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ASPRS is happy to announce the dates of its virtual conference. The 2023 ASPRS 
International Technical Symposium will take place. 

The symposium will consist of:
• 15-minute oral presentations
• 5-minute Ignite-style presentations
• Poster Gallery
• Sustaining Member Vendor Spotlights
• ASPRS Society Highlights

Sessions will run each day from 10:00 AM to 6:00 PM Eastern Daylight Time (UTC - 4). All sessions will be recorded and 
made available on-demand to conference registrants. Presenters are eligible to submit full manuscripts for publication in 
the ISPRS Archives.

Registration Fees
• ASPRS Member $150 USD
• ASPRS Student Member $ 50 USD
• ASPRS Emeritus Member $ 25 USD
• Non Member   $250 USD

Sponsorship Opportunities
• Vendor Spotlight/Product Demo
• Day Sponsor
• Session Sponsor
• Workshop Sponsor “We are happy to offer this educational opportunity to the 

geospatial community. Virtual events are an excellent way 

to exchanammunity without the cost and time constraints of 

travel,” said Karen Schuckman, ASPRS Executive Director

2023 ASPRS 
InteRnAtIonAl technIcAl 
SymPoSIum

June 12-16, 2023
vIRtuAl

httPS://my.ASPRS.oRg/2023SymPoSIum/
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INDUSTRYNEWSTo have your press release published in PE&RS, 
contact Rae Kelley, rkelley@asprs.org.

ANNOUNCEMENTS

NV5 Global, Inc., a provider of technology, conformity 
assessment, and consulting solutions, announced today 
the closing of its acquisition of L3Harris Technologies, 
Inc.’s Visual Information Solutions commercial geospatial 
technology and software business (“VIS”).   First 
announced in December, the acquisition has received 
regulatory approvals and enhances NV5’s position 
as North America’s premiere provider of geospatial 
data solutions, accompanying the acquisition of Axim 
Geospatial completed earlier this year.

“This acquisition supports NV5’s expansion in a 
subscription-based geospatial product and service 
model and strengthens our role in supporting the 
nation’s defense and intelligence communities through 
geospatial information management and analytics,” 
said Dickerson Wright, PE, Chairman and CEO of NV5. 
“As the only provider of software solutions to analyze 
over 200 geospatial data types and comprehensive in-
house lidar, topobathymetric lidar, and full ocean depth 
sonar capabilities, NV5 has built a distinct competitive 
advantage and robust platform to support accelerated 
organic growth.”

The VIS acquisition includes 16 U.S. Patents for 
geospatial data analytics. NV5 will also receive ownership 
of an additional 13 U.S. and non-U.S. Trademark 
Registrations for leading geospatial software applications 
with approximately 500,000 global users. These software 
products include prominent applications such as ENVI, 
IDL, Jagwire, Amplify, and Helios, which are relied upon 
by the United States Department of Defense and federal 
civilian agencies for the analysis and management of 
geospatial data.

For more information on NV5, visit www.nv5.com.

 ¼½¼½

UP42, the geospatial developer platform and marketplace, 
has significantly expanded its aerial imagery and 
elevation data portfolio through a partnership with 
Vexcel–a 30-year industry leader in the photogrammetric 
and remote sensing space. The Vexcel Data Program 
delivers geospatial data products with high accuracy, 
spatial resolution, and consistency.

Vexcel’s aerial data collection initiative is the largest 
in the world capturing ultra-high-resolution imagery 
(at 7.5 to 15cm resolution) and related geospatial data 
in more than 30 countries, including the U.S., Canada, 
U.K., Western and Eastern Europe, Australia, New 
Zealand, and Japan. Known for their remarkable image 
quality, Vexcel products are used extensively by local 

governments, utilities, telecoms, and AEC (architecture, 
engineering, construction) companies.

“With a rich heritage in the geospatial industry, the 
Vexcel name is synonymous with reliability and quality,” 
said Sean Wiid, CEO of UP42. “Our partnership with 
Vexcel highlights UP42’s commitment to offer our 
customers a portfolio of products that continues to grow in 
diversity and geographic coverage.”

Vexcel has built its excellent reputation over decades in 
the geospatial sector, first as developer of the market-
leading UltraCam airborne sensor line deployed globally 
by aerial mappers. Leveraging the UltraCam’s ultra-
high resolution and accuracy combined with world-class 
processing software, Vexcel launched its data collection 
program and amassed a comprehensive library of cloud-
based aerial imagery and elevation data.

“Our aerial data helps end users solve some of the 
toughest geospatial challenges, especially when it comes 
to infrastructure and asset management,” shared Jason 
Jones, Director of Channels and Alliances for Vexcel. “End 
users are able to support better decision-making, enhance 
workflows, and generate more accurate automated 
insights using our premium imagery. We’re thrilled our 
partnership with UP42 provides this opportunity to their 
customers.”

The clear and accurate Vexcel aerial imagery now 
available on the UP42 marketplace enables users to gain 
greater context and insights from the world around them. 
These products include: oblique and true ortho urban 
images at 7.5 cm resolution, or better;  orthos at 15-20 cm; 
and Digital Surface Models (DSM) at 7.5cm resolution and 
Digital Terrain Models (DTM) at 15-20 cm resolution

The consistent quality of Vexcel image products across all 
geographic locations delivers insights and analysis in a 
variety of applications, including: vegetation management 
and infrastructure monitoring by energy utilities and 
telecommunication companies; vite inspection and 
property assessment by AEC firms; and urban planning 
and environmental protection by local governments.

“We launched UP42 with the objective of becoming the 
one-stop-shop that changes the way geospatial data is 
accessed and analyzed — and our partnership with Vexcel 
further assists us in achieving that goal,” said UP42’s 
Wiid.

For more information visit https://vexceldata.com/au or 
https://up42.com.

mailto:rkelley@asprs.org
https://www.l3harrisgeospatial.com/Software-Technology
https://www.l3harrisgeospatial.com/Software-Technology
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INDUSTRYNEWS

ACCOMPLISHMENTS

Dewberry, a privately held professional services firm, 
has announced that Executive Vice President and Federal 
Market Leader Phil Thiel has been named to the  National 
Geospatial Advisory Committee (NGAC) by the U.S. 
Department of the Interior.

The NGAC provides advice and recommendations on 
national geospatial policy and management issues, the 
development of the National Spatial Data Infrastructure 
(NSDI), and the implementation of the Geospatial Data 
Act of 2018.

Thiel serves as principal-in-charge for Dewberry’s 
major geospatial contracts with the Federal Emergency 
Management Agency, National Oceanic and Atmospheric 
Administration, U.S. Army Corps of Engineers, U.S. 
Fish and Wildlife Service, U.S. Geological Survey, and 
numerous other federal agencies and clients, providing 
surveying, remote sensing, geographic information 
systems, information technology, and other professional 
services.

“The National Geospatial Advisory Committee plays 
a vital role in advancing the nation’s adoption and 
implementation of geospatial technologies, and I’m truly 
honored and humbled to join the committee,” Thiel says.

For more information on Dewberry, visit www.dewberry.com.  

 ¼½¼½ 

In December 2022, the US joined an international 
coalition committed to preserving 30 percent of the 
planet’s lands and oceans by 2030, an initiative 
known as 30 by 30. An inherently geographic issue, 
one major tool already in use to achieve this goal is 
mapping technology. Esri, the global leader in location 
intelligence, has been at the forefront of applying maps 
and analytics to conservation since its inception. One 
key mission for founders Jack and Laura Dangermond 
has been understanding the connection between humans 
and the planet to help build a more sustainable world. 
In recognition of their work, the International Land 
Conservation Network (ILCN) has awarded Jack and 
Laura Dangermond the Conservation Visionary Award.

“We have always been passionate about protecting the 
natural world, and this award is an incredible honor for 
us,” said Jack Dangermond, Esri founder and president. 
“We hope our work inspires and motivates individuals 
and other organizations to pursue similar opportunities to 
conserve remaining natural areas important to the health 
of our planet, especially as we embark on the ambitious 
goal of protecting a third of the planet’s lands and oceans.”

Jack and Laura Dangermond founded Esri in Redlands, 
California in 1969, and it is now the leading geographic 
information system (GIS) software company in the world. 
Esri has supported environmental efforts by offering low-
cost access to software, content, and resources through 
its Nonprofit Organization Program. The company has 
also donated or pledged more than $1 billion worth of free 
Esri software to schools and environmental organizations.

In addition to company support, the Dangermonds 
personally established the Jack and Laura 
Dangermond Preserve at Point Conception, California, 
in 2017. Their $165 million donation to The Nature 
Conservancy helped protect 24,000 acres of California’s 
central coastal land. Currently, the organization 
is building a digital twin of the preserve available online, 
and empowering researchers to study the preserve from 
anywhere in the world.

The ILCN connects civic and private organizations around 
the world to accelerate the protection and strengthen land 
and natural resource management. The organization’s 
Conservation Visionary Award honors individuals who 
have made outstanding contributions to the field of 
conservation. Recent awardees have included Minister 
of the Environment of Chile, Marcelo Mena; Director for 
Biodiversity in the European Commission’s Directorate 
General for the Environment, Humberto Delgado Rosa; 
and Conservation Director at the Fundacion Catalunya al 
Pedrera, Miquel Rafa Fornieles.

The Dangermonds’ award was presented to Jack and 
Laura at the 2023 Esri Geodesign Summit.

For more information on Esri, visit www.esri.com.

CALENDAR

• 12-16 June,  ASPRS 2023 International Technical Symposium. For more information, visit https://my.asprs.
org/2023Symposium/.

• 16-19 October, GIS-Pro 2023, Columbus, Ohio. For more information, visit www.urisa.org/gis-pro.

https://www.fgdc.gov/ngac/doi-appoints-new-members-to-national-geospatial-advisory-committee-april-2023
https://www.fgdc.gov/ngac/doi-appoints-new-members-to-national-geospatial-advisory-committee-april-2023
http://www.dewberry.com
https://news.mongabay.com/2023/03/how-you-save-the-world-with-three-words-commentary/
https://www.esri.com/en-us/about/about-esri/overview
https://www.esri.com/en-us/industries/nonprofit/nonprofit-program
https://www.esri.com/about/newsroom/announcements/jack-laura-dangermond-give-gift-enable-preservation-iconic-california-coastline/
https://www.esri.com/about/newsroom/blog/open-science-environmental-digital-twin/
https://www.esri.com/en-us/about/events/geodesign-summit/overview
http://www.esri.com
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353 3D Scene Modeling Method and Feasibility Analysis of River Water-Land 
Integration
Xiaoguang Ruan, Fanghao Yang, Meijing Guo, and Chao Zou

This article integrates remote sensing, 3D modeling, and CityEngine technology to construct a 3D scene 
model reconstruction method of river water-land integration. The method includes intelligent extraction 
of underwater topography, refined modeling of hydraulic structures, and construction of a water-land 
integrated real scene model.

361 High-Resolution Aerosol Optical Depth Retrieval in Urban Areas Based on 
Sentinel-2
Yunping Chen, Yue Yang, Lei Hou, Kangzhuo Yang, Jiaxiang Yu, and Yuan Sun

In this article, an improved aerosol optical depth (AOD) retrieval algorithm is proposed based on 
Sentinel-2 and AErosol RObotic NETwork (AERONET) data.

373 Change Detection in SAR Images  through Clustering Fusion Algorithm and 
Deep Neural Networks
Zhikang Lin, Wei Liu, Yulong Wang, Yan Xu, and Chaoyang Niu

The detection of changes in synthetic aperture radar (SAR) images based on deep learning has been 
widely used in landslides detection, flood disaster monitoring, and other fields of change detection 
due to its high classification accuracy. However, the inherent speckle noise in SAR images restricts the 
performance of existing SAR image change detection algorithms by clustering analysis. Therefore, this 
article proposes a novel method for SAR image change detection based on clustering fusion and deep 
neural networks.

385 Strategies for Forest Height Estimation by High-Precision DEM Combined with  
Short-Wavelength PolInSAR TanDEM-X
Hongbin Luo, Wanqiu Zhang, Cairong Yue, and Si Chen

The purpose of this article is to explore forest height estimation strategies using topographic data (DEM) 
combined with TanDEM-X while comparing the effect of volume scattering complex coherence selection 
on forest height estimation in the traditional random volume over ground (RVoG) three-stage algorithm. 

C O L U M N S
343  GIS Tips & Tricks — Easy Contours in Global Mapper

A N N O U N C E M E N T S
348  ASPRS Certifications 

348  New ASPRS Members
 Join us in welcoming our newest members to ASPRS.

Call for PE&RS Special Issue Submissions 

351 Ushering a New Era of Hyperspectral Remote Sensing 
to Advance Remote Sensing Science in the Twen-
ty-first Century  

352 Special Issue on the Scholarship and Impactsof 
Professor Nina S. N. Lam

360 Innovative Methods for Geospatial Data using Remote 
Sensing and GIS 

D E PA R T M E N T S
333 Industry News

334 Calendar

359  In-Press PE&RS Articles

372  Who’s Who in ASPRS

393  ASPRS Sustaining Members

337 Top Geospatial Trends 
to Watch in 2023
By Qassim Abdullah, Ph.D., PLS, CP, Woolpert 
Vice President and Chief Scientist

347 George E. Brown, Jr. Congressional 
Honor Awarded to Congresswoman 
Betty McCollum 
By Brian Huberty, Remote Sensing Advisor, 
Sharedgeo.org

www.facebook.com/ASPRS.org
www.twitter.com/ASPRSorg
www.youtube.com/user/ASPRS
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A bright spot has emerged after California’s particularly wet and dreary winter: 
a sea of wildflowers in Southern California. In the western tip of the Mojave 
Desert, orange, gold, and yellow flowers have flooded the valleys and hills of 
Antelope Valley California Poppy Reserve.

On April 7, 2023, the Operational Land Imager (OLI) on Landsat 8 acquired the 
image (cover) of the valley. Bright golden-orange California poppies (Eschschol-
zia californica) are on full display with yellow California goldfields (Lasthenia 
californica), among other species of flowers.

On April 15, 2023, the Operational Land Imager-2 (OLI) on Landsat 9 captured an-
other vibrant view of the bloom (above). By this time, the golden-orange poppies 
had faded in places, while canary yellow flowers in the upper left of the image 
pop out. The yellow flowers are surrounded by panels from a solar farm.

During the same week in April 2020, orange hues of the California poppy domi-
nated images of the reserve. But in these views in 2023, a mosaic of orange and 
yellow is on display.

Although wildflowers make their appearance on these hills almost every spring, 
this year California is experiencing a larger “super bloom.” Much of California 
had a wetter-than-average winter, and this abundant precipitation fuels the 
large wildflower blooms.

For more information, visit https://landsat.visibleearth.nasa.gov/view.
php?id=151227.

NASA Earth Observatory images by Lauren Dauphin, using Landsat data from 
the U.S. Geological Survey. Story by Emily Cassidy.
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 > Navigating Recovery, 
Gaining Strength

Four months into 2023, the pandemic continues to impact 
the geospatial industry. In 2021 and 2022, supply chains and 
productivity were disrupted, leading to shortages of critical 
materials, parts, and products, some of which compromised 
vital survey hardware. However, our industry has shown 
resilience as many companies and manufacturers have 
implemented new workplace safety protocols, increased 
automation, and diversified supply chains to mitigate the im-
pact of future disruptions. In addition, geospatial hardware 
manufacturers have continued to advance new and unique 
capabilities for data acquisition. 

Digital Twin: Last year, I shared how BIM and GIS provide 
the foundation for digital twin, and how the nearly synon-
ymous term of “metaverse” was gaining traction. Over the 
last year, the collective benefits and returns on investment 
for the digital twin have continued to expand. As the value 
of the digital twin is increasingly realized, demand for this 
technology will skyrocket. A digital twin is a digital replica 
of a physical environment, whether it is an asset, process, 
highway corridor, river, ocean, or even the Earth. This digital 
representation comprises the entire life cycle of the asset or 
the project, from the planning stage to design and construc-
tion, and continuing through operating the asset—all in one 
place. 

Since the digital twin mimics the real-world characteris-
tics of the physical environment in real time, with the help 
of Internet of Things (IoT) sensors, a facility engineer can 
remotely observe the operational environment of a building 
to manage environmental controls, power consumption, air 
quality, fire alarm systems, etc. A city emergency response 
team can simulate disaster scenarios to identify evacua-
tion routes and aid access through a digital twin, or a port 
authority can manage its assets and port operations, guiding 
incoming and outgoing ships through its navigation chan-
nel by way of precision navigation. This capability can save 
billions of dollars at commercial ports that have restricted 
visibility due to fog or other environmental conditions that 
can impede navigation. 

Additionally, the smart city concept coupled with the IoT 
will continue to expand, generating a wealth of data and 
information that can be used for geospatial analysis through 
artificial intelligence. The digital twin concept is fertile 
ground for using AI tools to extract useful information and 

Photogrammetric Engineering & Remote Sensing
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For the last six years,  
I have been writing this 
"Top Geospatial Trends” 
column, which is usually 
published in January 
or February. Some 
years, the columns 
write themselves, as 
advancements in the 
industry emerge or 
innovative perspectives 
demand input and 
conversation. This year, 
because the industry is 
still working to shake 
off the dust from the 
pandemic, this column is 
being published in June. 
For this year’s edition, I’ll revisit how the 
trends highlighted last year fared and if 
they will continue to shape our year ahead, 
spotlight some things to watch in the last 
half of 2023, and provide my perspective 
about the future of geospatial through 
the lens of our revised American Society 
for Photogrammetry and Remote Sensing 
(ASPRS) Accuracy Standards for Digital 
Geospatial Data, which are due to be 
published later this year.
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predict future trends and phenomena. Increasingly, software 
companies are providing platforms for building and hosting 
digital twins. Companies like Microsoft, through its Azure 
digital twin platform, and Bentley, Autodesk, and Esri have 
developed capabilities to support digital twin development. 

Virtual Collaboration Rooms and Mixed Reality: Several 
technologies that support virtual collaboration and data visu-
alization were spotlighted in 2022. Those platforms generate 
the need for 3D data while providing a new means of data 
modeling and interpretation. These include Microsoft Mesh 
and HoloLens 2; Bentley’s mixed reality platform, SYNCHRO 
XR; and the NVIDIA Omniverse platform. Demand for high-
er-resolution 3D geospatial data has grown rapidly in the past 
year. This will continue to fuel multiverses that interface to 
human factors through augmented and virtual reality, offer-
ing new possibilities for visualization, design, and analysis. 
This mixed reality tech trend will trend upward as more ap-
plications of AR and VR are discovered and applied to support 
multiple industries.

Deep into Miniaturized Sensors: Smartphones continue 
to branch out geospatially, putting lidar capabilities in the 
hands of the masses while expanding opportunities for profes-
sional surveyors and mappers to conduct geospatial survey on 
small projects. A sneak preview of smartphones coming out 
this year indicates that they will include even more advanced 
lidar systems. This underscores how sensor systems will con-
tinue to get smaller, more efficient, and more technologically 
advanced. 

High-Definition Maps for Autonomous Driving: I made 
a plea last year for the geospatial industry to take the lead on 
creating and standardizing high-definition maps for a global 
road network in support of autonomous vehicles. Sadly, a year 
has passed, and the situation remains unaltered. This preci-
sion location data should include lane numbers, freeway exit 
lanes, pedestrian crosswalks, bridges, overpasses, tunnels, 
locations of traffic control devices, 3D trajectories for road 
edges and boundaries, etc., with accuracy to the centimeter 
level, meter-by-meter road grade, and road superelevation. 
Addressing this situation continues to be an immense oppor-
tunity for our industry and the future of safe autonomous 
transportation.

Rising Drone Demand: As predicted, uncrewed aircraft 
system-based lidar took off in 2022 and will continue to rise, 
providing a healthy offering of new and affordable lidar. In 
2021, growth was spurred by the DJI lidar system, Zenmuse 
L1, which provided high accuracy at a comparably lower cost. 
Today, while most affordable UAS-based lidar systems are 
based on Livox laser technology, UAS-based lidar systems 
based on Hesai technology (or Hesai scanners) are gaining 
growing interest, having proved to be more robust and better 
suited for general survey, mapping, and inspection applica-
tions. An example of this is the RESEPI XT32 by Inertial 
Labs, which features a 360-degree field of view and 32 lasers. 

Woolpert collected lidar data of this Wyoming canyon in 
Yellowstone National Park to create a digital elevation model for 
the U.S. Geological Survey. *Image courtesy of the United States 
Geological Survey.

The geospatial industry can advance the future of safe, autono-
mous transportation by standardizing high-definition maps for a 
global road network. Photo courtesy of Getty Images.

Lidar continues to be a mover and a shaker for the geospatial 
industry and will remain so for the foreseeable future. Graphic 
courtesy of Woolpert
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The manufacturer claims the RESEPI XT32 provides 1-centi-
meter accuracy. 

For drones overall, the industry demand is strong, espe-
cially for mapping and inspection applications.

Whirl Around the Coastal Regions: Coastal wind energy 
contracts were highlighted in my article last year as part of 
a larger effort by the U.S. to transition to cleaner, renewable 
sources of energy and to reduce reliance on fossil fuels. In 
2022 and into 2023, this effort continues to grow, with coast-
al wind farms approved and constructed along the nation’s 
coastlines. 

On a larger scale, the demand for airborne lidar bathymet-
ric data is on the rise and best demonstrated by the Florida 
Seafloor Mapping Initiative (FSMI), which is being managed 
by Florida Department of Environmental Protection, as well 
as a multitude of projects in the Pacific. These projects are 
aimed at collecting critical foundation data needed for coastal 
inundation modeling, resilience planning, and engineering 
projects. 

Data Democratization: In the past year we witnessed an 
explosion in the demand for high-resolution, high-frequen-
cy geospatial information from denser point clouds to more 
crowd-sourced location data. New market entrants are using 
AI to extract infrastructure features in exquisite detail. 
The market is hungry for good, raw 3D data to feed these 
algorithms. With the higher demand for geospatial data, 
we should see prices fall and higher shelf-life decrease. The 
quality and availability of publicly available data will also 
increase.

AI and the Cloud: AI and machine learning both play a 
significant role in geospatial analysis and mapping. Thanks 
to private sector investments, cloud data hosting and pro-
cessing, serverless cloud computing, off-the-shelf and open-
source technologies, and streamlined workflows with AI tools 
all continue to trend upward. I am still hoping that federal 
and public funding can be used to entice further creativity in 
this field. Without these investments outside the private sec-
tor, the most cutting edge geoanalytics will not be available 
to the broader market. 

Lidar Growth: As you likely have seen from its mention 
in multiple topics above, lidar continues to be a mover and 
a shaker for the geospatial industry and will remain so for 
the foreseeable future. Lidar efficiencies continue to expand 
across other industries to support robotic applications such 
as autonomous driving and machine learning.

Bathymetric lidar also has been getting more attention. 
Leica recently announced the release of its newest deep 
bathymetric lidar sensor, the Leica HawkEye-5, which 
reportedly has a 25% increase in performance. Woolpert and 
the Joint Airborne Lidar Bathymetry Technical Center of 
Expertise (JALBTCX) announced Bathymetric Unmanned 
Littoral LiDar for Operational GEOINT (BULLDOG) 

technologies and sensor. These technologies enable the 
collection of high-resolution topo-bathy data at a higher alti-
tude, resulting in a broader swath than previously developed 
lidar systems.  

The introduction of these new bathymetric lidar capabili-
ties is timely, as they are being employed to serve the many 
vital statewide and national coastal mapping initiatives, as 
noted above with initiatives like FSMI. States are using this 
federal funding window to collect data essential to every-
thing from asset management to infrastructure planning 
to disaster response. What is key to these opportunities is 
that contracting agencies make sure they collect consistent, 
high-quality data so they can reap the rewards of this fund-
ing for years to come. Miniature lidar manufacturing, espe-
cially for sensors mounted on drones, is getting a healthy 
share of the lidar market as more surveying and mapping 
businesses embrace the technology.

Other noteworthy trends
Here are a few other quick-hitting geospatial trends in 

technologies and methodologies to watch in 2023:
• Indoor mapping will continue to become more sophisticat-

ed, opening the door for improved indoor wayfinding and 
asset management.

• Location data will be subjected to increasing privacy and 
security regulations and standards. For the extra layer 
of security it provides, we may witness increased use of 
blockchain technology in geospatial data management 
and sharing.

• With more user-friendly data visualization tools available 
to all industries, 3D geospatial data will be increasingly 
used in training, gaming, planning, design, asset manage-
ment, navigation, and other applications. 

> ASPRS Accuracy 
Standards Update

When we published the ASPRS Positional Accuracy 
Standards for Digital Geospatial Data Standards in 2014, 
we knew we would have to modify it based on user experi-
ence and feedback. And sure enough, after eight years of 
fast-changing sensor technologies and evolving applications, 
it became clear that significant changes needed to be made 
to the standards to make them more adaptable to today’s 
mapping practices. 

One of the most important changes that our revision 
working group has endorsed is easing the accuracy of field 
surveying requirements for ground control and checkpoints. 
As we are producing more accurate products, we have real-
ized that the current accuracy requirement for checkpoints 
of three times better than the accuracy of the tested prod-
uct have rendered nearly useless our affordable RTK-GPS 
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techniques, which are predominately used for surveying. 
This requirement has forced contracting agencies to specify 
more expensive surveying techniques, which has proved to 
be a cost prohibitive for completing these contracts. 

Another important change is the addition of five ad-
dendums on best practices and guidelines in project notes 
and data reporting, photogrammetry, lidar, UAS, and field 
surveying. When we published the first edition in 2014, we 
designed it to be a modular standard to accommodate addi-
tional materials as the industry evolved. Since then, we have 
witnessed an unprecedented acceleration in geospatial tech-
nologies and practices. This growth necessitated guidelines 
and best practices in multiple aspects of geospatial map-
ping to help users of the standards navigate these rapidly 
changing advancements. These addendums were crafted by 
industry leaders who specialize in these fields. 

In addition, an important change is coming regarding the 
way we evaluate product accuracy. Currently, we ignore the 

error in survey checkpoints. That practice was acceptable 
when geospatial mapping product accuracy was low, and the 
surveying techniques applied did not represent a substantial 
enough source of error to be considered in computing product 
accuracy. As we are moving into more accurate products, i.e., 
in the range of a few centimeters, it has become apparent 
that the 2cm error embedded in the RTK-GPS survey tech-
nique can no longer be ignored. The new method will consid-
er the fit of the product to the checkpoints plus the error of 
the survey. 

The second edition of these standards will be published 
in the next few months. Keep an eye out for a forthcoming 
article that highlights the changes and their ramifications 
which are designed to advance the geospatial industry. Above 
all else, this will have a long-lasting impact on the geospatial 
industry.

Woolpert Vice President and Chief Scientist Qassim Abdullah, Ph.D., PLS, CP, has more than 40 years of combined 
industrial, R&D, and academic experience in analytical photogrammetry, digital remote sensing, and civil and surveying 
engineering. When he’s not presenting at geospatial conferences around the world, Abdullah teaches photogrammetry 
and remote sensing courses at the University of Maryland and Penn State, authors a monthly column for the ASPRS 
journal PE&RS, and mentors R&D activities within Woolpert.

This article is running in running in PE&RS Journal and Lidar Magazine.
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MAPPING MATTERS
YOUR QUESTIONS ANSWERED
by Qassim Abdullah, Ph.D., PLS, CP 
 Woolpert Vice President  and Chief Scientist

The layman's perspective on technical theory and practical applications of mapping and GIS

Have you ever wondered  
about what can and can’t 
be achieved with geospatial 
technologies and processes?

Would you like to understand 
the geospatial industry in 
layman’s terms?

Have you been intimidated 
by formulas or equations in 
scientific journal articles and 
published reports?

Do you have a challenging 
technical question that no 
one you know can answer?

If you answered “YES” to any of these questions, 
then you need to read Dr. Qassim Abdullah’s 
column, Mapping Matters. 
In it, he answers all geospatial questions—no matter 
how challenging—and offers accessible solutions.

Send your questions to Mapping_Matters@asprs.org

To browse previous articles of Mapping Matters,  
visit http://www.asprs.org/Mapping-Matters.html

“Your mapping matters 
publications have helped us a lot in 

refining our knowledge on the world of 
Photogrammetry. I always admire what you 
are doing to the science of Photogrammetry. 

Thank You Very much! the world wants 
more of enthusiast scientists like you."

“I read through your comments 
and calculations twice. It is very clear 

understandable. I am Honored there are 
experienced professionals like you, willing to 

help fellow members and promote knowledge 
in the Geo-Spatial Sciences.”

YOUR COMPANION TO SUCCESS
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GIS &Tips     Tricks By

Easy Contours in Global Mapper

Srinu Ratnala, Andrew Peters, GISP, 
and Al Karlin, Ph.D. CMS-L, GISP

While many GIS Tips & Tricks 
columns focus on the Esri-based 
ArcGIS and ArcGIS Pro software 
packages, there are many other 
software packages that offer sim-
ilar GIS-based analytical tools. In 
this column we will explore using 
Global Mapper™ to quickly pro-
duce contour lines from a Digital 
Elevation Model. This workflow is 
relatively straightforward; it uses 
a basic Global Mapper license, no 
extensions required, and only re-
quires a bare earth Digital Eleva-
tion Model (DEM) which can easily 
be downloaded from the USGS 
National Map (https://apps.nationalmap.gov/downloader/) 
or the NOAA Digital Coast (https://coast.noaa.gov/dataview-
er/#/), both of which have been discussed in other GIS Tips & 
Tricks columns. Global Mapper™ provides the end-user with 
multiple options for constructing contours, including custom 
intervals, major and minor contours, and smoothing algo-
rithms accessed directly from a simple dialog box system.

The Basic Workflow
 Step 1 — Load a bare earth DEM into Global Mapper,
 Step 2 — Select the “Analysis” Tab on the Ribbon,
 Step 3 — Select the “Generate Contours (from Terrain 

Grid) tool on the dropdown,
 Step 4 — Update/Fill-in a few parameters on a dialog 

box,
 Step 5 — [optional] Export the generated contours to a 

permanent file of your choice.

Example Workflow
Note: For this example, we downloaded a 1-meter DEM for 
the Pisgah National Forest area in North Carolina from the 
U.S. National Map. The DEM was referenced to UTM Zone 
17N/NAD83 in meters (EPSG:26917). The file format is a 32-
bit Floating Point GeoTIFF. 
 Step 1 — Load the bare earth DEM.
 Step 2 — From the menu bar, click the Analysis Tab and 

select the “Generate Contours (from Terrain 
Grid) tool as in Figure 1).

 Step 3 — Fill in the Contour Generation Options Dialog. 
Notice that there are four Tabs across the top 
of this Dialog.

The Contour Generation Options Tab (Figure 2) is used to 
specify the contour interval and other optional character-
istics of the lines. In this case, we will generate 10-meter 
contours with Minor Contours every 10-meters and Major 
Contours every 100 meters in this very rugged terrain. 
Notice that Global Mapper™ reports the elevation ranges 
in the DEM (345.9 to 861 meters in this example) and there 
are options for resampling the DEM, smoothing the contour 
lines, and removing closed (small circular looping) contour 
lines on this Tab. 

TIP #1 
The “Discard Closed Contour Lines Shorter than” will 
omit closed (looping) contour lines of a length less than the 
specified measure. This is important if you want to remove 
small circular contours that can be prevalent in lidar-derived 
DEMs. Depending on your use-case, this value can range to 
hundreds of meters and may require empirical testing.

Photogrammetric Engineering & Remote Sensing
Vol. 89, No. 6, June 2023, pp. 343-346.

0099-1112/22/343-346
© 2023 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.89.6.343

Figure 1.  Starting the Generate Contours Dialog Box from the Analysis Tab in Global Mapper™.

https://apps.nationalmap.gov/downloader/
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TIP #2 
The Simplification Tab (Figure 3) provides a slider to adjust 
the number of non-essential points along a contour line. The 
more points maintained to define the contour’s shape, the larg-
er the size of the resulting file, but the better the shape of the 
lines. The default value is 0.10, and of course, “never accept 
the defaults”, we recommend a 0.20 as a starting setting and 
increasing the value if the file size is too large or decreasing 
this value if the contour lines are too jagged for your use-case.

Zooming in to a smaller area in this DEM shows the 100-me-
ter Major and 10-meter Minor contours symbolized in differ-
ent line weights (Figure 4.)

TIP #3
The Pisgah National Forest DEM used in this example was 
356 MB in size (10,000 x 10,000 cells) and processed the 
10-meter contours in a little over one minute and four sec-
onds. When processing very large DEM mosaics, try resam-
pling the DEM with one of the optional methods (See Figure 
2) to decrease processing time.

Step 4A — Save your Global Mapper™ Workspace 
to make the GENERAGED CON-
TOURS permanent for Global Map-
per™, and/or

Step 4B — Export the contours to another GIS 
Format for use in ArcGIS, GRASS, and/
or other mapping packages.

Here are the steps to Export the GENERATED CONTOURS 
to an Esri shapefile.
 Step 5 — Right-click on the GENERATED CONTOUR 

layer in the Control Center, scroll to the Layer 
bar and slide to the right to open the options, 
and select EXPORT – Export Layer(s) to New 
File (Figure 5)

 Step 6 — Select the Layers to Export from the Dialog 
Box (Figure 6)

 Step 7 — Use the Dropdown selections (Figure 7) and 
scroll down the list to find the file format to 
export. In this case “Shapefile” is far down the 
alphabetical listing.

Figure 2.  The Global Mapper Contour Options Tab used when generating contours.

 Figure 3.  The Simplification Tab slider is used to control the 
number of nodes per contour line; this also influences the file.
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Figure 4.  10-meter Minor and 100-meter Major contours Global Mapper™ generated from the DEM.

Figure 5. Starting the Global Mapper™ EXPORT dialog to export the GENERATED CONTOURS line file
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Tip #4
Key-in the letter “S” on the keyboard by selecting the Drop-
down list for quick navigation.
 Step 8 — On the Shapefile Export Options dialog box 

(Figure 8), when you check the “Export Lines” 
box, a Windows file browser will appear; nav-
igate to a writable directory and specify a file 
name (Global Mapper™ will append .shp to 
your filename. Be careful to check the “Gen-
erate Projection (PRJ) for each Exported SHP 
File”. There are several more options and ad-
ditional Tabs with other parameters and press 
“OK” to export/write the file. 

Global Mapper™ provides an efficient, extremely flexible option 
for constructing contours from a DEM. It really is that easy.

Figure 8. The Global Mapper™ Export Shapefile Options dialog box showing four tabs 
(across the top) and multiple options screens.

Figure 6. The Global Mapper™ “Select Layers” 
dialog box used to select the layer to export.

Figure 7. The Global Mapper™ export file format 
selection menu; the available formats are 
alphabetical.

Send your questions, comments, and tips to GISTT@ASPRS.org.

Srinu Ratnala is a project manager with Dewberry’s Geo-
spatial and Technology Services group in Fairfax, VA. Sri’s 
areas of expertise include analytics and visualization solu-
tions. He has been working with lidar and other 3D-related 
projects.

Andrew Peters, GISP is a senior associate and assistant 
department manager with Dewberry’s Geospatial and Tech-
nologies Services group in Fairfax, VA. Andrew specializes in 
assessing the accuracy of lidar information by comparing raw 
lidar data with ground survey data, generating bare-earth 
models, and using models for contour line creation.

Al Karlin, Ph.D., CMS-L, GISP is a senior geospatial 
scientist with Dewberry’s Geospatial and Technology Ser-
vices group in Tampa, FL. Al works with all aspects of lidar, 
remote sensing, photogrammetry, and GIS-related projects. 
Al also teaches Mapmaking for the Social Sciences at the 
University of Tampa.
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Journal Staff GEORGE E. BROWN, JR. 
CONGRESSIONAL HONOR AWARD 

The 2021 award was presented to Congresswoman 
Betty McCollum on March 16th, 2023 during the 

“State of Our River - Mississippi River Dialogue” 
Meeting.

This award was established in honor of Congressman George E. Brown, Jr. 
and the contributions he made to advance the benefits of remote sensing 
imagery and geospatial information to the profession and society.  The award 
is given periodically to recognize members of the U.S. Congress whose leader-
ship and personal efforts have advanced the science, engineering, application, 
education, and commerce of remote sensing imaging and geospatial informa-
tion systems.  

Thanks to COVID, it took additional time for ASPRS to award, in person, 
the 2021 George E. Brown, Jr. Congressional Honor Award to Congress-
woman Betty McCollum (MN 4th District) for her support as a member of the 
House Appropriations Committee. She currently serves as the Chair of the 
Defense Subcommittee, the Vice Chair of the Interior-Environment Subcom-
mittee, and as a member of the Agriculture and Rural Development Subcom-
mittee. As one can imagine, she is quite busy with her roles in Congress. In 
these roles, she has continued to ensure funding for civil and defense remote 
sensing and geospatial information systems and programs.

Her ‘behind the scenes’ work includes multiple civil, defense and international 
collaborations to push global and regional remote sensing science mapping 
applications. The largest global example is an on-going collaboration between 
the National Science Foundation (NSF), National Geospatial-Intelligence 
Agency (NGA), NASA, and the Universities of Minnesota, Illinois, Texas, 

On the left, Congresswoman Betty McCollum listens to Brian Huberty, ASPRS Western 
Great Lakes Region give a short history about the ASPRS Brown Award.  (Photo Credit:  
Emmet Rice)

mailto:PERSeditor@asprs.org
mailto:jshan@ecn.purdue.edu
mailto:cjmce@lsu.edu
mailto:bookreview@asprs.org
mailto:Mapping_Matters@asprs.org
mailto:rkelley@asprs.org
mailto:maustin@asprs.org
http://


348 June 2023 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

ASPRSNEWS

NEW ASPRS MEMBERS
ASPRS would like to welcome the following new members!

Surendran Amerendran, Ph.D.
Logan Richard Burdwood

Elizabeth Josephine Bushnell
Temitope Hauwa Dauda

Sanduni Disanayaka Mudiyanselage
Elizabeth Elkins, Student

Yuemeng Gao
Christopher Guagliardo

Kim Hansen
Brooklyn Heron

Luke  Hull
Brianna Lee Larkin

Breann Larson
Afolarin Lawal
Julia Lenhardt

Priscilla Mawuena Loh
Benjamin Long

Timothy McEwan

Lalitha Muthu Subramanian
Riley O’Donnell
Alicia Peduzzi
Anand Raju

Liz Richardson
Carol Samuelson

Danielle Marie Schaffeld
Ethan Schreuder

Kevin Simans
Brian Sumner
David Troiani
Mike Venegas

Miles H. Wagner
Steven Joseph Weber

Mohamad Yassin
Sean G. Young, Ph.D.

Feng Yu, Ph.D.

FOR MORE INFORMATION ON ASPRS MEMBERSHIP, VISIT 
HTTP://WWW.ASPRS.ORG/JOIN-NOW

STAND OUT FROM THE REST
earn aSprS certification

ASPRS congratulates these recently Certified and Re-certified individuals:

RECERTIFIED PHOTOGRAMMETRIST

Wallace Scott Dunham, Certification #R1400CP
Effective April 19, 2024, expires April 19, 2029

Douglas Timothy, Certification #R1502CP
Effective July 8, 2021, expires July 8, 2026

Brian Stefancik, Certification #R1545CP
Effective March 7, 2023, expires March 7, 2028

Sally Gehr, Certification #R1547CP
Effective April 7, 2023, expires April 7, 2028

John Lesko, Certification #R1014CP
Effective January 13, 2023, expires January 13, 2028

RECERTIFIED MAPPING SCIENTIST LIDAR

Wallace Scott Dunham, Certification #R030L
Effective August 15, 2023, expires August 15, 2028

   ASPRS Certification validates your professional practice and experience. It 
differentiates you from others in the profession. For more information on the 

ASPRS Certification program: contact certification@asprs.org, visit 
https://www.asprs.org/general/asprs-certification-program.html.

ASPRS 
WORKSHOP 

SERIES

It’s not too late to earn Professional 
Development Hours

Miss an ASPRS Workshop or GeoByte? 
Don’t worry! Many ASPRS events are 
available through our online learning 
catalog.

https://asprs.prolearn.io/catalog
Image Priscilla Du Preez on Unsplash.

http://www.asprs.org/Join-Now
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Washington, and the Ohio State University. This group, led 
by the University of Minnesota, Polar Geospatial Center 
(PGC), has developed techniques for producing EarthDEM1 
- a global scale, two-meter, surface topographic dataset 
using high resolution, time-dependent, MAXAR satellite 
optical imagery with open-source software and U.S. Govern-
ment-funded, high-performance computing (Blue Waters) to 
produce a large volume of high-quality, publicly distributed, 
geospatial data.  

Another regional example spun out of a U.S. Fish & Wildlife 
Service-Great Lake Restoration Initiative project mapping 
the Great Lakes Basin surface vegetation canopies. This 
project produced wetland maps with Canada by dovetailing 
the EarthDEM work by PGC. Again, thanks to NGA, and 
monthly Radarsat 2 images, over a dozen sites across the 
Great Lakes were able to produce wetland inundation maps 
for a five-year period. This work was done by the University 
of Minnesota, PGC and the Remote Sensing and Geospatial 
Analysis Laboratory; Michigan Tech University, Michigan 
Tech Research Institute; SharedGeo, the Minnesota Depart-

ment of Natural Resources, Resource Assessment; Natural 
Resources Canada, Canada Centre for Remote Sensing; 
Environment & Climate Change Canada, Geomatics 
Research.  This project led to the creation of the binational 
Great Lakes Alliance for Remote Sensing.2 

The award was presented on March 16th, 2023 during the 
“State of Our River - Mississippi River Dialogue” meeting 
Congresswoman McCollum led at the Science Museum of 
Minnesota in St. Paul, Minnesota. On the award, a digi-
tal surface model of her district was created from a 2011 
Fugro-Horizons lidar project under contract by the Minne-
sota Department of Natural Resources. The map was created 
by Jim Klassen, Sharedgeo who happens to be one of her 
constituents.

Author
Brian Huberty, Remote Sensing Advisor, Sharedgeo.org.

1 https://www.pgc.umn.edu/data/earthdem/
2 https://glars.org

(L_R) Congresswoman Betty McCollum and Brian Huberty, ASPRS Western Great Lakes Region.  (Photo Credit:  Emmet Rice)
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After more than 15 years of research and writing, the Landsat Legacy 
Project Team published, in collaboration with the American Society 
for Photogrammetry and Remote Sensing (ASPRS), a seminal work on 
the nearly half-century of monitoring the Earth’s lands with Landsat. 
Born of technologies that evolved from the Second World War, 
Landsat not only pioneered global land monitoring but in the process 
drove innovation in digital imaging technologies and encouraged 
development of global imagery archives. Access to this imagery led 
to early breakthroughs in natural resources assessments, particularly 
for agriculture, forestry, and geology. The technical Landsat remote 
sensing revolution was not simple or straightforward. Early conflicts 
between civilian and defense satellite remote sensing users gave 
way to disagreements over whether the Landsat system should 
be a public service or a private enterprise. The failed attempts 
to privatize Landsat nearly led to its demise. Only the combined 
engagement of civilian and defense organizations ultimately saved 
this pioneer satellite land monitoring program. With the emergence 
of 21st century Earth system science research, the full value of the 
Landsat concept and its continuous 45-year global archive has 
been recognized and embraced. Discussion of Landsat’s future 
continues but its heritage will not be forgotten. 

The pioneering satellite system’s vital history is captured in this 
notable volume on Landsat’s Enduring Legacy.  

Landsat Legacy Project Team
Samuel N. Goward
Darrel L. Williams
Terry Arvidson
Laura E. P. Rocchio
James R. Irons
Carol A. Russell
Shaida S. Johnston

Landsat’s Enduring Legacy
Hardback. 2017,  ISBN 1-57083-101-7   
Member/Non-member  $48*
Student Member $36*

* Plus shipping

LANDSAT’S ENDURING LEGACY

Pioneering Global Land Observations from Space

Landsat Legacy Project Team

lAndSAt’S enduRIng legAcy
Pioneering global land observations from sPace

Order online at 
www.asprs.org/landsat
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Call for PE&RS Special Issue Submissions
Ushering a New Era of Hyperspectral Remote Sensing to Advance 

Remote Sensing Science in the Twenty-first Century
Great advances are taking place in remote sensing with the 
advent of new generation of hyperspectral sensors. These 
include data from, already in orbit sensors such as: 1. Germa-
ny’s Deutsches Zentrum fur Luftund Raumfahrt (DLR’s) Earth 
Sensing Imaging Spectrometer (DESIS) sensor onboard the 
International Space Station (ISS), 2. Italian Space Agency’s 
(ASI’s) PRISMA (Hyperspectral Precursor of the Application 
Mission), and 3. Germany’s DLR’s Environmental Mapping 
and Analysis Program (EnMAP). Further, Planet Labs PBC 
recently announced the launch of two hyperspectral sensors 
called Tanager in 2023. NASA is planning for the hyperspec-
tral sensor Surface Biology and Geology (SBG) to be launched 
in the coming years. Further, we already have over 70,000 
hyperspectral images of the world acquired from NASA’s 
Earth Observing-1 (EO-1) Hyperion that are freely available 
to anyone from the U.S. Geological Survey’s data archives. 

These suites of sensors acquire data in 200 plus hyperspectral 
narrowbands (HNBs) in 2.55 to 12 nm bandwidth, either in 
400-1000 or 400-2500 nm spectral range with SBG also acquir-
ing data in the thermal range. In addition, Landsat-NEXT is 
planning a constellation of 3 satellites each carrying 26 bands 
in the 400-12,000 nm wavelength range. HNBs provide data 
as “spectral signatures” in stark contrast to “a few data points 
along the spectrum” provided by multispectral broadbands 
(MBBs) such as the Landsat satellite series. 

The goal of this special issue is to seek scientific papers that 
perform research utilizing data from these new generation 
hyperspectral narrowband (HNB) sensors for a wide array of 
science applications and compare them with the performance 
of the multispectral broadband (MBB) sensors such as Land-
sat, Sentinels, MODIS, IRS, SPOT, and a host of others. 

Papers on the following topics are of particular interest:
1. Methods and techniques of understanding, processing, 

and computing hyperspectral data with specific emphasis 
on machine learning, deep learning, artificial intelligence 
(ML/DL/AI), and cloud computing.

2. Issues of hyperspectral data volumes, data redundancy, 
and overcoming Hughes’ phenomenon.

3. Building hyperspectral libraries for purposes of creating 
reference training, testing, and validation data.
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3D Scene Modeling Method and Feasibility 
Analysis of River Water-Land Integration

Xiaoguang Ruan, Fanghao Yang, Meijing Guo, and Chao Zou

Abstract
Aiming at the problem of rapid construction of a river three-dimen-
sional 3D scene, this article integrates remote sensing, 3D modeling, 
and CityEngine technology to construct a 3D scene model reconstruc-
tion method of river water-land integration. The method includes 
intelligent extraction of underwater topography, refined modeling of 
hydraulic structures, and construction of a water-land integrated real 
scene model. Based on this method, the high-fidelity land-underwater 
seamless digital terrain and the water-land 3D real scene models can 
be formed. Through experiments, the feasibility and limitations of this 
method are verified. It can effectively extract the shallow underwater 
terrain of inland rivers, and the overall accuracy of the study area is 
less than 2 m. The performance of the seamless fusion 3D terrain is 
better than the public digital elevation model data set. In the inland 
basin of Class I to II water quality, it can meet the needs of intel-
ligent perception of a river- and lake-integrated 3D scene model.

Introduction
The progress of surveying and mapping, remote sensing, and GIS 
technology makes the digital twin of water conservancy possible. On 
the whole, the lack of intelligent perception ability of river, lake, and 
reservoir management is still a problem. There are insufficient emer-
gency and normalized monitoring methods for the whole life cycle of 
water conservancy project planning and construction and operation 
and a lack of point, line, and surface collaborative perception ability. It 
cannot effectively support the modernization and development needs 
of water governance. The integrated production method of high-fidelity 
land-underwater seamless digital terrain and the water-land 3D real 
scene models is one of the most critical technical bottlenecks.

Underwater Terrain Extraction Method
Shipborne sounder and Global Navigation Satellite System (GNSS) RTK 
are widely used to obtain underwater depth and position information. 
A single measurement has more or fewer limitations, such as limited 
measurement area and low efficiency (Collin et al. 2018a). Fortunately, 
medium- and high-resolution multispectral satellite images are increas-
ingly used to to observe underwater topography, geomorphology, and 
sediment types (Tang et al. 2003; Duan et al. 2016). Theoretical, semi-
empirical, and empirical models are often used in satellite-derived 
bathymetry (SDB) (Duan et al. 2016; Collin et al. 2018b, 2018b; Ma 
et al. 2020). The theoretical model is based on many radiative transfer 
parameters, which is difficult to obtain in the field and is susceptible to 
environmental conditions, resulting in low terrain accuracy (Collin et 
al. 2018a; Ma et al. 2020). Semi-empirical models use single or mul-
tiple bands to fit water depth by combining radiation attenuation and 
analytical regression (Gholamalifard et al. 2013). Among them, the 

accuracy of Lyzenga polynomial model is obviously better than that 
other models (Lyzenga 1981). The empirical model uses prior knowl-
edge to fit the statistical relationship between water depth and radiation 
intensity (Collin et al. 2017). Sentinel-2 has the advantages of both 
spatial resolution and revisit period, which is suitable as a data source 
for SDB (Hedley et al. 2018; Taganos et al. 2018). However, the lack 
of measured data in river basins is still a problem. NASA launched 
ICESat-2 single-photon lidar satellites in 2018. After data processing, 
the ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) 
can be used as reference data for shallow underwater water depth 
extraction based on active and passive remote sensing fusion (Parrish 
et al. 2019). Thanks to a more sensitive photon counting detector and 
green light beams capable of penetrating water columns, ICESat-2 
ATLAS is capable of detecting the seabed up to 40 m deep in areas 
with excellent water quality (Parrish et al. 2019; Albright and Glennie 
2020). The single-photon lidar satellite signal is seriously attenuated 
after being affected by sunlight, clouds, and water bodies (Leigh et al. 
2014). Therefore, ICESat-2 spaceborne photon point cloud denoising 
and extraction are necessary.

3D Terrain Fusion Method of Land-Water Integration
The problem of data void filling in the land-water transition zone is 
the key to digital terrain model fusion. In addition to commonly used 
spatial interpolation methods such as kriging, spline, and inverse 
distance weighting, which can be used for void filling, the delta surface 
fill method can obtain better results (Grohman et al. 2006; Robinson et 
al. 2014). Before void filling, the difference between digital elevation 
models (DEM) and auxiliary data needs to be solved. These differences 
can occur in horizontal and vertical data, spatial resolution, production 
errors, first-order or second-order trends, and spatial distribution of 
errors (Okolie and Smit 2022). After data fusion, terrain smoothing is 
also performed, such as adaptive smoothing (Yue et al. 2017; Ruan et 
al. 2020), low-pass filtering, or high-pass filtering, to remove terrain 
artifacts (Robinson et al. 2014; Pham et al. 2018). The global open 
DEM data sets (such as SRTM, ASTER, and AW3D) have been grow-
ing steadily, with a resolution better than 30 m, which can be used as 
supplementary data for terrain data fusion (Okolie and Smit 2022).

In the aspect of 3D scene modeling, using remote sensing images, 
CAD drawings, field photos, and other data, based on 3D Max, Revit, 
Blender, and other technologies for manual modeling, is a structured 
modeling method. Its disadvantage is low efficiency; the advantage 
is the detailed expression of complex models, and the model and its 
accessories are independent of each other (Du et al. 2019). The 3D 
scene modeling method based on lidar and oblique photogrammetry 
can collect multi-view image data at a low cost, which is highly auto-
mated and realistic, but the model is not fine enough (Zhou et al. 2016; 
Zhang et al. 2018). Therefore, it is necessary to integrate a variety of 
3D modeling methods and integrate multi-source heterogeneous 3D 
models to realize the complementary advantages of 3D real terrain and 
individual models (Badwi et al. 2022), which is a technical problem 
faced by the construction of land and water 3D real scene (Ruan et 
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al. 2022). The computer-generated architecture (CGA) grammar is a 
shape grammar rule, which contains a series of rules that determine 
how the model is generated (Kim and Wilson 2015; Badwi et al. 2022) 
and is also known as a parametric modeling method. It can generate 
building models with high visual quality and geometric details, which 
are suitable for the construction of multiple shapes. Through the 3D 
model library composed of CGA rules, the geometric attributes and 
texture attributes of the building can be set according to the actual 
needs of the later stage so as to realize fast, automatic, and batch 3D 
modeling. Based on the CGA rule modeling method of CityEngine and 
supplemented by the third-party building information modeling (BIM) 
technology (3D Max, Revit, and Blender), it is feasible to realize the 
complementary advantages of 3D real scene terrain and individual 
models.

In this article, the 3D scene modeling method of river water-land 
integration was proposed. The inland basin high-fidelity land-underwa-
ter seamless digital terrain and the water-land integration 3D real scene 
models were formed, and the feasibility analysis was made. The details 
are as follows.

Data and Methodology
This article integrates remote sensing, 3D modeling, and CityEngine 
technology to construct a 3D scene model reconstruction method of 
river water-land integration. The method includes intelligent extraction 
of underwater topography, refined modeling of hydraulic structures, 
and construction of a water-land integrated real scene model.

The overall technical process is shown in Figure 1.

Land 3D Terrain Modeling
UAV Data Acquisition
Land lidar point cloud and high-resolution images were obtained by 
UAV. The flight route was planned, including altitude, heading cover-
age, heading overlap, lateral overlap, image tilt angle, maximum 
flight tilt angle, and adjacent image height difference. In this study, DJI 
Matrice 300 RTK was used as a UAV platform, which was equipped with 
Zenmuse L1 system. The Zenmuse L1 integrates a Livox lidar module, 
a high inertial measurement unit, and a camera with a one-inch CMOS 
on a three-axis stabilized gimbal. The nominal horizontal accuracy of 
the system is 10 cm at 50 m, and the vertical accuracy is 5 cm at 50 
m. The system can achieve all-weather, high-efficiency real-time 3D 
data acquisition and high-precision post-processing reconstruction in 
complex scenes.

Lidar Point Cloud and Imagery Data Processing
The data collected in the previous step were processed, including UAV 
overlapping route cutting, projection and coordinate transformation, 
point cloud data filtering and classification (including ground, low 
vegetation, medium vegetation, high vegetation, and building), spatial 
resampling, and accuracy analysis.

Land Digital Terrain Modeling
First, the airborne lidar point cloud data were used to interpolate 
the filtered ground point cloud data, and the high-fidelity DEM was 
constructed. Then DEM and aerial images were combined to gener-
ate a digital orthophoto map (DOM). Finally, with the help of point 
cloud data and feature points in images (such as road inflection points, 
and riverbanks), the registration and fusion of DOM and DEM were 
completed.

ICESat-2 Photon Point Cloud Denoising and Extraction
The ICESat-2 ATLAS photon point cloud was used as active reference 
remote sensing data to extract shallow underwater terrain (Figure 3a). 
An underwater terrain signal denoising and extraction method based 
on density clustering and distance statistics was adopted to reduce the 
environmental noise (Xie et al. 2021). Subsequently, the extracted 
point cloud was subjected to a water refraction correction to obtain the 
final water depth. The flowchart is shown in Figure 2.

Bathymetric Inversion Adaptability Verification
Through the previous step, the underwater effective depth point was 
obtained. In the typical river area, through the river terrain stereo 

observation experiment, with the single-beam sonar sounding data as 
the true value, ICESat-2 bathymetric inversion adaptability verification 
was carried out (Figure 2). Taking single-beam sonar data as the true 
value, the two sets of data were spatially superimposed, and root mean 
square error (RMSE) and average relative error (MRE)) were used as 
evaluation indexes to do correlation analysis.

In this study, the survey ship was equipped with a single-beam 
sonar system as an observation platform for collecting measured water 
depth, supplemented by shallow stratum profile instrument, Acoustic 
Doppler Current Profiler, GNSS, Inertial Positioning and Navigation 
System, and other equipment. The single-beam sonar equipment model 
is an Odom Hydrotrac II from Teledyne RD Instruments. The sounding 
accuracy and horizontal accuracy meet the International Hydrographic 
Organization (IHO) Order I standard. The sounding accuracy is better 
than (0.25 + (0.013 × depth)2)1/2 m, and the horizontal accuracy is bet-
ter than (5 + 0.05 × depth) m. The data acquisition scenario is shown in 
Figure 3b.

Bathymetric Inversion by Active and Passive Fusion
Sentinel-2 multi-spectral imagery data were used as passive refer-
ence remote sensing data to extract shallow underwater terrain. Some 
ICESat-2 underwater points were randomly selected as the training 
set, and the rest were used as the test set. A classical empirical model 
(multi-band linear regression model) was established to invert the 
underwater terrain and generate a 10-m-resolution underwater 3D 
terrain (Taganos et al. 2018). The multi-band linear regression model 
assumes that the ratio of reflectivity of two bands of any water pixel on 
the same scene image is constant (Taganos et al. 2018):

  
(1)

Figure 1. Flowchart of 3D scene model reconstruction method of 
river water-land integration.

Figure 2. Underwater signal extraction and bathymetric inversion 
adaptability verification of ICESat-2 ATLAS photon point cloud.
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Here, z represents water depth, N represents the number of bands, a0 
and ai are coefficients of the linear regression model, R(λi) is the radiance 
of shallow water in the ith band of multi-spectral imagery, and R∞(λi)re-
fers to the radiation of deep water bodies in adjacent areas of the ith band.

Through the correlation analysis between the reflectivity of each 
band and the measured water depth, the band with the largest correla-
tion coefficient is selected (Taganos et al. 2018). Therefore, in multi-
band linear regression model, the blue band (458–522 nm), green band 
(543–577 nm), and red band (650–680 nm ) were selected.

3D Scene Construction of Water-Land Integrated Model
Seamless Fusion 3D Terrain Modeling of River Water-Land Integration
First, the spatial reference of land and underwater 3D terrain data was 
unified. The elevation value of the smallest of all the pixel elevation 
values along the river shoreline was used as the water surface elevation 
reference, and the water depth was reduced to the elevation. The river 
shoreline was extracted by remote sensing imaging.

Then the global public DEM data sets Advanced Spaceborne Thermal 
Emission and Reflection Radiometer Global Digital Elevation Model 
(ASTER GDEM) were introduced as the filling data, and the terrain filling 
algorithm based on the triangulated irregular network (TIN) difference 
surface was used to fill the possible voids at the junction of underwater 
and underwater terrain (Grohman et al. 2006; Robinson et al. 2014) so 
as to realize the seamless integration of the 3D water-land terrain.

Finally, an adaptive filtering method based on neighborhood statistics 
was adopted to smooth the fusion model and further filter out possible 
outliers (Ruan et al. 2020). Figure 4 shows the detailed integration pro-
cess of seamless fusion 3D terrain results of river water-land integration.

Fine Modeling of Hydraulic Structures Based on CGA Rules and BIM Technology
In this article, CityEngine was used as the basic platform for 3D 
scene construction of water-land integrated model and realized the 

complementary advantages of 3D real scene terrain and individual 
models (such as building models). The collaborative modeling was 
based mainly on CGA rule modeling method, supplemented by the 
third-party BIM technology (Revit, 3DMax, and Blender) and the 
Motion Structure Recovery (SFM) photogrammetry method.

3D Scene Construction and Analysis Based on CityEngine
The 3D scene data included map, image, texture, and single structured 
model data. For some complex hydraulic structure models, they can 
be imported into the 3D scene in FileGDB format after structural 
modeling. After the rule definition and model import, the 3D scene 
can be modeled. Based on the generated WebScene reality model, the 
CityEngine analysis module can be used for 3D visibility, including the 
Viewshed Tool, ViewDome Tool, and ViewCorridor Tool.

Results and Discussion
Result of 3D Terrain Modeling of River Land
Taking the Xin’an River Basin in Zhejiang Province of the People’s 
Republic of China as the research area, its remote sensing image and 
land 3D point cloud are shown in Figure 5.

The DEM was generated from the airborne lidar point cloud data, 
and then the 3D model of the land part of the river was obtained by 
registration and fusion with DOM, shown in Figure 6. The average 
elevation of the area is about 237 m.

Result of Underwater Photon Point Cloud Extraction
Figure 7 shows the extraction results of some underwater points along 
the trajectory direction of an ICESat-2 trajectory in the study area. In the 
figure, the x-axis is along the trajectory direction, and the y-axis is the 
instantaneous water depth. According to the above denoising method, 
a large number of noise points in ATL03 raw photons were filtered out, 

Figure 3. Source of bathymetric data for ICESat-2. (a) ICESat-2 ATLAS photon point ground footprint distribution. (b) Single-beam sonar 
sounding data by survey ship.

Figure 4. Seamless 3D terrain of river water-land integration steps.
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which was the key to further calculation of local water depth. Figure 9 
shows the remote sensing image of this area. From Figures 7 and 9, it 
can be seen that along the ICESat-2 trajectory direction, from southeast 
to northwest, the water depth changes from deep to shallow and then 
slowly to deep, with an average depth of about 13.8 m. The shallowest 
point appears on a river highland, with a minimum depth of about 6.4 m.

In the above area, the sounding adaptability of ICESat-2 data was 
verified by sonar measured data. The effective sounding range of 
single-beam sonar was 0 to 40 m, and the sampling interval of water 
depth point was 5 m. First, in the sonar coverage area, sonar data 
interpolation was used to establish a water depth grid with a resolution 
of 5 m. Then the ICESat-2 data in the overlapping area of the two were 
diluted at 5-m intervals to obtain a total of 1033 effective water depth 
points. Finally, the grid depth value was extracted by superposition 
analysis, and the correlation analysis was carried out. The results are 
shown in Figure 8. In the overlapping area, the correlation between the 
two is high, and the correlation coefficient (R2) is close to 0.9.

RMSE and MRE were used as evaluation indexes to further verify the 
error distribution of ICESat-2 effective water depth:

 

 

 Here, ∆i is the error between the ICESat-2 water depth value and 
the corresponding sonar water depth value, hi represents the sonar 
water depth value, and n is the number of water depth points.

Quantitative analysis was carried out according to the water depth 
range, and the results are shown in Table 1. The overall accuracy of 
ICESat-2 sounding in the study area has an RMSE of less than 1.5 m, 
and MRE is about 8%. The overall sounding accuracy is basically in 
line with the IHO-S44 standard, which has certain reliability, and the 
accuracy is the best in the shallow waters of 10 m. It is proved that the 

Figure 5. Remote sensing imagery and land 3D point cloud in the study area (Xin’an River Hydropower Station and its upstream image).

Figure 6. River-land digital terrain model.

Figure 7. Extraction result of underwater photon point cloud 
along-track distance. The x-axis represents the direction along the 
trajectory, and the y-axis represents the instant water depth in meters.

Figure 8. Comparison of ICESat-2 data and single-beam sonar data.
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Figure 12. Comparative analysis of elevation profile. The y-axis represents elevation, and the x-axis represents profile distance. Units are 
meters. The blue line represents fusion terrain, and red line represents ASTER GDEM results.

prior data set for shallow-water depth inversion can be obtained from 
the processed ICESat-2 point cloud.

Table 1. Comparison of ICESat-2 data and single-beam sonar data
Water Depth Range (m) RMSE (m) MRE (%)

Range 1 0–10 1.08 9.72
Range 2 10–20 1.50 7.14
Range 3 20–30 1.95 6.88
Overall 0–30 1.46 8.31

Inversion Results and Discussion of Underwater Terrain
The bathymetric inversion experiment was designed as follows. The 
ICESat-2 water depth was processed by point cloud denoising and 
extraction. Some water depth points were randomly selected as the 
training set, and the remaining water depth points were used as the test 
set to establish the inversion model data set. In the above study area, 
750 water depth points were randomly selected as the training set and 
750 water depth points as the test set. The underwater terrain extraction 
result is shown in Figure 9.

Through the correlation analysis, as shown in Figure 10, the cor-
relation between the inversion water depth data and the ICESat-2 
sounding data is high (R2 = 0.86). Quantitative analysis was performed 
according to the water depth range, and the results are shown in Table 
2. The overall accuracy (RMSE) of the above regions is less than 2 m, 
the MRE is about 9%, and the accuracy is best in shallow waters of 
10 m. It is proved that this method can effectively extract the shallow 
underwater terrain of the river.

Table 2. Accuracy statistics of bathymetric inversion
Water Depth Range (m) RMSE (m) MRE (%)

Range 1 0–10 1.26 13.00
Range 2 10–20 1.59 8.45
Range 3 20–30 2.42 9.63
Overall 0–30 1.87 9.09

Results and Discussion of Seamless 3D Scene
Using the above modeling method, the seamless fusion 3D terrain 
result of river water-land integration is shown in Figure 11.

The reliability of the results was verified by ASTER GDEM with a 
resolution of 30 m. Terrain fusion results were evaluated by construct-
ing water depth profiles. In the above research, a representative section 
line in the southeast-northwest direction was constructed, and the 
topographic relief of the seamless fusion terrain and the public data set 
was compared, as shown in Figure 12. The profile line passes through 
the river, and the elevation range is between 16 and 259 m. The results 
show that the terrain undulation of the two is roughly close and that 
the resolution of the fused terrain is higher. The underwater terrain 
undulation of the fused terrain model is closer to the reality, which is 
due to the fusion of remote sensing inversion results. In addition, due 
to the resolution, ASTER GDEM terrain expression is not fine enough, 
especially at the land-water transition zone.

Figure 9. Underwater terrain based on active and passive fusion.

Figure 10. Comparison of bathymetric inversion and ICESat-2 data.

Figure 11. Land-underwater high-fidelity seamless digital terrain 
fusion result.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING June 2023 357



Based on CGA rules and BIM technology, the fine 3D models of 
hydraulic structures were quickly constructed in batches (Figure 13). 
By editing the CGA rule file and assigning it to different vector data for 
definition, regular building models, road models, and green space mod-
els can be generated in batches. For more complex hydraulic structure 
models, BIM software can be used for structural modeling. The SFM 
photogrammetry method can also be used as a complementary means 
for 3D modeling of extremely complex components.

The expected effect of the river 3D scene model of river water-land 
integration is shown in Figure 14. The visible and invisible zone of the 
3D scene can be identified and analyzed.

Limitations and Prospects
The method proposed in this article has some limitations. Although 
some underwater photon positions of ICESat-2 can be obtained by cor-
rection, the underwater photon transmission process is more affected 
by factors than terrestrial photons (Neuenschwander and Magruder 
2016; Liu et al. 2021). This means that not all inland shallow-water 
bottom signals can be detected, especially in deep-water areas. In line 
with the experimental results in this article, when the water depth 
exceeds 20 m, the accuracy will deteriorate sharply, which is bound to 
reduce the availability of data.

In addition, the measurement depth of remote sensing inversion is 
affected by water clarity. Studies have shown that the maximum depth 
mapping performance of ICESat-2 ATLAS is close to 1 Secchi in depth 
(Parrish et al. 2019). In Class II waters, the maximum water depth 
retrieved by ICESat-2 is limited. According to the statistical data, the 
average water quality of the main stream in the study area is excellent, 
and the water quality is Class I to II. Therefore, there is a degree of 
uncertainty in the terrain results.

As a rare active detection method, ICESat-2 ATLAS has the ability 
to obtain water depth information of rivers and lakes in small areas due 
to its advantages of trajectory and footprint points. With the gradual 
increase of ICESat-2 trajectories, it will be possible to use active and 
passive fusion technology to map and monitor changes in river and 
lake water depths worldwide.

Conclusion
This paper proposes a 3D scene modeling method of river water-land 
integration. The inland basin high-fidelity land-underwater seamless 
digital terrain and the water-land integration 3D real scene models are 
formed. The overall accuracy (RMSE) of the study area is less than 2 
m, and the accuracy is the best in the shallow-water area of 10 m. The 
performance of the seamless fusion 3D terrain is better than the public 
DEM data set. It can meet the needs of basic geographic information 
data of a river- and lake-integrated 3D scene model and can be used as 
a reference for 3D scene modeling of inland basins in similar areas.
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High-Resolution Aerosol Optical Depth Retrieval 
in Urban Areas Based on Sentinel-2

Yunping Chen, Yue Yang, Lei Hou, Kangzhuo Yang, Jiaxiang Yu, and Yuan Sun

Abstract
In this paper, an improved aerosol optical depth (AOD) retrieval 
algorithm is proposed based on Sentinel-2 and AErosol RObotic 
NETwork (AERONET) data. The surface reflectance for AOD retrieval 
was estimated from the image that had minimal aerosol contamination 
in a temporal window determined by AERONET data. Validation of the 
Sentinel-2 AOD retrievals was conducted against four Aerosol Robotic 
Network (AERONET) sites located in Beijing. The results show that the 
Sentinel-2 AOD retrievals are highly consistent with the AERONET AOD 
measurements (R = 0.942), with 85.56% falling within the expected 
error. The mean absolute error and the root-mean-square error are 
0.0688 and 0.0882, respectively. In addition, the AOD distribution map 
obtained by this algorithm well reflects the fine-spatial-resolution 
changes in AOD distribution. These results suggest that the improved 
high-resolution AOD retrieval algorithm is robust and has the poten-
tial advantage of retrieving high-resolution AOD over urban areas.

Introduction
Air pollution is a byproduct of urban and industrial development, and 
it not only pollutes the environment and reduces visibility but also 
causes respiratory and cardiovascular diseases (Shirangi et al. 2022). 
Because of its spatial and temporal variability, monitoring air quality 
and understanding its distribution in a timely and accurate manner can 
effectively improve pollution control (Islam et al. 2022; Zheng et al. 
2019; Mazlan et al. 2023). Due to its large-scale, continuous timeli-
ness and low-cost observations, satellite remote sensing technology has 
become a powerful means of regional and global air quality monitoring 
(Singh et al. 2021).

In recent decades, some aerosol optical depth (AOD) retrieval algo-
rithms and satellite aerosol products have been developed (Hou et al. 
2020; Kaufman et al. 1997; Hsu et al. 2004). However, most of these 
satellite aerosol products have coarse resolutions and cannot reflect 
the fine-spatial-resolution changes in aerosol distributions caused by 
changes in construction, traffic distribution, and population density in 
urban areas. Thus, it is difficult to meet the demand for fine-scale air 
quality monitoring in urban areas (Zhang and Cao 2015; Li et al. 2019). 
Therefore, aerosol retrieval based on high spatial-resolution remote sens-
ing images has important research value and broad application prospects.

The most crucial challenge for high spatial resolution aerosol re-
trieval is estimating surface reflectance. The methods used to estimate 
surface reflectance in aerosol retrieval algorithms can be broadly clas-
sified into two types, namely, methods based on empirical relationships 
of specific bands and methods based on surface reflectance databases, 
represented by the dark dense vegetation (DDV) algorithm and deep 
blue (DB) algorithm, respectively. The widely used DDV algorithm, 
which is based on the reflectance relationship between the Short-Wave 
InfraRed (SWIR) band and red/blue band, was proposed for moder-
ate resolution imaging spectroradiometer (MODIS) (Xiong et al. 2016; 

Chen et al. 2014). However, due to the difference in the spectral re-
sponse of different sensors in the same band, the empirical relationship 
for MODIS may cause errors when applied to high-spatial-resolution 
sensors. Some improvements have been made in recent years. Wei et 
al. used a large number of Landsat series high-spatial-resolution im-
ages to refit the empirical relationship between the SWIR band and red/
blue over dense vegetation pixels, i.e., normalized difference vegeta-
tion index (NDVI) greater than 0.55. This improved DDV algorithm was 
applied to Landsat series images to retrieve AOD products with a 30 m 
resolution (Wei et al. 2013). Olivier et al. used Landsat 5 and Landsat 
7 data to fit the empirical relationship between the reflectance of the 
SWIR band and red/blue band, where NDVI was greater than 0.2 (Olivier 
et al. 2015). However, the empirical relationships between the reflec-
tances of specific bands in the above studies still had time and space 
limitations, making it difficult to apply them to different locations and 
different times.

Inspired by the DB algorithm (Hsu et al. 2004), some AOD retrieval 
algorithms based on the surface reflectance database have also been 
applied to the AOD retrieval of high-spatial-resolution images. Wei et 
al. used Landsat 4-7 surface reflectance products and constructed a 30 
m resolution surface reflectance database divided by month for AOD 
retrieval (Wei et al. 2013). Bilal and Qiu used Landsat 8 images to 
construct a surface reflectance database combined with the Simplified 
Aerosol Retrieval Algorithm (SARA) algorithm for AOD retrieval 
(Bilal and Qiu 2018). Omari et al. used Landsat 8 images to construct 
a surface database cataloged by year to retrieve AOD in the United 
Arab Emirates (Omari et al. 2019). However, due to the low temporal 
resolution, cloud contamination and other weather factors, Landsat 8 
images are usually inadequate for establishing a surface database.

In this study, an improved method for high-spatial-resolution 
AOD retrieval is proposed by conducting high-spatial-resolution AOD 
research using Sentinel-2 remote sensing images. Sentinel-2’s high 
spatial resolution and relatively high revisit time are taken advantage 
of in this algorithm, and the ground AERONET monitoring data are used 
to determine the “cleanest” image in a temporal window. The surface 
reflectance of Sentinel-2 corresponding to the “cleanest image” then 
constitutes the surface reflectance database. Based on this database, the 
AOD of the Sentinel-2 images, which share the same time window as 
the images in the database, can be retrieved. In this study, Sentinel-2 
images from 2017 to 2019 in the Beijing area are obtained from 
AOD retrieval experiments, and the retrieval results are validated by 
AERONET AOD data.

Study Area and Data
Study Area
Beijing is located in the northwestern part of the North China Plain, 
39.4°–41.6° N, 115.7°–117.4° E, and has a total area of 16 410.54 
square km. Beijing has a complex surface and a variety of land use 
types. As shown in Figure 1, to the west, north, and northeast of Yunping Chen*, Yue Yang, Lei Hou, Kangzhuo Yang, and Jiaxiang 
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Beijing are Xi Mountain and Jundu Mountain, which are covered by 
lush vegetation. To its south and southeast, the North China Plain ex-
ists and contains mainly farmland. The central part is the urban area of 
Beijing, which has scarce vegetation. Because of the high population 
density, congested urban traffic, and large-scale industrial emissions in 

the Beijing-Tianjin-Hebei region, this city has experienced severe air 
pollution. In addition, due to the complex surface types and high sur-
face reflectance in the Beijing area, aerosol retrieval is more difficult. 
On the other hand, Beijing is also a popular area for aerosol retrieval 
research because of the sufficient number of ground aerosol monitoring 
sites (Wei et al. 2013; Wei and Sun 2017; Luo et al. 2015; Bai et al.  
2008; Zhou et al. 2009). In Figure 1, the four red dots denote the four 
AERONET sites in Beijing’s downtown area.

Sentinel-2 Data
Sentinel satellites are the core part of the global environment and safe-
ty monitoring plan (renamed the Copernicus Plan in 2013) formulated 
by the European Commission and the European Space Agency. The 
purpose is to cooperate with other satellites to further improve their 
environmental monitoring capabilities and disaster response speed to 
achieve dynamic monitoring of the global environment and climate 
change (Li and Roy 2017).

The Sentinel-2A/B satellite operates in a sun-synchronous orbit 
in polar orbit, with an orbit height of 786 km, an orbit inclination of 
98.62°, and a swath width of 290 km (Spoto 2012). Sentinel-2’s revisit 
period near the equator is 10 days, and the constellation shortens the 
revisit period to five days, reaching two–three days in mid-latitudes. 
The observation area of Sentinel-2 covers 56°S–84°N and can provide 
observation data for most parts of the world.

The Sentinel-2 satellite carries a push-broom multispectral instru-
ment (MSI) with 13 spectral bands ranging from the visible to short-
wave infrared bands. Its blue (B2, 0.49 μm), green (B3, 0.56 μm), 
red (B4, 0.665 μm), and near-infrared (B8,0.842 μm) channels have 
a resolution of 10 m; its red edge (B5, 0.705 μm), near-infrared (NIR) 
(B6, 0.74 μm; B7, 0.783 μm; B8A, 0.865 μm), and shortwave infrared 
(SWIR) (B11, 1.61 μm; B12, 2.19 μm) have a ground sampling distance 
of 20 m; its coastal aerosol (B1, 0.443 μm) has a spatial resolution of 
60 m (Harmel et al. 2018; Yang et al. 2021).Figure 1. Beijing Sentinel-2 red-green-blue (RGB) color image (dots 

in the picture are the Beijing AERONET sites).

Figure 2. Flow chart of the algorithm. AERONET = Aerosol Robotic Network; AOD = aerosol optical depth; LUT = look-up table.

362 June 2023 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



AERONET Data
AERONET is an aerosol ground-based observation network with more 
than 800 sites established worldwide, including more than 50 sites in 
China. The instruments used at the AERONET site are mainly CE-318 
solar photometers, which provide eight band aerosol observations from 
340 to 1640 nm. Aerosol optical depth, single scattering albedo, complex 
refractive exponent, scattering phase function, and aerosol size distribu-
tion are recorded every 15 minutes, with an accuracy of 0.01 to 0.02. 
Four AERONET sites, for which data were used in this study, are located 
in the urban area of Beijing (Beijing, Beijing_CAMS, Beijing_PKU, and 
Beijing_RADI). Information on the four sites is shown in Table 1. 

Table 1. Beijing Aerosol Robotic Network (AERONET) site information.

Site Name
Coordinate 

(Latitude, Longitude)
Altitude 

(m) Date Data Level
Beijing 39.997°N, 116.381°E 92 2010–2019 Level 2.0

Beijing_CAMS 39.993°N, 116.317°E 106 2012–2019 Level 1.5

Beijing_PKU 39.992°N, 116.310°E 53 2016–2019 Level 1.5

Beijing_RADI 40.005°N, 116.379°E 59 2010–2019 Level 2.0

Methodology
Extraction of surface reflectance is a critical aspect of AOD retrieval. 
According to the radiation transmission model, the apparent reflectance 
can be denoted as a function of aerosol reflectance, Rayleigh reflectance 
and surface reflectance, as shown in Equation 1 (Kaufman et al. 1997):

 ρTOA(θs, θv, ϕ) = ρAer(θs, θv, ϕ) + ρRay(θs, θv, ϕ) +  (1)

where ρTOA(θs, θv, ϕ) is the apparent reflectance, ρAer(θs, θv, ϕ) is the 
aerosol reflectance, ρRay(θs, θv, ϕ) is the Rayleigh reflectance, T(θs) is 
the atmospheric downward transmittance from the sun to the surface 
path, T(θv) is the atmospheric upward transmittance from the surface 
to the satellite path,  ρS is the surface reflectance, S is the hemispheri-
cal reflectance of the atmosphere, and θs, θv, and ϕ are the solar zenith 
angle, view zenith angle, and relative azimuth angle, respectively.

The flow chart of our algorithm is shown in Figure 2. The funda-
mental concept of this algorithm is to extract the “cleanest” image from 
a temporal window based on AERONET ground-based measurements; 
after atmospheric correction, the surface reflectance database can be 
constructed for AOD retrieval in advance. The Fmask4.0 algorithm 
(Zhu et al. 2012) is also adopted in this paper for clouds and snow.

Surface Reflectance Database Construction
In contrast to the conventional minimum reflectance technique (Hsu et 
al. 2006), our approach does not determine the “cleanest” image ob-
tained by remote sensing but directly extracts it from the ground-based 
AERONET AOD data.

Since the Sentinel-2 constellation has a relatively high temporal 
resolution in the midlatitude region, the “cleanest” image is readily 
found with adequate Sentinel-2 images; furthermore, as the number of 
images from Sentinel-2 increases over time, the “cleanest” image will 
be more representative and have fewer errors (see the analysis below 
for details). The “cleanest” image corresponds to the smallest aerosol 
contamination and, therefore, the minimum uncertainty in surface 
reflectance from atmospheric correction on this basis (Liang et al. 
2006). Assuming that the surface reflectance of the same date in differ-
ent years is constant and the surface reflectance is constant for a short 
continuous period of time, the surface reflectance of the “cleanest” im-
age after accurate atmospheric correction can be used to represent the 
surface reflectance of the image in the same temporal window.

In this paper, AOD data at 500 nm from two AERONET sites in Beijing 
were used to determine the “cleanest” image. Figures 3, 4, and 5 show 
the AOD changes at 500 nm at the Beijing_CAMS and Beijing_PKU 
AERONET sites in 2017, 2018, and 2019, respectively. Data with an AOD 
greater than 1 were excluded for the convenience of display and analy-
sis. First, it is readily found from the three figures that the minimum 
AOD of both sites is approximately 0.05. The lowest AOD values of both 

sites are concentrated in the range of 0.05–0.1, and the atmosphere is 
relatively clean when AOD is in this range. Both Beijing_CAMS and 
Beijing_PKU are located in the downtown area of the city, approxi-
mately 6.6 km away from each other. Aerosol distribution in urban 
areas tends to change at a fine spatial scale due to buildings, traffic dis-
tribution and population density (Zhang and Cao 2015; He et al. 2016; 
Chudnovsky et al. 2013). However, when the AOD is between 0.05 and 
0.1, the AODs of the two sites are almost the same, as shown in Figures 
3, 4, and 5. Therefore, on clean days, the AOD distribution is almost ho-
mogeneous, and it will not result in substantial errors to use the average 
AOD of two stations to represent the AOD of the area where it is located.

The size of the temporal window is also an important factor related 
to the algorithm. First, this temporal window must be short enough 
because the phenological phenomenon of vegetation and some other 
human factors will cause surface changes, changing the surface reflec-
tance. The purpose of setting a short temporal window is to ensure that 
the surface reflectance does not change significantly during this period. 
On the other hand, the temporal window must also be long enough 
to ensure that clean images can be found during the window. In this 

Figure 3. Changes in AOD (500 nm) at two AERONET sites in Beijing in 
2017. AOD = aerosol optical depth; AERONET = Aerosol Robotic Network.

Figure 4. Changes in AOD (500 nm) at two AERONET sites in Beijing in 
2018. AOD = aerosol optical depth; AERONET = Aerosol Robotic Network.

Figure 5. Changes in AOD (500 nm) at two AERONET sites in Beijing in 
2019. AOD = aerosol optical depth; AERONET = Aerosol Robotic Network.
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paper, considering the above factors and referring to previous studies, 
the temporal window is set to one month (Hsu et al. 2004; Wei 20187).

Next, in each one-month temporal window, we needed to identify 
the “cleanest” image with AOD between 0.05 and 0.1, that is, the image 
with the smallest AOD. In this study, all Sentinel-2 images in Beijing in 
January, February, November, and December 2017 with no clouds or 
only a small number of clouds were counted, and the “cleanest” images 
in these four months were found by the above method. The specific date 
of the images and the corresponding AOD size are shown in Table 2.

The 6SV radiation transmission model was then used to analyze 
the surface reflectance of the selected images. ρTOAacr AOD at 550 nm 
was input into the 6SV radiation transmission model for atmospheric 
correction. To minimize errors, AERONET AOD data within 20 min-
utes before and after the collection time of the “cleanest” image was 
adopted in this study, and the AOD at 550 nm was calculated using the 
relationship between AOD and wavelength proposed by Eck et al. (Eck 
et al. 1999).

 ln τ(λ) = a0 + a1 ln λ + a2(ln λ)2 (2)

Due to its high sensitivity to aerosols and high spatial resolution, 
the blue band of Sentinel-2 was selected in this study. The surface 
reflectance of the blue band of each month’s “cleanest” image formed 
the surface reflectance database.

The surface reflectances of four specific Sentinel-2 images of 
Beijing obtained by the above method are shown in Figure 6. These 

(a) (b)

(c) (d)

Figure 6. Surface reflectance library in Beijing. (a) 20190108 Sentinel-2 blue band surface reflectance; (b) 20190217 Sentinel-2 blue band 
surface reflectance; (c) 20181109 Sentinel-2 blue band surface reflectance; (d) 20171204 Sentinel-2 blue band surface reflectance.

Table 2. Cleanest Sentinel-2 images of Beijing over four months.
Month Image Date AOD (500 nm)

January 20190108 0.0618

February 20190217 0.0560

November 20181109 0.0616

December 20171204 0.0652

AOD = aerosol optical depth.
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four surface reflectance images all well reflect the spatial characteristics 
in the surface reflectance in the Beijing area. The surface reflectance 
in the northern and western mountainous areas is significantly lower 
than that in the urban area of Beijing and the plains around the urban 
area. Although the surface reflectance of the Beijing urban area and 
surrounding plains is relatively high, the reflectance of most pixels is 
less than 0.15, which is consistent with the Beijing surface reflection 
database constructed by Wei et al. using Landsat 4-7 surface reflectance 
data (Wei et al. 2013). The reflectance of a few pixels is higher than 
0.15. These pixels are mainly airport runways, light-colored and espe-
cially white building surfaces, factory roofs, stadium roofs, bare soil, 
and the edges of unremoved clouds and snow. The unremoved clouds 
and snow are the main error source of aerosol retrieval in our algorithm.

Aerosol Type Determination
Different aerosol types differ significantly in origin, size, component, 
and composition, and thus, their optical properties are heterogeneous 
in space and time. The study of Li et al. also shows that aerosols in 
China are complex and vary significantly in both time and space (Li et 
al. 2018).

In some studies, aerosol types are divided by season (Wei et al. 
2013; Levy et al. 2013; Wei et al. 2019). In this paper, the monthly 
mean data of the single scattering albedo and complex refractive index 
of two AERONET sites in Beijing from 2010 to 2019 were analyzed, and 
significant changes between months occur (see Figure 7 and Figure 8). 
Thus, to improve the retrieval accuracy, the aerosol types were divided 
by month in this study.

To further determine the type of aerosol in Beijing, the aerosol 
particle spectrum distribution data from 2017 to 2019 of two AERONET 
sites in Beijing were analyzed, and the results are shown in Figure 9. 
From Figure 9, it can be seen that although the spectral distribution 
of the aerosol particles differs from year to year and month to month 
in terms of the division radius of the coarse and fine modal particles 
and the peak of the spectral distribution, they are all consistent with 
the characteristics of a bimodal normal-type distribution. Therefore, 
in this study, a bimodal lognormal spectral distribution was used to 
characterize aerosol types in Beijing, as shown in Equation 3 (Omar et 
al. 2005).

Figure 7. Variation in aerosol optical parameters at the Beijing site.

Figure 8. Variation in aerosol optical parameters at the Beijing_CAMS site.
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(3)

where N is the number of particles per unit volume, r is the particle 
radius, rm is the average radius of the particles, and σ is the standard 
deviation of the radius.

Li et al. calculated the optical, physical, chemical and radiation 
characteristic parameters of aerosols in 16 Chinese cities by analyzing 
long-term observation data from SONET (Li et al. 2018). Given their 
results, the monthly average data of four AERONET sites in Beijing 
from 2010 to 2019 were used to calculate the monthly average of the 
complex refraction index to determine the aerosol type parameters. The 
parameters of aerosol types by month are shown in Table 3.

Results
Evaluation Method and Index
To validate the AOD retrievals, AOD data from four AERONET sites 
located in the urban area of Beijing (Beijing, Beijing_CAMS, Beijing_
PKU, and Beijing_RADI) were acquired. The AOD value of AERONET 
was converted to 550 nm to ensure band consistency since the wave-
length of the satellite-retrieved AOD value was 550 nm (Equation 2).

In this paper, the expected error (EE, Equation 4) (Hsu et al. 2013), 
the root-mean-square error (RMSE, Equation 5), the mean absolute error 
(MAE, Equation 6), and the relative mean bias (RMB, Equation 7) were 
used to quantitatively evaluate the accuracy and uncertainty of the AOD 
result. The definitions of the evaluation indicators are as follows:

 EE = ± (0.05 + 0.20 * AODAERONET) (4)

(a) (b)

(c) (d)

Figure 9. Beijing aerosol spectrum distribution. (a) January spectrum distribution; (b) April spectrum distribution; (c) July spectrum 
distribution; (d) October spectrum distribution.
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(5)

  
(6)

  
(7)

n in the formula is the number of data sets for comparison.

Validation against AERONET AOD Measurements
There are a total of 97 sets of experimental data, including 21 sets of 
data from the Beijing site, 28 sets of data from the Beijing_CAMS 
site, 24 sets of data from the Beijing_PKU site, and 24 sets of data 
from the Beijing_RADI site. Figure 10 and Table 4 present the results 
of the comparative validation of the AOD from the Sentinel-2 data 
retrieval and the AOD measurements from the four AERONET sites. The 

solid and dashed lines in Figure 10 represent the linear fitting regres-
sion lines and EE error lines, respectively. The correlations between 
the AOD retrieval results and the AOD measurement values are all the 

Table 3. Aerosol type parameters for 12 months in Beijing.

Aerosol 
Models

Parameters

rf σf Vf rc σc Vc 

RP-CRI 
(0.44/0.675 μm)

IP-CRI 
(0.44/0.675 μm)

January 0.15 0.53 0.07 3.18 0.64 0.08 1.532/1.535 0.016/0.012
February 0.15 0.50 0.07 2.97 0.67 0.08 1.547/1.553 0.011/0.009
March 0.14 0.49 0.08 2.89 0.66 0.18 1.534/1.541 0.007/0.005
April 0.15 0.49 0.07 2.81 0.66 0.21 1.517/1.530 0.006/0.004
May 0.15 0.48 0.08 2.89 0.66 0.20 1.526/1.542 0.007/0.006
June 0.18 0.49 0.11 3.13 0.63 0.09 1.475/1.487 0.005/0.006
July 0.21 0.53 0.16 3.19 0.60 0.07 1.457/1.456 0.005/0.005
August 0.19 0.50 0.10 3.18 0.60 0.06 1.483/1.485 0.006/0.007
September 0.17 0.48 0.09 3.07 0.63 0.07 1.509/1.516 0.007/0.008
October 0.17 0.49 0.10 3.00 0.63 0.10 1.515/1.518 0.007/0.006
November 0.14 0.50 0.07 2.97 0.65 0.08 1.519/1.530 0.010/0.008
December 0.14 0.51 0.05 3.24 0.63 0.08 1.537/1.550 0.015/0.012
RP-CRI = real part (RP) of complex refractive index (CRI); IP-CRI = imaginary part (IP) of complex refractive index (CRI).

(a) (b) (c)

Figure 10. Validation of Sentinel-2 
AOD retrievals against AERONET AOD 
measurements at different sites. (a) Beijing 
site; (b) Beijing_CAMS site; (c) Beijing_PKU 
site; (d) Beijing_RADI site; (e) all the sites. 
AERONET = Aerosol Robotic Network; AOD = 
aerosol optical depth.(d) (e)

Table 4. Validation of Sentinel-2 AOD retrievals against AERONET AOD 
measurements at different sites.

Site R MAE RMSE RMB
Within 
EE (%)

Above 
EE (%)

Below 
EE (%)

Beijing 0.950 0.081 0.102 1.178 85.72 14.28 0.00

Beijing_CAMS 0.943 0.073 0.095 1.147 78.57 17.86 3.57

Beijing_PKU 0.955 0.067 0.081 0.852 87.50 0.00 12.50

Beijing_RADI 0.964 0.055 0.072 1.121 83.38 12.50 4.12

All sites 0.942 0.069 0.088 1.074 85.56 8.25 6.19

AERONET = Aerosol Robotic Network; AOD = aerosol optical depth; MAE 
= mean absolute error; RMSE = root-mean-square error; RMB = relative mean 
bias; EE = expected error.
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most significant, with coefficients of 0.950, 0.943, 0.955, and 0.964, 
respectively. All the sites’ MAEs and RMSEs are very small, indicating a 
small error. Furthermore, the retrieval results at the Beijing_PKU site 
are underestimated, while the others are overestimated.

In addition, 85.72%, 78.57%, 87.50%, and 83.38% of the retrieval 
results of the four sites fall into the EE error range, indicating that most 
of the retrieval results are acceptable.

Figure 10e highlights the verification results of all Sentinel-2 AOD 
retrieval results and AERONET AOD measurement values. The correla-
tion coefficient between all retrieval results and AERONET’s AOD mea-
surement value is 0.9424, which is the most significant. Approximately 
85.56% of the values fall within the EE envelope with small MAE and 
RMSE errors of 0.0688 and 0.0882, respectively.

These results indicate that the surface reflectance estimation method 
and the AOD retrieval algorithm based on the surface reflectance data-
base proposed in this paper can more accurately retrieve aerosols in ur-
ban areas and largely overcome the challenges related to AOD retrieval 
caused by the higher surface reflectance in urban areas.

Spatial Distribution of AOD Retrieval
Figure 11 shows the four Sentinel-2 RGB color images of Beijing and 
their corresponding AOD distribution, in which the blank area is the 
cloud mask and snow mask. As seen from Figure 11, the AOD retrieval 
algorithm proposed in this paper can not only obtain a continuous 
distribution of AOD in mountainous areas with small surface reflectance 
as well as the conventional algorithm but also has almost no gaps in 
urban areas.

From these four AOD distribution maps, it can be seen that the AOD 
in the northern and western mountainous areas of Beijing is relatively 
small overall. Mountainous areas have more vegetation, less people, 
and less natural pollution. Moreover, mountains can prevent the diffu-
sion of atmospheric pollutants. In contrast, the AOD of the urban areas 
in southern and eastern Beijing and the plain area around the city are 
large overall, mainly because the city and its surrounding areas have a 
large amount of industrial exhaust gas, traffic exhaust gas, and exhaust 
gas generated by humans. The above conclusions are consistent with 
those of other studies (Wei et al. 2013; Luo et al. 2015; Tian et al. 
2018).

In addition, the results obtained during the four different time 
periods also show the air pollution patterns in Beijing. As seen in Figure 
11b, on January 13, 2018, the air pollution in the Beijing downtown 
area was low, and the pollution was mainly concentrated in the south-
eastern corner. In Xianghe County, Hebei Province; as seen in Figure 
11d, on February 27, 2019, the overall pollution of Beijing was more 
severe than that in other areas. Not only was the main urban area heav-
ily polluted, but the Changping District to its north also showed higher 
air pollution levels. In addition, a south-to-north pollution corridor 
was clearly visible. On 24 November 2018, Beijing’s air pollution was 
mainly concentrated in Daxing District to its south, with the downtown 
area also heavily affected, but the northern districts of Changping and 
Shunyi were unaffected and had good air quality (see Figure 11f). On 19 
December 2017, Beijing’s overall air quality was good (see Figure 11h).

From the above analysis, it can be seen that the AOD retrieval algo-
rithm based on the surface reflectance database proposed in this paper 
can perform aerosol retrieval from Sentinel-2 data with good results; 
moreover, due to the relatively high resolution (100 m), the results 
reflect the aerosol distribution changes with clear details, which will be 
helpful for future studies on the traceability of air pollution sources.

However, it should be noted that due to the defects of the cloud and 
snow detection algorithm, there are missed detections of thin clouds, 
thin snow, and water edges in the images, resulting in anomalously 
large or small areas in the retrieval results, such as the anomalously 
large area caused by thin clouds and thin ice at the edges of water bod-
ies in Figure 11b (blue box part of the figure) and the anomalously large 
area caused by thin ice at the edges of water bodies in Figure 11h (blue 
box part of the figure). The blue box in Figure 11h shows the region of 
a small AOD anomaly, which is caused by large surface reflectance in 
this region, which was affected by thin snow during the construction of 
the surface reflectance database, thus indicating the importance of the 

accuracy of the surface reflectance database to the later retrieval. These 
issues will be analyzed and addressed in subsequent research.

Discussion
Beijing is a hot spot for aerosol inversion, and there are many aerosol 
remote sensing inversion and validation studies in the Beijing area. He 
et al. retrieved the AOD in the Beijing area by simulating the relation-
ship between apparent reflectance and AOD in MODIS bands, and the 
average correlation coefficient with AERONET was 0.746 (He et al. 
2014). Tian et al. validated the MODIS C6.1 and C6 aerosol products 
in Beijing from 2002-2016 using AERONET site data, with an average 
correlation of 0.92 and an average RMSE of 0.24 (Tian et al. 2018). 
Wei et al. used MODIS surface reflectance and aerosol products to 
construct an 8-day surface reflectance database on land and a seasonal 
aerosol type database and proposed an improved aerosol inversion 
algorithm for MODIS data, and the validation results showed that its 
correlation with AERONET was 0.943 and its RMSE was 0.138 (Wei et 
al. 2018). Wang et al., based on the assumption that the reflection ratio 
between the red and 2.12 μm bands is invariant, retrieved the AOD of 
the Beijing-Tianjin-Hebei region based on MODIS data, which had a 
high correlation with AERONET (R > 0.9) and an RMSE of 0.15, with 
approximately 77% of the points within the expected error (Wang et al. 
2019). In the aforementioned AOD results based on MODIS data in the 
Beijing area, compared with the algorithm in this paper, the correlation 
with AERONET is usually less or similar, and the RMSE is usually greater 
than the results in this paper, which may be related to the large scale of 
MODIS, leading to a large-scale effect when compared with that from 
ground stations. Based on the concept of cleanest image pixels, Liang 
et al. proposed an algorithm to determine the cleanest observation of 
each MODIS image pixel within a time window (Liang et al. 2006). The 
results of the comparison and validation with AERONET show that the 
correlation coefficient is 0.96, which is much higher than 0.44 for the 
MOD04 product. The correlation between this algorithm and AERONET 
is slightly higher than ours. However, under the condition of small AOD 
(AOD ϵ [0,1]), the algorithm inversion results show a larger decrease in 
the correlation with AERONET.

Several studies have also conducted remote sensing retrieval stud-
ies of aerosols in the Beijing area using relatively higher resolution 
data such as Landsat, Sentinel-2, and HJ-1. Li et al. obtained a 100 m 
resolution aerosol distribution in the Beijing area by synergetic use of 
HJ-1 CCD and MODIS data. The validation results show that the correla-
tion with AERONET is 0.89 and the RMSE is 0.24 (Li et al. 2011). Based 
on the assumptions of a constant blue‒red surface reflectance ratio 
and constant bright target surface reflectance in the short term, Yang 
et al. obtained the 60-m resolution aerosol distribution in the Beijing 
area based on Sentinel-2 data. The cross-validation results show that 
its correlation with the AERONET site is 0.927 on average, the RMSE 
is 0.104, and the value falling within the EE is 77.31% (Yang et al. 
2022). Chen et al. proposed the multispectrum hierarchical segmenta-
tion (MSHS) algorithm and carried out an aerosol inversion study in 
Beijing based on this algorithm, and the results show that its correla-
tion with AERONET ground observations is 0.871 and the RMSE is 0.148 
(Chen et al. 2022). It can be seen that compared with those of the 
previous study, the results of this paper are very similar in terms of ac-
curacy and have an improved RMSE. Tian et al. proposed using MODIS 
Bidirectional Reflectance Distribution Function (BRDF) data to assist 
Landsat-8 aerosol inversion, and their inversion results correlated with 
AERONET at 0.987 with an RMSE of 0.07, showing high accuracy and 
low error (Tian et al. 2018). The present algorithm assumes that the 
surface is a Lambertian body, and BRDF is not considered. Whether the 
text algorithm can be applied to Sentinel-2 data and further improve 
the accuracy of this algorithm is subject to further study in the future.

Conclusion
In this study, taking advantage of the short revisit cycle of Sentinel-2, 
a surface reflectance estimation method based on the “cleanest period” 
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11. True-color (red-green-blue (RGB)) image and corresponding spatial distribution of Sentinel-2 AOD retrieval in Beijing. (a) 20180113 
Sentinel-2 RGB color image; (b) 20180113 AOD distribution map; (c) 20190227 Sentinel-2 RGB color image; (d) 20190227 AOD distribution 
map; (e) 20181124 Sentinel-2 RGB color image; (f) 20181124 AOD distribution map; (g) 20171219 Sentinel-2 RGB color image; (h) 20171219 
AOD distribution. AOD = aerosol optical depth.
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is proposed. This method determines the “cleanest” image in the 
temporal window of one month through the AERONET AOD data from 
a long time series and then obtains the surface reflectance by accurate 
atmospheric correction. The surface reflectance image corresponding 
to the “cleanest” image constitutes the surface reflectance database. In 
the aerosol retrieval, the image to be retrieved and the surface reflec-
tance image from the same month in the surface reflectance database 
are used for retrieval. This method can minimize the uncertainty of 
surface reflectance estimation and is applicable to both dark surfaces 
with low reflectance and bright surfaces with high reflectance. AOD 
products with 100 m resolutions were obtained using Sentinel-2 data to 
perform AOD retrieval in the Beijing area. The AODNET measurement 
results were used to verify the AOD retrieval results in this study. The 
results show that the AOD retrieval results in this study are highly cor-
related with the AOD measurements at four AERONET sites in Beijing. 
The correlation coefficients are 0.950, 0.943, 0.955, and 0.964, and 
85.72%, 78.57%, 87.50%, and 83.38% of the retrieval results of the 
four sites fall within the expected error range. The results of the MAE 
and RMSE also indicate that the AOD retrieval results of this study have 
a small error in terms of the AOD measurement value of the AERONET 
site. Thus, the AOD retrieval algorithm based on the surface reflectance 
library proposed in this study has high retrieval accuracy. In addition, 
the algorithm proposed in this study can well characterize the fine 
spatial-resolution changes in aerosol distribution, and the details of 
the urban areas are very clear, which will be helpful for air pollution 
source identification. These results indicate that the AOD retrieval algo-
rithm proposed in this study can retrieve high-spatial-resolution AOD 
in urban areas, which is meaningful for aerosol research and refined 
air quality monitoring. However, in large cities, surface inhomogene-
ity is a problem, and seasonal changes in vegetation growth and death 
phases can also have an impact on the surface BRDF. Not considering 
this issue has introduced some errors in our results in this paper. In the 
future, more studies should be conducted in this area.
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Change Detection in SAR Images  
through Clustering Fusion Algorithm  

and Deep Neural Networks
Zhikang Lin, Wei Liu, Yulong Wang, Yan Xu, and Chaoyang Niu

Abstract
The detection of changes in synthetic aperture radar (SAR) images 
based on deep learning has been widely used in landslides detection, 
flood disaster monitoring, and other fields of change detection due to 
its high classification accuracy. However, the inherent speckle noise 
in SAR images restricts the performance of existing SAR image change 
detection algorithms by clustering analysis. Therefore, this paper pro-
poses a novel method for SAR image change detection based on cluster-
ing fusion and deep neural networks. We first used hierarchical fuzzy 
c-means clustering (HFCM) to process two different images to obtain 
HFCM classification results. Then a fusion strategy is designed to obtain 
the fused image from the two HFCM classified images as the pre-classi-
fication result. Furthermore, a lightweight deep neural network com-
posed of a decomposition convolution module and an auxiliary classifi-
cation module was proposed; the former module could reduce network 
parameters by 28%, and the latter could reduce network parameters 
by 33.3%. To improve the recognition performance of the network, the 
classification layer was replaced by the regression layer at the outcome 
of the network. By comparing the experiments of different methods on 
five data sets, the performance of our proposed method is superior.

Introduction
Synthetic aperture radar (SAR) can penetrate clouds, in contrast to 
optical radar, is unaffected by the weather and can obtain detailed geo-
graphic information, which is crucial in certain circumstances (Zhang 
et al. 2016). For example, emergency events such as landslides, floods, 
and earthquakes occur with rain and dark clouds. In these cases, real-
time optical images will not be available, but change detection based 
on SAR images will be a feasible method. Therefore, SAR images are 
widely used in change detection and have been applied in flood detec-
tion (Lu et al. 2014; Schlaffer et al. 2015), urban analysis (Yousif and 
Ban 2013; Hu and Ban 2014), forest monitoring (Pantze et al. 2014), 
and other fields, and in-depth research has been carried out in the past 
few years. The purpose of change detection is to analyze two remote 
sensing images taken at different times in the same geographical region 
(Bazi et al. 2005; Bazi et al. 2010; Blaschke 2010). There are many 
multi-temporal SAR data available for monitoring and application with 
the progress of SAR imaging technology. However, the inherent speckle 
noise in SAR images makes relevant studies difficult (Hussain et al. 
2013; Oliver and Quegan 2004).

Traditional research on SAR image change detection generally 
involves two fundamental processes (Schubert et al. 2013): difference 
image (DI) generation and DI analysis. One approach to generating DI 
is through the application of a single operator operation (Villasensor et 
al. 1993; Longbotham et al. 2012). For example, the subtraction opera-
tor or ratio operator can be applied pixel by pixel to the intensity of two 
multi-temporal images to produce a DI (Celik 2010). Ratio operators 
are widely used because they are more suitable for SAR image statistics 

and are robust to radiation errors (Rignot and Van Zyl 1993). Log-ratio 
(LR) (Hou et al. 2014; Gao et al. 2014; Dekker 1998) is the most widely 
used technique to obtain DI, and log-ratio operators are considered ro-
bust to calibration and radiation errors. Therefore, the effect of speckle 
noise can be reduced. However, the noisy region remains in the DI gen-
erated by the log-ratio operator. Improved LR can effectively suppress 
unwanted speckle noise (Gao et al. 2014). The other is the combined 
operation of several DIs (Zheng et al. 2013), such as joint difference 
image and neighborhood-based ratio (NR) (Gong et al. 2011). However, 
the degree of difference between pixel classes cannot be improved 
entirely by a single operator. Joint operators can enhance the difference 
between two types of pixels. Using artificial methods to design the fu-
sion mode of each operator, such as the weighted sum of two detectors, 
work well for parts but not for the whole image (Li et al. 2016).

For DI analysis methods, collaborative representation technology 
(Zhang et al. 2011) has attracted extensive attention from researchers in 
remote sensing applications. Li and Du (2014) developed a collabora-
tive representation method based on the spatial and spectral features 
for hyperspectral image classification. Jiang et al. (2017) proposed a 
hyperspectral image classification method to integrate spatial informa-
tion, adding spatial regularization terms into the representation objective 
function of collaborative representation. Inspired by these works, Gao 
et al. (2018) uses the neighborhood ratio cooperative representation 
change detection method (NR_CR), which can classify by using the 
spatial information of neighborhood pixels, suppressing multiplica-
tive speckle noise and improving the performance of change detec-
tion. Additionally, neighborhood ratio and extreme learning machine 
(NR-ELM) (Gao et al. 2016) were used to find the changed areas in the 
image, which is a traditional method of rapid change detection. Su et al. 
(2017) used a binary mathematical morphological filtering algorithm 
for change detection maps, Wuhan University (2006) applied a Markov 
random field (MRF) model to describe environment-related information, 
and Chen et al. (2014) developed a variational model for change detec-
tion in multi-temporal SAR images. All these traditional change detection 
methods can improve the accuracy and reliability of change detection.

In recent years, due to the powerful capability of deep learning in 
high-dimensional feature extraction and autonomous learning, some 
breakthrough SAR image change detection methods have been proposed 
one after another. Deep neural networks have good detection ability due 
to their excellent ability to extract deep features, and the accuracy of 
deep learning change detection methods is widely better than traditional 
change detection methods. In 2017, Liu et al. (2017) recommended 
a two-channel convolutional neural network (CNN) change detection 
method. In this method, two original images were processed by CNN 
and the obtained results were wholly connected to generate segmenta-
tion results. Simultaneously, a monitoring frame for polarimetric SAR 
change detection through deep learning was proposed to detect urban 
change (De et al. 2017). In 2018, Liu et al. (2018) suggested a SAR 
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image change detection method based on locally constrained CNN, 
which imposed spatial constraints on the output layer of CNN. To extract 
robust features of change detection from superpixels, a cascade shrink-
age autoencoder based on shrinkage penalty was proposed to improve 
the robustness and local continuity of SAR images (Lv et al. 2018). In 
2019, Gao et al. used a method based on log-ratio and convolutional 
wavelet neural network (CWNN) (Gao et al. 2019) to find change 
regions. In 2021, an unsupervised small area change detection method 
through multi-scale superpixel reconstruction and convolutional wave-
let neural network is proposed (Zhang et al. 2021).

Although the above SAR image deep learning method performs well 
in SAR image change detection, it still has some deficiencies. Due to 
strong speckle noise, some pixels in the binary classification described 
above will be misallocated, resulting in false positives. Therefore, obvi-
ous speckle noise will bring great false positives to change detection. 
A certain number of high-quality training samples is still a problem in 
deep learning networks. Although deep learning makes full use of origi-
nal images and samples with high confidence, pixels can be divided 
into the most likely classes. In addition, training samples of rectangular 
blocks centered on the pixels of interest tend to introduce artifacts at 
the boundaries of these rectangular patches, resulting in the uncertainty 
of classified images. For instance, unchanged pixels and variational 
pixels may appear in the image patch simultaneously, which increases 
the difficulty of distinguishing the changed and unchanged classes. 
Furthermore, if a manual method is used to select training samples, 
the manual workload will increase, and the target of automatic change 
detection cannot be completed. Moreover, in the case of artificial 
selection, it is difficult to show all types of change with limited sample 
size. To solve the above issues, this paper proposes an unsupervised 
change detection method through clustering fusion and deep neural 
networks. In this method, unsupervised sample selection is carried out 
from the clustering fusion image through pre-classification to obtain 
reliable invariant samples, intermediate samples, and variable samples. 
Then, the deep neural network is established and trained. Lastly, the 
middle classes in the clustering fusion image are reclassified using the 
predicted results of the regression layer.

Our research objectives are as follows:

1. To obtain high confidence training samples, a clustering fusion 
algorithm based on the HFCM algorithm is proposed to get a better 
clustering fusion image as the pre-classification result.

2. To improve the detection accuracy, a deep neural network with a 
regression layer instead of a classification layer was designed to 
classify the intermediate classes in the pre-classification results.

Methodology
The implementation of the overall approach is shown in Figure 1. In 
the part of pre-classification and sample selection, the principal DI is 
established by the LR operator and NR operator. Then, hierarchical 
FCM (HFCM) (Gao et al. 2018; Gao et al. 2016; Gao et al. 2019) is used 
to process the two DI and obtain HFCM image results. Then, the cluster-
ing fusion algorithm is used to fuse the results of two HFCM images. 
Thus, we could get the label diagrams of changed class, unchanged 
class, and an intermediate class. Then, the corresponding training 
samples are extracted from the two original SAR images according to 
the label map. Because the changed sample is typically much smaller 
than the invariant sample, the virtual sample is used to enrich the 
changed class. In the stage of the deep neural network, the designed 
network is used to train the network, and the pixels of the middle class 
are assigned to the classes that change or remain unchanged to obtain 
the change label map of only the change class and the middle class

Generation of Difference Image
The first step is to generate initial DI from two original SAR images. 
Log-ratio and neighborhood-based ratio are two commonly used opera-
tors in many change-detection studies. The DI is defined as follows:

  
(1)

 
(2)

Figure 1. Flowchart of the proposed change detection method. SAR = synthetic aperture radar; NR = neighborhood-based ratio; LR = log-ratio; 
HFCM = hierarchical fuzzy c-means clustering.
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(3)

where σ(m, n) denotes the variance of the gray level in the neighbor-
hood NRmn. The size of NRmn is r × r. μ(m, n) represents the mean of 
the gray level in the neighborhood NRmn. The coefficient θ is a measure 
of the local heterogeneity: a low value of θ indicates that the local 
area is homogeneous. In contrast, a high value of θ suggests that the 
local area is heterogeneous. Therefore, if θ obtains a low weight, the 
local area is homogeneous, and the second part of Equation 2 plays a 
leading role in INR generation. If θ receives a high value, the local area 
is heterogeneous, and the first part of Equation 2 plays a leading role in 
INR generation. ILR(m, n) is a log-ratio operator.

NR DI shows different features in edge regions, uniform regions, 
and non-uniform regions, blurring the noise, but at the same time 
making the change regions inconspicuous and easily leading to missed 
alarms. And LR DI can convert multiplicative speckle noise into ad-
ditive noise by logarithmic operation, which removes the noise and 
highlights the change region at the same time. However, some noise 
is highlighted at the same time, which is likely to cause higher false 
alarms. With the help of HFCM algorithm, a clustering and fusion 
strategy is used to complement the advantages and disadvantages of NR 
and LR to generate initial pre-processed images and provide reliable 
training samples.

HFCM Clustering Algorithm
After obtaining DI by using the NR operator, a deep learning change 
detection method is used. Training samples and labels need to be 
provided to the network. Therefore, a hierarchical FCM clustering algo-
rithm is used to divide the pixels in DI into three categories: changed 
class Ωc, unchanged class Ωu, and middle class Ωi. A diagram of the 
HFCM clustering algorithm is shown in Figure 2 and the hierarchical 
FCM clustering algorithm is described in detail as follows:

Step 1: Input LR difference image and NR difference image by 
Equations 1 and 2, respectively.

Step 2: FCM algorithm was adopted to process DI, and the pixels 
were divided into two clusters: Ω1

c and Ω1
u. The pixel number of Ω1

c is 
represented by T1. Then, the upper bound of the actual variation class 
was defined as TT = σ·T1. Here, σ was set to 1.15 in our experiment.

Step 3: FCM algorithm was used to process DI again, and DI was di-
vided into six classes, arranged in descending order according to the av-
erage pixel value, Ω2

1, Ω2
2, …, Ω2

6. Clustering with a higher mean meant a 
higher probability of change. The average value of Ω2

1 was the largest and 
was defined as a changed class; the average value of Ω2

6 was the smallest 
and was defined as the unchanged class. The number of pixels in the six 
clusters was defined as T2

1, T2
2, …, T2

6, respectively. The parameters were 
set as t =1, c = T2

1. The pixel in Ω2
1 was specified to the class Ωc.

Step 4: t = t +1, c:= c + T22
t  was set.

Step 5: If c<TT, pixels in Ω22
t were assigned to the class Ωi. 

Otherwise, the pixels in Ω22
t were set to the class Ωu. Go to Step 4, and 

continue until t =6.
Step 6: As a result, the pre-classification change image could be 

denoted as an image with labels (Ωc, Ωi, Ωu).

Generation of Clustering Fusion Image
When the HFCM algorithm obtains the label image, some pixels are 
misclassified, so we design a clustering fusion algorithm based on 
HFCM. The misclassified pixels by HFCM are allocated to the middle 
class and then classified by the deep neural network to reduce the 
misclassification caused by the HFCM algorithm and ultimately improve 
the detection accuracy. The clustering fusion algorithm we designed is 
as follows:

Step 1: Use the number of connected pixels of NR and LR to cal-
culate their respective weight matrices WP1

,
 
WP2

. As shown in Figure 3, 
obtain WP1

,
 
WP2

 from the HFCM image result.
Step 2: Obtain the connected region with varying pixel value 1 and 

intermediate pixel value 0.5 from the HFCM clustering result in Figure 
3a, and calculate the weight according to the number of pixels in each 
connected region. As shown in Figure 3b, the more prominent area indi-
cates a more connected area in Figure 3b, which suggests greater weight.

Figure 2. Diagram of hierarchical fuzzy c-means clustering (HFCM) clustering algorithm. DI = difference image; FCM = fuzzy c-means clustering.

(a) (b)
Figure  3. Generation of weight matrix image: (a) Clustering fusion image; (b) Weight matrix image.
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Step 3: The pixels in NR DI and LR DI are traversed to compare 
the pixel values and calculate the fusion strategy image. The specific 
process is shown in Figure 4.

Sample Selection
After obtaining the result of the fusion clustering image, we get image 
fragments from the original image according to the changed and un-
changed labels. Let Sk

I1 represent the block of interest centered on pixel k 
in the image I1 and Sk

I2 represent the block of interest centered on pixel k 
in the image I2. Set the size of each patch to w×w. The two blocks of in-
terest are connected into a new image block to obtain a training sample 
block {Sk}, k = 1, 2, …, N with a size of 2w×w. Here N is set to the 
total number of pixels for the changed and unchanged classes. Feature 
extraction and training of samples are carried out through the network.

In practical experiments, many weights in our proposed network 
needed to be adjusted. If these weights were not appropriate, the train-
ing process would fall into the local minimum of the loss function, 
and the performance of change detection would be poor. To solve this 

problem, many samples must be used in the training process. However, 
in SAR image change detection, the number of available change samples 
is usually much smaller than the number of invariant samples. To solve 
the difficulty of imbalance between classes, we used virtual samples to 
enrich the training samples.

Virtual samples S'k can be generated by the linear addition of two 
given samples of the same kind in appropriate proportions.

 S'k = αSi(1 – α)Sj + β (4)

Si and Sj are the two training samples in the class with a small number, 
which are the samples in the change class. They will be proportion-
ally combined. The samples produced by combining two samples in 
the same class are given the same label in the same class. Here, α is 
a random value uniformly distributed in the range [0, 1]. β represents 
random Gaussian noise with a mean of 0 and a variance of 0.001. Next, 
N samples are randomly generated from the actual samples {Sk}, k = 

1, 2, …, N. Then real samples, as well as virtual 
samples, are adopted as network training samples 
to obtain appropriate weights.

Training Network
The results of the deep neural networks were 
much better than traditional algorithms. With 
the increase of the structural complexity and 
parameter number of a neural network, the 
detection effect will be improved, but at the same 
time, its computational complexity and computa-
tional resource cost will also rise. At present, the 
change detection model with good performance 
has the characteristics of significant computation 
and many parameters, which to a large extent 
restricts its application in a resource-constrained 
environment and real-time inline system. If 
the model can be improved, such as removing 
redundant parameters or optimizing the network 
structure, its powerful detection ability can be 
transplanted to equipment with weak computing 
ability, reducing the calculation amount of the 
change detection model and decreasing the vol-
ume of the model will significantly promote the 
detection efficiency and incorporate the accelera-
tion mode into the role.

The network is derived from the Inception 
network (Szegedy et al. 2016), a well-known 
lightweight network that has been successfully 
applied in the field of image processing. Our 
network diagram is shown in Figure 5. It is 
mainly composed of three modules. In Module 
A, by replacing one 5 × 5 convolution with two 
3 × 3 convolutions, the number of parameters 
can be decreased by 28% (1 – 3 × 3 × 2/(5 × 5)). 
After the decomposition, one convolution layer 
is followed by an activation function, where 
formerly there was only one 5 × 5 convolution 
and one activation function, now there are two 
3 × 3 convolutions. Thus, there are two activa-
tion functions, which increase the power of 
nonlinear expressions. Module B can effectively 
reduce the amount of calculation and parameter 
transmission. In general, convolutional networks 
use pooling operations to shrink the grid size of 
feature images. To avoid presentation bottlenecks, 
the dimensions of network filter activation are 
increased before maximum or average pooling. 
Module C involves decomposition to asymmetric 
convolution, which replaces 3 × 3 convolution 
with one 1 × 3 convolution and one 3 × 1 convo-
lution, thus reducing the number of parameters by 

Figure 4. Flowchart of the proposed clustering fusion image generation. P1 represents 
the neighborhood-based ratio (NR) difference image processed by the hierarchical fuzzy 
c-means clustering (HFCM) algorithm, and P2 represents the log-ratio (LR) difference 
image processed by the HFCM algorithm. P = 0,0.5,1 represent pixel values of 0, 0.5, and 1, 
respectively in the generated clustering fusion image P, while WP1

 and WP2
 represent weight 

matrices corresponding to P1 and P2, respectively.

Figure 5. Diagram of deep neural network structure.
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33%. At the end of the network, to find the optimal fitting result, the re-
gression layer is used to replace the previous classification layer as the 
network output, and two prediction vectors P1 and P2 are output, both 
of which represent the corresponding predicted value of the intermedi-
ate class Ωi. The threshold T* is set based on the average value of the 
difference between  P1 and P2. Then, the intermediate class Ωi is divided 
into changed class Ωc and unchanged class Ωu by threshold T* (see 
Equations 5 and 6), where mean denotes the mean value of regression 
output. After the classification of intermediate classes is completed, 
the detection results obtained here are combined with the changed and 
unchanged classes in the preprocessing process to form the final binary 
change detection results, thus improving the detection accuracy to a 
certain extent. The specific network parameters are shown in Table 1:

 T* = mean(|P1 – P2|) (5)

  
(6)

Experiments
Description of Data Sets
Six actual SAR image data sets are used to prove the performance of 
the proposed approach. Table 2 lists a detailed description of each data 
set, including sensor type, band, polarization, location, imaging date, 
image size, and reason for the variation. The data set and its ground 
reference images are shown in Figure 6 and Figure 7 (see next page). 
All data are derived from publicly available data used for dual-tempo-
ral SAR image change detection, and the ground reference images are 
manually labeled.

Evaluation Criteria
The evaluation results are obtained by comparing the experiments 
with the actual ground reference image. The evaluation criteria are as 
follows: true positive (TP) is the number of changed pixels that are cor-
rectly detected; true negative (TN) is the number of correctly detected 
unchanged pixels; false positive (FP) is the number of incorrectly de-
tected changed pixels; false negative (FN) is the number of changed pix-
els that are falsely indicated as absent; and the three overall criteria, the 
total error (OE) is the ratio of the sum of FP and FN to the total number 
of pixels, PCC is the ratio between correctly detected pixel number and 
total pixel number, and Kappa coefficient (KC). PCC is defined as:

   
(7)

However, reflecting the detection precision of PCC is not convinc-
ing and fair, and in our experiments, the value of the PCC is very small, 
indicating a small difference. Still, the KC usually involves more de-
tailed information, heterogeneity is separable, and the result is credible. 
It is also a precision evaluation metric, with a value range of 0–1. Its 
size reflects the detection accuracy. The closer the KC value is to 1, the 
better the performance is. It can be calculated as:

   
(8)

   
(9)

Nu and Nc are unchanged pixels and variable pixels, respectively, in 
the assumed ground reference. In comparison with KC and PCC, PCC 
often has little difference in experimental results and lacks credibility. 
KC considers more information and is more convincing in the final 
detection accuracy.

Results
In this section, different experimental images, and numerical results of 
different data sets are analyzed. Through comparison, the effectiveness 
and performance of this method were proven. Three advanced methods, 
namely neighborhood-based ratio and cooperative representation (NR_
CR) (Gao et al. 2018), neighborhood-based ratio and extreme learn-
ing machine (NR-ELM) (Gao et al. 2016), and convolutional wavelet 
neural network (CWNN) (Gao et al. 2019), were used as comparison 
methods, and the setting of all parameters in each process was the same 
as those in the references. First of all, to evaluate the performance of 
our proposed method, the proposed clustering fusion (CF) algorithm 
was used to replace the pre-processing method among the three meth-
ods, and the CF_ELM, CF_CWNN, and CF_CR results were obtained, 
which proved the effectiveness of our clustering fusion algorithm. 
Then, the clustering fusion algorithm was added into our designed net-
work to demonstrate the performance of our proposed change detection 
method based on clustering fusion and deep neural networks.

It can be seen from Bern’s data set that they all have loss of change 
information. the smallest value of FP(55) for CF_CR but the largest 
false alarm for FN(261), and the smallest area of FN(79) false alarm 
for CF_CWNN but the largest false alarm for FP(349). Our deep 

Table 1. Network parameters.
Type Patch Size/Stride Input Size

conv 3 × 3/2 28 × 28 × 1

conv 3 × 3/1 13 × 13 × 32

conv padded 3 × 3/1 11 × 11 × 32

pool 3 × 3/2 11 × 11 × 64

conv 1 × 1/1 5 × 5 × 64

conv 3 × 3/1 5 × 5 × 80

inception Module A 3 × 3 × 192

inception Module B 1 × 1 × 256

inception Module C 17 × 17 × 768

pool 3 × 3/2 17 × 17 × 2048

linear logits 1 × 1 × 2048

fully regression 1 × 1 × 1000

Table 2. Detail of real SAR data set.
Data Set Bern Farmland San Francisco River Coastline Zhengzhou

Sensor ERS-2 Radarsat-2 ERS-2 Radarsat-2 Radarsat-2 Gaofen-3

Band C C C C C C

Polarization VV VV VV VV VV VV

Location Bern, Switzerland Dongying, China San Francisco, America Dongying, China Dongying, China Zhengzhou, China

Date
1999.04 2008.06 2003.08 2008.05 2008.06 2021.07.20

1999.05 2009.06 2004.05 2009.05 2009.06 2021.07.24

Size 301 × 301 291 × 291 256 × 256 233 × 356 296 × 184 1000 × 1000

Changes Flood Farming Flood Flood Flood Flood 
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(a) (b) (c)

Figure 6. Multi-temporal real SAR image and its ground reference. The first row is the Bern data sets. The second is the farmland data sets of the 
Yellow River Estuary. The third row is the San Francisco data sets. The fourth row is the inland data set of the Yellow River estuary. The fifth row 
is the Coastline data sets of the Yellow River Estuary. (a) Images acquired at time 1. (b) Images acquired at time 2. (c) Ground reference images.

(a) (b) (c)

Figure 7. Zhengzhou data sets. (a) Images acquired at time 1. (b) Images acquired at time 2. (c) Ground reference images.
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 8. Final change detection images of the Bern data set obtained by different methods. (a) Acquired by neighborhood-based ratio 
and extreme learning machine (NR_ELM). (b) Acquired by clustering fusion and extreme learning machine (CF_ELM). (c) Acquired 
by convolutional wavelet neural network (CWNN). (d) Acquired by CF_CWNN. (e) Acquired by namely neighborhood-based ratio and 
cooperative representation (NR_CR). (f) Acquired by CF_CR. (g) Acquired by using our proposed approach. (h) Ground truth.

Table 3. Change detection results of the Bern data set obtained by 
different methods. The excellent value for each metric is shown in bold.
Method FP FN OE (%) PCC (%) KC (%)
NR_ELM 141 200 0.38 99.62 84.66 
CF_ELM 102 219 0.35 99.65 85.18 
CWNN 89 203 0.32 99.68 86.54 
CF_CWNN 349 79 0.47 99.53  83.14 
NR_CR 72 227 0.33 99.67 85.96 
CF_CR 55 261 0.35 99.65 84.81 
Proposed method 135 146 0.31 99.69 87.58 
FP = false positive; FN = false negative; OE = total error; PCC = the ratio between 
correctly detected pixel number and total pixel number; KC = Kappa coefficient; NR_ELM 
= neighborhood-based ratio and extreme learning machine; CF_ELM = clustering 
fusion and extreme learning machine; CWNN = convolutional wavelet neural network; 
CF_CWNN = clustering fusion and convolutional wavelet neural network; NR_CR = 
neighborhood-based ratio and cooperative representation; CF_CR = clustering fusion and 
cooperative representation.

Table 4. Change detection results of the farmland area of the Yellow 
River Estuary data set obtained by different methods. The excellent 
value for each metric is shown in bold.
Method FP FN OE PCC KC
NR_ELM 76 1788 2.20 97.91 77.83 
CF_ELM 121 1254 1.62 98.46 84.58 
CWNN 291 672 1.14 98.92 89.98 
CF_CWNN 382 524 1.07 98.98 90.95
NR_CR 63 2300 2.79 97.35 70.25 
CF_CR 86 1435 1.80 98.29 82.57 
Proposed method 293 464 0.89 99.15 92.25 
FP = false positive; FN = false negative; OE = total error; PCC = the ratio between 
correctly detected pixel number and total pixel number; KC = Kappa coefficient; NR_ELM 
= neighborhood-based ratio and extreme learning machine; CF_ELM = clustering 
fusion and extreme learning machine; CWNN = convolutional wavelet neural network; 
CF_CWNN = clustering fusion and convolutional wavelet neural network; NR_CR = 
neighborhood-based ratio and cooperative representation; CF_CR = clustering fusion and 
cooperative representation.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 9. Final change detection images of the farmland area of the Yellow River Estuary data set obtained by different methods (a) Achieved 
by neighborhood-based ratio and extreme learning machine (NR_ELM). (b) Achieved by clustering fusion and extreme learning machine (CF_
ELM). (c) Achieved by convolutional wavelet neural network (CWNN). (d) Achieved by clustering fusion and convolutional wavelet neural 
network (CF_CWNN). (e) Achieved by neighborhood-based ratio and cooperative representation (NR_CR). (f) Achieved by clustering fusion 
and cooperative representation (CF_CR). (g) Achieved by using our proposed approach. (h) Ground truth.
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neural network based on cluster fusion performs well in PCC (99.69 ) 
and KC (87.58 ). In this data set, our CF_CWNN method and CF_CR 
method do not improve the KC value, but the improvement of the 
cluster fusion algorithm is still present. The FN value (79) of the CF_
CWNN method is significantly better than the FN (203) of the CWNN 
because the cluster fusion method gives many pixels the opportunity to 
be reclassified, which performs significantly in this data set. Because 
the cluster fusion method reduces misclassified pixel points in produc-
ing fused HFCM results, the FP(55) of the CF_CR method is less than 
that of NR_CR(72).

For farmland data sets, we illustrate the role of deep neural net-
works. In comparison with CWNN, the FP value of our method has 
little difference from that of CWNN, because the number of pixels 
corrected by CF is smaller, while the FN value reduces by 208 because 
our neural network has more layers and more detailed extraction 
features. The neural network uses a comparison between predicted 
extreme values, which gives the results of the last part a chance to be 
reclassified compared with the direct network classification method. 
Due to the last regression output integrating the output of the two 

feature vectors, some leakage alarms were correctly classified, and the 
result of KC (92.25) is 2.27 higher than CWNN.

For the San Francisco data set, there are obvious false positives in 
all methods. Our CF method significantly reduces FP in all original 
methods, among which CF_CR FP (118) has the lowest false positive. 
The results of the clustering fusion algorithms CF_ELM, CF_CWNN, 
and CF_NR obtained in this paper improved the three methods of 
NR_ELM, CWNN, and NR_CR. By comparing CWNN and our 
method, the FN values of the two methods have little difference, but 
the FP value of the latter (184) is better than the former (359). Here, 
our CF method plays a major role, and many intensive speckle-noise 
samples are suppressed during pre-classification. Lastly, the deep neu-
ral network based on clustering fusion proposed by us has an excellent 
performance in PCC (99.25) and KC (94.28).

In the Inland data sets, CWNN was severely affected by scattered 
noise, with a high FP value (3238) and a poor effect. On the contrary, 
NR_ELM and NR_CR show low FP, which indicates that deep learn-
ing methods have high requirements on reliable samples. Our method 
improves all three methods and has the highest detection accuracy 
among all the changed area edge detection methods. Comparing the 
FP of CWNN (3238) and FP of our method (697), it was obvious that 
our method had a better effect, mainly because many samples were 
improved by our CF method during pre-classification.

For the Coastline data set, aside from our method, most methods 
are greatly influenced by scattering noise and fail to detect the changed 
region. In our method, the clustering fusion graph avoids the influence 
of inaccurate training samples. Therefore, our method enhances the 
detection accuracy, and the time consumption is acceptable. The river 
data set is less effective. Because the river area in the SAR image looks 
very dark, the backward scattering of the electromagnetic wave to the 
river is relatively weak. Therefore, the signal noise of the SAR image is 
relatively shallow under soft speckle noise. Ergo, in this case, there is a 
significant difference between the pixel values of the two images in the 
river region, and the pixels in the river region can be easily classified 
as a changed class.

In addition, we add the Zhengzhou data sets, and use the proposed 
method to perform experiments on all data sets of different sizes under 
the same conditions and record the computation time. The relation-
ship between calculation time and size is shown in Table 8. Obviously, 
larger sizes require more computation time.Discussion

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Final change detection images of the San Francisco data set obtained by different methods. (a) Achieved by neighborhood-based 
ratio and extreme learning machine (NR_ELM). (b) Achieved by clustering fusion and extreme learning machine (CF_ELM). (c) Achieved by 
convolutional wavelet neural network (CWNN). (d) Achieved by clustering fusion and convolutional wavelet neural network (CF_CWNN). 
(e) Achieved by neighborhood-based ratio and cooperative representation (NR_CR). (f) Achieved by clustering fusion and cooperative 
representation (CF_CR). (g) Achieved by using our proposed approach. (h) Ground truth.

Table 5. Change detection results of the San Francisco data set 
obtained by different methods. The excellent value for each metric is 
shown in bold.
Method FP FN OE PCC KC

NR_ELM 533 311 1.29 98.71 90.51 

CF_ELM 241 487 1.11 98.89 91.42 

CWNN 359 295 1.00 99.00 92.53 

CF_CWNN 148 429 0.88 99.12 93.18 

NR_CR 298 606 1.38 98.62 89.28 

CF_CR 118 682 1.22 98.78 90.26 

Proposed method 184 308 0.75 99.25 94.28 
FP = false positive; FN = false negative; OE = total error; PCC = the ratio between correctly 
detected pixel number and total pixel number; KC = Kappa coefficient; NR_ELM = 
neighborhood-based ratio and extreme learning machine; CF_ELM = clustering fusion and 
extreme learning machine; CWNN = convolutional wavelet neural network; CF_CWNN = 
clustering fusion and convolutional wavelet neural network; NR_CR = neighborhood-based 
ratio and cooperative representation; CF_CR = clustering fusion and cooperative representation.
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Parameters Selection
In this section, two parameters will be discussed, namely, the 
nearest neighbor size of the NR operator in pre-classification 
and the patch size of the training sample in the deep neural 
network. These two parameters affect the learning ability of 
the deep learning change detection method based on hierarchi-
cal fuzzy c-means clustering fusion. As shown in Figure 13, 
with the coastline data as an example, when the nearest neigh-
bor size is set to 5, the result is optimal. In our experiment, we 
set it uniformly to 3. For the training sample block size, when 
the value is 36, the result is optimal. In our experiment, it is 
uniformly set to 28. Figure 12 reflects the effect of the choice 
of two parameters on the results, i.e., the neighbor size of the 
NR difference image and the size of training sample patch of 
the deep neural network on the Kappa value, respectively.

Deep Learning Framework for Change Detection
In the proposed method, the clustering fusion algorithm in the 
pre-classification stage completes the initial pre-classification 
task, and the deep neural network in the deep learning stage 
completes the final classification task. The clustering fusion 
algorithm in the pre-classification stage can be applied to vari-
ous other methods that take clustering as the pre-classification 
result (Gao et al. 2016), and other deep neural networks in 
the deep learning stage can also be used in place of the deep 
neural network designed by us. Therefore, the proposed ap-
proach can be regarded as two modules. It does not limit the 
use of deep learning models. Moreover, a clustering algorithm 
can also be applied to a variety of other deep learning change 
detection algorithms. If only a complete classification is used 
in two modules, many false positives and false negatives will 

Table 6. Change detection results of the Inland of the Yellow River Estuary data 
set obtained by different methods. The excellent value for each metric is shown 
in bold.
Method FP FN OE PCC KC

NR_ELM 192 1019 1.46 98.54 73.17 

CF_ELM 319 740 1.28 98.72 78.36 

CWNN 3238 369 4.35 93.65 54.72 

CF_CWNN 868 269 1.37 98.63 80.55 

NR_CR 175 1167 1.62 98.38 69.22 

CF_CR 282 794 1.30 98.70 77.62 

Proposed method 697 283 1.18 98.82 82.72 
FP = false positive; FN = false negative; OE = total error; PCC = the ratio between correctly detected 
pixel number and total pixel number; KC = Kappa coefficient; NR_ELM = neighborhood-based ratio 
and extreme learning machine; CF_ELM = clustering fusion and extreme learning machine; CWNN = 
convolutional wavelet neural network; CF_CWNN = clustering fusion and convolutional wavelet neural 
network; NR_CR = neighborhood-based ratio and cooperative representation; CF_CR = clustering 
fusion and cooperative representation.

Table 8. Relationship between the size of data sets and computation time.
Data 
Sets Bern Farmland 

San 
Francisco Inland Coastline Zhengzhou

Size 301 × 301 291 × 291 256 × 256 233 × 356 296 × 184 1000 × 1000

Time (s) 562.46 576.30 564.83 589.80 605.82 989.71

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Final change detection images of the river of the Yellow River Estuary data set obtained by different methods. (a) Achieved by 
neighborhood-based ratio and extreme learning machine (NR_ELM). (b) Achieved by clustering fusion and extreme learning machine (CF_
ELM). (c) Achieved by convolutional wavelet neural network (CWNN). (d) Achieved by clustering fusion and convolutional wavelet neural 
network (CF_CWNN). (e) Achieved by neighborhood-based ratio and cooperative representation (NR_CR). (f) Achieved by clustering fusion 
and cooperative representation (CF_CR). (g) Achieved by using our proposed approach. (h) Ground truth.
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be produced. All of them can be used as part of the other change detec-
tion methods and are suitable for engineering implementation.

Comparison with Other Methods
The proposed deep neural network based on hierarchical fuzzy c-means 
clustering and fusion is vital for obtaining the desired change detection 
performance. The former classifies pixels into three categories: variable 
class, invariant class, and intermediate class. Regardless of the change 
caused by strong speckle noise, or the change caused by the change 
of Israeli terrain, after our pre-classification, the uncertain change 
class and the unchanged class will be well divided into the intermedi-
ate classes. This is so that the neural network can be classified again, 
which greatly reduces the FP rate and FN rate. Based on this principle, 
in the deep neural network stage, although there is still a noise when 
the same target in SAR image has a strong correlation, our network 
output layer by regression output two lines characteristic vector, rather 
than using classification layer binary classification directly. The reason 
for this is that the conventional binary classification will result in a lot 
of pixels by mistake classification. Such misclassification is greatly 
reduced by using a regression output threshold, which greatly improves 
the identification of two previously indistinguishable changes.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Final change detection images of the Coastline of Yellow River Estuary data set obtained by different methods. (a) Achieved by 
neighborhood-based ratio and extreme learning machine (NR_ELM). (b) Achieved by clustering fusion and extreme learning machine (CF_
ELM). (c) Achieved by convolutional wavelet neural network (CWNN). (d) Achieved by clustering fusion and convolutional wavelet neural 
network (CF_CWNN). (e) Achieved by neighborhood-based ratio and cooperative representation (NR_CR). (f) Achieved by clustering fusion 
and cooperative representation (CF_CR). (g) Achieved by using our proposed approach. (h) Ground truth.

(a) (b)

Figure 13. The influence of the size of neighbor and the sample patch for Kappa on the Coastline of Yellow River Estuary data set.

Table 7. Change detection results of the Coastline of Yellow River 
Estuary data set obtained by different methods. The excellent value for 
each metric is shown in bold.
Method FP FN OE PCC KC

NR_ELM 934 10 1.73 98.27 54.76 

CF_ELM 328 29 0.66 99.34 75.80 

CWNN 1667 9 3.08 96.92 40.24 

CF_CWNN 313 111 0.78 99.22 69.28 

NR_CR 1948 10 3.60 96.40 36.39 

CF_CR 540 47 1.08 98.92 64.75 

Proposed method 233 19 0.46 99.54 81.90 
FP = false positive; FN = false negative; OE = total error; PCC = the ratio between 
correctly detected pixel number and total pixel number; KC = Kappa coefficient; NR_ELM 
= neighborhood-based ratio and extreme learning machine; CF_ELM = clustering 
fusion and extreme learning machine; CWNN = convolutional wavelet neural network; 
CF_CWNN = clustering fusion and convolutional wavelet neural network; NR_CR = 
neighborhood-based ratio and cooperative representation; CF_CR = clustering fusion and 
cooperative representation.
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Our method is evaluated theoretically by comparing several bench-
mark methods. The results showed the effectiveness and robustness of 
our proposed method. The advantage of this approach is that each part 
can be easily extended, and the entire framework can be developed into 
an end-to-end supervised network. In future studies, this method should 
monitor changes over a wider range of data.

Analysis of Unbalanced Training Samples
When selecting training samples, we use far fewer training samples of 
variable types in data sets than those of constant types, which are det-
rimental to the training network. To avoid the imbalance between vari-
able training samples and constant training samples, virtual samples 
are used to enrich the training samples of a few classes. In contrast 
to other data enhancement methods, virtual samples can effectively 
capture the potential recognition information of changed classes by ex-
ploring the visual feature space through linear learning image blocks. 
The refined data maximizes the feature space of the changed class and 
supports network training. Different sample selection methods will 
have different effects on the results. In future work, the problem of un-
balanced training samples for unsupervised change detection methods 
can also be improved.

Discussion on Regression Layer Output of Deep Neural Network
In the past, the neural network was either classified output or single 
regression output, and the detection results had low accuracy due to 
many FP or FN (Gao et al. 2019). Our depth layer neural network 
adopts the regression forecast samples of the middle class, and the 
output of the single feature vector to represent categories. With the two 
feature vectors by regression output, we take the difference from the 
difference characteristic vector, and then select the difference feature 
vector of the mean value as a threshold of feature vector binary clas-
sification, before the change detection results are obtained. This is our 
constant exploration and innovation of regression prediction, which 
reduces many misclassifications and improves detection accuracy.

Conclusions
In this paper, we proposed a change detection method for multi-tem-
poral SAR images based on cluster fusion and deep neural networks. 
The algorithm first generates pre-classification results containing three 
classes: change class, unchanged class, and intermediate class by the 
cluster fusion algorithm, allowing more pixels that are easily misclas-
sified to belong to the intermediate class and effectively selecting the 
change class and unchanged class. Then, virtual samples are used to 
solve the problem of imbalance between the samples of changed and 
unchanged classes. For the reclassification of intermediate classes, a 
deep neural network was designed to train both change and unchanged 
class samples. In the network results, the regression layer was used to 
replace the classification layer. The difference between the two feature 
vectors output by the regression layer is set as a threshold for the resul-
tant classification again, thus reducing most of the false alarms in the 
detection results. As a result, erroneous pixels in both pre-classification 
and final classification can be corrected. The results on five different 
SAR image data sets validate the feasibility and effectiveness of the 
proposed method.

The main challenge in the detection of the changes in SAR images 
in the future is speckle noise, which varies from the human vision 
mechanism and unique imaging form. However, in terms of image 
understanding, deep learning neural networks have proved their great 
potential through their ability to extract high-dimensional features and 
fit nonlinear functions. Therefore, deep learning neural networks are 
the preferred method to solve the above problems, but this method will 
identify false positives and missed positives. Ergo, two problems need 
to be solved. The first problem is to enhance the recognition ability of 
deep learning, and the other is to recognize the noise characteristics of 
SAR images and effectively distinguish the actual changed pixels from 
noisy pixels.

Acknowledgments
The authors would like to thank all the editors and reviewers for their 
valuable time and suggestions on this paper, which have greatly im-
proved the quality of this paper.

References
Bazi, Y., F. Melgani and H. D. Al-Sharari. 2010. Unsupervised change detection 

in multispectral remotely sensed imagery with level set methods. IEEE 
Transactions on Geoscience and Remote Sensing 48(8):3178–3187.

Bazi, Y., L. Bruzzone and F. Melgani. 2005. An unsupervised approach based 
on the generalized Gaussian model to automatic change detection in 
multitemporal SAR images. IEEE Transactions on Geoscience and 
Remote Sensing 43(4):874–887.

Blaschke, T. 2010. Object based image analysis for remote sensing. ISPRS 
Journal of Photogrammetry and Remote Sensing 65(1):2–16.

Celik, T. 2010. Change detection in satellite images using a genetic algorithm 
approach. IEEE Geoscience and Remote Sensing Letters 7(2):386–390.

Chen, Y., A. B. Cremers and Z. Cao. 2014. A variational change detection 
method for multitemporal SAR images. Remote Sensing Letters 
5(4):342–351.

De, S., D. Pirrone, F. Bovolo, L. Bruzzone and A. Bhattacharya. 2017. A novel 
change detection framework based on deep learning for the analysis 
of multi-temporal polarimetric SAR images. Pages 5193–5196 in 
Proceedings 2017 IEEE International Geoscience and Remote Sensing 
Symposium (IGARSS). https://doi.org/10.1109/IGARSS.2017.8128171.

Dekker, R. 1998. Speckle filtering in satellite SAR change detection imagery. 
International Journal of Remote Sensing 19(6):1133–1146.

Gao, F., J. Dong, B. Li, Q. Xu and C. Xie. 2016. Change detection from 
synthetic aperture radar images based on neighborhood-based ratio 
and extreme learning machine. Journal of Applied Remote Sensing 
10(4):046019.

Gao, F., X. Wang, Y. Gao, J. Dong and S. Wang. 2019. Sea ice change detection 
in SAR images based on convolutional-wavelet neural networks. IEEE 
Geoscience and Remote Sensing Letters 16(8):1240–1244.

Gao, G., X. Wang, M. Niu and S. Zhou. 2014. Modified log-ratio operator for 
change detection of synthetic aperture radar targets in forest concealment. 
Journal of Applied Remote Sensing 8(1):083583.

Gao, Y., F. Gao, J. Dong and S. Wang. 2018. Sea ice change detection 
in SAR images based on collaborative representation. Pages 
7320–7323 in Proceedings IGARSS 2018-2018 IEEE International 
Geoscience and Remote Sensing Symposium. https://doi.org/10.1109/
IGARSS.2018.8519461.

Gong, M., Y. Cao and Q. Wu. 2011. A neighborhood-based ratio approach for 
change detection in SAR images. IEEE Geoscience and Remote Sensing 
Letters 9(2):307–311.

Hou, B., Q. Wei, Y. Zheng and S. Wang. 2014. Unsupervised change 
detection in SAR image based on Gauss-log ratio image fusion and 
compressed projection. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing 7(8):3297–3317.

Hu, H. and Y. Ban. 2014. Unsupervised change detection in multitemporal SAR 
images over large urban areas. IEEE Journal of Selected Topics in Applied 
Earth Observations and Remote Sensing 7(8):3248–3261.

Hussain, M., D. Chen, A. Cheng, H. Wei and D. Stanley. 2013. Change 
detection from remotely sensed images: From pixel-based to object-based 
approaches. ISPRS Journal of Photogrammetry and Remote Sensing 
80:91–106.

Jiang, J., C. Chen, Y. Yu, X. Jiang and J. Ma. 2017. Spatial-aware collaborative 
representation for hyperspectral remote sensing image classification. IEEE 
Geoscience and Remote Sensing Letters 14(3):404–408.

Li, F., F. Fang and G. Zhang. 2016. Unsupervised change detection in SAR 
images using curvelet and L1-norm based soft segmentation. International 
Journal of Remote Sensing 37(14):3232–3254.

Li, W. and Q. Du. 2014. Joint within-class collaborative representation for 
hyperspectral image classification. IEEE Journal of Selected Topics in 
Applied Earth Observations and Remote Sensing 7(6):2200–2208.

Liu, F., L. Jiao, X. Tang, S. Yang, W. Ma and B. Hou. 2018. Local restricted 
convolutional neural network for change detection in polarimetric SAR 
images. IEEE Transactions on Neural Networks and Learning Systems 
30(3):818–833.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING June 2023 383



Liu, T., Y. Li, Y. Cao and Q. Shen. 2017. Change detection in multitemporal 
synthetic aperture radar images using dual-channel convolutional neural 
network. Journal of Applied Remote Sensing 11(4):042615.

Longbotham, N., F. Pacifici, T. Glenn, A. Zare, M. Volpi, D. Tuia, E. 
Christophe, J. Michel, J. Inglada, J. Chanussot and Q. Du. 2012. Multi-
modal change detection, application to the detection of flooded areas: 
Outcome of the 2009–2010 data fusion contest. IEEE Journal of Selected 
Topics in Applied Earth Observations and Remote Sensing 5(1):331–342.

Lu, J., L. Giustarini, B. Xiong, L. Zhao, Y. Jiang and G. Kuang. 2014. 
Automated flood detection with improved robustness and efficiency using 
multi-temporal SAR data. Remote Sensing Letters 5(3):240–248.

Lv, N., C. Chen, T. Qiu and A. K. Sangaiah. 2018. Deep learning and 
superpixel feature extraction based on contractive autoencoder for change 
detection in SAR images. IEEE Transactions on Industrial Informatics 
14(12):5530–5538.

Oliver, C. and S. Quegan. 2004. Understanding Synthetic Aperture Radar 
Images. Raleigh, N.C.: SciTech Publishing.

Pantze, A., M. Santoro and J. E. Fransson, 2014. Change detection of boreal 
forest using bi-temporal ALOS PALSAR backscatter data. Remote Sensing 
of Environment 155:120–128.

Schlaffer, S., P. Matgen, M. Hollaus and W. Wagner. 2015. Flood detection from 
multi-temporal SAR data using harmonic analysis and change detection. 
International Journal of Applied Earth Observation and Geoinformation 
38:15–24.

Schubert, A., A. Faes, A. Kääb and E. H. Meier. 2013. Glacier surface velocity 
estimation using repeat TerraSAR-X images: Wavelet-vs. correlation-
based image matching. ISPRS Journal of Photogrammetry and Remote 
Sensing 82:49–62.

Su, M. A., K.-Z. Deng, H.-f. Zhuang and Y.-f. Han. 2017. Change detection of 
SAR images based on KI criterion and mathematical morphology filter. 
Laser Journal 38(235): 36–40.

Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna. 2016. Rethinking 
the inception architecture for computer vision. Pages 2818–2826 in 
Proceedings 2016 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR). https://doi.org/10.1109/CVPR.2016.308.

Rignot, E. J. and J. J. Van Zyl. 1993. Change detection techniques for ERS-1 
SAR data. IEEE Transactions on Geoscience and Remote Sensing 
31(4):896–906.

Villasensor, J., D. R. Fatland and L. D. Hinzman. 1993. Change detection 
on Alaska’s north slope using repeat-pass ERS-1 SAR images. IEEE 
Transactions on Geoscience and Remote Sensing 31(1):227–236.

Wuhan University. 2006. Change detection in multitemporal SAR images using 
MRF models. Geomatics and Information Science of Wuhan University 
31(4):312–315. https://doi.org/10.1016/S0379-4172(06)60092-9.

Yousif, O. and Y. Ban. 2013. Improving urban change detection from 
multitemporal SAR images using PCA-NLM. IEEE Transactions on 
Geoscience and Remote Sensing 51(4):2032–2041.

Zhang, L., M. Yang and X. Feng. 2011. Sparse representation or collaborative 
representation: Which helps face recognition? Pages 471–478 in 
Proceedings 2011 International Conference on Computer Vision. https://
doi.org/10.1109/ICCV.2011.6126277.

Zhang, X., H. Su, C. Zhang, X. Gu, X. Tan and P. M. Atkinson. 2021. Robust 
unsupervised small area change detection from SAR imagery using 
deep learning. ISPRS Journal of Photogrammetry and Remote Sensing 
173:79–94.

Zhang, Y., H. Wu, H. Wang and S. Jin. 2016. Distance measure based change 
detectors for polarimetric SAR imagery. Photogrammetric Engineering & 
Remote Sensing 82(9):719–727.

Zheng, Y., X. Zhang, B. Hou and G. Liu. 2013. Using combined difference 
image and k-means clustering for SAR image change detection. IEEE 
Geoscience and Remote Sensing Letters 11(3):691–695.

384 June 2023 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



Strategies for Forest Height Estimation  
by High-Precision DEM Combined with  
Short-Wavelength PolInSAR TanDEM-X

Hongbin Luo, Wanqiu Zhang, Cairong Yue, and Si Chen

Abstract
The purpose of this article is to explore forest height estimation 
strategies using topographic data (DEM) combined with TanDEM-X 
while comparing the effect of volume scattering complex coher-
ence selection on forest height estimation in the traditional random 
volume over ground (RVoG) three-stage algorithm. In this study, 
four experimental strategies were designed for comparison based 
on TanDEM-X polarized interferometric synthetic aperture radar 
(PolInSAR) data, TanDEM-DEM, and 42 field-measured data. Our 
results show that in the RVoG model, (1) a reference ground phase 
to select the volume scattering complex coherence provides greater 
accuracy in determining forest height, (2) forest height estimation 
can be achieved by directly using DEM as ground phase informa-
tion without relying on model solving and obtaining a more accurate 
forest height than TanDEM-X alone, and (3) the highest estima-
tion accuracy is obtained by using DEM as coherence information 
among all schemes. Although the difference in forest height estima-
tion results is not significant in this study, it still proves that the forest 
height estimation strategy of high-precision DEM combined with 
short-wavelength PolInSAR can not only improve the forest height 
estimation accuracy but also simplify the solving process of the RVoG 
model, which is an important reference for global forest parameter 
estimation and ecosystem detection based on spaceborne PolInSAR.

Introduction
Forests are an important component of terrestrial ecosystems, and 
monitoring forests is particularly crucial in the context of global cli-
mate change (Gholz 1982; Houghton 2005; Hall et al. 2011). As a key 
parameter of forest vertical structure, height is an effective indicator of 
forest biomass, carbon stock, and forest health, and it also can be used 
to describe forest succession and change (Goetz and Dubayah 2011; 
Huang et al. 2012; Bispo et al. 2019) Therefore, for dynamic forest 
resource monitoring, it is important to acquire forest height informa-
tion accurately and efficiently. However, traditional forest height 
measurement relies mainly on manual field surveys, which are accurate 
but inefficient and expensive in terms of manpower and money, so the 
traditional method is not suitable for large-area surveys. On the other 
hand, remote sensing technology can considerably improve the ef-
ficiency of forest resource surveys, and it has been widely used in this 
context (Chirici et al. 2016).

At present, remote sensing techniques applied in forest surveys in-
clude mainly optical remote sensing, lidar, remote sensing, microwave 
remote sensing, and so on (Xu et al. 2019). Optical remote sensing has 

the advantages of a short revisit period, wide coverage, and many data 
sources, and it has been widely used to estimate forest stock volume 
or biomass, classify forest types, and monitor forest change; however, 
it is vulnerable to bad weather and can acquire only optical reflectance 
information, which is not sensitive to the forest vertical structure (Cao 
et al. 2012). Lidar can obtain information about the forest canopy and 
the 3D structure inside a forest (Maltamo et al. 2020) and is not limited 
by weather conditions, but the observation coverage of lidar is often 
limited by the use of an airborne platform, and its data acquisition cost 
is high (Gang and Hay 2011; Wang et al. 2020). As for spaceborne lidar 
platforms, such as ICEsat1, ICEsat2, and GEDI, although they can cover 
large-scale areas, they can acquire only strip-scale data and cannot ob-
tain continuous surface data (Silva et al. 2021). Different from optical 
remote sensing and lidar, microwave remote sensing not only is active 
and independent of weather but also can collect data over large areas, so 
it has significant advantages in monitoring forests (Zhang et al. 2017).

As a part of microwave remote sensing, polarized interferometric 
synthetic aperture radar (PolInSAR) is a combination of polarimetric SAR 
(PolSAR) and interferometric SAR (InSAR), so it has the characteristics 
of both PolSAR and InSAR and is sensitive to the shape, backscatter 
orientation, space distribution, and vertical structure of vegetation over 
the ground (Graham 1974; Garestier and Le Toan 2010). Therefore, 
PolInSAR has become one of the main techniques used to estimate forest 
height. The random volume over ground (RVoG) coherence scattering 
model is the most widely used model in PolInSAR forest height estima-
tion (Treuhaft et al. 1996; Liao et al. 2018), and the three-stage forest 
height inversion method was developed on the basis of the RVoG model 
(Cloude and Papathanassiou 2003). The three-stage method can use 
quad-polarized SAR data to first estimate the ground phase through the 
distribution of multiple interferometric complex coherence, and it then 
uses a lookup table to invert forest height; it has been successfully ap-
plied to different frequencies, including C-, L-, P-, and X-bands (Wang 
et al. 2016; Schlund et al. 2019; Kumar et al. 2020).

In 2010, the German Aerospace Center (DLR) launched the first 
dual-satellite simultaneous observation mission—TanDEM-X—which 
eliminates the temporal decorrelation problem and increases the possi-
bility of accurately estimating forest height and other forest parameters 
(Kumar et al. 2017; Persson et al. 2017; Chen et al. 2019). However, 
in forest areas, TanDEM-X could present a problem in obtaining the 
ground scattering information due to its short-wavelength X-band, the 
penetration of which into the forest is weak, so the coherence phase 
centers of various polarized scattering calculated from TanDEM-X 
data are usually close to the top of the forest canopy. As a result, it 
is hard for the coherence optimization algorithms to extract phase 
centers relevant to the surface scattering of the ground. In addition, the 
observed polarimetric interference complex coherence values of the 
forest area can deviate from their ideal values for system errors, signal 
noise, and terrain, and this could cause errors in the ground phase 
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estimation of the three-stage algorithm (Cloude et al. 2013; Kugler 
et al. 2014; Managhebi et al. 2018). Poor estimation of the ground 
phase impairs the inversion of the forest height in the next steps. 
Therefore, improving the accuracy of the ground phase estimation is 
one of the key approaches to improving TanDEM-X forest height inver-
sion. Many previous studies have used a DTM acquired by airborne 
lidar as external terrain data to perform forest height inversion with 
single-pole TanDEM-X data (Cloude et al. 2013; Kugler et al. 2014; Qi 
et al. 2019), and these studies fully illustrated that an accurate ground 
phase, obtained from high-precision external terrain data, can improve 
the inversion accuracy of forest height from TanDEM-X data. Usually, 
high-precision topographic data can be obtained by airborne or UAV 
lidar; however, the cost of these data is too high to be applied in a large 
area. SRTM-DEM, ASTER-DEM, and TanDEM-DEM are medium-precision 
topographic data with wide regional coverage. In particular, the DEM 
from the TanDEM-X mission has an overall absolute elevation accuracy 
of about 3.5 m; when excluding ice-, forest-, and desert-covered areas, 
the absolute elevation accuracy reaches 0.88 m (Rizzoli et al. 2017), 
and it is currently the global DEM product with the highest accuracy.

The goal of this article is to develop TanDEM-X polarized interfero-
metric data combined with topographic data (DEM) to improve forest 
height estimation and compare the effect of volume scattering complex 
coherence selection on forest height estimation results in the traditional 
RVoG three-stage algorithm. The results of this study will help improve 
forest height inversion accuracy supported by topographical data for 
short-wavelength SAR data and also simplify the RVoG three-stage algo-
rithm by reducing model parameters and improving efficiency.

Study Area and Data
Study Area
The study area is located in Simao District, P’er City, Yunnan 
Province, China. Being a mountainous region with undulating terrain, 
this area has an average elevation of 1366 m and a maximum height 
difference of 1036 m. It has a typical southern subtropical monsoon cli-
mate, with indistinct dry and wet seasons. Due to its low latitude, this 

place has a high temperature, high humidity, and much rain year-round, 
and its average annual temperature and precipitation are 17.8°C and 
1524 mm, respectively. This region has high forest coverage; the main 
forest type in our study area is needle leaf forest, dominated by natural 
forests, with the dominant species being Pinus kesiya var. langbianen-
sis. Under abundant moisture and heat conditions, the vegetation under 
the forest canopy is also more complex.

Field-Measured Data
The field data were acquired in March 2017, and 42 sample plots were 
examined in the study area. In this region, the dominant tree species is 
P. kesiya var. langbianensis, and most parts of the forest are mature or 
middle-aged forests. Here, the forest stand mean height was chosen as 
a reference for the canopy height. Circular plots were adopted. First, 
the center of the sample plot was determined by GPS, then the diameter 
at breast height (DBH) of each tree within the circular field was record-
ed and the average DBH calculated. Next, three or four trees within the 
same diameter order of the average DBH were selected as the standard 
trees, and the heights of the standard trees were measured. Finally, 
the average height of the standard trees was calculated as the output 
height of the plot. In the field survey, the tree height was obtained by 
using a combination of a scale bar, a laser rangefinder, and ultrasonic 
height measurement. The statistical characteristics of the heights of the 
sample plots are shown in Table 1.

Table 1. Statistics of the heights of sample plots (unit: m).
Number 
of Plots Minimum Maximum

Average 
Height

Standard 
Deviation

42 8.21 20.23 16.11 2.98

TanDEM-X and TanDEM-DEM Data
TanDEM-X consists of two nearly identical SAR satellite constellations. 
TanDEM-X data, provided by DLR, were acquired on October 6, 2015, in 
bistatic mode. The data were a quad-polarized single-look complex in 
the CoSSC format. The effective baseline was 361.31 m, and height of 
ambiguity(hoa) was 17.7 m.

Figure 1. Geographical location of the study area.
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The TanDEM-DEM data used in the study were provided by DLR at 
a resolution of 12×12 m. When generating a global DEM product, the 
spatial baseline of the two satellites of the TanDEM-X mission is con-
trolled between 120 and 500 m.

Methodology
3RVoG Coherence Scattering Model and Three-Stage Algorithms
RVoG model is a widely used two-layer coherence scattering model 
(Figure 2) capable of inverting the physical forest height based on the 
PolInSAR complex coherence (Treuhaft et al. 1996; Papathanassiou and 
Cloude 2001; Hajnsek et al. 2009; Kugler et al. 2014). In the RVoG 
model, the forest is regarded as a random-volume scattering layer with 
a height of hv, and the ground is an impenetrable layer at a vertical 
location of Z0.

Figure 2. Schematic of scattering centers versus the floor height.

In the RVoG model, when not considering temporal decorrelation, 
the observed interferometric complex coherence with polarization ω 
can be expressed as

  

(1)

where m(ω) is the effective ground-to-volume amplitude ratio. When 
m(ω) = 0, the surface scattering contribution is zero (γ(ω) = ejφ0 γν), 
and when m(ω) = ∞, the phase is on the surface (γ(ω) = ejφ0 ). Here, 
ejφ0 = ejkzz0 denotes the ground phase, while γν denotes the decorrelation 
caused by vegetation only. γν can be expressed as

  

(2)

where hv is the vegetation height; σ is the extinction coefficient; kz is 
the vertical effective wave number, which indicates the sensitivity of 
the phase to height change; α and R are the range-facing terrain slope 
angle and the slant distance, respectively; θ is the incident angle; B^ is 
the vertical baseline length; and n depends on the acquisition mode of 
the radar image (Kugler et al. 2015): n = 2 for bistatic mode, and n = 1 
for monostatic mode.

Based on the RVoG model, the three-stage forest height inversion 
method was proposed by Cloude and Papathanassiou (2003) and is 
mainly used to invert forest height from single-baseline PolInSAR data. 
From Equation 1, it can be seen that the interferometric complex co-
herence values of different polarization states are linearly distributed in 
the complex plane. Then, based on this linear distribution of multiple 
polarimetric interferometry complex coherence, the three-stage inver-
sion can solve out the ground phase through a linear-fitting process and 
then estimate the forest height via Equation 2. The whole process is 
divided into three stages.

Stage 1
Fit the coherence line using the least squares method with a set of 
complex coherence values. Here, 15 interferometric complex coher-
ence values under different polarization states were calculated from the 
polarization interferometry coherence matrix of the master and slave 
images, including seven coherence values under the linear polarization 
basis (γHH, γHHmVV, γHHpVV, γHHVV, γHV, γHVpVH, and γVV), three coherence 
values under the circular polarization basis (γLL, γLR, and γRR), and five 
optimized coherence values (γOpt1, γOpt2, and γOpt3) via singular value 
decomposition coherence optimization (Cloude and Papathanassiou 
1998) and γPDhigh and γPDlow via phase-diversity coherence optimization 
(Xie et al. 2015).

Stage 2
Solve the ground phase φ0 from the two intersections (γ0 and γ1) where 
the coherence line intersects the unit circle. According to the physical 
scattering mechanism of a forest, the HV channel is usually dominated 
by the volume scattering of the forest canopy and contains little infor-
mation from the ground; as a result, γHV should be far away from the 
coherence corresponding to the ground. Thus, the ground phase can be 
determined by judging the distances between the two coherence points 
(γ0 and γ1) and γHV, as shown in Equation 3. Finally, the intersection 
farthest from γHV is selected to calculate the ground phase φ0:

  
(3)

Stage 3
Estimate the forest height hv and extinction coefficient σ. According to 
the relationship between γv and (hv, σ) in Equation 2, a two-dimensional 
lookup table (LUT) is created based on a set of reasonable hv and σ val-
ues. By looking for the smallest distance between γωv

 and the ejφ0γv from 
the LUT, the pair (hv, σ) fulfilling Equation 4 is taken as the output. 
Here, we assume the effective ground-to-volume amplitude ratio (m(ω) 
= 0) for the volume scattering complex coherence γωv

:

  
(4)

Effect of Volume Scattering Complex  
Coherence Selection on Inversion Results
In the traditional three-stage inversion algorithm, after the ground 
phase is determined, the farthest complex is selected as the volume 
scattering complex to invert the forest height. The HV channel is con-
sidered to contain mainly volume scattering from the vegetation layer, 
so the coherence γHV is often directly used as the volume scattering 
coherence in the RVoG three-stage algorithm. However, related studies 
show that the HV channel includes not only volume scattering but also 
part of the ground surface scattering; thus, the ground-to-volume mag-
nitude ratio m(γHV) is not zero, and the scattering phase center of the 
HV channel may not be the closest to the top of canopy among all the 
complex coherence values (Cloude and Papathanassiou 2003).

Therefore, in this study, we examine the effects of volume scat-
tering complex coherence selection on the forest height inversion. In 
Experiment A, γHV was used as the volume scattering complex coher-
ence, and in Experiment B, the interferometric complex coherence 
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farthest from the ground phase was selected pixel by pixel as the 
volume scattering complex coherence to invert the forest height.

Experiment A: In this experiment, we used the traditional RVoG 
three-stage method to invert forest height (as shown in Figure 4a). In 
this experiment, the least squares method was used to fit the coherence 
line and solve the ground phase φ0, and the complex coherence γHV was 
used as the volume scattering complex coherence in the two-dimen-
sional LUT in the third stage:

  
(5)

Experiment B: In this experiment, the method of ground phase es-
timation was the same as that in Experiment A, using the least squares 
method to fit the coherence line and solving the ground phase φ0. 
However, for the volume scattering complex coherence, instead of us-
ing γHV, the complex coherence farthest from φ0 was chosen according 
to Equation 6 and written as γ(ωfar). Its scattering phase center is con-
sidered to be closer to the top of the canopy (as shown in Figure 4b):

  

(6)

The RVoG Three-Stage Inversion Method Combined with Topographic Data
The ground phase φ0 in the RVoG three-stage inversion method is 
obtained by fitting the coherence line in different polarization states 
based on the scattering mechanism of the forest at long-wavelength 
electromagnetic waves. For the L-band or P-band SAR, radar waves can 
penetrate the forest canopy to reach the ground and effectively bring 
back the ground phase information. Therefore, the ground phase could 
be deduced from the L- or P-band PolInSAR data. However, during real 

signal capture, the PolInSAR data are affected by the baseline, signal-to-
noise ratio, and terrain conditions, so the observed complex coherence 
could be greatly different from its supposed theoretical value. Further, 
for the short-wavelength X-band of TanDEM-X, its weak penetration 
makes it difficult to obtain the surface scattering information, so the 
distribution of the complex coherence in the complex plane often devi-
ates from the ideal coherence line (Treuhaft et al. 1996; Kumar et al. 
2017; Chen et al. 2019). As a result, for the X-band PolInSAR data, the 
ground phase φ0 can easily be misestimated.

The topographic data can be used to replace the ground phase 
solved by the RVoG three-stage method in order to better estimate 
forest height (Cloude et al. 2013; Kugler et al. 2014; Qi et al. 2019). 
Therefore, in this study, we used TanDEM-DEM as ground phase infor-
mation and designed two experimental protocols to explore topograph-
ic data–assisted TanDEM-X inversion of forest height (Experiments C 
and D, as shown in Figure 4c and Figure 4d, respectively).

Experiment C: We replaced the ground phase of Experiment 
B with the one calculated from the TanDEM-DEM to invert the forest 
height. First, the height (htan) of TanDEM-DEM was converted into the 
ground phase φtan using the vertical effective wave number kz accord-
ing to Equation 7, and then φtan was used as the ground phase in the 
three-stage algorithm. Then the complex coherence farthest from φtan 
was chosen as the volume scattering complex coherence to invert the 
forest height:

  

(7)

Figure 3. Flowchart of the presented experimental theme.
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Experiment D: We merged the ground phase calculated from 
TanDEM-DEM into the three-stage method to invert the forest height. 
In this experiment, the ground phase φtan was first calculated from 
TanDEM-DEM, the ground coherence γ0 was added into the traditional 
three-stage algorithm as a coherence point, and then the ground phase 
φ'0 was estimated according to the coherence line fitting in the three-
stage algorithm, and the farthest complex coherence from φ'0 was 
selected as the volume scattering complex coherence and written as 
γ(ω'far) in Equation 8. Finally, the forest height was inverted through 
the LUT. The purpose of this method is to constrain the direction of the 
coherence line in the traditional three-stage inversion by adding an a 
priori ground coherence point on the unit circle:

  

(8)

 

Evaluation Criteria
Determination coefficient (R2, Equation 9) and mean square error (MSE, 
Equation 10) were used to evaluate the inversion accuracy

  
(9)

  
(10)

where Hi is the measured height value, H is the model-predicted value, 
Ĥi is the average value of the predicted height.

Results
In this study, the ground-measured forest heights of 42 sample plots 
were adopted to evaluate the estimation performance of the four 
experiments. The R2 and the MSE between the measured forest height 
and the estimated results were calculated separately for the four experi-
ments, as shown in Figure 5 and Table 2.

Table 2. Results of forest height inversion with different cases.
Ground 
Phase

Volume Scattering  
Complex Coherence

Number of 
Samples R2

MSE 
(m2)

Experiment A φ0 γHV

42

0.35 7.10

Experiment B φ0 γ(ωfar) 0.38 5.76

Experiment C φtan γ(ωfar–tan) 0.43 5.97

Experiment D φ'0 γ(ω'far) 0.43 5.27

R2 = determination coefficient; MSE = mean square error.

Experiment A showed an R2 of 0.35 and an MSE of 7.10 m2. Its scat-
tering plot showed obvious underestimation and overestimation, and a 
small number of samples were relatively discrete in their distribution. 
In Experiment B, the result showed an R2 of 0.38 and an MSE of 5.76 
m2. Its scattering plot showed that the phenomena of underestimation 
and overestimation were improved to some extent compared to those 
in Experiment A. Experiment B used the same method as Experiment 
A to estimate the ground phase, selecting the complex coherence 
farthest from the ground phase as the volume scattering complex 
coherence. As a result, Experiment B had a better forest height estima-
tion than Experiment A, with R2 increasing from 0.35 to 0.38 and the 
MSE decreasing by 1.34 m2. This indicated that the volume scattering 
complex coherence optimization was better than directly using γHV as 
the volume scattering complex coherence.

Figure 4. Four experimental plans corresponding to the ground phase and volume scattering complex coherence: (a) Experiment A; (b) 
Experiment B; (c) Experiment C; (d) Experiment D.
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Experiment C had an R2 of 0.43 and MSE of 5.97 m2. Its scatter plot 
shows more convergence in the sample distribution, but underestima-
tion and overestimation are still obvious. The R2 value was improved 
significantly compared to those for Experiments A and B. This 
shows that using φtan as the ground phase in Experiment C obtained 
a better forest height, and R2 increased from 0.38 to 0.43. However, 
in Experiment C, a small number of samples had relatively large 
errors, so the MSE difference between Experiments B and C was not 
significant.

Experiment D obtained the best accuracy among the four experi-
ments, with an R2 of 0.43 and an MSE of 5.27 m. It was noted in the 
scattering plot of Experiment D that underestimation and overestima-
tion were improved, with a more convergent distribution for all sam-
ples. Compared to Experiment B, Experiment D increased the R2 value 
by 12.27% and decreased the MSE by 8.36%. Compared to Experiment 
C, Experiment D also showed improvements, with the MSE decreasing 
from 5.97 m2 to 5.27 m2. The results show that merging the ground 
phase calculated from TanDEM-DEM into the three-stage algorithm to 
invert forest height obtained better results compared to the traditional 
three-stage algorithm.

Discussion
In this study, TanDEM-DEM data were used to improve the accuracy of 
forest height inversion based on the TanDEM-X data by using the ground 
phase φtan from the DEM, and different experimental protocols were 
designed for comparison.

Experiment B selected the complex coherence farthest from the 
ground phase to estimate the volume scattering complex coherence, so 
the volume scattering phase center in Experiment B was closer to the 
top of the forest canopy than that used in Experiment A (the tradi-
tional three-stage algorithm of RVoG, which employed the coherence 
of the HV channel as the volume scattering complex coherence. As 

a result, the inversion result of Experiment B was better than that of 
Experiment A. This also verified the previous hypothesis. The main 
scattering mechanism of the complex coherence γHV of the HV polariza-
tion channel is not only volume scattering; it also contains a part of 
surface scattering, so the ground–volume magnitude ratio m(ω) of γHV 
is not zero where the scattering phase center of the HV channel is not 
the closest to the top of the canopy among all the complex coherences 
(Cloude and Papathanassiou 2003). Therefore, it is not accurate to use 
γHV directly as the forest height for the inversion of the volume scat-
tering complex coherence. Selecting the volume scattering complex 
coherence with the ground phase as a reference takes into account the 
difference between the canopy phase and the ground phase; therefore, 
the inversion results are improved.

In Experiment C, the ground phase φtan calculated by TanDEM-DEM 
was used instead of the ground phase in the traditional three-stage 
algorithm, and the complex coherence farthest from φtan was selected 
as the volume scattering complex coherence. As a result, Experiment C 
obtained better results than Experiments A and B. It could be con-
cluded that the ground phase φtan from the TanDEM-DEM is reasonable 
in the three-phase algorithm and that the volume scattering complex 
coherence obtained by using φtan as a reference could be suitable. With 
high-precision topographic data as a reference, an accurate ground 
phase can be obtained, thereby improving forest height inversion via 
TanDEM. Our conclusions in this research are consistent with those of 
other studies (Cloude et al. 2013; Kugler et al. 2014; Qi et al. 2019). 
In addition, as mentioned previously, the overall absolute elevation ac-
curacy of TanDEM-DEM is about 3.5 m; when ice, forest-covered areas, 
and desert are excluded, its absolute elevation accuracy reaches 0.88 
m (Rizzoli et al. 2017). Compared with the DEM obtained by lidar, the 
elevation accuracy of TanDEM-DEM is slightly lower. Moreover, error 
in the interferometric complex coherence affects the final inversion 
results as well. Although the accuracy improvement is not significant 
for Experiment C, it shows that without relying on the model solution, 

Figure 5. The validation scatter plots for different inversion scheme: (a) Experiment A; (b) Experiment B; (c) Experiment C; (d) Experiment D.
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forest height estimation can be achieved by directly using DEM as 
ground phase information and obtaining more accurate forest heights 
than using TanDEM-X alone. This is an important reference for the 
extension and simplification of the RVoG model.

Experiment D also obtained satisfactory results. It added the coher-
ence point (ejφtan) from TanDEM-DEM into the fitting of the coherent 
straight line and produced a more accurate forest height. This indicates 
that the inclusion of TanDEM-DEM as auxiliary coherence information 
could change the intersection of the coherence line with the unit circle; 
in case of errors in the TanDEM-X interferometric complex coherence, 
the inclusion of TanDEM-DEM could improve the estimation of the 
ground phase to improve the forest height inversion accuracy. While 
the accuracy improvement is not significant in this experiment, it is a 
strategy to improve the RVoG model, which will have a more profound 
impact on the upcoming spaceborne PolInSAR. We can further validate 
this approach in future studies.

Nevertheless, the differences among the results of the four experi-
ments are not so significant, and the total inversion accuracy obtained 
in this study is still relatively lower than that in other studies (Kugler 
et al. 2015; Kumar et al. 2017; Qi et al. 2019). On the one hand, the 
number of sample plots (42) is inadequate to show the differences 
among the experiments. On the other hand, the forest in the testing 
site is a natural forest with rich understory vegetation and large forest 
cover, which make the radar scattering signal much more complicated 
than the ideal scenario in the RVoG model. Meanwhile, the topography 
of the study area is very complex, with an average slope of 23° and 
the maximum height difference of 1036 m (according to TanDEM-DEM). 
In addition, TanDEM-X data could also be affected by the baseline, 
signal-to-noise ratio, and system errors. All of these factors could bring 
errors and make the observed complex coherence greatly deviate from 
the ideal coherence line. Therefore, the final accuracy of the inversion 
result in this study is not ideal.

In future studies, more accurate verification data, like forest height 
data from lidar or GEDI, will be adopted. The topographic products of 
lidar or GEDI and ICESat-2 can also be considered as alternatives in the 
selection of DEM data.

Conclusions
PolInSAR has great potential for use in forest height inversion at the 
regional scale, and TanDEM-X provides dual-base station observation, 
which could avoid the effect of temporal decorrelation, in addi-
tion to a high signal-to-noise ratio and high resolution. Therefore, 
TanDEM-X PolInSAR data have been widely used in forest height inver-
sion. However, due to the weak penetration of the X-band in forests, 
especially in dense forest areas, it is difficult for TanDEM-X to obtain 
surface phase information, which has become one of the main reasons 
for the low accuracy of forest height estimation. Therefore, introducing 
external topographic data to improve ground phase estimation could 
be a novel strategy by which to improve the forest height inversion 
accuracy of TanDEM-X.

In this study, the ground phase φtan calculated from TanDEM-DEM was 
used in the RVoG three-stage algorithm to invert the forest height, and 
four experiments were designed for comparison. It was found that in the 
RVoG model, the reference ground phase to select the volume scattering 
complex phase provides higher accuracy in estimating the forest height. 
Forest height estimation can be achieved by directly using the DEM as 
ground phase information without relying on the model solution and 
obtaining more accuracy than TanDEM-X alone; in addition, the highest 
estimation accuracy was obtained by using the DEM as coherent infor-
mation. Although the difference in the forest height estimation results 
of this study is not significant, it proves that high-precision DEM in col-
laboration with short-wavelength PolInSAR can achieve accurate and fast 
forest height estimation. This strategy not only will optimize the RVoG 
model but also will have far-reaching implications for the spaceborne 
PolInSAR global forest parameter estimation and ecosystem detection.
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