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INDUSTRYNEWSTo have your press release published in PE&RS, 
contact Rae Kelley, rkelley@asprs.org.

ANNOUNCEMENTS

New Partnership Agreement Enables Data Scientists 
Greater Flexibility to Scale Esri’s ArcGIS Capabilities 
- Data scientists must often transform gigabytes or 
terabytes of data—collected from trillions of sources—into 
valuable insights by finding new ways to make their data 
work harder. Spatial analysis has become a critical piece 
of the data science toolkit, enriching all forms of data 
with geographic context. This allows analysts to uncover 
patterns, make predictions, and optimize workflows to 
create operational efficiencies. To support the needs of these 
professionals, Esri the global leader in location intelligence, 
has partnered with Databricks, the data and AI company. 
The collaboration will provide users with the advanced 
spatial analytics capabilities of Esri’s ArcGIS software easily 
accessible in Databricks’ big data platform, the Databricks 
Lakehouse Platform.

“The Databricks Lakehouse Platform merges data 
engineering, data science, machine learning, and analytics 
within a single platform and, in many cases, customers also 
need a powerful spatial component,” said Roger Murff, VP of 
product partnerships at Databricks. “By having geoanalytics 
tools run directly in Databricks, it empowers those users to 
perform spatial analysis at a scale they have come to expect 
with Databricks.”

Esri offerings that integrate with the Databricks 
Lakehouse Platform include ArcGIS GeoAnalytics Engine 
and Big Data Toolkit, which are built specifically to enable 
users to perform spatial analysis on big datasets.

“Organizations and data practitioners using Databricks 
need access to spatial tools where they do their day-to-day 
work,” said Richard Cooke, Esri director of global business 
development. “The solutions that Esri is providing allow data 
scientists to access the most comprehensive set of spatial 
analytics tools available natively within the Databricks 
environment.”

To learn more visit https://www.esri.com/about/newsroom/
announcements/.

¼½¼½

AlphaGeo UK, a reputable reseller of UAV’s, UAV sensors, 
surveying equipment, and software solutions, is pleased 
to announce its partnership with GeoCue as the latest 
distributor in the GeoCue global network. AlphaGeo UK 
will provide cutting-edge TrueView 3D Imaging Sensors and 
LP360 LiDAR Processing Software to customers throughout 
the United Kingdom.

Since its establishment in 2015, AlphaGeo UK has served 
a diverse range of customers in various sectors, including 
Hazmat, Mining, AECO (Architecture, Engineering, 
Construction, and Owner-operated), Forestry, Heritage, 
Disaster management, utilities, and Marine (Off and 

onshore). As a highly experienced and reputable reseller, 
AlphaGeo UK offers expertise in drones/UAVs, payloads, 
ROVs (underwater drones), survey equipment (both land and 
hydrographic), and software solutions.

“We see our partnership with GeoCue as a great 
opportunity to showcase our expertise and provide our 
customers with even more value,” said Adrian Fowler, 
Technical Sales Manager at AlphaGeo UK. “The TrueView 
and LP360 products impressed us with their innovative 
drone lidar and photogrammetry solutions integrated into 
lightweight payloads. They enable fast, easily automated 
generation of true 3D colorized point clouds, oblique imagery, 
and orthophotos from drone flights. This revolutionizes the 
way our customers work and allows them to digitize assets 
like never before.”

The TrueView LiDAR products and LP360 software offer 
numerous benefits to AlphaGeo UK’s customers, enabling 
the creation of highly accurate 3D models and facilitating 
the digitization of inaccessible environments or features 
from the ground. This is especially valuable for surveyors in 
need of fast, repeatable surveys of either hard-to-reach or 
vast areas. The GeoCue products and software will primarily 
cater to B2B clients, including commercial drone users, 
surveyors, and surveying companies, seeking comprehensive 
3D mapping solutions.

Fowler further expressed his excitement about the 
partnership, stating, “I’m especially thrilled by the lidar 
rental option offered by GeoCue, which gives customers 
the opportunity to try before purchasing. It demonstrates 
GeoCue’s commitment to customer satisfaction and aligns 
with our own philosophy of providing exceptional service and 
value.”

AlphaGeo UK aims to support its customers by offering 
attractive finance options, allowing companies to acquire 
the necessary equipment for their growth and success while 
spreading the costs over affordable monthly payments. This 
approach enables businesses to conserve cash and invest 
wisely in their operations.

Abdel Diani, the Director of Global Distribution for 
GeoCue, expressed his enthusiasm for the partnership with 
AlphaGeo UK. “We are delighted to welcome AlphaGeo UK 
to our global network,” said Diani. “Their expertise and 
reputation in the UK market make them an ideal partner 
for introducing TrueView 3D Imaging Sensors and LP360 
LiDAR Processing Software to a broader customer base. We 
look forward to a successful partnership and the growth it 
will bring.” 

For more information, visit https://geocue.com/contact/
general-inquiries.

¼½¼½

mailto:rkelley@asprs.org
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INDUSTRYNEWS
NV5 Global, Inc. announced that its newly acquired 
subsidiary, Axim Geospatial, LLC (“Axim”), was awarded 
a prime contract with the National Geospatial-Intelligence 
Agency (NGA) under the GEOINT Enterprise Operations 
Service and Solutions Program with Industry, Core Mission 
Operations (GEO-SPI B).

GEO-SPI B is a seven-year, multi-award contract vehicle 
valued up to $900 million and focused on delivering trusted 
geospatial intelligence (GEOINT) to NGA’s Analysis 
and Source Directorates. The GEO-SPI B award is Axim 
Geospatial’s largest contract win to date. GEO-SPI B is the 
follow-on contract to NGA’s Multi-Intelligence Analytics and 
Collection Support Services (MACSS) contract, the largest 
geospatial staff augmentation program in the agency.

Under the GEO-SPI B contract, Axim will apply domain 
expertise, automation, and innovative solutions to improve 
outcomes and enhance NGA performance across multiple 
mission sets. Axim’s automation will include process 
automation, computer vision capabilities, and algorithms to 
address mission specific challenges, capabilities that are now 
coupled with NV5’s broader capabilities to deliver high-end 
machine learning analytics and maritime domain analysis.

“We are pleased to have been selected by NGA to deliver 
classified and unclassified GEOINT collection and discovery, 
exploitation production, and enhancement in support of the 
GEO-SPI B contract,” said Dickerson Wright, PE, Chairman 
and CEO of NV5. “Axim has built a reputation over the 
past 20 years supporting NGA’s Janus, Economic Indicator 
Monitoring, and GeoPhysical Data Purchasing programs, 
and we look forward to expanding our support of NGA core 
mission operations through the GEO-SPI B program.”

For more information, contact ir@nv5.com.

¼½¼½

RIEGL Laser Measurement Systems GmbH and Schiebel 
have successfully completed the integration of a high-
end laser scanning system, the RIEGL VQ-840-G topo-
bathymetric lidar sensor, on the Schiebel CAMCOPTER® 
S-100 Unmanned Air System (UAS).

Operating a high-end laser scanning system remotely on 
an Unmanned Air Vehicle (UAV) requires a tailored solution 
going beyond what is currently available off-the-shelf. In 
order to maintain the broad operating range of the UAS, it 
is imperative to keep the weight of the sensor payload low. 
In addition, the effective execution of the survey mission 
requires full remote control of the payload instruments and 
real-time feedback to the operator via a data link.

The compact topo-bathymetric laser scanner was 
designed for use in a variety of maritime and hydrographic 
environments. The lidar sensor payload system is controlled 
remotely via a data link, which is a crucial for the 
integration into the S-100 system.

The scanner is controlled by using the onboard software 
“RiACQUIRE-Embedded” via the available data link; data 
acquisition and laser safety are also monitored. Once the 
survey is completed, the raw data seamlessly integrates into 
the RIEGL data processing workflow.

The RIEGL VQ-840-G, combined with the outstanding 
technical specifications and performance of the 
CAMCOPTER® S-100 UAS, enables an efficient and secure 
way for surveying shallow waters, where monitoring from 
boats becomes a challenge. The applications of Airborne 
Lidar Bathymetry (ALB) include the mapping of coastlines 
and river banks as well as the monitoring of natural 
habitats, water reservoirs and hydraulic engineering 
applications (e.g., canals, dams, bridges). In a single data 
acquisition mission, data below and above the water surface 
are covered.

Additionally, the topographic laser scanners RIEGL VUX-
1UAV/-LR and VUX-12023 can be integrated in the front 
payload bay of the CAMCOPTER® S-100.

For more information, visit www.rieglusa.com.

 

CALENDAR

• 5-7 September, Commercial UAV Expo; Las Vegas, 
Nevada; www.expouav.com.

• 16-19 October, GIS-Pro 2023, Columbus, Ohio; www.
urisa.org/gis-pro.

• 6-8 November, GoGeomatics Expo, Calgary, Alberta, 
Canada; https://gogeomaticsexpo.com.

• 8-10 November, Smart GEO Expo 2023, Seoul, South 
Korea; https://smartgeoexpo.kr.

• 27 November - 1 December, URISA GIS Leadership 
Academy, Denver, Colorado; https://urisa-portal.org/
page/URISA_GLA.

• 11-13, February 2024, Geo Week, Denver, Colorado; 
https://www.geo-week.com.

• 13-16 May 2024, Geospatial World Forum, 
Rotterdam, The Netherlands; https://
geospatialworldforum.org.
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469 Edge Detection Method for High-Resolution Remote Sensing Imagery by Combining 
Superpixels with Dual-Threshold Edge Tracking
Yanxiong Liu, Zhipeng Dong, Yikai Feng, Yilan Chen, and Long Yang

Edge detection in high-spatial-resolution remote sensing images (HSRIs) is a key technology for automatic 
extraction, analysis, and understanding of image information. This article proposes a novel edge detection 
method for HSRIs by combining superpixels with dual-threshold edge tracking to address the problem of fake 
edges in image edge detection caused by image noise and the phenomenon of the same class objects reflecting 
different spectra. 

479 Expansion of Urban Impervious Surfaces in Lahore (1993–2022) Based on  GEE and 
Remote Sensing Data
Zhenfeng Shao, Muhammad Nasar Ahmad, Akib Javed, Fakhrul Islam, Zahid Jahangir, and Israr Ahmad

Impervious surfaces are an essential component of our environment and are mainly triggered by human 
developments. Rapid urbanization and population expansion have increased Lahore’s urban impervious surface 
area. This research is based on estimating the urban impervious surface area (uisa) growth from 1993 to 2022. 
Therefore, we aimed to generate an accurate urban impervious surfaces area map based on Landsat time 
series data on Google Earth Engine (gee). We have used a novel global impervious surface area index (gisai) for 
impervious surface area (uisa) extraction. 

489 Small Object Detection in Remote Sensing Images Based on Window Self-Attention 
Mechanism
Jiaxin Xu, Qiao Zhang, Yu Liu, and Mengting Zheng

This article proposes an improved algorithm for small object detection in remote sensing images based on a 
window self-attention mechanism.

499 Application of Improved YOLO V5s Model for Regional Poverty Assessment Using 
Remote Sensing Image Target Detection
Zhang Chenguang and Teng Guifa

This article aims at applying the improved You Only Look Once V5s model for the assessment of regional 
poverty using remote sensing image target detection. 
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Greenland lacks an obvious human fingerprint when viewed from space. Instead of 
sprawling cities or geometrically organized agriculture, an enormous ice sheet spans 
much of the island. But there is a fjord along the island’s southern perimeter where 
seasonal ice has temporarily revealed the presence of people.

On March 13, 2023, the Operational Land Imager-2 (OLI-2) on Landsat 9 acquired 
these natural-color images of Tunulliarfik Fjord. The images have been pan-sharpened to 
bring out more detail.

At the time, the fjord’s waters were capped with a layer of sea ice. Atop the ice there 
are several long, straight lines connecting the towns of Narsarsuaq and Qassiarsuk, and 
running the length of the fjord. Though cracks and ridges can form naturally in the ice, 
there are indications that people were likely involved with producing some of the tracks 
pictured here.

Nathan Kurtz and several other scientists in the Cryospheric Sciences Laboratory 
at NASA’s Goddard Space Flight Center reviewed the images. Their consensus was 
that many of the tracks, especially those that include loops, were likely produced by 
vehicles, such as snowmobiles. “It seems likely that residents from the town or nearby 
were out on the ice, possibly hunting or traveling,“ Kurtz said.

Traversing the frozen fjord with a vehicle would make sense given its size. The track 
that connects the small towns of Qassiarsuk and Narsarsuaq, visible in the first detailed 
image above, spans about 4 kilometers (2.5 miles). The track that runs the length of the 
fjord is at least 20 kilometers (12 miles) long.

Mixed amid the geometric shapes, some of the “lines” show more variation. They 
are particularly notable in the second detailed image above. “These look like natural ice 
deformation features, most likely cracks or ridging due to tidal motion,” Kurtz said.

As spring turns to summer, the snow and ice will loosen its grip on the region. The 
fjord’s waters are actually ice-free much of the year, except for floating icebergs that 
have broken off from the glacier to the north. And as snow melts from the land, white 
will be replaced with hints of green. Qassiarsuk is within the Kujataa World Heritage 
Site, which is recognized as the earliest Arctic landscape to have been farmed.

NASA Earth Observatory images by Lauren Dauphin, using Landsat data from the 
U.S. Geological Survey. Story by Kathryn Hansen. https://landsat.visibleearth.nasa.gov/
view.php?id=151243.

http://www.asprs.org
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GIS &Tips     Tricks By

When Labels and Text Matter

By Al Karlin, Ph.D. CMS-L, GISP

Introduction
As readers of this column know, one of my constant mantras 
to my GIS and map making students is “never accept the 
defaults”, and I have written several columns to point out 
the “defaults” that we so often accept without much thought. 
Lettering on maps falls into that category; we tend to use 
the “default” font (Tahoma), maybe change the point size 
(default is 10 points), maybe adjust the style (italics, bold, 
etc.) and the more advanced students will put a 1- (default)
or 2-point white (default) halo behind black letters and call 
it a day (or a map). ArcGIS Pro offers a lot more control over 
the lettering than most users realize. The following Tips and 
Tricks assume that you know how to engage with the Esri 
labeling engine in ArcGIS Pro to label features of interest. 
There are several documents available from Esri (https://pro.
arcgis.com/en/pro-app/latest/help/mapping/text/labeling-ba-
sics.htm) and videos on YouTube (https://www.youtube.com/
watch?v=ca8SD6bBS8Y) to help you become familiar with 
the label engine. So, here are a few ideas and tips for letter-
ing and labeling on your next map. And, of course, many of 
these options are available in other GIS software packages.

TIP #1 — Choosing Different Fonts
Although not an absolute rule (nothing ever is absolute), 
but cartographic convention is to label water bodies (rivers, 
lakes, the ocean) with a Times New Roman/italics font. Also, 
it is generally a good practice to limit the number of different 
fonts on a map to two, one serif and one sanserif, but it is 
acceptable to use multiple styles, i.e. bold, italics, smallcaps, 
etc. of those two fonts. For the illustrations below, I made a 
“Graphics Layer” and added the text “Gulf of Mexico” and 
“Tampa Bay” to my map in Times New Roman:Bold Italics 
in Apatite blue (I’ll discuss custom colors in next month’s 
column).

Tip #2 — Choosing Font Colors and Halos
Also, a “general” suggestion is to render the text label in 
a color of the same color family, but darker (not black) or 
lighter (not white) than the surrounding area being labeled 
(Figure 1). So, in the case of water, the text would be a light-
er (or darker) blue than the surrounding water depending 
on how much contrast you prefer between the lettering and 
background.

Tip #3
When adding a halo behind the lettering, in general, try dif-
ferent halo sizes (1 point is the default in ArcGIS Pro), colors 
(white is the default) and transparency levels (default is 0%) 
to determine which works best for your map. In Figure 2A, I 
labeled the counties with a 2-point light gray halo and a dark 
green (Tip #2) Verdana (remember Tahoma is the default 
font) bold font. In Figure 2A, the county names really stand 
out. In Figure 2B, I used the same halo and font but with a 
50% transparency, to make the county names less prominent.

TIP #4 — Choosing a Different Letter Spacing (Kerning): 
Letter spacing, technically called kerning, is a feature that 
most beginning map makers totally ignore, but adjusting the 
spacing between letters on labels and in legends, can make 
a world of difference in legibility. Letter spacing is set on the 
Label Class | Symbol| Formatting window (Figure 3). The 
default letter spacing is “0%”. 

Photogrammetric Engineering & Remote Sensing
Vol. 89, No. 8, August 2023, pp. 461-463.

0099-1112/22/461-463
© 2023 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.89.8.461

Figure 1.  Map of Tampa Bay, Florida area with labels for the Gulf of 
Mexico and Tampa Bay.

https://pro.arcgis.com/en/pro-app/latest/help/mapping/text/labeling-basics.htm
https://pro.arcgis.com/en/pro-app/latest/help/mapping/text/labeling-basics.htm
https://pro.arcgis.com/en/pro-app/latest/help/mapping/text/labeling-basics.htm
https://www.youtube.com/watch?v=ca8SD6bBS8Y
https://www.youtube.com/watch?v=ca8SD6bBS8Y
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In Figure 4, I increased the letter spacing to 35% to make 
the county names more readable.

 

Tip #5
For curved lines (rivers) Esri provides the River Placement 
style (https://pro.arcgis.com/en/pro-app/latest/help/
mapping/text/label-using-the-river-placement-style-for-
line-features.htm?rsource=https%3A%2F%2Flinks.esri.
com%2FRiverLabels). 

Figure 2A. County labels stand out with a 2-point light gray halo 
surrounding the dark green lettering.

Figure 2B. County labels are less intrusive when the 2-point light gray halo 
is adjusted to 50% transparent.

Figure 3. The Label Class | Symbol| Formatting window in ArcGIS Pro 
provides multiple letter customizations.

Figure 4. County labels are less intrusive when the 2-point light gray halo 
is adjusted to 50% transparent and more legible when the letter spacing is 
increased to 35%.

https://pro.arcgis.com/en/pro-app/latest/help/mapping/text/label-using-the-river-placement-style-for-line-features.htm?rsource=https%3A%2F%2Flinks.esri.com%2FRiverLabels
https://pro.arcgis.com/en/pro-app/latest/help/mapping/text/label-using-the-river-placement-style-for-line-features.htm?rsource=https%3A%2F%2Flinks.esri.com%2FRiverLabels
https://pro.arcgis.com/en/pro-app/latest/help/mapping/text/label-using-the-river-placement-style-for-line-features.htm?rsource=https%3A%2F%2Flinks.esri.com%2FRiverLabels
https://pro.arcgis.com/en/pro-app/latest/help/mapping/text/label-using-the-river-placement-style-for-line-features.htm?rsource=https%3A%2F%2Flinks.esri.com%2FRiverLabels
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For Global Mapper™ Users
To get to many of these same features and 
controls over text labeling use the Options 
(right-click) on the layer, then the Select 
Style… Then Select Label Font… to access 
the controls as in Figure 5.

For QGIS Users
Label text control is found on the Labels Tab 
on the Layer Properties menu (Figure 6). 
Note that to fully enable these features, a 
label field should be specified.

These are just a few of the of the multitude of 
labeling features that you can control on your 
maps. And remember, any/all of these tips 
also can be applied to your legend text.

Tip #6 
Finally, (and this one is directly stolen from 
well-known Esri cartographers - John Nelson 
and Ken Field) avoid using the Comic Sans 
font unless you are making a map for little 
children.

Send your questions, comments, and tips to GISTT@ASPRS.org.

Al Karlin, Ph.D., CMS-L, GISP is a senior geospatial scientist with Dewberry’s Geospatial and Technology Services group in 
Tampa, FL. Al works with all aspects of lidar, remote sensing, photogrammetry, and GIS-related projects. Al also teaches Map-
making for the Social Sciences at the University of Tampa.

Figure 5. Global Mapper™ menu sequence to access text controls.

Figure 6. The Layer Properties | Labels tab from QGIS showing text labeling options.
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MAPPING MATTERS
YOUR QUESTIONS ANSWERED
by Qassim Abdullah, Ph.D., PLS, CP 
 Woolpert Vice President  and Chief Scientist

The layman's perspective on technical theory and practical applications of mapping and GIS

Have you ever wondered  
about what can and can’t 
be achieved with geospatial 
technologies and processes?

Would you like to understand 
the geospatial industry in 
layman’s terms?

Have you been intimidated 
by formulas or equations in 
scientific journal articles and 
published reports?

Do you have a challenging 
technical question that no 
one you know can answer?

If you answered “YES” to any of these questions, 
then you need to read Dr. Qassim Abdullah’s 
column, Mapping Matters. 
In it, he answers all geospatial questions—no matter 
how challenging—and offers accessible solutions.

Send your questions to Mapping_Matters@asprs.org

To browse previous articles of Mapping Matters,  
visit http://www.asprs.org/Mapping-Matters.html

“Your mapping matters 
publications have helped us a lot in 

refining our knowledge on the world of 
Photogrammetry. I always admire what you 
are doing to the science of Photogrammetry. 

Thank You Very much! the world wants 
more of enthusiast scientists like you."

“I read through your comments 
and calculations twice. It is very clear 

understandable. I am Honored there are 
experienced professionals like you, willing to 

help fellow members and promote knowledge 
in the Geo-Spatial Sciences.”

YOUR COMPANION TO SUCCESS
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BOOKREVIEW

GIS Automated Delineation of Hospital 
Service Areas, 1st Edition.
Fahui Wang and Changzhen Wang
CRC Press. Taylor and Francis Group, LLC, Boca Raton, FL. 
2022. xvi+208 pages ISBN: 9780367202286 (hardcover). ISBN: 
9781032079493 (paperback). ISBN: 9780429260285 (electronic 
version).

Reviewed by  Demetrio P. Zourarakis, PhD, GISP, 
CMS (GIS, RS, Lidar). Adjunct Assistant Professor, 
University of Kentucky, CAFE. Visiting Lecturer, 
Kentucky State University, CACS.  

In this first edition of their excellent work, Drs. Wang and 
Wang provide a roadmap for arriving at the delineation 
and visualization of hospital service areas (HSAs) by using 
a variety of geocomputational methods. The wealth of tools 
and automated geoprocessing workflows presented in this 
specialized but comprehensive book illustrate how GIS 
shines at its brightest when it brings to bear its ability 
to help solve a matter of critical and current importance. 
The central problem addressed by the authors is how 
hospitals deliver health services to patients based on both 
parties’ geographic location. All in all, given the depths it 
explores, the book is elegant and relatively concise with 
chapters never exceeding thirty-two pages in length. In its 
seven chapters, it provides the reader with a thoughtfully 
constructed architecture and precisely written text geared 
to demonstrate in detail the diverse ways of answering 
questions based on topological relationships between 
hospitals and the patients they serve. To do so, the authors 
first introduce the reader – with clarity and detail – to the 
necessary mathematical formulations, which are central 
to modeling the spatial relations of interest, and later use 
them in software programs tailored to processing the data 
from case studies. 

Occasionally, chapters start out with a discussion 
connecting them to other chapters, they typically contain 
five sections, and all have a last section being a rich and 
articulate summary. The first chapter Why Hospital 
Service Areas? is unique in that it provides an overview 
of the rest of the chapters, and in that it describes in 
detail the contents of the GIS datasets and program 
files, serving as a source of metadata. In the words of 
the authors, Chapter 2—Estimating Distance and Travel 
Time Matrices in GIS, examines a fundamental task in 
spatial analysis: estimating distance and travel time. 
Defining HSAs often requires a distance (or travel time) 
matrix between patient (resident) locations and hospitals. 
This chapter and subsequent ones contain screenshots 
as the authors lead the reader step-by-step through the 
geoprocessing tasks. The software applications used to 
calculate origin-destination (OD) travel time matrices are 
ArcGIS and Google Maps API. Chapter 3—Analysis of 
Spatial Behavior of Health Care Utilization in Distance 
Decay, examines patterns in health care utilization using 
the concept of distance decay, by analyzing data from the 
state of Florida. Chapter 4—Delineating Hospital Service 
Areas by the Darmouth Method starts out with a narrative 
detailing the background and history of the Darmouth 
Atlas of Health Care Project and the methods used in that 
work to delineate HSAs and Hospital Referral Regions 

(HRRs). Again, the authors show in a tutorial-like way how 
to create the delineations using the geoprocessing tools 
provided and applying them to the Florida case study data. 
Chapter 5—Delineating Hospital Service Areas by the Huff 
Model introduces two different methods to determining 
HSAs: the Proximal Area Method and the Huff Model, 
together with mathematical derivations of the formulae 
used. Implementation of this model in ArcGIS Pro is 
demonstrated later in the chapter. Chapter 6—Delineating 
Hospital Service Areas by Network Community Detection 
Methods explains how several types of network community 
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detection methods can help delineate HSAs, by relying on 
patient service flow datasets between patient residences 
and hospital locations. The final chapter, Chapter  7—
Delineating Cancer Service Areas in the Northeast Region 
of the USA presents the data utilized in the cancer care 
case study, while applying the concepts introduced and 
developed in prior chapters – such as distance decay. In 
closing, in the section entitled List of Major GIS Datasets 
and Program Files the authors provide the reader with 
online links for accessing datasets, tools and scripts for 
automated workflows, and their output, for use with a 
diversity of software. In essence, the authors provide the 
readership with a toolkit containing multiple tools for 
delineating HSAs: the Dartmouth method, the Huff model, 
the two network community detection methods, and several 
data processing tools that support these HSA delineation 
methods. 

The book also sports two appendices meant as user guides 
for the estimation of large OD drive time matrices and 
network flows: Appendix A—User Guide: Estimating a 
Large OD Drive Time Matrix and Appendix B—User Guide: 
How to Create Curved-Line and Straight-Line Network 

Flow Maps. As in the case of previous chapters, both 
appendices contain numerous screenshots illustrating the 
processing results step-by-step. 

With this book, exclusively in electronic format, the 
pleasure of paging through a physical book is absent, and 
unlike with past reviews, there is also no need to carry 
voluminous tomes around. To the non-specialist, this is a 
critical work for understanding the state-of-the-practice of 
GIS applied to this very real-world problem, particularly in 
light of the pandemic of recent years, and the current focus 
and efforts to address service accessibility-related aspects 
of diversity, equity, and inclusiveness (DEI). At the very 
least, GIS professionals supporting the mission of agencies 
and teams in the domains of urban planning and even day-
to-day emergency preparedness and response will benefit 
from the use of this resource. 

In closing, this rare jewel of a volume and the 
methodologies developed, demonstrated, and showcased in 
it should be the cornerstone for one or more intermediate or 
advanced courses in GIS curricula.
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Edge Detection Method for High-Resolution 
Remote Sensing Imagery by Combining 

Superpixels with Dual-Threshold Edge Tracking
Yanxiong Liu, Zhipeng Dong, Yikai Feng, Yilan Chen, and Long Yang

Abstract
Edge detection in high-spatial-resolution remote sensing images 
(HSRIs) is a key technology for automatic extraction, analysis, and 
understanding of image information. With respect to the problem of 
fake edges in image edge detection caused by image noise and the 
phenomenon of the same class objects reflecting different spectra, this 
article proposes a novel edge detection method for HSRIs by combin-
ing superpixels with dual-threshold edge tracking. First, the image 
is smoothed using the simple linear iterative clustering algorithm to 
eliminate the influence of image noise and the phenomenon of the 
same class objects reflecting different spectra on image edge detec-
tion. Second, initial edge detection results of the image are obtained 
using the dual-threshold edge tracking algorithm. Finally, the initial 
image edge detection results are post-processed by removing the 
burrs and extracting skeleton lines to obtain accurate edge detec-
tion results. The experimental results confirm that the proposed 
method outperforms the others and can obtain smooth, continu-
ous, and single-pixel response edge detection results for HSRIs.

Introduction
With the development of earth observation satellite technology, high-
spatial-resolution remote sensing images (hsris) have been applied 
to urban planning, military reconnaissance, precision strike, crop 
monitoring, and so on (Sirmacek and Unsalan 2011; Li et al. 2017; 
Wang et al. 2019; Dong et al. 2020). Edge detection in hsris is a key 
technology for the automatic extraction, analysis, and understanding of 
hsri information and plays an important role in object detection, image 
segmentation, and ground object extraction of hsris (Wang et al. 2009; 
Jin et al. 2012; Hong et al. 2021). Image edge detection refers to find-
ing the region edge where the gray level in the image changes sharply. 
Due to the great significance of hsri edge detection, edge detection 
in hsris has attracted different scholars’ research attention (Tan et al. 
2002; Li et al. 2008; Huang et al. 2017).

With respect to edge detection for hsris, some research has been 
carried out. Typical first-order differential operators (Sobel [Sobel 
1970]; Robert [Duan et al. 2005]; Prewitt [Prewitt 1970]; and Kirsch 
[Kirsch 1971]), second-order different operators (Gauss-Laplace [Marr 
and Hildreth 1980]), and the Canny algorithm (Canny 1986) are widely 
used to detect edges in remote sensing images. For example, Ali and 
Clausi (2001) used the Canny algorithm to extract image edges for the 
feature extraction and enhancement of remote sensing images. Xi and 

Zhang (2012) combined the Canny algorithm and the Hough transform 
to detect the real edges in hsris. Shi and Suo (2016) proposed the 
improved Canny algorithm to detect the edges of hsris. The improved 
Canny algorithm used the Otsu method to specify the threshold adap-
tively to obtain more continuous edge-detected results. Ye et al. (2018) 
used a fast-guided filter instead of a Gauss filter to reduce the loss of 
image edge information. Then the improved Sobel operator was used 
to calculate the gradient and direction of the gradient. Finally, the edg-
es in hsris were detected using the Canny algorithm. Liu et al. (2014) 
integrated the Canny algorithm and the locally adaptive thresholding 
method to extract coastline from remote sensing images. However, the 
edge detection operators (Sobel, Robert, Prewitt, and so on) are sensi-
tive to image noises (Tan et al. 2002; Jin et al. 2012). There are a large 
number of fake edges in edge detection results using the previously 
mentioned edge detection operators.

Other edge detection methods have also been proposed. For ex-
ample, Jing et al. (2011) proposed an edge detection algorithm based 
on a global minimization active contour model to obtain continuous 
and closed edges of an oil slick in an infrared aerial image. Jubai et al. 
(2006) made some improvements to the Pal-King fuzzy edge detection 
algorithm and proposed an algorithm combing improved fuzzy theory 
and a genetic algorithm for the edge detection of oil spilled into the sea 
by remote sensing images. Han et al. (2016) took the space-computing 
capacity of cellular automata and the data pattern search ability of 
extreme learning machines into account and put forward an extreme 
learning machine based on cellular automata to detect edges in remote 
sensing images. Kiani and Sahebi (2015) proposed an edge detection 
method based on the features of remote sensing images. Frist, spectral 
thresholds of different regions in the image were determined and 
extracted in a piecewise manner. Then the edge between these regions 
was extracted using Shannon entropy. Li et al. (2010) put forward a 
revised parallel beam Radon transform (rprt) method. An algorithm 
suitable for straight-edge detection of roads in hsris was designed 
based on the ridgelet transform with the rprt. Zhao et al. (2017) pre-
sented an optimal Gabor-based edge detection method for hsris. As we 
know, hsris have the characteristics of more detailed spatial and struc-
tural information about landscapes (Segl and Kaufmann 2001; Aksoy 
et al. 2010). With spatial resolution refinement, the internal variability 
within homogeneous land cover units increase. There are the phenom-
ena of the same class objects reflecting different spectra in the hsris 
(Blaschke 2010; Yi et al. 2012). Furthermore, there are salt-and-pepper 
noises in the hsris (Yan et al. 2006; Myint et al. 2011). Due to image 
noise and the phenomenon of the same class objects reflecting differ-
ent spectra, there are a large number of fake edges in the image edge 
detection results, as shown in Figure 1. In Figure 1, the green lines are 
fake edges, and the yellow lines are real edges. However, the problem 
of fake edges in image edge detection results caused by image noise 
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and the phenomenon of the same class objects reflecting different spec-
trum has not been effectively solved in the literature.

With respect to how to solve the problem of fake edges in image 
edge detection results caused by image noise and the phenomenon of 
the same class objects reflecting different spectra, this article proposes 
a novel edge detection method for hsris by combining superpixels with 
dual-threshold edge tracking. The main contributions of this paper are 
summarized as follows:
1. The influence of image noise and the phenomenon of the same 

class objects reflecting different spectrum on image edge detec-
tion is eliminated using the simple linear iterative clustering (slic) 
algorithm.

2. A novel edge detection method for hsris by combining superpixels 
with dual-threshold edge tracking is proposed.

3. The smooth, continuous, and single-pixel response edge detection 
results of hsris can be obtained.
The remainder of this article is organized as follows. Next, we dem-

onstrate the performance and characteristics of the key steps to achieve 
edge detection results for hsris. Then we describe the test data and 
present the results and discussion. Finally, we summarize the results 
and present conclusions.

Methodology
The proposed edge detection method for hsris consists of three steps. 
First, the image is smoothed using slic superpixels. Second, the initial 
image edge detection results are obtained using the dual-threshold edge 
tracking algorithm. Third, the initial image edge detection results are 
post-processed. An overview of the methods used for implementing the 
three steps is displayed in Figure 2.

Smoothing Image
Due to image noise and the phenomenon of the same class objects 
reflecting different spectra, there are a large number of fake edges in 
the image edge detection results, as shown in Figure 1b. The image 
needs to be smoothed to eliminate the influence of image noise and 
the phenomenon of the same class objects reflecting different spectra 
on edge detection results. An object-based image analysis has become 
the first choice for hsri application recently (Yan et al. 2006; Myint et 
al. 2011). Furthermore, object-based image processing and analysis is 
insensitive to spectral variation, which aids in resolving the problem 
of salt-and-pepper noise effects (Wang et al. 2018; Dong et al. 2019). 
Superpixels, which are the image blocks composed of adjacent pixels 
with similar texture, color, and brightness, were first proposed by Ren 
and Malik (2003). Achanta et al. (2012) proposed the slic algorithm 

for generating superpixels. The slic algorithm is simple to use and 
understand. The color image is converted from an rgb color space to 
a cielab color space. In cielab color space, L stands for lightness, a 
for saturation of red and green colors, and b for saturation of yellow 
and blue colors. Compared to rgb, cielab color space is designed to 
approximate human vision. It aspires to perceptual uniformity, and its 
L component closely matches human perception of lightness. It can 
thus be used to make accurate color balance corrections by modify-
ing output curves in the a and b components or to adjust the lightness 
contrast using the L component. Another advantage of cielab is that 
the distance that can be calculated between two colors is directly pro-
portional to the difference between the two colors as perceived by the 
human eye (Ganesan et al. 2011).

Figure 2. Workflow of the proposed method. 

(a) (b)

Figure 1. (a) High-spatial-resolution remote sensing images. (b) Edge detection result.
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In cielab color space, a pixel color is represented as [l, a, b]T, and 
[x, y]T denotes the feature vector of a pixel in the XY coordinates. Each 
pixel has a five-dimensional feature vector [l, a, b, x, y]T. Image pixels 
are clustered to generated superpixels using their five-dimensional 
feature vector. Contrary to the superpixels generated using other image 
segmentation algorithms, such as the mean-shift algorithm (Comaniciu 
and Meer 2002), the watershed algorithm (Vincent and Soille 1991), 
the region growing algorithm, and the graph-based image segmenta-
tion algorithm (Felzenszwalb and Huttenlocher 2004), slic superpixels 
can adhere well to image boundaries, and the shape of superpixels is 
similar and compact. Furthermore, the slic algorithm has good noise 
resistance (Wang et al. 2018; Dong et al. 2019). Therefore, the image 
is smoothed using slic superpixels in this article.

Image edge detection results are often obtained based on gray 
image. The gray image of color image is generated using Equation 1 
(Dong et al. 2019). Figure 3a is the gray image of Figure 1a. The gray 
image is segmented to generate slic superpixels. Figure 3b is the slic 
superpixel segmentation result. Based on the slic superpixel segmen-
tation result, image smoothing result is obtained using Equation 2. 
Figure 3c is the image smoothing result. In Figure 3c, image noises are 
eliminated, and the phenomenon of the same class objects reflecting 
different spectra is effectively suppressed. Furthermore, the gradient 
magnitude of the pixels at real edges is increased:

 Gray = R×0.299 + G×0.587 + B×0.114 (1)

  

(2)

Here (R, G, B) are the spectral attributes of the pixel in the color 
image, Gray is the gray value of the pixel, ni is the number of pixels 
included in the label i superpixel, and Grayij is the gray value of the 
label j pixel in the label i superpixel.

Obtaining Initial Image Edges
In this article, based on the image smoothing results, initial image edge 
detection results are obtained using the dual-threshold edge track-
ing method (Canny 1986). The dual-threshold edge tracking method 
provides the following three benefits:(1) it accurately locates detected 
edge pixels, (2) it detects edges only once, and (3) it detects edges 
while suppressing non-edge pixels as much as feasible. The dual-
threshold edge tracking method is expressed as follows.

Calculating Image Gradient
The gradient image G of the image smoothing result is obtained using 
following equations. First, the gradients of a pixel in the X and Y coor-
dinate directions are calculated using Equations 3 and 4, respectively. 
Then the gradient magnitude and direction of a pixel are calculated 
using Equations 5 and 6, respectively:

 Gx(i, j) = S(i + 1, j) – S(i – 1, j) (3)

 Gy(i, j) = S(i, j + 1) – S(i, j – 1) (4)

  (5)

  
(6)

Here (i, j) denotes the location of a pixel in the XY coordinate; Gx(i, j) 
and Gy(i, j) are the gradient magnitudes of the pixel (i, j) in the X and Y 
coordinate direction, respectively; S(i, j) is the gray value of the pixel  (i, j) 
in the image smoothing result; and G(i, j) and θ(i, j) are the gradient mag-
nitude and direction of the pixel (i, j) in the gradient image, respectively.

Obtaining Candidate Edge Pixels
The gradient of edge pixels usually has large magnitude. The local 
maximum values in the gradient image are obtained using the non-
maximum suppression algorithm. The pixels corresponding to local 
maximum values are as the candidate edge pixels. The process of the 
non-maximum suppression is as follows.

In the neighborhood of 3 × 3 with pixel (i, j) as the center, the 
interpolations are calculated along the gradient direction θ(i, j). If the 
gradient magnitude of pixel (i, j) is greater than the two interpolations 
adjacent to it in the gradient direction  , the pixel   is a candidate edge 
pixel; otherwise, it is as a non-edge pixel.

Tracking Image Edges
Based on candidate edge pixels, the initial image edges are detected 
and connected using the dual-threshold edge tracking algorithm. In 
the dual-threshold edge tracking algorithm, high gradient magnitude 
threshold Th and low gradient magnitude threshold T1 are set. Among 
candidate edge pixels, if the gradient magnitude of the pixel is greater 
than Th, the pixel is an edge pixel. If the gradient magnitude of the pixel 
is less than T1, the pixel is a non-edge pixel. The pixels which their gra-
dient magnitude is between two thresholds are as suspected edge pixels. 
For a suspected edge pixel, if there is an edge pixel in the adjacent pixel 
of the pixel, it is as an edge pixel; otherwise, it is a non-edge pixel.

Post-Processing Image Edges
Initial image edge detection results are obtained using the dual-thresh-
old edge tracking method. Figure 4a shows the initial image edge de-
tection results of Figure 1a. In Figure 4a, there are burrs and cracks in 
the edge detection results. Therefore, the initial edge detection results 
need to be post-processed to eliminate burrs and cracks. The post-
processing edge detection results are shown in Figure 4b. In Figure 
4b, smooth and continuous edge detection results are obtained. The 
post-processing consists of two steps. First, eight neighborhood pixels 
centered on the edge pixels of the initial edge detection results are 
edge pixels. Then the skeleton lines of expanded initial edge detection 
results are extracted to obtain smooth and continuous edge detection 

(a) (b) (c)

Figure 3. (a) Gray image. (b) Simple linear iterative clustering  superpixel segmentation result. (c) Image smoothing result.
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results. The extracting skeleton lines algorithm (He 2002) is expressed 
as follows.

The P-value of the edge pixel in expanded initial edge detection 
results is set to 0, and the P-value of the non-edge pixel is set to 1. 
The neighborhood of 3 × 3 with the edge pixel as the center is shown 
in Figure 5, and edge pixel is at P1. When the edge pixel satisfies the 
following four conditions at the same time, the edge pixel is changed 
into a non-edge pixel, and the P-value of edge pixel is set to 1. Repeat 
the judgment for each pixel in expanded initial edge detection results 
according to the following four conditions until no pixel changes:
1. The sum of the P-value of the eight neighboring pixels of the edge 

pixel is greater than or equal to 2 and less than or equal to 6.
2. Among the eight neighborhood pixels of the edge pixel, only one 

pair of pixels has a P-value of 0–1 in the clockwise direction.
3. P-value2 × P-value4 × P-value8 = 0, or, among the eight neigh-

borhood pixels, the pixel at P2, the number of pixel pairs with a 
P-value of 0–1, is not equal to 1 in the clockwise direction.

4. P-value2 × P-value4 × P-value6 = 0, or, among the eight neigh-
borhood pixels, the pixel at P4, the number of pixel pairs with a 
P-value of 0–1, is not equal to 1 in the clockwise direction, where  
P-value2, P-value4, P-value6, and P-value8 are the P-values of the 
pixels at  P2, P4,  P6, and  P8, respectively.

Experimental Results
To examine the effectiveness of the proposed method, QuickBird 
multispectral images and GaoFen-2 (GF-2) panchromatic images are 
used to compare the proposed method with four commonly used image 
edge detection algorithms (Sobel, Robert, Gauss-Laplace, and Canny). 
Experiments are implemented using C++ and performed on a computer 
with an Intel Core i5-4210U cpu running at 2.40 ghz with 12 gb ram 
using Windows 7.

Edge Detection Results for QuickBird Images
Two 0.61-m-resolution QuickBird multispectral images are obtained 
from Google Earth, as shown in Figure 6a1 and 6b1. The images 
contain red, green, and blue spectral bands, which are composed of 
true color. The size of the images is 600 × 600 pixels (366 × 366 m). 
Figure 6a1 shows a factory area with buildings, lakes, trees, grassland, 
roads, and storage tanks. Figure 6a2–a6 show the image edge detec-
tion results of Figure 6a1 using the Sobel, Robert, Gauss-Laplace, and 
Canny algorithms and the proposed method, respectively. In Figure 
6a2, there are a lot of burrs in the edge detection results of the Sobel al-
gorithm, as shown in the area in the red rectangle. In Figure 6a3, there 
are a lot of cracks in the edge detection results of the Robert algorithm, 
as shown in the area in the red rectangle. In Figure 6a4 and 6a5, there 
are many fake edges in the edge detection results of the Gauss-Laplace 
and Canny algorithms. For example, for the ground objects in the 
rectangle, due to the image noise and different spectral characteristics 
of the grassland area, there are a lot of fake edges in the edge detec-
tion results. In Figure 6a6, the proposed method can obtain smooth, 
continuous, and single-pixel response image edge detection results. 

Moreover, the proposed method can effectively suppress the fake edges 
and obtain realistic object edge extraction results, as shown in the area 
in the red rectangle.

Figure 6b1 shows a road network area with roads, lakes, rivers, and 
trees. Figure 6a2–a6 shows the image edge detection results of Figure 
6a1 using the Sobel, Robert, Gauss-Laplace, and Canny algorithms and 
the proposed method, respectively. In Figure 6b2, 6b4, and 6b5, as the 
grassland within the red rectangle shows different spectral features, a 
large number of fake edges and burrs are generated in the edge detec-
tion results. In Figure 6b3, there are a lot of cracks and burrs in the 
edge detection result of the Robert algorithm, as shown in the area in 
the red rectangle. In Figure 6a6, the proposed method can well sup-
press the fake edges generated by the phenomenon of the same class 
objects reflecting different spectra and can accurately extract the real 
edge of ground objects.

The experimental results show that the edge detection results of 
the Sobel, Robert, Gauss-Laplace, and Canny algorithms contain 
many fake edges due to image noise and the phenomenon of the same 
class objects reflecting different spectra. In addition, the edge detec-
tion results contain burrs and fissures and are tough to get single-pixel 
response on the edge. The proposed method can effectively overcome 
the influence of the image noise and the phenomenon of the same class 
objects reflecting different spectra to obtain good image edge detec-
tion results. The edge detection results are smooth, continuous, and a 
single-pixel response on the edge.

Figure 6a1 and 6b1 are QuickBird images. Figure 6a2 and 6b2, 6c2 
shows experimental results using the Sobel algorithm. Figure 6a3 and 
6b3 shows experimental results using the Robert algorithm. Figure 6a4 
and 6b4 shows experimental results using the Gauss-Laplace algo-
rithm. Figure 6a5 and 6b5 shows experimental results using the Canny 
algorithm. Figure 6a6 and 6b6 shows experimental results using the 
proposed method.

Edge Detection Results for GF-2 Panchromatic Images
In this section, two GF-2 panchromatic images are used to compare the 
proposed method with other image edge detection algorithms, as shown 

(a) (b)

Figure 4. (a) Initial edge detection result. (b) Post-processing edge detection result.

Figure 5. The neighborhood of 3 × 3 with edge pixel as the center.
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in Figure 7(a1 and 7b1. The spatial resolution of the GF-2 panchro-
matic images is 0.8 m, and their size is 600 × 600 pixels (480 × 480 m). 
Unlike the QuickBird image, GF-2 panchromatic images contain only 
one band information. Through different types of data, the effectiveness 
and universality of the proposed method are further verified.

Figure 7a1 shows a residential area with buildings, roads, lakes, 
rivers, and trees. In Figure 7a2 and 7a4, because different areas of the 
building show different spectral characteristics, fake edges are gener-
ated in the edge detection results of buildings within the rectangle by 
the Sobel and Gauss-Laplace algorithms. In Figure 7a3, a lot of cracks 
appear in the edge detection results of the Robert algorithm for resi-
dential features. For example, the edges of buildings in the rectangle 
are difficult to detect. In Figure 7a5, there are fake edges and burrs in 
the edge detection result of the Canny algorithm. In Figure 7a6, the 
proposed method can effectively suppress the phenomenon that dif-
ferent areas of buildings within the rectangle show different spectral 
characteristics and accurately extract the true building edges.

Figure 7b1 shows a marine fishery area. In Figure 7b2, 7b4, and 
7b5, the Sobel, Gauss-Laplace, and Canny algorithms all generate a lot 
of burrs and fake edges for the marine fishery areas with good spectral 
homogeneity in the rectangle. In Figure 7b3, it is difficult to detect the 
edge of the marine fishery areas in the rectangle by the Robert algo-
rithm. In Figure 7b6, for the marine fishery areas within the rectangle, 
the proposed method can extract the true feature edges accurately. 
Moreover, the edge detection results are smooth, continuous, and a 
single-pixel response.

The above experimental results show that for single-band GF-2 
panchromatic images, there are a lot of burrs and fake edges in the 
edge detection results of the Sobel, Robert, Gauss-Laplace, and Canny 
algorithms, which makes it difficult to accurately detect the real edge 
of ground objects. However, the proposed method can effectively over-
come burr, crack, and fake edge problems to obtain smooth, continu-
ous, and single-pixel response real edge extraction results for objects in 

Figure 6. (a1) and (b1) QuickBird images. (a2), (b2), and (c2) Experimental results using the Sobel algorithm. (a3) and (b3) Experimental 
results using the Robert algorithm. (a4) and (b4) Experimental results using the Gauss-Laplace algorithm. (a5) and (b5) Experimental results 
using the Canny algorithm. (a6) and (b6) Experimental results using the proposed method.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING August 2023 473



GF-2 panchromatic images. The proposed method has good robustness 
and generalizability for different types of image edge detection.

Figure 7a1 and 7b1 shows GF-2 panchromatic images. Figure 7a2 
and 7b2 shows experimental results using the Sobel algorithm. Figure 
7a3 and 7b3 shows experimental results using the Robert algorithm. 
Figure 7a4 and 7b4 shows experimental results using the Gauss-
Laplace algorithm. Figure 7a5 and 7b5 shows experimental results 
using the Canny algorithm. Figure 7a6 and 7b6 shows experimental 
results using the proposed method.

Comparison of the Time Consumption of Five Edge Detection Algorithms
Table 1 shows the average consuming time of edge detection for per 
image of QuickBird and GF-2 images using five edge detection algo-
rithms. In Table 1, the average consuming times of five edge detection 
algorithms are 0.17, 0.07, 0.18, 0.38, and 0.36 seconds, respectively. 
The consuming times of five edge algorithms are less than 1 second. 
The experimental results show that it is efficient for hsri edge detec-
tion using the proposed method.

Discussion
In this section, the edge detection results of the above QuickBird 
multispectral images and GaoFen-2 (GF-2) panchromatic images are 
quantitatively evaluated and discussed. It is proved by mathematical 
induction that the better the connectivity of edge detection results, the 
better edge detection results of image (Kitchen and Rosenfeld 1981). 
The connectivity of edge detection results is quantitatively evaluated 
by using the ratio of the number of eight-connected components to 
the number of four-connected components (Lin et al. 2003). A four-
connected component is a connected edge that is obtained using a 
four-neighborhood to connect the edge pixel, as shown in Figure 8a. 
An eight-connected component is a connected edge that is obtained 
using an eight-neighborhood to connect the edge pixel, as shown in 
Figure 8b. In this article, B and C represent the number of four-con-
nected components and the number of eight-connected components in 
the edge detection results, respectively. The value range of C/B is (0, 
1]. The smaller the value of C/B is, the better the connectivity of edge 
detection results is, and vice versa.

Figure 7. (a1) and (b1) Panchromatic images. (a2) and (b2) Experimental results using the Sobel algorithm. (a3) and (b3) Experimental results 
using the Robert algorithm. (a4) and (b4) Experimental results using the Gauss-Laplace algorithm. (a5) and (b5) Experimental results using the 
Canny algorithm. (a6) and (b6) Experimental results using the proposed method.
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Edge Connectivity Evaluation for Edge  
Detection Results of QuickBird Images
The quantitative evaluation results of the edge connectivity of the edge 
detection results of QuickBird multispectral images are presented in 
Table 2. Since the proposed method uses the slic algorithm to smooth 
the image, it effectively suppresses the image fake edge caused by 
image noise and the phenomenon of the same class objects reflecting 
different spectra. Moreover, the initial edge detection results of the 
proposed method are post-processed, which effectively reduces burrs 
and cracks in the edge detection results and improves the connectiv-
ity. Therefore, the C value of the proposed method is small. There are 
a lot of fake edges, burrs, and cracks in the edge detection results of 
the Sobel, Robert, Gauss-Laplace, and Canny algorithms, and their C 
values are larger. In Table 2, the C/B values of the proposed method 
for the edge detection results in Figure 6a1 and 6b1 are 0.07 and 0.04, 
respectively, which are smaller than other edge detection algorithms. 
The quantitative evaluation results show that the proposed method has 
better connectivity than other edge detection results and can obtain bet-
ter edge detection results for QuickBird images.

Edge Connectivity Evaluation for Edge Detection Results of GF-2 
Panchromatic Images
The quantitative evaluation results of the edge connectivity of the edge 
detection results of GF-2 panchromatic images are presented in Table 
3. Since the edge detection results of the proposed method are smooth, 
continuous, and a single-pixel response for GF-2 panchromatic im-
ages, the C value of the proposed method is small. However, there are 
a lot of fake edges, burrs, and cracks in the edge detection results of 
the other edge detection algorithms, resulting in their larger C value. 
Therefore, in Table 3, the C/B values of the proposed method are 0.002 
and 0.004, respectively, which is the smallest among the five edge 
detection algorithms. The experimental results show that the proposed 
method outperforms the other edge detection algorithms for the edge 
detection of Figure 7a1 and 7b1.

Conclusion
In this article, an edge detection method for hsris by combining su-
perpixels with dual-threshold edge tracking is proposed. The proposed 
method can solve the problems of the influence of image noise and the 
phenomenon of the same class objects reflecting different spectra on 
hsri edge detection. To verify the effectiveness of the proposed meth-
od, QuickBird and GF-2 images containing different ground objects are 
used to qualitatively and quantitatively compare the proposed method 
with some image edge detection algorithms. The experimental results 
show that the proposed method outperforms other image edge detec-
tion algorithms and can obtain smooth, continuous, and single-pixel 
response edge detection results. Furthermore, compared with other im-
age edge detection algorithms, the proposed method can suppress fake 
edges to the greatest extent and obtain realistic object edge extraction 
results for hsris. In terms of algorithm efficiency, the efficiency of the 
proposed method is lower than the Sobel, Robert, and Gauss-Laplace 
algorithms. Going forward, we will optimize the proposed method to 
improve its operational efficiency.
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Table 1. The consuming time of five edge detection algorithms.
Time / Per image (second)

Sobel 0.17

Robert 0.07

Gauss-Laplace 0.18

Canny 0.38

Our method 0.36

Table 2. Quantitative evaluation results of edge detection resutls of 
Quickbird images.

Figure 6 (a1) Figure 6 (b1)

B C C/B B C C/B

Sobel 3501 1879 0.537 6204 2772 0.447

Robert 3718 2425 0.652 2425 1661 0.685

Gauss-Laplace 996 242 0.243 1026 231 0.225

Canny 19212 3100 0.161 29371 3255 0.111

Our method 4399 29 0.007 5176 23 0.004

Table 3. Quantitative evaluation results of edge detection resutls of 
GF-2 panchromatic images.

Figure 7 (a1) Figure 7 (b1)

B C C/B B C C/B

Sobel 2467 1070 0.434 647 359 0.555

Robert 2514 1325 0.527 102 88 0.863

Gauss-Laplace 1520 565 0.372 2580 1522 0.59

Canny 22616 2836 0.125 9082 1289 0.142

Our method 6670 12 0.002 2393 10 0.004

(a)

(b)

Figure 8. (a) Four-neighborhood structure diagram. (b) Eight-
neighborhood structure diagram.
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Abstract
Impervious surfaces are an essential component of our environment 
and are mainly triggered by human developments. Rapid urbanization 
and population expansion have increased Lahore’s urban impervious 
surface area. This research is based on estimating the urban imper-
vious surface area (uisa) growth from 1993 to 2022. Therefore, we 
aimed to generate an accurate urban impervious surfaces area map 
based on Landsat time series data on Google Earth Engine (gee). We 
have used a novel global impervious surface area index (gisai) for 
impervious surface area (uisa) extraction. The gisai accomplished 
significant results, with an average overall accuracy of 90.93% and 
an average kappa coefficient of 0.78. We also compared the results 
of gisai with Global Human Settlement Layer-Built and harmonized 
nighttime light (ntl) isa data products. The accuracy assessment 
and cross-validation of uisa results were performed using ground 
truth data on ArcGIS and gee. Our research findings revealed that 
the spatial extent of uisa increased by 198.69 km2 from 1993 to 2022 
in Lahore. Additionally, the uisa has increased at an average growth 
rate of 39.74 km2. The gisai index was highly accurate at extract-
ing uisa and can be used for other cities to map impervious surface 
area growth. This research can help urban planners and policymak-
ers to delineate urban development boundaries. Also, there should be 
controlled urban expansion policies for sustainable metropolis and 
should use less impermeable materials for future city developments.

Introduction
The urban impervious surfaces are an essential component of our 
anthropogenic environment (Tian et al. 2018; Vaddiraju and Savitha 
2022; Wang et al. 2022a) that can be used as a substitute for determin-
ing the sustainability of urban development of a city at a regional and 
global scale. Assessing urbanization and environmental change is a 
crucial indicator (Wen et al. 2021; Wu et al. 2022). An increase in 
urban impervious surface area (uisa) accelerates critical ecological 
problems such as urban heat islands (Ahmad et al. 2022; Manoli et al. 
2019), urban flooding (Mignot et al. 2019; Sattar et al. 2020), public 
health problems, habitat disappearing (Ouyang et al. 2022), and the 
decline of the urban environment (Gao et al. 2012).

Generally, urban impervious surfaces are defined as permanent arti-
ficial structures that do not allow water to penetrate the ground, such as 
roads, buildings, and pavements (Sun et al. 2015, 2022a; Weng and Hu 
2008). It can also include asphalt roads (Chen et al. 2022), buildings, 

stone, concrete, bricks, or unoccupied ground with an impermeable 
structure (Gong et al. 2019). Due to the increase of uisa, most of the 
vegetation is converted into buildings, societies, and roadways. This 
conversion of natural green surfaces into urban impervious surfaces 
caused an increase in air temperature and radiation budget (Kotarba 
and Aleksandrowicz 2016; Su et al. 2022). According to Peroni et al. 
(2022), 392 research articles were published from 2000 to 2020 fo-
cused on soil sealing; researchers used several terms including imper-
vious surface, soil consumption, artificial structure, soil sealing, land 
consumption, and land take, incorporated with multispectral satellite 
products. But the term impervious surface was used in most articles, 
and the Landsat satellite data set (Yin et al. 2021) was used in 80% of 
the related research work.

Therefore, mapping urban impervious surfaces in cities is very 
important to analyze the quality of the urban environment (Liang et 
al. 2022). Among the existing studies, two methods have been ap-
plied to map and quantify urban impervious surfaces (1) field survey, 
ground-based GPS/drone surveys, (2) remote sensing techniques, use 
of remote sensing technology. Nevertheless, ground-based, in situ 
measurements, such as a field survey, are costly and time-consuming 
(Sun et al. 2015; Weng 2012). And a conventional survey method cov-
ers a small area. But remote sensing data can even cover the globe and 
use substantial methods, including deep learning, machine learning and 
artificial intelligence, adding a speedier and more accurate assessment 
of the uisa.

Remote sensing-based technology provides significant results for 
urban impervious surface estimation. Remote sensing data from multi-
scale platforms offer a variety of perspectives for monitoring urban 
impervious surfaces (Cao et al. 2020). Therefore, taking advantage of 
remotely sensed data to map urban impervious surfaces has become 
an important topic (Li et al. 2022). According to Sun et al. (2022b), 
numerous satellite-based urban impervious surface area products are 
available. But all the products have different coverage extent, spatial-
temporal resolution and data availability.

Among the existing moderate resolution (Wang et al. 2022b) 
satellite data products, Landsat (Kuang et al. 2014; Li et al. 2016) 
imagery has proven to be one of the most optimal data sources to 
generate global products because of its long-term records since 1972, 
nearly global coverage, and open access at 30 m resolution (Huang et 
al. 2021; Sun et al. 2022b). In addition, nighttime light (ntl) imag-
ery (Tang et al. 2021) can detect the intensity of human activity and 
thus can provide valuable prospects for the occurrence of uisa growth 
(Zhang et al. 2020).

Moreover, researchers have used a variety of well-known tech-
niques, including band ratios, supervised segmentation for object-based 
image analysis, decision tree, threshold-based segmentation, spectral 
mixture analysis, regression analysis, artificial neural networks, and 
pixel/sub-pixel-based algorithms (Peroni et al. 2022). However, the 
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automatic classification method is most commonly used by research-
ers for uisa extraction. But still, all the processes have limitations and 
low accuracy. According to Lu et al. (2011), due to the heterogeneous 
nature of urban environments and the limited spatial resolution, a large 
number of pixels are mixed with bare soil and frequently result in poor 
mapping for uisa.

Therefore, any change detection, like urban impervious surfaces, 
requires tremendous computing power and storage capacity for satel-
lite data. At present, the Google Earth Engine (gee) is found to be a 
cloud-based platform with analysis-ready data and high performance 
(Zhang et al. 2020) that can process time series remote sensing data 
efficiently (Gong et al. 2019; Kuang et al. 2021). In this research, we 
used the global urban impervious surface area index (gisai) developed 
by (Javed et al. 2022), co-author of this research work. The gisai uses 
only multispectral bands of satellite imagery and can extract uisa with 
an overall accuracy of 87.29% (Javed et al. 2022).

The gisai has developed using well-known indices such as modified 
normalized difference water index (mndwi), deep clear water body 
delineation index (dcwdi), and one novel index, modified built-up 
and bare index (mbbi). Therefore, the gisai can use remote sensing 
data to compare cities under specific climatic and environmental 
conditions. Consequently, we used Landsat time series data on gee to 
extract uisa for Lahore, Pakistan. Furthermore, to validate our research 
outcomes, we used two additional isa products, including Global 
Human Settlement Layer (ghsl), available from 1975 to 2030, and 
Harmonized Nighttime Light (1992 to 2022), as described in Table 2. 
Two key objectives of this research are (i) identification of uisa change 
detection from 1993 to 2022 and (ii) cross-validation and comparison 
of gisai and other isa products. This research is noteworthy because 

it identifies the expansion of uisa in Lahore from 1993 to 2022 for 30 
years. It can help researchers to apply this index to other regions and 
urban planners to make policies to control uisa expansion in future.

Study Area and Data
Study Area
Lahore is the capital city of the Punjab province. The location of the 
study area on the map is presented in (Figure 1). Lahore city has the 
highest GDP production and economic activities in the province. 
Furthermore, this city has different climatic conditions, from low to 
high temperatures. Lahore is the second-largest city in terms of popula-
tion among all the megacities of Pakistan. Its population is 12 642 000, 
and it is located in northeastern Punjab, Pakistan. It has a total area 
of 1772 square kilometers (Ahmad et al. 2022a) with a geographical 
position of 31.5204° N latitude and 74.3587° E longitude. The city has 
developed horizontally and consists of a walled city adjacent to urban 
and commercial areas. Lahore has developed as a technological center 
with significant commercial, industrial, and trade prospects. It has an 
average temperature of 33.2 °C in summer and an average of 12.1 °C 
in winter.

Data
In this study, we have used Landsat time series data for uisa extraction 
from 1993 to 2022. Furthermore, we have used two isa products freely 
available (i) ghsl built-S and (ii) Harmonized Nighttime Light to 
compare with the results of Landsat data. Table 3 contains information 
about the data sets used, including their providers, spatial resolution, 

Figure 1. Location of Lahore city on the map.
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and temporal availability. Additionally, each data product is further 
discussed separately.

Landsat
Landsat data provide multiple bands with different wavelengths, but 
our objective was to focus on uisa. Therefore, we used only selected 
bands for each Landsat product. Table 1 shows details of Landsat prod-
ucts and bands used to carry out this research.

Landsat products are the longest-running and most continuous 
space-based satellite imagery that nasa/usgs missions provide. Since 
1972, Landsat imagery has been accessible. Landsat 5 data product 
has attained a Guinness World Record for the most extended continu-
ously operating earth observation satellite for approximately 29 years 
(Ahmad et al. 2022b). This study used Landsat data from 1993 to 2022 
(30 years). Moreover, we have made composite output by combining 
five years of Landsat images for different year ranges. Table 2 provides 
the Landsat data acquired through the gee to make a composite image 
for each year range.

Global Human Settlement Layer–Built-Up Surface GHSL-BUILT-S
The ghsl was initiated by the Joint Research Centre, the Directorate-
General for Regional and Urban Policy, and the European Commission 
(Liu et al. 2020) to map human settlement and built-up surface at 
a global scale (Schiavina et al. 2022). The ghsl creates emerging 
global spatial data, evidence-based analytics, and knowledge about the 
existence of humans on Earth. The built-up (bu) surfaces estimated 
between 1975 and 2030 are available in the Global Human Settlement 
(ghs)-built-S geographic raster data set together with two practical use 
components: the total bu surface and the non-residential bu surface. 
The data created by spatial-temporal interpolation of five observed 
collections of multiple-sensor, multiple-platform satellite imageries: 
Sentinel-2 (S2) composite (ghs-composite-S2 R2020A) supports the 
2018 epoch, while Landsat (mss, tm, etm sensor) supports 1975, 1990, 
2000, and 2014 epochs (Schiavina et al. 2022; Uhl and Leyk 2022).

Harmonized NTL
Harmonized ntl is calibrated data developed by (Li et al. 2020; Li 
and Zhou 2017). Harmonized ntl data set was created by merging the 
inter-calibrated ntl observations from the Defense Meteorological 
Satellite Program (dmsp) data with the simulated dmsp-like ntl ob-
servations from the Visible Infrared Imaging Radiometer Suite (viirs) 
data at the global scale. This temporally extended dmsp ntl data set 
provides helpful assistance for various studies on human activities, 
including urban impervious surface and urban growth patterns. The 
data set consists of temporarily calibrated dmsp-ols ntl time series 
data from 1992 to 2013 and converted ntl time series made from viirs 
data (2014–2022) with a spatial resolution of 30 arc seconds (1 km). 
Table 3 provides the details of the harmonized ntl with temporal and 
spatial resolution.

Methodology
Google Earth Engine and Sentinel Application Platform
Regarding the gee cloud computing platform, the methodology for 
this research work includes satellite data fetching and band selection, 
and performing urban impervious surface extraction based on the 
gisia index explained in (Figure 1). The Google Earth Engine provides 
open access to the Landsat archive, including satellite imagery from 
Landsat 1 to Landsat 9. This research uses specific bands from Landsat 

4-5 to Landsat 8 for the last three decades (Table 1). In addition, the 
open-source platform qgis was used to validate the image analysis and 
processing of the satellite data.

The authors used a combined Landsat data set consisting of Landsat 
5 tm, Landsat 7 etm+, and Landsat 8 oli data sets. In the study, only 
surface reflectance data sets were used and any scan lines can corrector 
(slc) failure images from the data set were manually removed. To gen-
erate a composite gisai image, the authors took five yearly composites 
from the combined Landsat data set. We used a threshold value of 0.1 
to separate urban and non-urban areas. It means that any pixel with a 
value greater than 0.1 was classified as an urban area, while any pixel 
with a value less than or equal to 0.1 was classified as a non-urban area.

Overall, the methodology involved using Landsat data sets, remov-
ing any slc failure images, generating yearly composites, and clas-
sifying urban and non-urban areas using a threshold value. These steps 
were carried out using gee, a cloud-based platform for satellite image 
analysis. gee is a cloud-based platform that allows studying satellite 
imagery using various programming languages, including JavaScript 
and Python.

Preprocessing
This study uses annual image collection from the usgs Landsat 8 Level 
2, Collection 2, and Tier 1 surface reflectance dataset using a data 
range from January to December each month composite instead of 
single remote sensing imagery. Landsat’s high-quality band Bitmask 
has been used for atmospheric correction. Table 2 provides information 
on the data sets used from 1993 to 2022.

We first separate the water bodies using two well-known water 
indices for urban impervious surface area extraction. An mndwi was 
developed (Xu 2006), and a dcwdi was formed by (Yue and Liu 
2019). We build a composite free water area (CWFA) using both 

Table 1. List of Landsat products and bands acquired on Google Earth 
Engine for urban impervious surface extraction.

Band Name
Landsat 9 

OLI
Landsat 8 

OLI
Landsat 7 

ETM+
Landsat 4 and 5 

TM

Blue 2 2 1 1

Green 3 3 2 2

Red 4 4 3 3

Near Infrared 5 5 4 4

Short-wave Infrared 1 6 6 5 5

Short-wave Infrared 2 7 7 7 7

OLI = Operational Land Imager; ETM+ = Enhanced Thematic Mapper Plus; 
TM = Thematic Mapper.

Table 2. Urban impervious surface area (UISA) data sets used in this 
research.

No Year (Range) Composite Image

1 1993–1997 1993

2 1998–2002 1998

3 2003–2007 2003

4 2008–2012 2008

5 2013–2017 2013

6 2018–2022 2018

Table 3. UISA data sets used in this research.

No. Name Download URL Spatial Resolution
Temporal 
Resolution

1 GHS-BUILT https://ghsl.jrc.ec.europa.eu/datasets.php 38 m 1975–2030

2 Landsat https://earthengine.google.com/ 30 m 1993–2022

3 Harmonized NTL https://samapriya.github.io/awesome-gee-community-datasets/projects/hntl/ 30 arc-seconds ~ 1 Km 1992–2022

GHS-BUILT = Global Human Settlement (GHS)-BUILT; NTL = nighttime light.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING August 2023 481



indexes. Furthermore, the indices and bands used to develop gisai 
are presented in Table 4, including mndwi, dcwdi, CWFA index, 
Normalized Difference Built-Up Index (NDBI), Normalized Difference 
Urban Index (NDUI), mbbi, Composite impervious surface area index 
(CISAI), terraMNDWI, shortwave-infrared (swir)Soil, and gisai. 
This research methodology used the minimal mndwi index composite 
without water, multiplied by the current isa composite. Additionally, 
the water-free mndwi value distinguishes isa somewhat from bare soil. 
Finally, swirSoil eliminates the extremely bright sandy region. Also, 
the data flow diagram (Figure 2) details indices implementation and 
sequencing.

Results
This section describes the research outcomes for the urban imper-
vious surface area increase discussed in the methodology section. 
Furthermore, the results are further explained below separately for uisa 
extraction.

Urban Impervious Surface Area Change Detection
gisai demonstrates strong skills for mapping metropolitan regions us-
ing the Landsat data set. The study investigated a variety of thresholds 
and discovered that values between 0.1 and 0.5 can provide substantial 
results. Additionally, multispectral earth observation satellites and past 
Landsat missions frequently have multispectral bands. As a result, 
gisai can also be applied to numerous satellite imagery products. We 
have implemented the gisai to delineate uisa in this research work. The 
results show an abrupt change in the urban impervious surface area 
increases from 1993 to 2022 in the selected region.

Furthermore, gisai, a novel index, was likened to (ghsl) built-S 
and Harmonized Nighttime Light data to cross-validate our research 
results. Also, the result shows significant improvement in uisa extrac-
tion using gisai compared to the conventional single index-based 
mapping techniques used in previous research papers. We can get 
more valuable results by combining multiple indices to enhance urban 
impervious surface area segregation from the permeable surface (Javed 
et al. 2022; Zhao and Zhu 2022). Therefore, using the gisai index, 
we expressively reduced soil signature and separated bare soil from 
built-up structures. In this research, we used a threshold value of 0.1, 
and it can be observed from (Figure 3) that there was an abrupt change 
in the urban impervious surface area. The increase of urban impervious 
surface in Lahore has been observed from 211.04 km2 to 409.72 km2 
from 1993 to 2022.

In this research, we used two additional data sets based on ntl 
observations and ghsl built-up surface to examine the spatiotempo-
ral patterns of isa over 30 years. Figure 4 show the gisai, ghsl, and 
Harmonized ntl data results for an interval of 10 years. Similar to gi-
sai outcomes, the ghsl-S results are also significant but comparatively 
not symmetrical. However, the spatial resolution of ghsl data is 38 m, 
close to Landsat time series data (30 m). It can be observed in Figure 4 
that there was no distinct difference observed between 2012 and 2020. 
So, the result produced by gisai was more symmetrical at the city level 
than other isa products.

The uisa delineated from ntl data with a low spatial resolution pro-
vided significant results and showed similar trends like gisai and ghsl 
built surface as shown in Figure 4. Because of its extremely low spatial 
resolution, the Harmonized ntl findings were discovered to be pixel 
exposed in contrast to gisai and ghsl results. However, Harmonized 
ntl works best when covering a larger area, such as a continent or 
region; it is less effective when mapping at the city scale.

Moreover, a trend analysis was also performed to observe the uisa 
change in the study area by interpolating the gisai results from 1993 
to 2022 in a single map (Figure 5). From trend analysis, we found that 
most of the uisa change was observed in 2012 and 2022. It also indi-
cates that uisa increase trends were observed in the east and south-west 
directions for Lahore city.

Figure 6 shows the overall trend of isa from 1993 to 2022 based 
on composite images. Furthermore, the change detection from 1993 to 
2022 (Figure 6) shows an overall increase in uisa. The growth rate was 
the highest for 2013–2017 years.

Table 4. Indices sequencing to achieve global urban impervious surface 
area index (gisai) (Javed et al. 2022).

  (1)

  (2)

 CWFA = (median MNDWIT + median DCWDIT)<1 (3)

  (4)

  (5)

  (6)

CISAI = (min NDBI + 1)×(min NDUI + 1)×(min MBBI + 1)×CWFA (7)

 terra MNDWI = (min MNDWI + 1)×CWFA (8)

 SWIR soil = SWIR1×SWIR2×4 (9)

 GISAI = (CISAI×terra MNDWI) – SWIR soil (10)

MNDWI = modified normalized difference water index; SWIR = shortwave-in-
frared; DCWDI = deep clear water body delineation index; NIR = near infrared; 
CWFA = composite free water area; NDBI = Normalized Difference Built-Up 
Index; NDUI = Normalized Difference Urban Index; MBBI = Modified Bare 
and Built-up Index; CISAI = Composite Impervious surface area index .

Figure 2. Methodology (data flow diagram). gee = Google Earth 
Engine; cisai = Composite Impervious surface area index ; mndwi = 
modified normalized difference water index; aoi = Area of Interest; 
isa = impervious surface area.
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Figure 3. Urban impervious surface area extraction using the global urban impervious surface area index (gisai) index on the Google Earth Engine.

Figure 4. Urban impervious surface area extraction using ghsl-built-s data. gisai = global urban impervious surface area index; ghsl = Global 
Human Settlement Layer; ntl = nighttime light.
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Accuracy Assessment
In this study, we used a conventional approach widely used in earlier 
research (Story and Congalton 1986) to assess the accuracy of urban 
impervious surface area increase. The study collected sample points 
from Google Earth images for 1998, 2003, 2008, 2013, and 2018. The 
study used ArcGIS to calculate classified point values for ground truth 
points. There were no images between 1985 and 1998. Therefore, we 
use 1998 ground truth values for 1993 as well. We compute overall 

accuracy, sensitivity, omission error, commission error, Kappa coef-
ficient, and F1 score values for accuracy assessment (Table 6). In this 
study, we took around 100 points for both urban and non-urban areas.

The binary confusion matrix of Table 5 is useful for studies with 
only two classes, in this case, isa and other classes. Accuracy assess-
ment metrics are overall accuracy, Cohen’s Kappa coefficient (Story 
and Congalton 1986), and F1 score (Chicco and Jurman 2020) used in 
this study. The accuracy assessment equations (Equations 11–16) are 
formulated to deal with only two classes (Chicco et al. 2021). All the 
equations are described below (Equations 11–16).

  OA = (TP+TN)/(TN+FP+FN+TP) (11)

  Sensitivity = TP/(TP+FN) (12)

  Omission error = FN/(FN+TP) (13)

  Comission error = FP/(FP+TP) (14)

  
(15)

   
(16)

Where OA= Overall Accuracy, TP = True Positive, TN = True 
Negative, FP = False Positive, and FN = False Negative. The accuracy 
assessment comparison Table 6 shows combined results for six years 
of images.

Figure 5. Trend analysis from 1993 to 2022 using the global urban impervious surface area index (gisai) index.

Figure 6. Overall change in the urban impervious surface from 1992 
to 2022. isa = impervious surface area.

Table 5. Binary Confusion matrix.
Classified: No Classified: Yes

Reference: No True Negative (TN) False Positive (FP)

Reference: Yes False Negative (FN) True Positive (TP)
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Discussions
In recent years, isa has become a significant indicator of environmental 
quality and a characteristic of urbanization. Measuring change detec-
tion in isa is essential for city planning, sustainable development, and 
environmental protection. In recent research articles, some existing ap-
proaches were used, such as mixture analysis and classification-based 
methods, which require multi-part computations and high-quality 
training data. But this research proposed a novel uisa (gisai) index 
based on the gee cloud platform. In urban remote sensing applications, 
the impervious area is usually mixed with bare soil because of their 
spectral similarities.

Additionally, the variability of isa has an impact on the outcomes 
of the extraction. Therefore, the current study used a combination of 
indices explained in the methodology section to reduce the bare soil 
signature. First, using SWIR1 and SWIR2 bands, bright and highly 
reflecting sandy regions were eliminated. These sandy areas reflect 
quite well in both SWIR and other classes. Secondly, the temporal 
parameter eradicates barren soil regions with vegetation or water. As 
a result, gisai provided significant results for comparative research of 
megacities. Our experimental results showed an overall accuracy of 
89% for isa extraction.

This index also shows how effectively it can map cities with dif-
ferent environmental backgrounds. The study outcomes allow urban 
planners to organize resources for future sustainable urban develop-
ment. The results of uisa can be useful in observing the sustainable 
development of these cities. Last but not least, there were some 
limitations in this research conducted for uisa extraction. The primary 
limitation is that the gisai estimation method is highly computation-
ally intensive and dependent on cloud platforms. Besides increasing 
the differentiation of bare soil from uisa, some bare soil types are still 
difficult to distinguish from other land use (Ahmad et al. 2022b) types 
(built-up area, bare agriculture land). But the result can be improved by 
incorporating ntl data products and build-up surface products. In the 
future, indices combined with deep learning, image fusion, improved 
spatial resolution, and enhanced spectral resolution can provide a more 
dynamic result for uisa extraction.

Conclusions
Urban impervious surface area (uisa) is important to our anthropogenic 
urban environment. We implemented a novel gisai index based on 
Landsat 8 time-series data on gee to map isa in Lahore, Pakistan. The 
research findings have shown that the gisai index can provide signifi-
cant results for mapping urban impervious surfaces at the city level. 
The percentage increase in the urban impervious surface has been 
observed from 11%, 13.3%, 16.4%, 17.2%, 20.6%, and 21.4% from 
1993 to 2022, respectively. But it showed the maximum increase in 
2013–2017 for the last 30 years. The results reveal that gisai retrieved 
uisa extraction accurately with medium spatial resolution data of 30 m. 
The experimental results also show. The development of a trend analy-
sis map (Figure 6) intended to assist the government and decision-
makers in the execution of spatial planning strategies and action plans 
for lowering the uisa in future. So that the population, infrastructure, 
and environment can be protected. It is also concluded that the method 
proposed in this study can be implemented in other metropolitan cities 
worldwide because it is easy to implement with open-access satellite 

data. Researchers and decision-makers can comprehend the environ-
mental response to urban growth with uisa calculation.
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Small Object Detection in Remote  
Sensing Images Based on Window  

Self-Attention Mechanism
Jiaxin Xu, Qiao Zhang, Yu Liu, and Mengting Zheng

Abstract
For remote sensing image object detection tasks in the small ob-
ject feature, extraction ability is insufficient and difficult to locate, 
and other problems. This paper proposes an improved algorithm 
for small object detection in remote sensing images based on a 
window self-attention mechanism. On the basis of You Only Look 
Once (YOLO)v5s, a shallow feature extraction layer with four times 
downsampling is added to the feature fusion pyramid and the win-
dow self-attention mechanism is added to the Path Aggregation 
Network. Experiments show that the improved model obtained the 
Mean Average Precision (mAP) of 78.3% and 91.8% on the DIOR 
and Remote Sensing Object Detection public data sets with frames 
per second of 65 and 51, respectively. Compared with the basal 
YOLOv5s network, the mAP has improved by 5.8% and 3.3%, 
respectively. Compared with other object detection methods, the 
detection accuracy and real-time performance have been improved.

Introduction
With the rapid development of satellite remote sensing technology at 
home and abroad, the observed earth surface information that can be 
obtained is becoming more and more abundant. There are numerous 
important applications for the quick and precise automatic detection of 
specific targets in remote sensing images, including defense and mili-
tary response, the development of smart cities, the mitigation and con-
trol of geological disasters, the monitoring of the agricultural environ-
ment, the updating of geographic information systems, and other fields 
(Li et al. 2010; Castelluccio et al. 2015; Chen et al. 2017; Kanjir et al. 
2018; Song et al. 2021; Tian et al. 2022). Currently, remote sensing 
images have ever-finer resolutions. The structure, texture, and details 
of ground objects and landscapes can be seen more clearly in high-
resolution remote sensing images, which makes it easier to present the 
target in the field of view (Li et al. 2016). Object detection has met 
great challenges, since remote sensing images with high resolution and 
high coverage also offer redundant information, and observed objects 
are varied, small, and dense (Xie et al. 2021). So, fast and accurate 
automatic detection of small targets is one of the most challenging and 
valuable tasks in the field of remote sensing.

For some early object detection algorithms, the Haar cascade clas-
sifier (Viola and Jones 2001) is based on Haar-like features and used 
a strong classifier cascade trained by Adaboost (Freund and Schapire 
1997) for face detection. The Scale Invariant Feature Transform meth-
od extracts invariant features from pictures to achieve reliable matching 
of objects or scenes under different viewing angles (Lowe 2004). The 
Histogram of Oriented Gradient (hog) algorithm calculates statistics on 
the gradient information (Dalal and Triggs 2005), and then generates 
the final feature description, and combines support vector machine 
(svm) for object classification and detection (Cortes and Vapnik 1995). 

The Deformable Parts Model detector makes some improvements on 
the basis of hog and svm classifiers (Felzenszwalb et al. 2008), which 
greatly improves the detection performance. The above-mentioned 
traditional machine learning object detector adopts artificially designed 
features and sliding window ideas, which have problems such as single 
features, high time cost, and low detection efficiency.

With the introduction of the convolutional neural network (cnn), a 
breakthrough has been made in the object detection method based on 
deep learning. For object detection, there are anchor-based detectors 
and anchor-free detectors. Depending on whether they must create re-
gion proposals, the anchor-based detectors are separated into two-stage 
detectors and single-stage detectors. The first two-stage algorithm, 
region-based (r)-cnn (Girshick et al. 2014), which is a qualitative leap 
over conventional techniques, uses cnn as the fundamental network 
for object detection and a selective search method to extract candidate 
boxes. The Scalable Sequential Pyramid Networks (spp-Net) algo-
rithm implements region feature extraction at different scales (He et 
al. 2015). Fast r-cnn uses region of interest pooling layers to extract 
features from candidate regions of different sizes and shapes (Girshick 
2015). By generating candidate regions with Region Proposal Network 
(rpn) (Ren et al. 2015), the detection efficiency of the Faster r-cnn 
algorithm is significantly the Fast r-cnn. In 2017, the mask branch 
was added to the Mask r-cnn algorithm to accomplish both object 
detection and semantic segmentation (He et al. 2017). However, the 
two-stage object detection methods were difficult to achieve real-time 
detection. In response to this problem, Redmon and others transformed 
the classification problem into a regression problem (Redmon et al. 
2015), named the proposed algorithm You Only Look Once (YOLO). 
On this basis, the YOLOv2 (Redmon and Farhadi 2017) and YOLOv3 
(Redmon and Farhadi 2018) algorithms are successively proposed. 
Among them, YOLOv3 uses Darknet-53 as the backbone network and 
uses the Feature Pyramid Network (fpn) and multi-scale feature map. 
The Single Shot Multibox Detector combines the anchor idea in rpn to 
design dense anchors with multiple aspect ratios at multiple scales (Liu 
et al. 2015). In 2020, Alexey modified the backbone of the YOLOv3 
network to Cross Stage Partial Dark Network (cspDarknet53) and 
proposed YOLOv4 (Bochkovskiy et al. 2020), and adopts the idea of 
spatial pyramid pooling. In the same year, Glenn Jocher and others 
proposed YOLOv5 (https://github.com/ultralytics/YOLOv5), which 
is more lightweight and stable than the YOLOv1~v4 series; and can 
be easily deployed in engineering applications. There are also some 
anchor-free detection techniques, such as fcos (Tian et al. 2019), 
CornerNet (Law and Deng 2020), etc. Although these methods have 
quick detection times, their accuracy is still a concern.

There are two definitions of small targets in object detection, one 
based on relative size and one based on absolute size. According to the 
definition of the international organization, Society of Photographic 
Instrumentation Engineers, a target area of fewer than 80 pixels in a 
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256 × 256 image is a small target (Zhang et al. 2021). According to 
the definition of the Common Objects in Context (coco) data set (Lin 
et al. 2014), a target with a size of fewer than 32 × 32 pixels can be 
considered a small target. This paper uses the absolute definitions from 
the coco data set. Because of their low SNR, tiny size, and limited 
structural information, small objects are challenging to detect. Bashir 
et al. (2021) combined recurrent generative adversarial networks and 
residual feature aggregation to improve the detection performance of 
small objects. Li et al. (2021) proposed a cross-layer attention network 
that further enhances its representation capability. Han et al. (2022) 
proposed a multi-visual small object detector that detects small objects 
by using multiple low-level feature maps with multi-branch convolu-
tion. Zhang et al. (2022) proposed the CotYOLO-v3 target detection 
algorithm to extract contextual information about small objects and en-
hance visual representation in Darknet-53. Fang et al. (2022) proposed 
an improved s2anet-sr model to design a super-resolution enhance-
ment module to enhance the feature extraction of small objects. Shi 
et al. (2022) proposed an algorithm called FE-CenterNet anchorless 
detector to improve the perception of small objects by mining multi-
scale contextual information and combining it with a coordinate atten-
tion mechanism. However, the above methods still have the problem 
of low accuracy or low real-time detection of small objects. This 
paper proposes the following modifications based on YOLOv5. (1.) To 
improve the detection ability of small targets in remote sensing images, 
a shallow feature extraction layer with four times downsampling is 
added to the feature fusion pyramid and a small target detection layer 
should be added to the detection head. (2.) To improve the network 
feature extraction capability for small targets, the convolution layer of 
the Bottleneckcsp in the Path Aggregation Network (panet) is replaced 
by two continuous Swin-Transformer blocks.

Introduction of YOLOV5
YOLOv5 differs from previous generations of YOLO in that it is divid-
ed into four models, s, m, l, and x, according to the volume size of the 
model. In various models, the width and depth of the network can be 
freely adjusted to facilitate the deployment of the model in hardware 
devices that meet the conditions. In this paper, we adopt the smallest 
volume YOLOv5s model for improvement. YOLOv5s mainly consists 
of three parts: backbone, neck, and head, and its network structure is 
shown in Figure 1.

Backbone
The backbone of YOLOv5s consists of an input and a backbone 
network for extracting the features of the image. The input is a color 
image with a size of 640 × 640 and three channels of RGB. Data 
pre-prossessing is then performed to enrich the image information 
using Mosaic data enhancement. The k-means clustering algorithm is 
used to re-match the anchors and adaptively obtain the best anchors. 
The backbone network is CSPDarknet53, which contains modules 

such as focus, csp, and Shirley Proctor Puller Foundation (sppf). In 
YOLOv5-v6.0 (this is the sixth official released version of YOLOv5), 
the focus module is equivalently replaced by a convolutional layer 
with a convolutional kernel size of 6 × 6, which is more efficient when 
applied to hardware devices. The csp block consists of a series of 
residual blocks that effectively prevent gradient explosion and gradi-
ent disappearance. The sppf block is different from the spp block in 
YOLOv4. The spp block inputs the extracted features into multiple 
Maxpooling layers of different sizes in parallel and then further fuses 
them, while the sppf block makes the input features pass through mul-
tiple maxpooling layers of 5 × 5 size serially in turn. Although the final 
processing results of the two blocks are the same, the latter is twice as 
fast as the former in terms of computation

Neck
The neck part of YOLOv5s consists of fpn and panet for fusion of 
features extracted from the backbone network. The fpn transfers rich 
semantic information from the deep feature layer to the shallow feature 
layer, enhances the feature representation capability of small targets, 
and solves the multi-scale problem well to generate feature maps of 
different scales for prediction. The panet adds a bottom-up channel 
based on fpn and combines the csp block to better transfer the shallow 
information to the deep feature layer, fuse features in both directions, 
and strengthen the fusion ability of features.

Head
The head part of YOLOv5s includes the prediction and output of the 
network, which uses the detection head to perform object detection 
on the input image, generate the object bounding box, and predict the 
category of that object. For the loss function, YOLOv5s calculates 
three kinds of losses: confidence, bounding box, and classification. 
In the loss calculation of bounding box, the Generalized Intersection 
over Union (GIoU) loss function is used (Rezatofighi et al. 2019). The 
GIoU loss calculation formula is as follows:

  
(1)

where A denotes the area of the true box, B denotes the area of the pre-
dicted box, and C denotes the area of the smallest rectangular box that 
can surround A and B. When the ratio of the area except the true box 
and the predicted box in C to the total area of C is larger, it means that 
the distance between the true box and the predicted box is farther, and 
the degree of overlap is smaller. Conversely, the closer the distance, 
the greater the overlap. The calculation of confidence loss and clas-
sification loss is composed of a sigmoid layer and binary cross entropy 
loss function “Binary Cross Entropy (bce) loss”. Because the input 
value range of BCE loss is [0, 1], it is necessary to use an activation 

Figure 1. You Only Look Once (YOLO)v5s network structure diagram.
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function to ensure that the input is correct. The formula of bce loss is 
as follows:

  
(2)

where x is the sample, y is the label, a is the predicted output, and n 
is the total number of samples. The total loss is the sum of confidence 
loss, bounding box loss, and classification loss. The total loss formula 
is as follows:

 losstotal = λ1lossconfidence + λ2lossbox + λ3lossclassification (3)

The coefficient λ in front of each loss represents the respective 
weight. In this paper, we set the weight coefficient of confidence loss 
to 1.0 and only count positive samples. The weight coefficient of the 
classification loss is 0.5, and only positive samples are calculated. The 
bounding box loss has a weight factor of 0.05.

Improvements of YOLOV5
In this paper, some improvements based on YOLOv5s are proposed. 
A small target detection layer is added to the original detection layer, 
and four feature layers of different scales are used for target detec-
tion. Furthermore, the window self-attention mechanism in the Swin 
Transformer block is added to the panet to enhance the detection 
capability of small targets. The improved network structure diagram is 
shown in Figure 2.

Add a Small Object Detection Layer
Three scales of feature maps for detection are created in the basic 
YOLOv5s network by fusing the feature layers of 8x, 16x, and 32x 

downsampling. According to the idea of the feature fusion pyramid, 
the 8x downsampling feature layer belongs to shallow features with 
smaller perceptual field and more accurate target location informa-
tion, which is suitable for detecting small targets in images. The 32x 
downsampling feature layer belongs to deep features containing richer 
semantic information, which will be interfered with by redundant 
background information in the process of detecting small targets and 
is more suitable for detecting large targets. Our research adds a 4x 
downsampling feature layer to the feature extractor, in which the target 
has larger pixels and richer position information than the 8x downs-
ampling feature layer. So the network may extract more fine-grained 
features to improve the performance of tiny targets. Figure 3 displays 
the schematic diagram of the improved feature extractor.

Add Window Self-Attention Mechanism
Conv layers have been the mainstay existence in convolutional neural 
networks, which is good at capturing local information, but the locality 
limits its perceptual field. Transformers can obtain global features to 
make up for the global capture ability and can learn high-quality inter-
mediate features (Dosovitskiy et al. 2020). However, the transformer 
is computationally intensive in the network, and the shifted windows 
self-attention mechanism in the swin transformer can improve the 
computational efficiency (Liu et al. 2021). In this paper, two consecu-
tive Swin Transformer blocks (hereafter referred to as str) are added to 
the panet structure to replace one of the convolutional layer structures 
in Bottleneckcsp, and name this structure c3str. The structure diagram 
of the c3str module is shown in Figure 4. The window multi-head 
attention mechanism in the str module is used to improve the repre-
sentational capability of extracted feature, and improve the detection 
accuracy of small targets.

Figure 2. Network structure diagram of improved You Only Look Once (YOLO)v5, where the red line is the improvement part.

Figure 3. Schematic of the feature extractor after adding a 4x downsampled shallow feature layer.
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str module consists of two consecutive Swin Transformer blocks. 
Firstly, the input feature map is spreading the dimensions of width and 
height directions by convolution, taking the deep feature map 20 × 20 
× 256 as an example, after convolution it becomes a two-dimensional 
vector [400,256], then it enters Layer Normal processing layer to do 
mean and variance calculation with the following formula:

  
(4)

where x denotes the value of each dimension of the input, y denotes the 
processed value, ϵ is a very small value, and the default ϵ = 10–5, γ, and 
β are trainable parameters.

After processing, the features are extracted by a window multi-
headed attention mechanism. The features are then fed into the 
Dropout layer to do stochastic gradient descent to prevent model over-
fitting. The obtained results are then added with the previous input of 
the first Layer Normal layer, which is similar to the residual structure. 
After addition, the features are continued to be input to the next Layer 
Normal block for processing, and then processed by the Multi-Layer 
Perceptrons (mlp) block, and then add to the result of the previous 
addition. The mlp block consists of a fully connected layer, a Gaussian 
Error Linear Unit activation function, and a Dropout layer. In the first 
fully connected layer, the number of input channels is multiplied by 

four times, that is, [400,256] to [400,1024], and in the second fully 
connected layer, the number of channels is restored. Similarly, the 
next layer of the Swin Transformer block is similar to the previous 
layer, but the window multi-head attention mechanism uses the shifted 
window processing method.

In the general Multi-Headed Self-Attention mechanism (msa), for 
each pixel in the feature map, it is necessary to do a computation with 
all other pixels on the whole map, which is very computationally inten-
sive. However, in the Windows-based Multi-Head Self Attention  
(w-msa), the feature map is first divided into small windows accord-
ing to the size of M × M, and then the self-attention computation is 
performed inside each window separately. Where M is the size of the 
window, in this paper’s algorithm for example, M is set to 8. w-msa 
greatly reduces the computational effort compared with msa, but due 
to the limitation of windows, the perceptual field becomes smaller and 
there is no information interaction between windows. To solve this 
problem, the Shifted Windows Multi-Head Self-Attention (sw-msa) is 
added in the second layer of the str module, which shifts the window 
two pixels to the right and two pixels down. As shown in Figure 5, the 
calculation of self-attention is performed in the shifted window to fuse 
the information of the neighboring windows in the previous layer to 
achieve information interaction between different windows.

In w-msa and sw-msa, the information from different head parts is 
learned jointly using a multi-headed attention mechanism. The input 
node xi is mapped into vector ai by means of mapping, and the cor-
responding ki, qi, vi are obtained by means of three trainable transfor-
mation matrices Wk, Wq, Wv. Depending on the number of heads used, 
ki, qi, vi are equally divided into head parts, and then get Qi, Ki, Vi 
corresponding to each headi, and calculate their self-attention (Vaswani 
et al. 2017), the formula is as follows:

  
(5)

where Q denotes the matrix of q, q is query, which will be subsequent-
ly matched with each k; K denotes the matrix of k, k is key, which will 
be subsequently matched by each q; V denotes the matrix of v, v is the 
information extracted from the weight matrix q and k matching pro-
cess, the greater its relevance corresponds to the greater the weight of 
v; d represents the length of vector ki. With the following equation, the 
self-attention calculation results from each head are stitched together 
and fused by a trainable parameter WO to obtain the final multi-head 
attention results:

 MultiHead(Q,K,V) = Concat (head1, head2, …, headh) (6)
where headi = Attention (QWi

Q, KWi
K, VWi

V)Figure 4. c3str module structure diagram.

Figure 5. Change of Windows-based Multi-Head Self Attention (W-MSA) to Shifted Windows Multi-Head Self-Attention (sw-msa).
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Experiments and Analysis
Data Preparation and Pre-Processing
We use a large-scale benchmark public data set dior (Li et al. 2019) 
for our experiments. The data set consists of 23 463 images and 190 
288 target instances with image size of 800 × 800 and resolution rang-
ing from 0.5 m to 30 m. dior has twenty categories of targets, namely 
airplane, airport, baseball-field, basketball-court, bridge chimney, dam, 
expressway-service-area, expressway-toll-station, golf-field, ground-
track-field, harbor, overpass, ship, stadium, storage-tank tennis-court, 
train-station, vehicle, windmill. The data set is annotated in pascal voc 
format and converted to yolo data set format. The training, validation, 
and test sets are divided in a 1:1:2 ratio. Before training, Mosaic data 
enhancement was done on the images. Mosaic data enhancement was 
done by randomly selecting four images and performing operations 
such as flipping, scaling, and color gamut transformation to obtain the 
images shown in Figure 6. The anchors are then re-clustered using the 
k-means clustering algorithm, yielding 12 appropriately sized anchors 
adaptively.

Model Training
The experiments in this paper make use of the Windows 10 operat-
ing system, an nvidia rtx a4000 gpu, and the Pytorch open-source 
framework with Python version 3.8. In this paper, we do not use the 
official YOLOv5 pre-training weights file provided, and initialize the 
weights randomly. The batch size for model training is set to 4, the ep-
och is 300, and the initial learning rate is 0.01. During training, we use 
an early stop mechanism to track the validation loss and stop training 
when the validation loss does not decrease for ten consecutive epochs. 
Figure 7 displays the loss function change curves of the training set 
and the validation set. 

Evaluation Metrics and Analysis of Results
The evaluation metrics in this paper use Average Precision (AP50, 
AP50:95), Mean Average Precision (mAP@0.5), Recall, the AP for 
small objects (aps, area < 322), the AP for medium objects (apm, 322 < 
area < 962), the AP for large objects (apl, area > 962), and Frames Per 
Second (FPS). AP50 is the average accuracy value at an Intersection 
over Union (IoU) threshold of 0.5. AP50:95 is the average accuracy 

Figure 6. Example of images after Mosaic data enhancement process.

Figure 7. Loss function change curve of training set and validation set, where “train” represents the training set, “val” represents the validation 
set, “box_loss” represents the localization loss (GIoU), “obj_loss”' represents the confidence loss, and “cls_loss” represents the classification 
loss. It can be observed that the overall convergence of the model is fast.
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value at an IoU threshold of 0.5 to 0.95. The mAP@0.5 is the average 
value of all categories of AP at an IoU threshold of 0.5. Recall mea-
sures the ability of the classifier to find all the positive classes with the 
following formula. Where TP is true positive and FN is false negative. 
FPS represents the number of frames transmitted per second, that is, 
the number of pictures that the network can detect per second.

  
(7)

In this study, ablation experiments and contrast experiments are 
designed with dior as the primary data set to confirm the efficacy 
and superiority of the improved model. (1) Ablation experiments: 
Adding only a small target detection layer is referred to as Method A. 
Adding only three c3str modules to the detection head is referred to 
as Method B. Adding a small target detection layer, and replacing all 
detection heads to c3str is called Method C. Adding a target detec-
tion layer, and replacing all the csp blocks in the backbone network 
with c3str is called Method D. Adding a small target detection layer, 
and adding c3str modules to the detection head of P2 and P5 is called 
Method E. These different improvement schemes are added based on 
the YOLOv5s network to verify the improvement effect of each im-
provement scheme. The results in Table 1 demonstrate that adding only 
Method A increases the APS values, indicating that more small target 
features can be extracted from the shallow feature map. Adding only 
Method B, the APS, APM, APL, and Mean Average Precision (mAP) 
both are promoted, indicating that adding the self-attention mecha-
nism in panet not only helps to extract small target features in shallow 
features but also helps to extract large target features in deep features. 
By adding Method E, the mAP value is further improved. However, 
compared to the basal YOLOv5s method, the speed is slower since a 
feature fusion layer has been added, and the straightforward convolu-
tional layer has been replaced with a more complicated str structure, 
resulting in increased inference time of the network. Despite this, the 
FPS of 64 can still match the real-time criteria. Comparing Method 
C with Method E, the mAP and recall are reduced by 0.001 and 0.01, 
respectively. It is observed that although the mAP is reduced, the AP of 
small objects such as airplanes, ships, tennis courts, and storage tanks 
has been improved. We think the possible reason is that other objects 
in the data set are already in an overfitted state before replacing c3str 
due to the small amount of data. The transformer is too concerned with 
the global and has a large number of parameters, and the replacement 
increases the complexity of the model, resulting in the performance 
can be unchanged or decreased. For some small objects with improved 
AP, they may be under-fitted before adding parameters. Perhaps the 
overall performance improvement can be obtained by increasing the 
scale of the data set. Method D improves APS, APM, and APL com-
pared to the base YOLOv5s, but recall decreases and is not as good as 
the Method E improvement. We think the possible reason is that the 
self-attention mechanism in Transformer can capture long-distance 
feature, but ignores local feature details, which reduces the discrim-
inability between background and foreground. In Figure 8, we plot the 
confusion matrix generated by Method E. In the figure, each row is the 
predicted category and each column is the true category. The diagonal 
data are the percentage of true positives. The TP values above 0.9 are 
for airplanes, baseball fields, and ships. Bridges have the highest FN, 
which is due to the small training sample and limited feature extraction 
for bridges. The FP for ships is also higher, which may be attributed to 
the smaller and denser targets of ships, which are easily misdetected. 
In the ablation experiments, we did not replace all csp blocks with 
c3str blocks, which we do not recommend. From the convolutional 
point of view, this simple convolutional kernel allows for efficient tem-
plate matching in low-level semantic processing. In the self-attention 
mechanism, they can theoretically represent any convolutional layer 
when a sufficient number of heads are used, but are computationally 
expensive and not necessarily more accurate than convolution (Carion 
et al. 2020). From the Transformer’s point of view, it has powerful 
global modeling capability. But cnns can effectively handle low-level 
features to enhance the localization of the transformer. Therefore, in 

order to ensure computational efficiency and accuracy (Wang et al. 
2021; Chu et al. 2021; Yuan et al. 2021; Heo et al. 2021), it is still 
mainly convolutional, and the Swin Transformer is used to assist in en-
hancing the feature extraction capability. (2) Contrast experiments: For 

Table 1. The ablation experiment results of the improved algorithm on 
the dior data set.

Category

Model and AP

YOLOv5s A B C D E
Airplane 0.937 0.937 0.938 0.950 0.925 0.938

Airport 0.572 0.612 0.713 0.764 0.659 0.791
Baseball field 0.943 0.942 0.945 0.942 0.943 0.946
Basketball court 0.850 0.856 0.851 0.862 0.813 0.860
Bridge 0.480 0.489 0.498 0.509 0.453 0.519
Chimney 0.894 0.898 0.901 0.912 0.893 0.903
Dam 0.487 0.582 0.583 0.627 0.532 0.642
Expressway service area 0.660 0.712 0.715 0.717 0.675 0.737
Expressway toll station 0.683 0.695 0.701 0.730 0.649 0.708
Harbor 0.537 0.703 0.738 0.722 0.640 0.737
Golf course 0.791 0.804 0.807 0.812 0.790 0.813
Ground track field 0.610 0.659 0.671 0.664 0.592 0.664
Overpass 0.561 0.593 0.618 0.644 0.614 0.652
Ship 0.923 0.926 0.927 0.940 0.946 0.931
Stadium 0.922 0.905 0.916 0.904 0.892 0.914
Storage tank 0.829 0.836 0.841 0.855 0.845 0.840

Tennis court 0.920 0.921 0.921 0.931 0.933 0.923
Train station 0.372 0.507 0.537 0.567 0.492 0.549
Vehicle 0.734 0.762 0.769 0.768 0.768 0.772
Windmill 0.805 0.809 0.833 0.820 0.819 0.825
APS 0.294 0.317 0.357 0.362 0.338 0.367
APM 0.474 0.483 0.531 0.550 0.499 0.563
APL 0.521 0.608 0.607 0.601 0.549 0.613
AP50:95 0.432 0.481 0.496 0.508 0.453 0.515
Recall 0.86 0.87 0.88 0.87 0.85 0.88
mAP@0.5/% 72.5 75.7 77.1 78.2 74.4 78.3
FPS 66 65 64 61 62 64
YOLO = You Only Look Once; FPS = frames per second.

Figure 8. The confusion matrix of the final improved method on the 
dior data set with an Intersection over Union (IoU) threshold of 0.5 
and a confidence threshold of 0.5.
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testing, the final improved algorithm is put up against the YOLOv4, the 
YOLOv5s, the YOLOv5m, the Mask r-cnn, and the Swin Transformer 
algorithms based on the YOLO detection head. The results are given 
in Table 2, which gives the value of APS, APM, APL, Recall, map@0.5, 
and FPS. Meanwhile, we use the publicly available data set remote 

sensing object detection (RSOD) (Long et al. 2017) to verify the 
generalization ability of the model. The data set includes four different 
types of targets: aircraft, oil tanks, playgrounds, and overpasses. There 
are 446 aircraft images with 4993 instances, 165 oil tank images with 
1586 instances, 189 playground images with 191 instances, and 176 
overpass images with 180 instances. The ablation experiments and 
contrast experiments of rsod data set are shown in Table 3 and Table 
4. Compared to other common object detection methods, the improved 
algorithm outperforms in the dior and the rsod data set of object 
detection. Improved in particular is the detection accuracy of small 
targets. The algorithm proposed in this paper works better when small 
targets are being detected in remote sensing images. Figure 9 shows 
the graph of the detection effect of Method E in order to provide a 
more intuitive assessment of the improved algorithm.

Conclusion
Given the missed detection and false detection of small targets in 
remote sensing image target detection with complex backgrounds, this 
paper proposes some improvements based on YOLOv5s. The first is 
to add the detection layer of small targets to further integrate shallow 
features. The second is to add the window self-attention mechanism 
of the Swin Transformer to enhance the feature extraction ability of 

Table 2. The contrast experimental results on the dior data set.
Model APS APM APL Recall mAP@0.5/% FPS
YOLOv4 0.161 0.284 0.432 0.79 68.7 36
YOLOv5s 0.294 0.474 0.521 0.86 72.5 66
YOLOv5m 0.265 0.473 0.508 0.83 72.0 59
Mask R-CNN 0.213 0.362 0.487 0.82 69.1 18
Swin Transformer 0.355 0.519 0.556 0.85 73.7 57
YOLOv5s-E (ours) 0.367 0.563 0.613 0.88 78.3 64
YOLO = You Only Look Once; FPS = frames per second; R-CNN = region-
based convolutional neural network.

Table 3. The ablation experiment results of the improved algorithm on 
the remote sensing object detection (rsod) data set.

Category 

Model and AP

YOLOv5s A B C D E
Aircraft 0.912 0.916 0.935 0.936 0.925 0.937
Oil tank 0.963 0.973 0.974 0.976 0.968 0.974
Overpass 0.678 0.697 0.681 0.696 0.650 0.767
Playground 0.986 0.981 0.995 0.987 0.989 0.993
APS 0.362 0.379 0.385 0.406 0.387 0.486
APM 0.589 0.599 0.653 0.650 0.540 0.713
APL 0.571 0.571 0.606 0.626 0.542 0.708
AP50:95 0.556 0.579 0.578 0.580 0.545 0.633
Recall 0.92 0.93 0.93 0.93 0.92 0.95
mAP@0.5/% 88.5 89.2 89.6 89.9 88.3 91.8
FPS 57 53 53 48 52 51
YOLO = You Only Look Once; FPS = frames per second.

Figure 9. Method E visualization results on dior data set vs. remote sensing object detection (rsod) data set.

Table 4. The contrast experimental results on the remote sensing object 
detection (rsod) data set.
Model APS APM APL Recall mAP@0.5/% FPS
YOLOv4 0.267 0.355 0.439 0.83 75.5 17
YOLOv5s 0.362 0.589 0.571 0.92 88.5 57
YOLOv5m 0.264 0.476 0.511 0.89 84.5 45
Mask R-CNN 0.203 0.426 0.495 0.86 76.5 7
Swin Transformer 0.423 0.691 0.664 0.93 87.9 41
YOLOv5s-E (ours) 0.486 0.713 0.708 0.95 91.8 51
YOLO = You Only Look Once; FPS = frames per second; R-CNN = region-
based convolutional neural network.
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targets. Finally, the optimization of the YOLOv5s detection algorithm 
is realized. The findings demonstrate that in order to enhance the small 
target feature performance capability, more location information for 
small targets can be gained by increasing the shallow feature map with 
4x downsampling. The capacity to extract features can be improved 
by incorporating a window self-attention mechanism into the feature 
fusion pyramid to help the network concentrate more on the area of 
interest. The final improved algorithm obtained mAP of 0.783 and 
fps of 64 on the dior data set and mAP of 0.918 and fps of 51 on the 
rsod data set. It is better than YOLOv4, YOLOv5s, YOLOv5m, Mask 
r-cnn, and other models with higher detection accuracy and real-time 
performance. It has better application prospects in the field of small 
object detection for remote sensing images. However, there are still 
some tiny undetected targets and the algorithm in this paper has not re-
ally been implemented into engineering applications. In the next step, 
we will continue to improve the algorithm, try to incorporate other 
more advanced attention mechanisms, and make the model lightweight 
to embed it into mobile devices for realistic scenarios.
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ASPRS 
CODE OF ETHICS
Honesty, justice, and courtesy form a moral 
philosophy which associated with mutual interest 
among people should be the principles on which 
ethics are founded.

Each person who is engaged in the use 
development and improvement of the mapping 
sciences (Photogrammetry Remote Sensing 
Geographic Information Systems and related 
disciplines) should accept those principles as a 
set of dynamic guides for conduct and a way of 
life rather than merely for passive observance. It 
is an inherent obligation to apply oneself to one’s 
profession with all diligence and in so doing to be 
guided by this Code of Ethics.

Accordingly, each person in the mapping 
sciences profession shall have full regard for 
achieving excellence in the practice of the 
profession and the essentiality of maintaining 
the highest standards of ethical conduct in 
responsibilities and work for an employer all 
clients colleagues and associates and society at 
large and shall…

1. Be guided in all professional activities by the highest 
standards and be a faithful trustee or agent in all matters 
for each client or employer.

2. At all times, function in such a manner as will bring credit 
and dignity to the mapping sciences profession.

3. Not compete unfairly with anyone who is engaged in the 
mapping sciences profession by:
a. Advertising in a self-laudatory manner;
b. Monetarily exploiting one’s own or another’s 

employment position;
c. Publicly criticizing other persons working in or having 

an interest in the mapping sciences;
d. Exercising undue influence or pressure or soliciting 

favors through offering monetary inducements.

4. Work to strengthen the profession of mapping sciences by:
a. Personal effort directed toward improving personal 

skills and knowledge;
b. Interchange of information and experience with other 

persons interested in and using a mapping science 
with other professions and with students and the 
public;

c. Seeking to provide opportunities for professional 
development and advancement of persons working 
under his or her supervision;

d. Promoting the principle of appropriate compensation 
for work done by person in their employ..

5. Undertake only such assignments in the use of mapping 
sciences for which one is qualified by education training 
and experience and employ or advise the employment 
of experts and specialists when and whenever clients’ or 
employers’ interests will be best served thereby.

6. Give appropriate credit to other persons and/or firms for 
their professional contributions.

7. Recognize the proprietary privacy legal and ethical 
interests and rights of others. This not only refers to the 
adoption of these principles in the general conduct of 
business and professional activities but also as they relate 
specifically to the appropriate and honest application of 
photogrammetry remote sensing geographic information 
systems and related spatial technologies. Subscribers 
to this code shall not condone promote advocate or 
tolerate any organization’s or individual’s use of these 
technologies in a manner that knowingly contributes to:
a. deception through data alteration;
b. circumvention of the law;
c. transgression of reasonable and legitimate expectation 

of privacy.

8. Promote equity, inclusion and intellectual diversity in 
the mapping sciences. Encourage participation without 
regard to race, religion, gender, disability, age, national 
origin, political affiliation, sexual orientation, gender 
identity, or gender expression.

www.asprs.org



Application of Improved YOLO V5s Model for 
Regional Poverty Assessment Using Remote 

Sensing Image Target Detection
Zhang Chenguang and Teng Guifa

Abstract
This study aims at applying the improved You Only Look Once V5s 
model for the assessment of regional poverty using remote sens-
ing image target detection. The model was improved from structure, 
algorithm, and components. Objects in the remote sensing images 
were used to identify poverty, and the poverty alleviation situation 
could be predicted according to the existing detection results. The 
results showed that the values of Precision, Recall, mean Average 
Precision (mAP)@0.5, and mAP@0.5:0.95 of the model increased 
7.3%, 0.7%, 1%, and 7.2%, respectively on the Common Objects in 
Context data set in the detection stage; the four values increased 3.1%, 
2.2%, 1.3%, and 5.7%, respectively on the custom remote sensing 
image data set in the verification stage. The loss values decreased 
2.6% and 37.4%, respectively, on the two data sets. Hence, the ap-
plication of the improved model led to the more accurate detection 
of the targets. Compared with the other papers, the improved model 
in this paper proved to be better. Artificial poverty alleviation can 
be replaced by remote sensing image processing because it is inex-
pensive, efficient, accurate, objective, does not require data, and has 
the same evaluation effect. The proposed model can be considered 
as a promising approach in the assessment of regional poverty.

Introduction
As an important application of hyper spectral remote sensing image, 
target detection belongs to the high dimensional data (Bitar et al. 2019; 
Peng et al. 2020). Moreover, it has higher coupling and correlation in 
spectral as well as spatial resolutions (Liu and Qiao 2020; Mei et al. 
2020). While acquiring poverty data is time consuming and costly and 
greatly influenced by human factors, the use of remote sensing images 
to detect representation objects can objectively reflect the regional 
economic development with the use of no data.

Recently, deep learning has played an important role in remote 
sensing image target detection, and consequently, has broadened the 
knowledge in this area (Li et al. 2018). It is based on convolutional 
neural network, the performance and design of which are constantly 
improving (Yuan et al. 2020). Target detection based on deep learn-
ing includes candidate region-based and regression-based approaches 
(Zheng et al. 2022). In the former approach, also known as the two-
stage method, candidate regions are firstly extracted, and subsequently 
the detection results are obtained, which includes Region-based 
Convolutional Neural Networks (r-cnn), Fast r-cnn, Faster r-cnn, 
and Mask r-cnn (Yan et al. 2019; Girshick 2015; Ji et al. 2019; Zhang 

et al. 2020). On the other hand, in the latter approach, also known as 
the one-stage method, the extraction process is removed for the candi-
date regions, and the results are directly obtained through regression. 
This method includes You Only Look Once (YOLO) and Single Shot 
MultiBox Detector (SSD) (Xu and Wu 2020; Qu et al. 2020).

YOLO V5 is a model with good detection effect among the one-
stage methods, enabling real-time detection with high accuracy and 
low computation. At present, YOLO V5 model has been recognized 
as one of the best detection tools, and has been widely used in remote 
sensing image target detection process. In Tang et al. (2021), an im-
proved N-YOLO model was proposed to solve the problem of noise in 
synthetic aperture radar (sar) images. Firstly, the classification compo-
nent noise level classifier was used to derive and classify the noise, and 
then the target extraction module sar target potential area extraction 
was used to obtain the complete region of the target. Finally, the results 
of the two parts were fused. By comparing with cnn algorithm, it was 
proved that the model had better performance and could realize the 
identification of ship target. In Luo et al. (2022), an improved YOLO 
V5-aircraft model was proposed to solve the problem of insufficient 
speed and accuracy of aircraft recognition in remote sensing images. 
Firstly, the centering and scaling operations were added in the batch 
process to increase the feature extraction capability of the model. Then, 
the cross entropy loss function was replaced by the smooth Karhunen-
Loève algorithm. Finally, the CSandGlass module was used to replace 
the residual module, and the low-resolution feature layer was removed. 
By comparing with the original model, it was proved that the improved 
model had better speed, accuracy, and convergence. In Zhou et al. 
(2022), a multi-scale ship detection method based on the improved 
YOLO V5s model was proposed. Firstly, combined with the module-
collaborative attention mechanism (cam), the improved residual mod-
ule Res2Net was introduced into the new module CSPMRes2 to make 
it have the feature extraction ability in both depth and scale dimen-
sions. Then, a new feature pyramid network with fusion coefficients 
module was created to provide coefficients for the optimal feature fu-
sion scheme. Finally, multi-scale detection of ship objects was realized.

In the present study, the improved YOLO V5s model was used 
for the assessment of regional poverty using remote sensing image 
target detection. In view of the limitations of the existing research, 
the following solutions were proposed. First, we used extensive 
data sources for the analysis and presentation of results. Previously, 
regional poverty assessment was based on statistical methods or big 
data technology, influenced by human factors. Now, the remote sensing 
images target detection results were used for auxiliary verification to 
achieve an objective decision process. Second, the original model has 
been improved comprehensively. Previous improvement methods were 
based on components in a simple form with limited improvement in 
the target detection ability. However, in this paper, model structure, 
loss function, and component design were all considered, and the 
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feature localization capability was improved significantly by increasing 
the depth of the pyramid attention network (pan). The angle relation 
replaced the position relation between the ground truth (gt) box and 
the prediction (Pre) box in the complete intersection over union (CIoU) 
loss function and the detection performance was improved. The atten-
tion mechanism was introduced and improved, and the multi-channel 
convolution technique was combined to enhance extraction capabil-
ity for different types of features. Third, the detection results were 
more comprehensive. Performance indicators to evaluate the YOLO 
V5s model are P (Precision), R (Recall), mAP@0.5 (mean Average 
Precision @ IoU = 0.5), mAP@0.5:0.95, and Loss. Most studies that 
focus on the detection result parameters do not provide a comprehen-
sive reference for readers. However, this paper detected all parameters, 
so as to provide a more authoritative reference basis.

Materials and Methods
YOLO V5s Model
Figure 1 shows the structure of YOLO V5s model as a whole and its 
parts. Up indicates up-sampling, Conv means convolution, and BN 
stands for BatchNorm2d function. Focus, cbl (Conv + BN + Leaky 
relu), csp (Cross Stage Partial), and spp (Spatial Pyramid Pooling) 
structures are shown as the components. Compared with the previous 
versions, new functions such as adaptive anchor box calculation, adap-
tive image scaling, and improved Neck structure are introduced.

Data Set Preparation
Remote sensing images were derived from the data integration of satel-
lite images and aerial photography, among which: satellite images were 
derived from DigitalGlobe's QuickBird (usa) commercial satellite and 
EarthSat’s LANDSAT-7 (usa) remote sensing data; the aerial images 
were derived from BlueSky (uk), Sanborn (usa), IKONOS (usa), and 
SPOT5 (France). Parameters of the image are shown in Table 1.

BIGEMAP1 software, with a resolution of 0.5 m, was used to obtain 
the remote sensing images. A total number of 842 304 images were 
gathered. The images in the determined years were downloaded after 
selecting the region and adjusting the time node, as shown in Figure 2.

In this study, we used Google tiles in jpg format, as shown in Table 2.
The LabelImg tool2, developed by Python, was used for labeling 

the images. Figure 3 shows the annotation process. The results of the 
annotations were files in xml format that must be converted to txt 
format (Appendix A) before they can be used in the YOLO V5s model. 
File contents were location informations of the objects in remote sens-
ing images, that was, the production of the gt box data.

1. Chengdu Bigemap Data Processing Co., Ltd. 2023. Bigemap. V25.5.0.1. Windows All. Chengdu: Chengdu Bigemap Data Processing Co., Ltd.
2. Python community. 2021. LabelImg. V1.8.6. Windows All. https://pypi.org/project/labelImg/: Python community. 

Figure 1. YOLO V5s model structure diagram. CBL = Conv + BN + Leaky relu; Conv = convolution; CSP = Cross Stage Partial; BN = BatchNorm2d 
function; Up = up-sampling; SPP = Spatial Pyramid Pooling.

Table 1. Common satellite bands and resolutions.
Satellite Bands (nm) Resolution (m)

QuickBird

blue: 450−520 2.44

green: 520−660 2.44

red: 630−690 2.44

near-infrared: 760−900 2.44

Landsat-7

blue-green: 450−520 30

green: 520−600 30

red: 630−690 30

near-infrared: 760−900 30

intermediate infrared: 1550−1750 30

thermal infrared: 10 400−12 500 60

intermediate infrared: 2080−2350 30

panchromatic: 520−900 15

SPOT5

green: 500−590 10

red: 610−680 10

near-infrared: 780−890 10

intermediate infrared: 1580−1750 10

panchromatic: 480−710 5

super panchromatic: 480−710 2.5

Figure 2. Selection of the image from the determined years.

Table 2. Selection of the download format.
Level Scale Resolution Format Size

18 1:1757 0.5 m Google Tile (*.jpg) 256 × 256
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Poverty Factors and Representational Relationship
Objects in remote sensing images indicates the regional economic 
development factors. Table 3 shows the poverty factors and represen-
tational relationships. According to the poverty alleviation policy, the 
poverty factors include food, housing, transportation, and education. 
Contents that cannot be directly observed through remote sensing 
images need to be calculated through traditional statistical data, which 
has been done before this study.

YOLO V5s Model Improvement
The following steps were used to improve the YOLO V5s model:

Step 1: Enhanced pan Structure
Table 4 shows the pan + fpn + pan structure of the original model. The 
fpn is an up-sampling process, through which feature extraction results 
are enlarged layer by layer for semantic recognition. However, the pan 
is a down-sampling process, through which the positioning informa-
tion is preciser layer by layer and is used for positioning recognition. 
Each value in the table has a uniform format: serial number + name + 
parameter set.
(1) serial number: L(N), namely the layer N network. In YOLO V5s 

model’s Yaml file, the order in which the network layers are writ-
ten is the order in which they are executed.

(2) name: the name of the network layer being executed. These names 
are the same as in Figure 1 and in the same order.

(3) parameter set: in order they are: the number of batches, the number 
of channels for input data, and the width and height of output data.

As shown in Table 5, the structure of the improved model has the 
following changes, compared with the original model: first, layers 
were expanded from 25 to 28. Second, the fpn process was shortened. 
In layer 16, the image size increased from 32 to 128, which was the 
end of the fpn process and the beginning of the second pan process, 
making the second pan have greater depth. Third, layers 17–19 were 
introduced, and the intermediate features extracted were fused with 
layer 3 in the channel dimension. Thus, both pan processes imple-
mented down-sampling from 128 to 8. The improved model indirectly 
increased the overall depth by increasing the pan depth. This process 
enhanced the feature extraction ability and improved the feature local-
ization accuracy.

The improved portions of the model are shown in Figure 4.

Step 2: RIoU_Loss (Round IoU) Regression Loss Function
Equations 1, 2, and 3 are used to express the CIoU regression loss 
function (Zheng et al. 2021).

Figure 3. Labeling of the representation objects in the remote 
sensing image.

Table 3. Label type and representational relationships.
Poverty Factors Representations Statistical Data

Food

Greenhouses Water resources

Cultivated area

Sewage/household refuse
Food expenditure
Per capita income

Consumption expenditure

Housing

Bungalows Urban/rural population

Buildings

Population growth/mortality rate
Housing expenditure

Housing sales
Household appliances

Transportation Highway
Transportation expenditure

Travel
Electricity/post

Education Playgrounds

Educational expenditure
Science and technology input/output

Number of students/teachers
Sports and entertainment

Employment situation

Table 4. PAN + FPN + PAN structure of the original YOLO V5s model.
PAN FPN PAN

L0:input:[1,32,128,128] — —
L1:Focus:[1,64,64,64] — —
L2:CBL:[1,64,64,64] — —
L3:CSP1:[1,64,64,64] L18:CSP2:[1,128,32,32] L19:CBL:[1,128,16,16]

L4:CBL:[1,128,32,32] L17:Concat 
L5:[1,256,32,32]

L20:Concat 
L15:[1,256,16,16]

L5:CSP1:[1,128,32,32] L16:Up:[1,128,32,32] L21:CSP2:[1,256,16,16]
L6:CBL:[1,256,16,16] L15:CBL:[1,128,16,16] L22:CBL:[1,256,8,8]

L7:CSP1:[1,256,16,16] L14:CSP2:[1,256,16,16] L23:Concat 
L11:[1,512,8,8]

L8:CBL:[1,512,8,8] L13:Concat 
L7:[1,512,16,16] L24:CSP2:[1,512,8,8]

L9:SPP:[1,512,8,8] L12:Up:[1,256,16,16] L25:Detect:(L18,L21,L24)
L10:CSP2:[1,512,8,8] L11:CBL:[1,256,8,8] —

CBL = Conv + BN + Leaky relu; CSP = Cross Stage Partial; FPN = 
feature pyramid network; L = layer; PAN = pyramid attention network.

Table 5. Enhanced PAN structure of the improved YOLO V5s model.
PAN FPN PAN

L0:input:[1,32,128,128] — —
L1:Focus:[1,64,64,64] — —
L2:CBL:[1,64,64,64] — —
L3:CSP1:[1,64,64,64] — —
L4:CBL:[1,128,32,32] — —
L5:CSP1:[1,128,32,32] L16:Up:[1,128,128,128] L17:CBL:[1,64,64,64]

L6:CBL:[1,256,16,16] L15:CBL:[1,128,16,16] L18:Concat 
L3:[1,128,64,64]

L7:CSP1:[1,256,16,16] L14:CSP2:[1,256,16,16] L19:CBL:[1,128,32,32]

L8:CBL:[1,512,8,8] L13:Concat 
L7:[1,512,16,16]

L20:Concat 
L5:[1,256,32,32]

L9:SPP:[1,512,8,8] L12:Up:[1,256,16,16] L21:CSP2:[1,128,32,32]
L10:CSP2:[1,512,8,8] L11:CBL:[1,256,8,8] L22:CBL:[1,128,16,16]

— — L23:Concat 
L15:[1,256,16,16]

— — L24:CSP2:[1,256,16,16]
— — L25:CBL:[1,256,8,8]

— — L26:Concat 
L11:[1,512,8,8]

— — L27:CSP2:[1,512,8,8]
— — L28:Detect:(L21,L24,L27)

CBL = Conv + BN + Leaky relu; CSP = Cross Stage Partial; FPN = 
feature pyramid network; L = layer; PAN = pyramid attention network.
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(1)

  
(2)

   
(3)

where wgt denotes the width of the gt box; hgt stands for the height of 
the gt box; wp represents the width of the Pre box; hp is the height of 
the Pre box; D_2 signifies the distance between the two centers, and 
D_C is the diagonal distance of the two enclosing rectangles.

Thus, the factors of overlap area, central point distance, and aspect 
ratio have been considered. However, location difference is disre-
garded. For example, P1 and P2 are embedded in gt (Figure 5); all 
have the same aspect ratio. Hence, v = 0 is always true in Equation 1. 
Accordingly v·alpha = 0 is always true in Equation 3. While the areas 
enclosed by P1 and P2 are unequal, when

   
(4)

is true, the CIoU values of P1 and P2 are equal and cannot be dis-
tinguished. Since P1 is far from the gt center and P2 is close, D_21 
is larger than D_22. If iou1 is larger than iou2 simultaneously, then 
Equation 4 holds some probability.

As shown in Figure 6, point O is the center of gt; point A denotes 
the top left of gt; point B stands for the center of Pre. Circle R is 
formed, taking O as the center, and D_2 is the radius. Then, R is the 
trajectory of B. However, IoU, D_C, and D_2 are all decidable, while 
the position of B is random, and the paths of B and R coincide. In the 
triangle OAB, the lengths of OA and OB are fixed, whereas the length 
of AB is variable as B moves, and the internal angles change accord-
ingly. By the law of sine, when

  BO / sin ÐBAO = AO / sin ÐABO (5)
is true,

  sin ÐBAO / sin ÐABO = BO/AO (6)

is established. Moreover, the position relationship between Pre and gt 
is transformed into the angle relationship. The angle ÐBAO reflects 
the movement of B on R, which is the position of Pre concerning gt. 
B moves from 0° to 360°, covering every possible scenario. When B 
moves along R to E, the value of  does not change.  was used for auxil-
iary verification. Referring to Equation 5 and Equation 6, when

  AB / sin ÐAOB = AO sin ÐABO (7)
is true,
  sin ÐAOB / sin ÐABO = AB/AO (8)

is established. Moreover, BC and BD are the vertical distances from B 
to gt, and the following equations

  BC = |xB – xA| (9)

  BD = |yB – yA| (10)

   (11)

are established. In summary, the RIoU_Loss regression loss function is 
defined as

  iou – (BO/AO)×(AB/AO) = iou – (4×D_2 AB/D_C2) (12)

Step 3: Collaborative Attention Mechanism
Simply combining the attention mechanism with the YOLO V5s model 
cannot improve the performance of detection results effectively. Table 
6 lists common attention mechanisms (Hu et al. 2018; Woo et al. 2018; 
Wang et al. 2020; Hou et al. 2021), compared with Step 2. The mean-
ings of the parameters are as follows:
(1) Memory(G): the memory space required to run the model, the unit 

of measurement is gigabyte.
(2) Model Layers: the number of layers of the model, including con-

volution, batch normalization, activation, and other functions.
(3) Yaml Layers: the number of layers of Yaml file, which reflects the 

order in which the model is run and the related functions.

Figure 4. Comparison of enhanced pyramid attention network (pan) structure with original model. CBL = Conv + BN + Leaky relu; Conv = 
convolution; CSP = Cross Stage Partial; Up = up-sampling; SPP = Spatial Pyramid Pooling.

Figure 5. Invalid RIoU_Loss regression loss function. IoU = 
intersection over union; RIoU =round IoU.

Figure 6. RIoU_Loss regression loss function schematic diagram. 
RIoU = round intersection over union.

502 August  2023 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



(4) Time/Image(ms): the time taken to execute a single image, the 
unit is millisecond.

(5) Weight: there are two ways to measure it. The first is the size of 
weight file, the unit is megabyte. The second is the total number 
of parameters during model running.

(6) P: Precision.
(7) R: Recall.
(8) mAP@0.5: mean Average Precision @ IoU = 0.5.
(9) mAP@0.5:0.95: mean Average Precision @ IoU = 0.5:0.95.
(10) GFLOPS(B): giga floating-point operations per second, the unit 

is byte.
The main performance indicators of the model (P, R, mAP@0.5, 

and mAP@0.5:0.95, obtained based on the coco data set), does not 
improve but decrease. There are two possible reasons: first, the tradi-
tional attention mechanisms must conduct pooling operations in the 
dimensions of scale or channel, making the results inconsistent with 
the overall original data dimensions and causing data loss. Second, the 
sigmoid function is used to generate coefficients for data enhancement, 
transforming from a linear to nonlinear distribution. Figure 7 shows 
that the conversion results in the interval [a,b] are better than the 
initial linear function (y = nx + m), whereas in the intervals [–∞,a] and 
[b,+∞] it approaches the lower and upper limits indefinitely, making 
the data distribution not properly reflected. Experimental data showed 
large fluctuations in the early stage of the training process. The model 
performance was difficult to continuously improve at the later stage, 
because its ability to extract features was limited and challenging.

The new cam consisted of two parts. First, the reverse filling 
attention mechanism (rfam) component was proposed. Unlike the 
traditional combinations, this component did not plug into the existing 
model but replaced layer 11. In other words, the rfam module replaced 
the Conv + BN + Leaky Relu (cbl) module, based on the connection 
between the Backbone and the Neck. Second, a multi-channel convolu-
tion (mcc) component was added after layer 21, layer 25, and layer 
29 for extracting different features based on Step 2, as the connection 
between the Neck and the Prediction. Meanwhile, the cbl modules 
in layer 23 and layer 27 were replaced by dilated convolution (dc) 
modules to alleviate data loss in the down-sampling process, as shown 
in Table 7 (see next page).

Figure 8 shows the rfam component, which is located at the junc-
tion of the Backbone and the Neck. The meanings of portions are as 
follows:
(1) AP: nn.AdaptiveAvgPool2d(h, w) function. Apply a 2D adaptive 

average pooling over an input signal composed of several input 
planes. The output is of size h×w, for any input size. The number 
of output features is equal to the number of input planes.

(2) Re: Torch.Tensor.Repeat(size) function. Repeat a tensor along the 
specified dimensions. Parameter “size” is the number of times to 
repeat.

(3) M: Torch.Mean(input) function. Return the mean value of all ele-
ments in the input tensor.

(4) Sub: Torch.Subtract(input) function.
Three sequences were executed simultaneously. In the first se-

quence, the input data were completely preserved without any process-
ing, similar to the input data in the residual network. In the second 
sequence, channel calculation and pixel calculation were performed in 
two steps. In the channel calculation, AP was first used to convert the 
input data size from h×w to 1×1. Subsequently, Re was used to reverse 
fill and restore the size to h×w. Thus, the value of each pixel was the 
same for any channel. Finally, the current result was used to calculate a 
difference in the input data by Sub. The difference between each pixel 

Table 6. Detection results of YOLO V5s model combined with a common attention mechanism.
Memory 

(G)
Model 
Layers

Yaml 
Layers

Time/
Image(ms) Weight P R mAP @0.5

mAP 
@.5:.95

GFLOPS
(B)

Step 2 
(Baseline) 4.69 310 28 91.927

15.3M
0.7143 0.98 0.9746 0.8425 23.9

7518909

+SE 3.69 316 28 105.525
15.4M

0.6544 0.9714 0.9649 0.817 24
7551677

+CBAM 3.69 321 28 105.173
15.4M

0.6691 0.9715 0.9655 0.8041 24
7551775

+ECA 3.69 314 28 106.383
15.3M

0.6672 0.9687 0.9631 0.8114 23.9
7518912

+CA 3.73 320 28 105.891
15.4M

0.6611 0.9758 0.9671 0.8003 24
7544557

CA = Coordinate Attention; CBAM = Convolutional Block Attention Module; ECA = Efficient Channel Attention; GFLOPS = giga floating-point operations per 
second; mAP = mean Average Precision; P = Precision; R = Recall; SE = Squeeze-and-Excitation; YOLO = You Only Look Once.

Figure 7. Sigmoid function versus linear function.

Figure 8. Reverse filling attention mechanism (rfam) structure. AP = nn.AdaptiveAvgPool2d(h, w) function; cbl = Conv + BN + Leaky relu; M 
= Torch.Mean(input) function; Re = Torch.Tensor.Repeat(size) function; Sub = Torch.Subtract(input) function.
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of the input data was noted, which simultaneously meets the require-
ment of increasing the target difference in the feature extraction process. 
The cbl modules were executed sequentially to further extract features. 
Moreover, the number of channels was compressed (c/16) and decom-
pressed (c). In the subsequent pixel calculation process, M was used to 
convert the number of channels from c to 1. Then, Re was used to re-
verse fill to restore the number to c, and the difference in the input data 
was calculated based on this result by Sub. Similarly, the cbl module 
with a convolution kernel size of 7 was used for further feature extrac-
tion. The third sequence was like the second, except that the channel 
calculation was swapped with the order of the pixel calculation. Finally, 
the results of the three sequences were combined and the cbl model 
was obtained. The rfam component performed channel calculation and 
pixel calculation for the input data at different angles. Unlike the tradi-
tional attention mechanisms, the sigmoid function for coefficient was 
replaced by reverse filling, which reduced data loss and created feature 
extraction optimization. The parameter set is shown in Table 8.

The performance of rfam is shown in Table 9.
T- hypothesis test was used to compare the performances of step 2, 

RFAM, and the attention mechanisms in Table 6. The implementation 
process is as follows:

In Table 10, method1 and method2 are the two objects to be com-
pared, d is the difference between them, and n is the number of values 
in each method. Suppose di = xi – yi, (i = 1, 2, …, n) is the sample from 
normal population N(μD, μD

2), μD, and μD
2 are unknown, and set signifi-

cance level α = 0.1, then hypothesis test can be expressed as:

 H0 : μD ≥0, H1 : μD<0,
namely, compare 

 

and –t0.1(n –1), where sd is the standard deviation. The performance 
ordering is shown in Table 11.

Table 7. Collaborative attention mechanism structure of the improved 
YOLO V5s model.

PAN FPN PAN
L0:input:[1,32,128,128] — —
L1:Focus:[1,64,64,64] — —
L2:CBL:[1,64,64,64] — —
L3:CSP1:[1,64,64,64] — —
L4:CBL:[1,128,32,32] — —
L5:CSP1:[1,128,32,32] L16:Up:[1,128,128,128] L17:CBL:[1,64,64,64]

L6:CBL:[1,256,16,16] L15:CBL:[1,128,16,16] L18:Concat 
L3:[1,128,64,64]

L7:CSP1:[1,256,16,16] L14:CSP2:[1,256,16,16] L19:CBL:[1,128,32,32]

L8:CBL:[1,512,8,8] L13:Concat 
L7:[1,512,16,16]

L20:Concat 
L5:[1,256,32,32]

L9:SPP:[1,512,8,8] L12:Up:[1,256,16,16] L21:CSP2:[1,128,32,32]
L10:CSP2:[1,512,8,8] L11:RFAM:[1,256,8,8] L22:MCC:[1,128,32,32]

— — L23: DC:[1,128,16,16]

— — L24:Concat 
L15:[1,256,16,16]

— — L25:CSP2:[1,256,16,16]
— — L26:MCC:[1,256,16,16]
— — L27: DC:[1,128,8,8]

— — L28:Concat 
L11:[1,512,8,8]

— — L29:CSP2:[1,512,8,8]
— — L30:MCC:[1,512,8,8]
— — L31:Detect:(L22,L26,L30)

CBL = Conv + BN + Leaky relu; CSP = Cross Stage Partial; FPN = feature 
pyramid network; L = layer; PAN = pyramid attention network; YOLO: You 
Only Look Once.

Table 8. Parameter set generated during Reverse filling attention 
mechanism (rfam) running.
Sequence Name Batch Channel Height Width

input Input b c h w

2

AP b c 1 1

Re b c h w

Sub b c h w

CBL b c/16 h w

CBL b c h w

M b 1 h w

Re b c h w

Sub b c h w

CBL b c h w

3

M b 1 h w

Re b c h w

Sub b c h w

CBL b c h w

AP b c 1 1

Re b c h w

Sub b c h w

CBL b c/16 h w

CBL b c h w

output CBL b c h w

AP = nn.AdaptiveAvgPool2d(h, w) function; CBL = Conv + BN + Leaky relu; 
Conv = convolution; BN = BatchNorm2d function; M = Torch.Mean(input) 
function; Re = Torch.Tensor.Repeat(size) function; Sub = Torch.Subtract(input) 
function.

Table 9. Detection results of You Only Look Once (YOLO) V5s model 
combined with rfam component.

P R mAP@0.5 mAP@.5:.95

+RFAM 0.6894 0.9758 0.9692 0.8317

mAP = mean Average Precision; P = Precision; R = Recall; RFAM = reverse 
filling attention mechanism.

Table 10. T-hypothesis test analog data.
Objects Values

method1 (x) value1_1 value1_2 ∙∙∙ value1_n

method2 (y) value2_1 value2_2 ∙∙∙ value2_n

D = x − y d1 d2 ∙∙∙ dn

Table 11. Performance ordering among Step 2, reverse filling attention 
mechanism (rfam) and attention mechanisms.

Objects Ordering

Step 2 1

RFAM 2

ECA 3

CBAM 4

SE 5

CA 6

CA = Coordinate Attention; CBAM = Convolutional Block Attention 
Module; ECA = Efficient Channel Attention; RFAM = reverse filling attention 
mechanism; SE = Squeeze-and-Excitation.
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The performance of the current model is not optimal. As shown 
in Table 11, while RFAM performs better (P, R, mAP@0.5, and 
mAP@0.5:0.95) than other attention mechanisms in Table 6 (SE, 
CBAM, ECA, and CA), this does not exceed the Step 2 Baseline.

Figure 9 shows the comparison of the detection results between 
rfam and Step 2 at different time nodes. According to the data, the 
detection results are counted at every 50 epochs, 10 times in total. 
The performance of rfam shows a fast growth trend from 0 to 150 
epochs, and all indicators are better than those in Step 2. However, 
this is gradually surpassed. A possible reason is that rfam takes into 
account both channel and image scale. Therefore, compared with the 
single feature extraction method, multi-dimensional feature extraction 
can significantly accelerate the convergence speed, which is why rfam 
is better than Step 2 in the early stage of detection process. However, 
in the YOLO V5s model, pan and fpn play a decisive role in object 
detection performance. Because rfam does not essentially optimize the 
model structure, it lacks the ability to extract features continuously in 
the later stage of the detection process, so that various indicators reach 
a bottleneck in poor performance.

Experimental data showed that using different convolution kernels 
to disassemble features can effectively improve the feature extrac-
tion ability. The mcc component with multiple convolution kernels 
can meet the requirements, proposed to connect the Neck and the 
Prediction. The Asymmetric Convolution Network (ACNet) was used 
to divide the input data into three channels and perform 1×1 cbl (the 
size of the convolution kernel in the cbl is 1×1), as shown in Figure 
10. Further, 1×1, 3×3, and 5×5 convolution and Sigmoid Linear Unit 
(SiLU) activation were performed. Subsequently, the results of chan-
nels 1 and 2 were combined, with the same operation performed on 
channel 2 and channel 3. Moreover, BN + Conv + SiLU operations 
were conducted. This was followed by merging the results of the two 
channels and performing the BN + ACNet operations.

The meanings of portions are as follows:
(1) ACNet (Ding et al. 2019): As shown in Figure 11, the operation is 

based on the following principles: in the first case, the input data 
is convolved with two different kernels and the results are added 
together. In the second case, the two kernels are added before the 
input data is convolved. The result is the same in both cases. It 
can be expressed as Equation 13.

  I * K(1) + I * K(2) = I * (K(1) ⊕ K(2)) (13)

The cbl component was replaced by DL (kernel = 3, stride = 2, 
padding = 2, dilation = 2) to reduce data loss in the down-sampling 
process. The convolution process is expressed as follows:

  f = k + (k – 1)(d –1) (14)

  out = (in – f + 2p + 1)/s (15)

(2) SiLU: Torch.nn.SiLU() function. Apply the SiLU function. The 
SiLU function is also known as the swish function. , where  is the 
logistic sigmoid.

Results and Discussion
Three improvements were achieved with the model. The running 
results and the performance enhancements of each part are as follows: 
coco data set was used in the detection phase, and a custom remote 
sensing image data set was used in the verification phase.

Detection Phase
Enhanced PAN Structure
Table 12 presents the performance comparison of the enhanced pan 
structure and the original model. The results show that with the 
increase of the depth of the improved model, the amount of computa-
tion and memory demand also increase, but the object detection ability 
of the model has been significantly improved. Increase in P value 
indicates increase in accuracy, and increase in mAP values indicate 
increase in object classification ability.  

Figure 9. Comparison of reverse filling attention mechanism (rfam) and Step 2 detection results. mAP = mean Average Precision; P = Precision; 
R = Recall.

Figure 10. Multi-channel convolution (mcc) component structure. AC = Asymmetric Convolution; BN = BatchNorm2d function; cbl = Conv + 
BN + Leaky relu; Conv = convolution; SiLU = Sigmoid Linear Unit.

Figure 11. Asymmetric Convolution Network structure. ReLu = 
ReLu activation function.
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Figure 12 shows the obtained results, where graphic title “Box” 
represents the bounding box loss; graphic title “Objectness” stands for 
the target detection loss, and graphic title “Classification” suggests the 
Classification loss. These three constitute loss value. Graphic title “val” 
represents validation set results. (X-axis represents the number of execu-
tions, and Y-axis represents the detection values. Since the figure is auto-
matically generated by YOLO V5s model, the two axes cannot be named).

Table 13 shows the comparison of the loss function values between 
the improved model and the original model. The loss function of the 
model comprises three parts. Bounding box, represented by “Box”, 
suggests the size and exact position of the target. Confidence, repre-
sented by “Objectness”, is used to indicate the reliability of the bound-
ing box. Moreover, Classification, represented by “Classification” 

variable, is used to signify the classification of the targets. The results 
show that the accuracy and confidence of the improved model are 
improved, but the classification ability is decreased, and the final loss 
value is decreased.

Results of the RIoU_Loss Regression Loss Function
Table 14 shows the comparison of the performance of the RIoU_Loss 
regression loss function and the original model. The results show that 
in addition to the increase of P value, the value of mAP@0.5:0.95 also 
increases significantly, which indicates that the improved model has 
better classification ability when multiple objects are superimposed in 
a region.   

Detection results are shown in Figure 13.
Table 15 shows the comparison of the loss function values between 

the improved model and the original model. The results show that the 
feature localization error of the improved model is increased, but the 
object classification ability is improved.

Results of the CAM Component
Table 16 shows the comparison of the performance between the cam 
component and the original model. The results show that all indicators 
of the model have been improved, and the improvement of accuracy 

Table 12. Performance comparison of enhanced pyramid attention network (PAN) structure and original model.
Memory 

(G)
Model 
Layers

Yaml 
Layers

Time/Image 
(ms) Weight P R mAP@0.5 mAP@.5:.95

GFLOPS
(B)

Baseline 3.96 283 25 59.063
14.1M

0.6852 0.9729 0.9664 0.797 17.1
7 276 605

+EPAN 4.69 292 28 83.602
15.3M

0.7039 0.979 0.9716 0.8348 23.9
7 518 909

EPAN = enhanced PAN; GFLOPS = giga floating-point operations per second;mAP = mean Average Precision; P = Precision; R = Recall.

Figure 12. Detection results of enhanced pyramid attention network (pan) structure. mAP = mean Average Precision.

Table 14. Performance comparison of the RIoU_Loss regression loss function and original model.
Memory 

(G)
Model 
Layers

Yaml 
Layers

Time/
Image(ms) Weight P R mAP@0.5 mAP@.5:.95

GFLOPS
(B)

Baseline 3.96 283 25 59.063
14.1M

0.6852 0.9729 0.9664 0.797 17.1
7 276 605

+EPAN 4.69 292 28 83.602
15.3M

0.7039 0.979 0.9716 0.8348 23.9
7 518 909

+RIoU_Loss 4.69 292 28 91.927
15.3M

0.7143 0.98 0.9746 0.8425 23.9
7 518 909

EPAN = enhanced PAN; GFLOPS = giga floating-point operations per second; mAP = mean Average Precision; P = Precision; R = Recall; RIoU = round intersection 
over union.

Table 13. Comparison of the loss function values between enhanced 
pyramid attention network (pan) and the original model.

Box Objectness Classification Loss

Baseline 0.02941 0.03177 0.00495 0.06613

+EPAN 0.02651 0.02738 0.005304 0.05919

EPAN = enhanced PAN.
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is obvious, but the cost is the surge of computation. On the other hand, 
the processing time of a single image increases significantly. This 
indicates that the structure of the model needs to be further improved. 
If the overall depth is not easy to simplify, the convolution kernel 
structure could be considered to be improved to make it more efficient 
in image processing.  

Detection results are shown in Figure 14.

Figure 13. Detection results of the RIoU_Loss regression loss function. mAP = mean Average Precision; RIoU = round intersection over union.

Figure 14. Detection results of the collaborative attention mechanism (cam) component. mAP = mean Average Precision.

Table 16. Performance comparison of the collaborative attention mechanism (cam) component and original model.
Memory (G) Model Layers Yaml Layers Time/Image(ms) Weight P R mAP@0.5 mAP@.5:.95 GFLOPS (B)

Baseline 3.96 283 25 59.063
14.1M

0.6852 0.9729 0.9664 0.797 17.1
7 276 605

+EPAN 4.69 292 28 83.602
15.3M

0.7039 0.979 0.9716 0.8348 23.9
7 518 909

+RIoU_Loss 4.69 292 28 91.927
15.3M

0.7143 0.98 0.9746 0.8425 23.9
7 518 909

+CAM 4.68 461 31 218.756
76.7M

0.7346 0.9802 0.9763 0.8541 77.138 139 
645

CAM = collaborative attention mechanism; EPAN = enhanced PAN; GFLOPS = giga floating-point operations per second; mAP = mean Average Precision; P = 
Precision; R = Recall; RIoU = round intersection over union.

Table 15. Comparison of the loss function values between the round 
intersection over union (RIoU) and the original model.

Box Objectness Classification Loss

Baseline 0.02941 0.03177 0.00495 0.06613

+EPAN 0.02651 0.02738 0.005304 0.05919

+RIoU_Loss 0.03305 0.02782 0.005284 0.06616

EPAN = enhanced PAN; RIoU = round intersection over union.
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Table 17 shows the comparison of the loss function values between 
the improved model and the original model. The results show that the 
confidence and classification ability of the improved model are further 
improved, and the loss value decreases on the basis of the original model.

Verification Phase
Table 18 shows the comparison of the performance between the im-
proved model and the original model using the custom remote sensing 
image data set. The results show that the performance of the improved 

model on the custom data set is better than that on the coco data set. 
There are two possible reasons. First, the number of images in the cus-
tom data set is larger, so that the model can recognize more features in 
the training stage. Second, there is only one kind of remote sensing im-
age in the customized data set, relatively speaking, within the limited 
training times, the model can identify features more intensively. 

Verification results are shown in Figure 15.

Table 19 shows the comparison of the loss function values between 
the improved model and the original model. The results show that the 
loss value of the improved model is smaller on the custom data set, and 
the overall loss value is better due to the obvious decrease of the Box 
value. This indicates that the feature localization ability of the model is 
better in the verification stage.

Detection Results
Table 20 shows the detection results of each representation object from 2014 
to 2019, the poverty rates were obtained by consulting local government.

Table 21 shows the results based on a 95% regression analysis of 
each detection result.

The results of the analysis corroborate the effectiveness of the target 
detection results obtained by the improved YOLO V5s model. The 

Table 17. Comparison of the loss function values between the 
collaborative attention mechanism (cam) component and original model.

Box Objectness Classification Loss
Baseline 0.02941 0.03177 0.00495 0.06613
+EPAN 0.02651 0.02738 0.005304 0.05919
+RIoU_Loss 0.03305 0.02782 0.005284 0.06616
+CAM 0.03334 0.02618 0.004939 0.06445
CAM = collaborative attention mechanism; EPAN = enhanced PAN; RIoU = 
round intersection over union.

Table 18. Performance comparison of the improved model and original model.
Memory (G) Model Layers Yaml Layers Time/Image(ms) Weight P R mAP@0.5 mAP@.5:.95 GFLOPS (B)

Baseline 4.1 283 25 67.612
14.4M

0.9217 0.9753 0.9795 0.8433 16.5
7 085 118

improved 4.75 461 31 209.845
76.3M

0.9677 0.9958 0.9927 0.951 76.5
37 948 158

GFLOPS = giga floating-point operations per second; mAP = mean Average Precision; P = Precision; R = Recall.

Figure 15. Detection results of the improved model based custom data set. mAP = mean Average Precision.

Table 19. Comparison of the loss function values between the 
improved model and original model.

Box Objectness Classification Loss
Baseline 0.02008 0.03071 0.000738 0.05153
improved 0.01835 0.0209 0.000381 0.03963

Table 20. Detection results for each representation object.

Year
Highway 

(m2)
Bungalow1 

(pieces)
Bungalow2 

(pieces)
Building 
(pieces)

Sports Ground 
(pieces)

Green House 
(pieces)

Terrace1 
(m2)

Field 
(m2)

Terrace2 
(m2)

Poverty 
Rate

2014 4717 11 569 3964 353 12 1148 1773 290 220 0.5437
2015 8171 17 948 4656 457 21 1377 2616 327 311 0.3004

2016 9717 16 463 5521 743 22 1659 3823 478 519 0.186
2017 15 074 18 241 5156 1122 25 2565 4587 529 673 0.1378
2018 16 812 19 462 5087 1192 25 2827 4614 555 731 0.0693
2019 16 881 25 890 4657 1988 30 3080 5291 550 855 0.0045
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Significant F is much less than 0.05, which proves that the regression 
process is valid. Consequently, changes in representative objects in the 
region can be obtained over the years, as shown in Figure 16a–f (the 
labels BGY–XZ on the X-axis stand for the abbreviations of the county 
names; see next page).

The rate of poverty could reflects regional economic development. 
As shown in Table 22, the poverty rate of 2020 is unknown, which 
can be predicted by regression compared with the data in Table 20. 
According to the prediction result, the poverty rate in 2020 is less than 
0, indicating that there is no poverty in this region, that is, the state of 
out of poverty has been achieved.

As shown in Table 23, the traditional statistical data are used to 
analyze the economic development of the region as an ancillary valida-
tion. According to the regional policy, these indicators are the standard 
for measuring poverty. The data from 2014 to 2019 are known and 
reflect the level of poverty in a certain field. Using regression to predict 
the data in 2020, it can be seen that the poverty degree in all fields 
are negative, indicating that the region has been completely lifted out 
of poverty, which is consistent with the prediction result in Table 22. 
Thus, in the area of regional poverty assessment, remote sensing image 
target detection has the same effect as traditional statistical methods.

Part of target detection results are shown in Figure 17 (where the 
“conf” and “IoU” parameters were set to 0.5 during model running), 
and they are: "highway", "flat-roofed bungalow", "peaked bungalow", 
"building", "greenhouse", "sports ground", "field", and "terrace". (All 
the detection results in this paper are based on google tile format with 
image size of 256, as a result, compared to the remote sensing images 
that cover the entire region, these images look smaller.)

Detection Capability
COCO data set was used in detection stage. Improvements to the 
model increased 7.3% in the value of P from 0.6852 to 0.7346, 0.7% 
in the value of R from 0.9729 to 0.9802, 1% in the value of mAP@0.5 
from 0.9664 to 0.9763, and 7.2% in the value of mAP@0.5:0.95 from 
0.797 to 0.8541, respectively. In the verification stage, the custom data 
set (842 304 pieces of remote sensing images were downloaded and 
labeled) was used. The corresponding four values increased 3.1% from 
0.9217 to 0.9507, 2.2% from 0.9753 to 0.9958, 1.3% from 0.9795 to 
0.9931, and 5.7% from 0.8433 to 0.8909, respectively. The loss value 
decreased 37.4% from 0.0515 to 0.0322.

Comparison of the Experimental Results
Experimental results were compared with similar models to verify 
the performance of the improved model. A study (Shao et al. 2021) 
proposed a Tiny Adaptively Spatial Feature Fusion YOLOv5 algorithm 
using fishing boats in night remote sensing images as a custom data 
set. Moreover, a small target recognition layer and an adaptive spatial 
feature fusion network were added. Another study (Xie et al. 2022) 
proposed a lightweight end-to-end target detection framework by in-
troducing an attention mechanism into the YOLO V5 model, using sar 
images as a custom data set. In Kim et al. (2021), aerial vehicle remote 
sensing images were used as custom data set, and the Efficient Channel 
Attention Pyramid YOLO model was proposed by improving the chan-
nel attention module of YOLO V5 model. The new detection layer was 

used to replace the large target detection module, and the transposed 
convolution was used to replace up-sampling. The comparison results 
are shown in Table 24. According to the data, the improved model in 
this paper can obtain comprehensive evaluation indicators and offer 
better performance.

Discussion
(1) Enhanced pan Structure: As shown in Figure 1 and Table 4, the 

original YOLO V5s model consists of pan + fpn + pan structure. 
The first pan is a down-sampling process where the image size 
converts from 128 to 8, whereas the number of channels increases 
from 32 to 512. The fpn is an up-sampling process where the 
image size converts from 8 to 32, but the number of channels 
reduces from 512 to 128. The second pan is also a down-sampling 
process, where the image size converts from 32 to 8; however, 
the number of channels increases from 128 to 512. The prin-
ciple is as follows: when the image size reduces, it is helpful to 
feature localization, whereas part of the informations lost, thus the 
number of channels needs to be increased as compensation; on the 
contrary, when the image size enlarges, the informations increase, 
however the computation will also be increased accordingly, thus 
the number of channels should be reduced as mitigation. The 
following methods have been tried to improve the structure of the 
model: (i) The CSPs were used as much as possible in both PANs, 
since each csp contains three convolution operations, which can 
improve the feature extraction ability by increasing the depth of 
the model. However, the experimental data showed that stacking 
a large number of CSPs not only fail to extract features, but also 
increase the running time. (ii) The depth of fpn was decreased, 

Table 23. Poverty rate analysis of the traditional statistical data.
Year Food Education Houses Transportation

2014 2.7953 2.2208 2.8920 2.1978

2015 1.5799 1.2442 1.5229 1.2422

2016 1.1272 0.9437 1.2436 1.0093

2017 0.8692 0.7763 0.8194 0.8608

2018 0.4920 0.4587 0.4796 0.4720

2019 0.0346 0.0327 0.0321 0.0317

2020 −1.1821 −0.2223 −0.5615 −0.2696

Table 24. Comparison of the experimental results.
Papers P R mAP @0.5 mAP @.5:.95 Loss

Shao et al. 2021 0.952 0.931 0.949 0.509 /

Xie et al. 2022 0.956 0.956 0.978 0.658 /

Kim et al. 2021 0.729 0.493 0.476 0.176 /

This paper 0.9677 0.9958 0.9927 0.951 0.0396

mAP = mean Average Precision; P = Precision; R = Recall.

Table 22. Detection results for each representation object and poverty rate reference.

Year
Highway 

(m2)
Bungalow1 

(pieces)
Bungalow2 

(pieces)
Building 
(pieces)

Sports Ground 
(pieces)

Green House 
(pieces)

Terrace1 
(m2) Field (m2)

Terrace2 
(m2)

Poverty 
Rate

2020 21 105 26 055 5279 2052 32 3601 6219 550 879 −0.1367

Table 21(a). Regression analysis of remote sensing image target detection.
Covariance Items Values

Multiple R 0.999676

R Square 0.999352

Adjusted R Square 0.998272

Standard Error 368.8552

Table 21(b). Variance analysis of remote sensing image target detection.

Variance Items df SS MS F
Significance 

F

Regression Analysis 5 6.29E + 08 1.26E + 08 925.0926 5.6E-05

Residual 3 408 162.5 136 054.2

Total 8 6.3E + 08

df = degree freedom; F = F-hypothesis test; MS = mean square; SS = stdev square.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 16. (a) Changes in the number of highways in the region. (b) Changes in the number of bungalows in the region. (c) Changes in the 
number of buildings in the region. (d) Changes in the number of playgrounds in the region. (e) Changes in the number of greenhouses in the 
region. (f) Changes in the extent of farming in the region. The labels BGY–XZ on the X-axis stand for the abbreviations of the county names.
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thereby reducing the computation and parameters. However, the 
loss value was high, which indicated that there was a large error 
in the calculation process. According to the definition, pan is used 
for feature localization, while fpn is used for semantic recogni-
tion. Therefore, the improved scheme was proposed as shown 
in Figure 4 and Table 5. (i) The depth of fpn was appropriately 
reduced, removing one csp. (ii) The image size at the end of fpn 
was increased from 32 to 128, as the beginning of the second 
pan. (iii) Part of CSPs were replaced by CBLs in the second pan, 
although both have the same effect, the latter required much less 
computation than the former. (iv) The new network layer (L18) 
in the second pan was fused with the first pan (L3), taking into 
account the original characteristics of the data. Thus, the model 
formed two symmetric PANs, all of them converted the image 
size from 128 to 8. It was not recommended that the image size be 
smaller than 8, because too small size would lead to the loss of in-
formations and the anomalous extraction of features. According to 
Table 12 and Table 13, the detection performance improved, and 
the loss value decreased, indicating that the improved structure 
was effective.

(2) RIoU_Loss Regression Loss Function: The role of IoU is to deter-
mine the differences between the gt box and the Pre box, so as to 
obtain the model error. Where gt is the true location of the object 

and Pre is the predicted location. Up to now, there are Generalized 
IoU (GIoU), Distance IoU (DIoU), and CIoU, and they're all 
based on the positional relationship between the two boxes. Take 
CIoU as an example, which is currently the latest and most com-
monly used way. It considers the factors of overlap area, central 
point distance, and aspect ratio; however, when the aspect ratio of 
two boxes is equal, there would be the phenomenon in Equation 
4; that is, the values of CIoU are equal and cannot be differenti-
ated. The new RIoU_Loss regression loss function transforms the 
positional problem into an angle problem, which is equivalent 
to fixing the position of gt firstly, and then treating the position 
of Pre as a variable, then the moving trajectory of Pre is round 
(Figure 6). Therefore, RIoU is more comprehensive than CIoU, 
because any kind of positional relationship between the two boxes 
can be represented by an angle on the circle.

(3) CAM component: Simply increasing the number of convolutions 
or the depth of the model cannot improve the feature extrac-
tion ability, thus the connections between pan and fpn can be 
considered. Because the two structures have opposite functions 
such as down-sampling and up-sampling, a more appropriate join 
can optimize features and reduce error. The new cam component 
consists of the rfam and mcc components. rfam connects the first 
pan with fpn, which combines attention mechanism for feature 

Figure 17. Remote sensing image target detection results.
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extraction from two dimensions: channel and image size. The 
advantage of attention mechanism is that it can make feature 
extraction targeted, whereas the disadvantage is that it needs to 
calculate all channels and pixels on each image. The traditional 
calculation methods use Sigmoid function to generate coefficients, 
since the function is nonlinear, the changes of the output results 
are not obvious when they approach the extreme values. Thus, the 
new reverse filling mechanism was proposed, which replaced the 
Sigmoid function and identified features by increasing differences 
between the input data and the results in the channel and scale 
dimensions. The mcc component makes use of the multi-channel 
technique and connects the fpn with the second pan. It can extract 
different types of features through different convolution kernels. 
Experimental data showed that the number of parallel channels 
should not exceed three, otherwise memory overflow would oc-
cur. ACNet can maintain the robustness of the model; therefore, 
the first one (Figure 10) is used to separate different features into 
respective channels, while the last one is used to transmit the 
extracted features to subsequent components stably.

(4) Limitation of the Improved Model: Based on the original model, 
the improved model introduced the attention mechanism and the 
multi-channel technology, which lead to a surge in the number 
of parameters and computation time. In the next research phase, 
using the principle of wavelet transform is planned for feature 
extraction and to implement it by convolution, and the attention 
mechanism would be replaced. On the other hand, the convolu-
tion kernel may be improved to solve the problems of parameter 
number, computation and loss value caused by model depth.

(5) Ablation Experiment: The detection performance of each com-
ponent and combinations are shown in Table 25. The experimen-
tal data showed that adding three modules respectively on the 
basis of Baseline can improve the values of P, mAP@0.5, and 
mAP@0.5:0.95 to different degrees, and the loss values decrease. 
By arranging and combining modules, the R values of the model 
can be significantly improved. Finally, the combination of all 
modules made the performance of the model reach equilibrium. 
The results showed that the single performance of RIoU_Loss is 
good, indicating that the design of the structures of the other two 
modules need to be further optimized, and the conflict between the 
model depth and the loss value also need to be further alleviated.

Conclusion
To verify the effectiveness of China's poverty alleviation efforts, an 
improved YOLO V5s model was proposed for regional poverty as-
sessment using remote sensing image target detection. The previous 
poverty alleviation work was done through manpower, which was 
easily affected by human factors. In this paper, target detection results 
of remote sensing images were used for auxiliary verification so as to 
make the poverty alleviation process more objective. Objects in im-
ages were detected to extract features, and their changes were used to 
evaluate the poverty rate in successive years; subsequently, the poverty 
alleviation situation could be predicted according to 
the existing detection results.

The improvements of the model included three 
aspects. First, the enhanced pan structure was 
proposed. The depth of fpn was shorted whereas the 
second pan was increased, thereby increasing the 
overall depth of the model and improving the feature 
extraction ability. Second, the RIoU_Loss regression 
loss function was proposed. The position relationship 
between the gt box and the Pre box was transformed 
into the angle relationship, so that the decision fac-
tors were more comprehensive. Third, new compo-
nent of the collaborative attention mechanism was 
proposed. Firstly, at the connection between the 
Backbone and the Neck part, a new rfam component 
was proposed by combining the attention mecha-
nism, and the original cbl component was replaced. 
This component replaced the Sigmoid function in 

the attention mechanism with a new reverse filling technique, which 
increased the difference between each pixel in the image and made the 
features easier to identify. Secondly, at the junction of the Neck and the 
Prediction part, the new mcc component was proposed by combin-
ing the multi-channel convolution technique. This component used 
different convolution kernels to split different features. ACNet and 
dc technology were introduced to reduce the data loss on the basis of 
ensuring the robustness of the model.

Experimental data showed that compared with the original model 
and similar papers, the improved model proposed in this paper has 
better performances on the key evaluation indicators (P, R, mAP@0.5, 
mAP@0.5:0.95, and Loss), which proved that it had better target 
detection ability. The detection results were applied to regional poverty 
assessment and compared with the traditional statistical methods to 
prove that they have the same effect. It can be seen that remote sensing 
image target detection has advantages of cheap, efficient, accurate and 
objective, which provides a promising approach for regional poverty 
assessment.
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Appendix A
# -*- coding: utf-8 -*-
import os.path
import xml.etree.ElementTree as ET
class_names = [‘class names’]
xmlpath = 'path of xml file'
txtpath = 'path of txt file'
files=[]
for root, dirs, files in os.walk(xmlpath):

None
number = len(files)
i = 0
while i < number:

name = files[i][0:-4]
xml_name = name + ".xml"
txt_name = name + ".txt"
xml_file_name = xmlpath + xml_name
txt_file_name = txtpath + txt_name
xml_file = open(xml_file_name)
tree = ET.parse(xml_file)
root = tree.getroot()
filename = root.find('filename').text
image_name = root.find('filename').text
w = int(root.find('size').find('width').text)
h = int(root.find('size').find('height').text)
f_txt = open(txt_file_name, 'w+')
content = ""
first = True
for obj in root.iter('object'):
name = obj.find('name').text
class_num = class_names.index(name)
xmlbox = obj.find('bndbox')
x1 = int(xmlbox.find('xmin').text)
x2 = int(xmlbox.find('xmax').text)
y1 = int(xmlbox.find('ymin').text)
y2 = int(xmlbox.find('ymax').text)
if first:

content += str(class_num) + " " + \
str((x1+x2)/2/w) + " " + str((y1+y2)/2/h) + " " + \
str((x2-x1)/w) + " " + str((y2-y1)/h)

first=False
else:

content += "\n" + \
str(class_num) + " " + \
str((x1 + x2) / 2 / w) + " " + str((y1 + y2) / 2 / h) + " " + \
str((x2 - x1) / w) + " " + str((y2 - y1) / h)

print(str(i/(number - 1) * 100) + "%\n")
f_txt.write(content)
f_txt.close()
xml_file.close()
i += 1

print("done!")
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The 3rd edition of the DEM Users Manual includes 15 chap-
ters and three appendices. References in the eBook version 
are hyperlinked. Chapter and appendix titles include:
1. Introduction to DEMs

David F. Maune, Hans Karl Heidemann,  
Stephen M. Kopp, and Clayton A. Crawford

2. Vertical Datums
Dru Smith

3. Standards, Guidelines & Specifications
David F. Maune

4. The National Elevation Dataset (NED)
Dean B. Gesch, Gayla A. Evans,  
Michael J. Oimoen, and Samantha T. Arundel

5. The 3D Elevation Program (3DEP)
Jason M. Stoker, Vicki Lukas, Allyson L. Jason,  
Diane F. Eldridge, and Larry J. Sugarbaker

6. Photogrammetry
J. Chris McGlone and Scott Arko

7. IfSAR
Scott Hensley and Lorraine Tighe

8. Airborne Topographic Lidar
Amar Nayegandhi and Joshua Nimetz

9. Lidar Data Processing
Joshua M. Novac

10. Airborne Lidar Bathymetry
Jennifer Wozencraft and Amar Nayegandhi

11. Sonar
Guy T. Noll and Douglas Lockhart

12. Enabling Technologies
Bruno M. Scherzinger, Joseph J. Hutton,
and Mohamed M.R. Mostafa

13. DEM User Applications
David F. Maune

14. DEM User Requirements & Benefits
David F. Maune

15. Quality Assessment of Elevation Data
Jennifer Novac

Appendix A. Acronyms
Appendix B. Definitions
Appendix C. Sample Datasets

This book is your guide to 3D elevation technologies, prod-
ucts and applications. It will guide you through the incep-
tion and implementation of the U.S. Geological Survey’s 
(USGS) 3D Elevation Program (3DEP) to provide not just 
bare earth DEMs, but a full suite of 3D elevation products 
using Quality Levels (QLs) that are standardized and con-
sistent across the U.S. and territories. The 3DEP is based on 
the National Enhanced Elevation Assessment (NEEA) which 
evaluated 602 different mission-critical requirements for 
and benefits from enhanced elevation data of various QLs 
for 34 Federal agencies, all 50 states (with local and Tribal 
input), and 13 non-governmental organizations.

The NEEA documented the highest Return on Investment 
from QL2 lidar for the conterminous states, Hawaii and U.S. 
territories, and QL5 IfSAR for Alaska.

Chapters 3, 5, 8, 9, 13, 14, and 15 are “must-read” chapters 
for users and providers of topographic lidar data. Chapter 8 
addresses linear mode, single photon and Geiger mode lidar 
technologies, and Chapter 10 addresses the latest in topo-
bathymetric lidar. The remaining chapters are either relevant 
to all DEM technologies or address alternative technologies 
including photogrammetry, IfSAR, and sonar.

As demonstrated by the figures selected for the front 
cover of this manual, readers will recognize the editors’ vision 
for the future – a 3D Nation that seamlessly merges topo-
graphic and bathymetric data from the tops of the moun-
tains, beneath rivers and lakes, to the depths of the sea.

Co-Editors

David F. Maune, PhD, CP and
Amar Nayegandhi, CP, CMS

PRICING
Student (must submit copy of Student ID) $50 +S&H

ASPRS Member $80 +S&H

Non-member $100 +S&H

E-Book (only available in the Amazon Kindle 
store) $85

To order, visit 
https://www.asprs.org/dem
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(877) 878-3260 toll-free
(309) 483-6467 direct
(309) 483-2371 fax
bill@innovativemediasolutions.com

*Limitations apply. Contact Bill Spilman for full details

OTHER ADVERTISING OPPORTUNITIES

PE&RS
• Covers 2–4
• Full Page
• Classified Ad
• 2/3 Page**

• 1/2 Page**
• 1/3 Page**
• 1/4 Page**
• 1/8 Page**

**horizontal or vertical format supported

Digital Ads
Employment Promotion

Email Blast
Newsletter Display Ads

Nearly 60% of PE&RS readers select, authorize, or 
approve the purchase of products and services

PE&RS regularly ranks in the Top 20 out of over 11,000 
journals for full-text downloads with Ingenta Connect. 

FRONT COVER SPONSORSHIP
A PE&RS cover sponsorship is a unique opportunity to 
capture the undivided attention of your target market 
through three premium points of contact.

PE&RS FRONT COVER
(Only twelve available, first-come, first-served)
PE&RS is world-renowned for the outstanding imagery 
displayed monthly on its front cover—and readers have 
told us they eagerly anticipate every issue. This is a 
premium opportunity for any company, government 
agency, university or non-profit organization to provide 
a strong image that demonstrates their expertise in the 
geospatial information industry

FREE ACCOMPANYING “HIGHLIGHT” ARTICLE
A detailed article to enhance your cover image is 
welcome but not a condition of placing an image. 
Many readers have asked for more information about 
the covers and your article is a highly visible way to 
tell your story in more depth for an audience keenly 
interested in your products and services.*

FREE TABLE OF CONTENTS COVER DESCRIPTION
Use this highly visible position to showcase your 
organization by featuring highlights of the technology 
used in capturing the front cover imagery.*



516 August  2023 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

Special Advertising Opportunities
FRONT COVER SPONSORSHIP
A PE&RS cover sponsorship is a unique opportunity to capture the undivided 

attention of your target market through three premium points of contact.

1— PE&RS FRONT COVER
(Only twelve available, first-come, first-served)
PE&RS is world-renowned for the outstanding imagery displayed monthly 
on its front cover—and readers have told us they eagerly anticipate every 
issue. This is a premium opportunity for any company, government agency, 
university or non-profit organization to provide a strong image that 
demonstrates their expertise in the geospatial information industry.

2— FREE ACCOMPANYING “HIGHLIGHT” ARTICLE
A detailed article to enhance your cover image is welcome but not a condition 
of placing an image. Many readers have asked for more information about the 
covers and your article is a highly visible way to tell your story in more depth 
for an audience keenly interested in your products and services. No article 
is guaranteed publication, as it must pass ASPRS editorial review. For more 
information, contact Rae Kelley at rkelley@asprs.org.

3— FREE TABLE OF CONTENTS COVER DESCRIPTION
Use this highly visible position to showcase your organization by featuring 
highlights of the technology used in capturing the front cover imagery. Limit 
200-word description.

Terms: Fifty percent nonrefundable deposit with space reservation and 
payment of balance on or before materials closing deadline.

Cover Specifications: Bleed size: 8 5/8” × 11 1/4”,  Trim: 8 3/8” × 10 7/8”

PRICING
Sustaining Member  
Exhibiting at a 2023  
ASPRS Conference

Sustaining 
Member

Exhibitor Non Member

Cover 1 $1,850 $2,000 $2,350 $2,500

Belly Bands, Inserts, Outserts & More!
Make your material the first impression readers have  
when they get their copy of PE&RS. Contact Bill Spilman  
at bill@innovativemediasolutions.com
VENDOR SEMINARS
ASPRS Sustaining Members now have the opportunity to hold a 1-hour 
informational session as a Virtual Vendor Seminar that will be free to all 
ASPRS Members wishing to attend.  There will be one opportunity per 
month to reach out to all ASPRS Members with a demonstration of a new 
product, service, or other information.  ASPRS will promote the Seminar 
through a blast email to all members, a notice on the ASPRS web site home 
page, and ads in the print and digital editions of PE&RS.

The Virtual Seminar will be hosted by ASPRS through its Zoom capability 
and has the capacity to accommodate 500 attendees.    

Vendor Seminars

Fee $2,500 (no discounts)

DIGITAL ADVERTISING 
OPPORTUNITIES

EMPLOYMENT PROMOTION
When you need to fill a position right away, use this direct, right-to-
the-desktop approach to announce your employment opportunity. The 
employment opportunity will be sent once to all ASPRS members in our 
regular Wednesday email newsletter to members, and will be posted on 
the ASPRS Web site for one month. This type of advertising gets results 
when you provide a web link with your text. 

Employment 
Opportunity

Net Rate

30-Day Web + 1 email $500/opportunity

Web-only (no email) $300/opportunity
Do you have multiple vacancies that need to be filled? Contact us 
for pricing details for multiple listings.

NEWSLETTER DISPLAY ADVERTISING
Your vertical ad will show up in the right hand column of our weekly 
newsletter, which is sent to more than 3,000 people, including our 
membership and interested parties. Open Rate: 32.9%

Newsletter vertical 
banner ad

Net Rate

180 pixels x 240 pixels max $500/opportunity

DEDICATED CONTENT EMAIL BLAST
Send a dedicated email blast to the ASPRS email list. Advertiser supplies 
HTML (including images). Lead time: 14 days. 

Materials Net Rate
Advertiser supplies HTML, 

including images. 
$3000/

opportunity

PE&RS Digital Edition
Digital Edition Announcement E-Mail: 5,800+
PE&RS is available online in both a public version that is available to 
anyone but does not include the peer-reviewed articles, and a full version 
that is available to ASPRS members only upon login.

The enhanced version of PE&RS contains hot links for all ASPRS 
Sustaining Member Companies, as well as hot links on advertisements, 
ASPRS Who’s Who, and internet references.

Become a sponsor today! 
The e-mail blast sponsorship opportunity includes a 180 x 240 pixel ad in 
the email announcement that goes out to our membership announcing the 
availability of the electronic issue.

Digital Edition Opportunities Net Rate
E-mail Blast Sponsorship* $1,000



The ASPRS Foundation 
was established to advance 
the understanding and 
use of spatial data for the 
betterment of humankind. 

The Foundation provides grants, 
scholarships, loans and other forms of aid 
to individuals or organizations pursuing 
knowledge of imaging and geospatial 
information science and technology, and 
their applications across the scientific, 
governmental, and commercial sectors. 

Support the foundation, so when 
they are ready, we are too.

asprsfoundation.org/donate

Too young to drive 
the car? Perhaps! 
But not too young 
to be curious about 
geospatial sciences.



A
SPRS

ASPRS Offers
 » Cutting-edge conference programs
 » Professional development workshops
 » Accredited professional certifications
 » Scholarships and awards
 » Career advancing mentoring programs
 » PE&RS, the scientific journal of ASPRS
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