the object of reconstruction is used as the 
evaluation unit for nonsolid line markings. Therefore, the evaluation 
metrics of the solid line and nonsolid line markings are discussed due 
to different units.

Data sets A and B are both collected in complex highway scenes, 
with a variety of scene types, severe noise, and wear. As listed in Table 
4 and Table 5, the present approach achieved 96.2% and 93.6% in 
terms of average recall and precision for solid line marking extraction, 
respectively, and achieved 94.7% and 94.3% with respect to average 
recall and precision for nonsolid line marking extraction, respectively. 
The high values of the recall, precision, and F-score measures in all 
data sets indicate that the proposed method to extract the HMs works 
well in the existing highway scenes. The slight difference between 
recall, precision, and F-score in the two data sets shows the stability 
and reliability of the performance of the proposed method.

The experimental results also show several failures if the following 
conditions exist: (1) it is easy to confuse or misrecognize the two types 
of dashed lines when occlusion or wear occurs on raw point clouds 
because there is the only the difference in length and width between 

Table 4. Quantitative evaluation of the highway marking (HM) extraction 
results in test area A.
Category GT TP FP FN Recall Precision F-Score

solid line 8760.0 8431.44 576.50 328.55 0.962 0.936 0.949

dash line &1 53 50 5 3 0.943 0.910 0.925

dash line &2 52 49 2 3 0.942 0.960 0.951

road arrow &1 6 6 0 0 1.000 1.000 1.000

road arrow &2 3 5 0 0 1.000 1.000 1.000

overall 113 109 7 6 0.947 0.939 0.943

GT = ground truth; TP = the number of true positives in the extracted results; FP 
= the number of false positives in the extracted results; FN = the number of false 
negatives in the ground truth.

Table 5. Quantitative evaluation of the highway marking (HM) extraction 
results in test area B.
Category GT TP FP FN Recall Precision F-Score

solid line 25222.0 24099.07 925.92 1122.93 0.955 0.963 0.959

dash line &1 502 478 28 24 0.952 0.944 0.948

dash line &2 51 49 3 2 0.960 0.942 0.951

road arrow &1 5 5 0 0 1.000 1.000 1.000

overall 558 532 31 26 0.953 0.945 0.949

GT = ground truth; TP = the number of true positives in the extracted results; FP 
= the number of false positives in the extracted results; FN = the number of false 
negatives in the ground truth.

(a) (b)

Figure 16. Highway marking extraction and reconstruction with various intensities and point densities. (a) The raw point clouds displayed in 
radiometric rendering; (b) The extracted and reconstructed highway marking point clouds.
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dashed lines; (2) when point clouds are collected by working for a long 
period of the existing highway, it is difficult to avoid putting the pave-
ment point cloud with severe noise identified as some nonsolid line 
markings; (3) it is inevitable to have some vehicle passes during the 
MLS work, which causes an obstacle to extraction and recognition of 
the HMs on incomplete data. To avoid the above failure as much as pos-
sible, we conclude some measures taken to improve the reliability and 
accuracy of HMs extraction. First, to reduce the incomplete point clouds 
collected, we collect the MLS point clouds during the low-traffic flow 
period. Second, to obtain a higher point density, we use a slower speed 
in the process of running the vehicle. Last, the highway department 
should regularly inspect the conditions of wear or cracks on markings, 
as well as take measures to perform updates and maintenance.

Comparison Analysis
We compared different algorithms using point clouds with incomplete, 
severe noise, and low-intensity contrast and analyzed the results. The 
performance was compared with the methods of Pan et al. (2019) and 
Yao et al. (2020). Figure 17 shows the results on three typical road 
stretches, where the HMs marked by red rectangles are incomplete data, 
severe noise, and uneven intensity. In these cases, the method of Pan et 
al. (2019), which calculates a global intensity threshold to extract the 
HMs, does not obtain a good result. Although the method of Yao et al. 
(2020) adopting a dynamic threshold using integral images improves 
the results in most cases, it also yields results with noise when incom-
plete markings exist. Compared with the proposed method, the above 
two methods both adopt a bottom-up strategy and are sensitive to 
imperfect data, while our method adopts a divide-and-conquer strategy 
and model-driven approach, takes into account both the complexity of 
the data and the efficiency of the algorithm, and achieves better results. 
Table 6 presents the performance of the different methods. Since there 

are different degrees of noise in the three test data, all F-scores for the 
method of Pan et al. (2019) are less than 90%. The method of Yao et 
al. (2020) achieves high precision, but the F-score is insufficient in 
typical road stretches (a) and (b) (89.57% and 88.71%, respectively). 
By achieving an average precision of 95.67%, average precision of 
94.01%, and average precision of 94.66% in three typical road stretch-
es, the present method performs better than the other methods, and the 
findings further show the effectiveness of the proposed method.

Degradation Analysis
After extraction and reconstruction of HMs, we carried out a deg-
radation analysis on each object of marking in test areas A and B. 
According to the section “Highway marking degradation analysis”, 
taking into account the geometric appearance and radiation informa-
tion of HMs, the value of SEM and SAM is calculated by edge-based 
and area-based template matching, respectively. The value of SEM and 
SAM describe the condition of the current HMs from different aspects, 
in which the SEM value calculated for each marking object provides 
the completeness of the marking contour and the SAM value provides 
the consistency within the marking. Through trial and error on the 
SEM and SAM with the various conditions of highway markings, we 
set degradation thresholds to count the number of two different types 
of degradation present in the HMs. Furthermore, a database can be 
established to describe the degradation result of each marking object 
in the test area, as shown in Table 7, as an example of a database. 
Assessment results of each marking object include image, type, posi-
tion (geographic coordinate system was converted to projection of 
Universal Transverse Mercator (UTM)), the value of SEM and SAM, and 
acceptance of degradation (marked by √ represents no degradation; 
otherwise, marked by × represents maintenance is required). According 
to the content of the database presented in Table 7, we concluded 

(a) (b) (c)

Figure 17. Highway marking extraction results of three highway sections (a), (b), and (c) with incomplete, severe noise, and low-intensity 
contrast: the first row is the raw point clouds displayed in radiometric rendering, the second, third, and fourth row is obtained by the methods of 
Pan et al. (2019), Yao et al. (2020), and our method, and the last row is ground truth data.

Table 6. Quantitative evaluation results of different highway marking extraction methods.

Method

Typical Road Stretches (a) Typical Road Stretches (b) Typical Road Stretches (c)

Precision (%) Recall (%) F-score (%) Precision (%) Recall (%) F-score (%) Precision (%) Recall (%) F-score (%)

Pan et al. (2019) 89.64 90.23 89.93 86.47 92.62 89.43 84.29 86.36 85.31

Yao et al. (2020) 92.73 86.62 89.57 88.26 89.18 88.71 92.64 94.28 93.45

Ours 94.59 93.63 94.10 95.72 93.46 94.57 95.70 94.95 95.32
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that when there is an incomplete contour or internal inconsistency 
occurring in the HMs, there will be a significant change in the values 
of SEM and SAM to indicate the degree of degradation. Meanwhile, the 
highway maintenance department can efficiently locate the highway 
markings with existing wear or missing parts and implement repair and 
maintenance. For example, if the significant drop of the SEM or SAM 

value indicates existing incompletion and wear on the marking object, 
repair is needed.

Table 8 and Table 9 list the statistical results of HM degradation in 
test areas A and B, where the number of marking contour completeness 
degradation (SEM degradation) and the number of marking consistency 
degradation (SAM degradation) are counted, respectively. Although the 

Table 7. Quantitative degradation analysis results of different lane marking extraction method.

Object

Marking type Dash line Straight arrow Right-turn arrow Straight or right-turn arrow

Assessment results

Image

Position (UTM) (524967.36, 3209313.98) (529634.43, 3210105.80) (529664.58, 3210230.65) (529159.24, 3208493.70)

SEM 0.934 0.952 0.965 0.931

SAM 0.949 0.976 0.951 0.954

Quality √ √ √ √

Assessment results

Image

Position (UTM) (373273.13, 3426763.02) (373216.15, 3426813.11) (365660.97, 3428576.27) (373967.51, 3426262.71)

SEM 0.873 0.851 0.902 0.881

SAM 0.842 0.876 0.892 0.852

Quality × × × ×
UTM = Universal Transverse Mercator; SEM =  the score of the best edge-based template matching; SAM = the score of area-based template 
matching. Cells marked by √ represents no degradation; otherwise, marked by × represents maintenance is required.

Table 8. Quantitative assessment results of highway marking degradation in test area A. 

Type Total
The Number of  

SEM Degradation
The Number of  

SAM Degradation
The Rate of 

SEM Degradation
The Rate of 

SAM Degradation

Dashed line 1 53 6 4 11.32% 7.54%

Dashed line 2 52 7 5 13.46% 9.61%

Straight arrow 6 1 0 16.66% 0

Left-turn arrow 3 0 0 0 0

SEM = the score of the best edge-based template matching; SAM = the score of area-based template matching.

Table 9. Quantitative assessment results of highway marking degradation in test area B.

Type Total
The Number of  

SEM Degradation
The Number of  

SAM Degradation
The Rate of  

SEM Degradation
The Rate of  

SAM Degradation

Dashed line1 502 28 16 5.57% 3.18%

Dashed line2 51 6 5 11.76% 9.80%

Straight arrow 5 1 0 20.00% 0

SEM = the score of the best edge-based template matching; SAM = the score of area-based template matching.
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values of SEM and SAM have not yet established an absolute function 
with the degree of wear of the HMs, these two indicators provide ex-
plicit guidance for carrying out the repair of the highway maintenance 
department. Moreover, the values of SEM and SAM collected in differ-
ent phases also provide a relative comparison for reflecting changes in 
conditions in the HMs.

Conclusion
This paper addressed the problem of the extraction, reconstruction, 
and degradation analysis of HMs in complex highway scenes using MLS 
point clouds. The main contribution of this study was a model-driven 
approach for the extraction and reconstruction of highway markings 
with precise positions and semantics and constructing two evaluation 
indicators to quantitatively analyze highway marking degradation for 
efficient maintenance. The proposed method was tested on two data 
sets with lengths of 3.9 km and 12.8 km, and promising results were 
obtained. The reported average precision values of 93.8% and 95.5% 
and average recall value of 95.4% and 95.4% for the two types of 
markings in the two test areas show the reliability of the proposed ap-
proach for extracting and reconstructing HMs. In terms of the degrada-
tion analysis of HMs, a database is established for reflecting the condi-
tion of the marking object, including marking object type, position, 
and the value of two degradation indicators. The detailed description 
contents of the HMs generated by the present method provide signifi-
cant support for the digital operation, maintenance, and intelligent 
management of highways. Moreover, the results can also be applied to 
studies of HD maps and road safety assessments.

In the future, our research work will focus on how a rigorous model 
can be established between the degradation degree of the HMs and 
metrics of description.
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Lorraine B. Amenda, PLS, CP
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ASPRS has six councils. To learn more, visit https://www.asprs.org/Councils.html.

Sustaining Members Council 
Chair: Ryan Bowe
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Technical Division Directors Council 
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Chair: 
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Deputy Chair:                 
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Chair: Demetrio Zourarakis
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Geographic Information Systems 
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Director: Denise Theunissen 
Assistant Director: Jin Lee
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Assistant Director: Mat Bethel

Photogrammetric Applications Division 
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Unmanned Autonomous Systems (UAS) 
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REGION PRESIDENTS
ASPRS has 13 regions to serve the United States. To learn more, visit https://www.asprs.org/regions.html.

Alaska Region

Cascadia Region
Jimmy Schulz

Eastern Great Lakes Region
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Omar Mora
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Founded in 1934, the American Society for Photogrammetry and Remote Sensing (ASPRS) is a scientific association 
serving thousands of professional members around the world. Our mission is to advance knowledge and improve under-
standing of mapping sciences to promote the responsible applications of photogrammetry, remote sensing, geographic 
information systems (GIS) and supporting technologies.
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SUSTAININGMEMBERS
ACI USA Inc.
Weston, Florida
https://acicorporation.com/
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Kucera International
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Member Since: 6/2023

NV5 Geospatial
Sheboygan Falls, Wisconsin
www.quantumspatial.com
Member Since: 1/1974

Pickett and Associates, Inc.
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Belmont, Michigan
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Member Since: 2/2017

Riegl USA, Inc.
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Colorado Springs, Colorado
www.sanborn.com
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www.surdex.com
Member Since: 12/2011
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Austin, Texas
www.sam.biz
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https://t3gs.com/
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Towill, Inc.
San Francisco, California
www.towill.com
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Woolpert LLP
Dayton, Ohio
www.woolpert.com
Member Since: 1/1985

Membership
 9 Provides a means 
for dissemination 
of new 
information

 9 Encourages 
an exchange 
of ideas and 
communication 

 9 Offers prime 
exposure for 
companies

SUSTAININGMEMBERBENEFITS
Benefits of an ASPRS Membership
 – Complimentary and discounted Employee Mem-

bership*
 – E-mail blast to full ASPRS membership*
 – Professional Certification Application fee dis-

count for any employee 
 – Member price for ASPRS publications
 – Discount on group registration to ASPRS virtual 

conferences
 – Sustaining Member company listing in ASPRS 

directory/website
 – Hot link to company website from Sustaining 

Member company listing page on ASPRS website 

 – Press Release Priority Listing in PE&RS Industry News
 – Priority publishing of Highlight Articles in PE&RS 

plus, 20% discount off cover fee
 – Discount on PE&RS advertising
 – Exhibit discounts at ASPRS sponsored confer-

ences (exception ASPRS/ILMF)
 – Free training webinar registrations per year*
 – Discount on additional training webinar registra-

tions for employees
 – Discount for each new SMC member brought on 

board (Discount for first year only)

*quantity depends on membership level



 
 

 

    

 
After more than 15 years of research and writing, the Landsat Legacy 
Project Team published, in collaboration with the American Society 
for Photogrammetry and Remote Sensing (ASPRS), a seminal work on 
the nearly half-century of monitoring the Earth’s lands with Landsat. 
Born of technologies that evolved from the Second World War, 
Landsat not only pioneered global land monitoring but in the process 
drove innovation in digital imaging technologies and encouraged 
development of global imagery archives. Access to this imagery led 
to early breakthroughs in natural resources assessments, particularly 
for agriculture, forestry, and geology. The technical Landsat remote 
sensing revolution was not simple or straightforward. Early conflicts 
between civilian and defense satellite remote sensing users gave 
way to disagreements over whether the Landsat system should 
be a public service or a private enterprise. The failed attempts 
to privatize Landsat nearly led to its demise. Only the combined 
engagement of civilian and defense organizations ultimately saved 
this pioneer satellite land monitoring program. With the emergence 
of 21st century Earth system science research, the full value of the 
Landsat concept and its continuous 45-year global archive has 
been recognized and embraced. Discussion of Landsat’s future 
continues but its heritage will not be forgotten. 

The pioneering satellite system’s vital history is captured in this 
notable volume on Landsat’s Enduring Legacy.  

Landsat Legacy Project Team
Samuel N. Goward
Darrel L. Williams
Terry Arvidson
Laura E. P. Rocchio
James R. Irons
Carol A. Russell
Shaida S. Johnston

Landsat’s Enduring Legacy
Hardback. 2017,  ISBN 1-57083-101-7   
Member/Non-member  $48*
Student Member $36*

* Plus shipping

LANDSAT’S ENDURING LEGACY

Pioneering Global Land Observations from Space

Landsat Legacy Project Team

lAndSAt’S enduRIng legAcy
Pioneering global land observations from sPace

Order online at 
www.asprs.org/landsat
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