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INDUSTRYNEWSTo have your press release published in PE&RS, 
contact Rae Kelley, rkelley@asprs.org.

ANNOUNCEMENTS
As of April 4, 2024, Surdex, surdex.com, has officially 
joined Bowman. Bowman is a leading national professional 
services firm offering multi-disciplinary engineering, planning, 
surveying, geomatics, construction management, environmen-
tal consulting, landscape architecture, and right-of-way acqui-
sition. This change provides a strong foundation for our firms 
to merge our comprehensive skillsets while offering the same 
level of commitment to deliver outstanding project results, 
build long-lasting relationships and leverage the growth of our 
organization to serve the ever-changing needs of our clients.

“The acquisition of Surdex will align well with our strate-
gic objectives of expanding our geospatial service offerings, 
growing our public sector market presence, and increasing 
the average size of our acquisitions,” said Gary Bowman, 
chairman and CEO of Bowman. “Surdex’s portfolio of 
high-resolution image capture, orthoimage processing, and 
digital mapping services provides tremendous revenue syner-
gy opportunities with our customers. Adding state-of-the-art, 
high-altitude services to Bowman’s extensive array of terres-
trial and low-altitude capabilities will create a compelling 
suite of full-service geospatial solutions. From the outset, the 
Surdex operation will realize savings by utilizing Bowman’s 
current survey resources and Bowman will experience cost 
savings by accessing Surdex’s high-volume image processing 
resources. We believe this acquisition will be transforma-
tional for our geospatial business and look forward to quickly 
integrating our teams and capabilities.”

“Bowman’s size and access to the broader engineering 
services market is what attracted us to this transaction,” said 
Ron Hoffmann, president of Surdex. “We have been a family 
business for almost 70 years and because of that, we were very 
selective about who we would entrust with this transition. Over 
the past several months, we have become extremely confident 
in our conclusion that partnering with Bowman is the right 
decision for our business, our employees, and our customers.”

¼½¼½

Industry leaders in the architecture, engineering, and 
construction (AEC) sectors are increasingly relying on the 
interoperability of geographic information systems (GIS) and 
building information modeling (BIM) to reduce costs and 
boost efficiency across construction projects. In support of 
AEC organizations, Esri, www.esri.com, and Autodesk, are 
expanding their strategic alliance.

“Esri is proud to bring this new integration to Autodesk 
users, empowering them with enhanced visibility of existing 
conditions for better-informed design decisions that reduce 
environmental impacts,” said Kathleen Kewley, Esri director 
for AEC global business development.

The integration of ArcGIS Basemaps with Civil 3D and 
AutoCAD provides AEC professionals with detailed geospa-
tial data and mapping capabilities. The new integrations 
further unify GIS and BIM, delivering real business value to 
architects, engineers, planners, and contractors.

“Unleashing the power of ArcGIS Basemaps in Civil 3D 
and AutoCAD provides users with an unparalleled geograph-

ical perspective, driving precision in decision-making and 
fostering a more sustainable built environment,” said Eric 
DesRoche, Autodesk senior manager, infrastructure strate-
gy, AEC design. “This new integration is a testament to our 
unwavering commitment to innovation and collaboration.”

“ArcGIS Basemaps serves as the cornerstone of our mapping 
products,” said Bridget Brown, Geospatial and Information 
Management Director for HDR, a user of Esri and Autodesk 
software. “These carefully styled basemaps not only offer vital 
location context but also liberate our teams from creating them 
from the ground up, allowing us to concentrate on project-spe-
cific data. Additionally, the capability to customize these base-
maps using the vector tile style editor empowers us to unlock 
new realms of cartographic creativity when needed.”

“ArcGIS Basemaps are the contextual canvas that establish-
es one of the most important elements when answering the 
question of ‘where’,” said Darin Welch, Associate Vice Presi-
dent, Design, Geospatial, and Community Intelligence, HNTB 
Digital Transformation Solutions, another Esri and Autodesk 
user. “Esri’s basemaps have equipped our teams with imme-
diate and accurate representation of the surrounding world, 
and the situational awareness necessary for making the best 
transportation decisions for improving our communities.”

¼½¼½

NV5 Global, Inc., www.nv5.com,  has reached an agreement 
to acquire GIS Solutions, Inc. (“GIS Solutions”), a full range 
provider of enterprise geographic information system (GIS) 
technologies and services including GIS application develop-
ment, cloud-based database design, data science, and project 
management. GIS Solutions supports state departments 
of transportation and utilities by developing solutions that 
monitor asset management, expedite efficient service delivery, 
and deliver real time mapping and incident reporting. The 
acquisition was made with a combination of cash and stock 
and will be immediately accretive to NV5’s earnings.

“Tech-enabled services, such as geospatial solutions, 
have grown as a percentage of NV5’s revenue as we focus 
on services with higher margins and more rapid scalability 
than traditional surveying services, and we are pleased to 
add GIS Solutions to the NV5 organization,” said Dickerson 
Wright, PE, Executive Chairman of NV5. “We will continue 
to identify and pursue opportunities in geospatial and other 
tech-enabled service categories to drive margin expansion 
and organic growth throughout NV5.”

GIS Solutions specializes in developing web-enabled GIS 
database applications from multiple modalities to track 
and monitor transportation resources and asset conditions 
for departments of transportation, a growing sector in the 
geospatial market. GIS Solutions also provides cloud-man-
aged and systems design services to help organizations 
employ geospatial solutions. Applications may be utilized 
in cloud-based environments, networked desktop solutions, 
and mobile applications to meet the unique accessibility and 
security requirements of clients and their constituents.

“We are excited to join the NV5 team, and we look forward 

mailto:rkelley@asprs.org
https://bowman.com/
https://www.geospatialworld.net/prime/business-and-industry-trends/geospatial-bim-convergence-for-digital-built-environment/
https://www.geospatialworld.net/prime/business-and-industry-trends/geospatial-bim-convergence-for-digital-built-environment/
https://www.esri.com/en-us/about/about-esri/overview
http://www.esri.com
https://www.autodesk.com/
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INDUSTRYNEWS
to the growth opportunities available to our valued employ-
ees as part of the nation’s largest geospatial data analytics 
firm,” said Jim Conlon, President of GIS Solutions.

¼½¼½

GPI Geospatial, Inc.,  www.gpinet.com, (a subsidiary of 
Greenman-Pedersen, Inc.) has been a leading geospatial 
solutions company for over 50 years with a footprint across 
the Eastern U.S., and they recently upgraded their mobile 
mapping capabilities by adding a RIEGL VMX-2HA to 
their data collection portfolio. As a RIEGL, www.rieglusa.
com,  customer for several years in various market verti-
cals, GPI has enhanced their mobile offerings by upgrading 
their previous VMX-450 to the VMX-2HA. This top-of-the-
line RIEGL mobile mapping system will keep them at the 
forefront of technology and allow them to provide the most 
precise and efficient deliverables to their clients all while 
increasing “in the field” productivity.

“GPI Geospatial will use this advanced new mobile LiDAR 
and spherical camera system to support multiple initiatives, 
including our roadway and DOT clients, GIS Asset Inventory 
projects, pavement condition inspection tasks, and railway 
projects.” said Paul Badr, President of GPI Geospatial. “This 
new system will enhance our collection efforts by maximizing 
safety and efficiency in both the field and the office, allowing 
us to serve our clients better.”

GPI Geospatial has had a long successful histo-
ry of mobile mapping collection projects.” said Joshua 
France, RIEGL USA’s Mobile Division Manager. “Over the 
years, the team got a lot of miles out of their VMX-450 sys-
tems, and the RIEGL VMX-2HA will only expand their mo-
bile mapping abilities. We are excited to be a trusted partner 
of GPI Geospatial and look forward to many more successful 
projects including rail and highway mapping.”

GPI Geospatial has had a long successful histo-
ry of mobile mapping collection projects.” said Joshua 
France, RIEGL USA’s Mobile Division Manager. “Over the 
years, the team got a lot of miles out of their VMX-450 sys-
tems, and the RIEGL VMX-2HA will only expand their mo-
bile mapping abilities. We are excited to be a trusted partner 
of GPI Geospatial and look forward to many more successful 
projects including rail and highway mapping.”

As the GPI mobile acquisition team hits the road with 
their brand new VMX system, their dedication to innovation 
and client satisfaction aligns with RIEGL’s commitment to 

developing and producing unparalleled cutting edge LiDAR 
technology with unwavering customer support. RIEGL USA 
looks forward to further collaboration and successful future 
project highlights. 

¼½¼½

Vexcel Data Program, https://vexceldata.com/,  announced 
it will expand its global coverage of high-resolution aerial 
imagery by adding new countries to its planned collection 
for 2024: Brazil, South Africa, Estonia, Latvia, Lithuania, 
and Poland. With this expansion, Vexcel is set to become the 
only aerial imagery collection program operating on every 
continent, except Antarctica.

“This expansion further solidifies Vexcel’s position as 
the world’s largest aerial imagery program,” shared Erik 
Jorgensen, CEO of Vexcel Group. “Our focus is to continue 
to provide the type of aerial data that’s required to support 
the visualization and analysis needs of today’s customers in 
more places than ever before. And we continue to grow our 
footprint globally to serve the needs of our customers with 
imagery that delivers on quality and accuracy.”

Vexcel will collect high-resolution aerial imagery in urban 
areas across the new countries, delivering highly detailed 
information to improve decision-making, support better 
remote assessment, create digital twins, and monitor assets 
with ease. Customers can improve their location intelligence 
with multiple points of view, such as north, south, east, west 
views of Oblique imagery, and top-down views of TrueOrtho. 
This imagery will be published at 7.5cm resolution.

In addition, Digital Surface Model (DSM) data will also be 
available as well as Vexcel’s AI-derived Elements product line 
which uses its high-resolution imagery to deliver automated 
attributes on buildings, properties, and transportation assets.

Vexcel’s urban country collection program offers imagery 
at a native resolution multiple times better than satellite 
imagery and with significantly better geographic positional 
accuracy. It’s delivering the highest caliber of aerial imagery 
for better location intelligence to solve real-world problems 
with greater ease. Its robust library of imagery and geospa-
tial data in 40+ countries and territories help a variety of in-
dustries, such as Government, Telecom, Utilities, Insurance, 
AEC, Energy, Technology, HD Mapping, and more.

The imagery will become available in the Vexcel Platform, 
APIs, Image Services for ArcGIS, and through partner plat-
forms, as it is released throughout 2024. 

CALENDAR

• 13-16 May, Geospatial World Forum, Rotterdam, The Netherlands; https://geospatialworldforum.org.

• 20-22 May, STRATUS 2024, Syracuse, New York; https://stratus-conference.com/home/.

• 3-7 June, URISA GIS Leadership Academy, Seattle, Washington; https://urisa.org/page/URISA_AdvancedGLA.

• 11-14 June, ISPRS Technical Commission II Symposium — The Role of Photogrammetry for a Sustainable 
World, Las Vegas, Nevada; www.isprs.org/tc2-symposium2024.

• 15-19 July, Esri User Conference, San Diego, California; www.esri.com/en-us/about/events/uc/overview.

• 18-22 August, SPIE 2024, San Diego, California; https://spie.org/OP.

• 7-10 October, GIS-Pro 2024, Portland, Maine; https://urisa.org/page/GIS-Pro2024.

https://www.gpinet.com/expertise/geospatial/
http://products.rieglusa.com/item/mobile-scanners/vmx-2ha-dual-scanner-mobile-laser-scanners/1103
http://www.rieglusa.com
http://www.rieglusa.com
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277 A Pixel Texture Index Algorithm and Its Application
Xiaodan Sun and Xiaofang Sun

Image segmentation is essential for object-oriented analysis, and classification is a critical 
parameter influencing analysis accuracy. However, image classification and segmentation 
based on spectral features are easily perturbed by the high-frequency information of a 
high spatial resolution remotely sensed (HSRRS) image, degrading its classification and 
segmentation quality. This article first presents a pixel texture index (PTI) by describing 
the texture and edge in a local area surrounding a pixel. Indeed.. The experimental results 
highlight that the HSRRS image classification and segmentation quality can be effectively 
improved by combining it with the PTI image. Indeed, the overall accuracy improved from 
7% to 14%, and the kappa can be increased from 11% to 24%, respectively. 

293 Parcel-Level Crop Classification in Plain Fragmented Regions 
Based on Multi-Source Remote Sensing Images 
Qiao Zhang, Ziyi Luo, Yang Shen, and Zhoufeng Wang

Accurately obtaining crop cultivation extent and estimating the cultivated area are 
significant for adjusting regional planting structure. This article proposes a parcel-level 
crop classification method using time-series, medium-resolution, remote sensing images 
and single-phase, high-spatial-resolution, remote sensing images. The deep learning 
semantic segmentation network feature pyramid network with squeeze-and-excitation 
network (FPN–SENet) and multi-scale segmentation were used to extract cultivated land 
parcels from Gaofen-2 imagery, while the pixel-level crop types were classified by using 
support vector machine algorithms from time-series Sentinel-2 images. Then, the parcel-
level crop classification was obtained from the pixel-level crop types and land parcels. 

303 Evaluation of SMAP and CYGNSS Soil Moistures in Drought 
Prediction Using Multiple Linear Regression and GLDAS Product
Komi Edokossi, Shuanggen Jin, Andres Calabia, Iñigo Molina, and Usman Mazhar

Drought is a devastating natural hazard and exerts profound effects on both the 
environment and society. Predicting drought occurrences is significant in aiding 
decision-making and implementing effective mitigation strategies. In regions 
characterized by limited data availability, such as Southern Africa, the use of satellite 
remote sensing data promises an excellent opportunity for achieving this predictive 
goal. In this article, we assess the effectiveness of Soil Moisture Active Passive 
(SMAP) and Cyclone Global Navigation Satellite System (CYGNSS) soil moisture data 
in predicting drought conditions using multiple linear regression–predicted data and 
Global Land Data Assimilation System (GLDAS) soil moisture data. 

313 Debris Flow Susceptibility Evaluation Based on Multi-level 
Feature Extraction CNN Model: A Case Study of Nujiang Prefecture, 
China 
Xu Wang, Baoyun Wang, Ruohao Yuan, Yumeng Luo, and Cunxi Liu

Debris flow susceptibility evaluation plays a crucial role in the prevention and control 
of debris flow disasters. Therefore, this article proposes a convolutional neural network 
model named multi-level feature extraction network (MFENet). First, a dual-channel 
CNN architecture incorporating the Embedding Channel Attention mechanism is used 
to extract shallow features from both digital elevation model images and multispectral 
images. Subsequently, channel shuffle and feature concatenation are applied to the 
features from the two channels to obtain fused feature sets. Following this, a deep 
feature extraction is performed on the fused feature sets using a residual module 
improved by maximum pooling. Finally, the susceptibility index of gullies to debris flows 
is calculated based on the similarity scores. 
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273 GIS Tips & Tricks — Need More Tools? Try These... 
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275 New ASPRS Members
 Join us in welcoming our newest members to ASPRS.
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Best Practices in Evaluating Geospatial 
Mapping Accuracy according to the 
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265

www.facebook.com/ASPRS.org
www.twitter.com/ASPRSorg
www.youtube.com/user/ASPRS


264 May 2024 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

PHOTOGRAMMETRIC   
ENGINEERING & 
REMOTE SENSING 
Journal Staff

Publisher ASPRS
Editor-In-Chief Alper Yilmaz
Director of Publications Rae Kelley
Electronic Publications Manager/Graphic Artist  
Matthew Austin

Photogrammetric Engineering & Remote Sensing is the official journal 
of the American Society for Photogrammetry and Remote Sensing. It is 
devoted to the exchange of ideas and information about the applications 
of photogrammetry, remote sensing, and geographic information systems. 
The technical activities of the Society are conducted through the following 
Technical Divisions: Geographic Information Systems, Photogrammetric 
Applications, Lidar, Primary Data Acquisition, Professional Practice, 
Remote Sensing Applications, and Unmanned Autonomous Systems. 
Additional information on the functioning of the Technical Divisions and 
the Society can be found in the Yearbook issue of PE&RS.

All written correspondence should be directed to the American Society 
for Photogrammetry and Remote Sensing, PO Box 14713, Baton Rouge, LA 
70898, including general inquiries, memberships, subscriptions, business 
and editorial matters, changes in address, manuscripts for publication, 
advertising, back issues, and publications. The telephone number of the 
Society Headquarters is 225-408-4747; the fax number is 225-408-4422; 
web address is www.asprs.org.
PE&RS. PE&RS (ISSN0099-1112) is published monthly by the American 
Society for Photogrammetry and Remote Sensing, 8550 United Plaza Blvd, 
Suite 1001, Baton Rouge, Louisiana 70809 . Periodicals postage paid at 
Bethesda, Maryland and at additional mailing offices.
SUBSCRIPTION. PE&RS is available as an e-Subscription (single-site and 
multi-site licenses) and an e-Subscription with print add-on (single-site 
license only). PE&RS subscriptions are on a calendar-year, beginning in 
January and ending in December. 

The rate for a single-site e-Subscription for the USA/Non-USA is $1040 
USD, for Canadian* is $1092 USD.
The rate for a multi-site e-Subscription for the USA/Non-USA is $1040 
USD plus $250 USD for each additional license, for Canadian* is $1092 
USD plus $263 for each additional license.
The rate for e-Subscription with print add-on for the USA is $1546 
USD, for Canadian* is $1637 USD, and for Non-USA is $1596 USD. 
*Note: Subscription prices for Canada includes 5% of the total amount 
for Canada’s Goods and Services Tax (GST #135123065). PLEASE 
NOTE: All Subscription Agencies receive a 20.00 USD discount.

POSTMASTER. Send address changes to PE&RS, ASPRS, PO Box 14713, 
Baton Rouge, LA 70898. CDN CPM #(40020812).
MEMBERSHIP. Membership is open to any person actively engaged in 
the practice of photogrammetry, photointerpretation, remote sensing 
and geographic information systems; or who by means of education or 
profession is interested in the application or development of these arts 
and sciences. Membership is for one year, with renewal based on the anni-
versary date of the month joined. Membership Dues include a 12-month 
electronic subscription to PE&RS. Annual Individual Membership dues 
are $175.00 USD and Student Membership dues are $50.00 USD. A tax 
of 5% for Canada’s Goods and Service Tax (GST #135123065) is applied 
to all members residing in Canada.
COPYRIGHT 2024. Copyright by the American Society for Photogrammetry 
and Remote Sensing. Reproduction of this issue or any part thereof (except 
short quotations for use in preparing technical and scientific papers) 
may be made only after obtaining the specific approval from ASPRS. The 
Society is not responsible for any statements made or opinions expressed 
in technical papers, advertisements, or other portions of this publication. 
Printed in the United States of America.
PERMISSION TO PHOTOCOPY. The copyright owner’s consent that copies of 
the article may be made for personal or internal use or for the personal or 
internal use of specific clients. This consent is given on the condition, however, 
that the copier pay the stated per copy fee through the Copyright Clearance 
Center, Inc., 222 Rosewood Drive, Danvers, Massachusetts 01923, for copying 
beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. 
This consent does not extend to other kinds of copying, such as copying for 
general distribution, for advertising or promotional purposes, for creating 
new collective works, or for resale.

After a lull in activity, fresh lava has once again poured from the Reykjanes peninsula 
in southwestern Iceland.

The latest eruption—the third in the region since December 2023—began early on 
February 8, 2024, with lava spraying up to heights of 80 meters (260 feet) along a 
3-kilometer (1.8-mile) long fissure near Mount Sýlingarfell. The small peak is north 
of the fishing village Grindavík and east of the Svartsengi power station and Blue 
Lagoon geothermal spa.

The cover image was acquired on February 10, 2024, by the OLI-2 (Operational Land 
Imager-2) on Landsat 9. Infrared and visible observations (bands 7-6-3) have been 
overlain on a natural-color image to help distinguish the heat signature of the lava. 
Still recent but cooler lava expelled near Grindavík in January appears black.

The topography around the fissure meant that much of the fresh lava flowed east into 
unpopulated areas rather than south toward Grindavík. Some lava also flowed west 
into the vicinity of the power plant and spa.

Earthen defensive walls protected both facilities, though lava did burn through a key 
hot water pipeline and two roads. According to the Icelandic National Broadcasting 
Service RÚV, authorities are in the process of restoring hot water to homes in the 
area after conducting repairs on the pipeline.

About seven hours after the eruption began, the MODIS (Moderate Resolution Imag-
ing Spectroradiometer) on NASA’s Terra satellite captured this image of a plume of 
gas and ash streaming to the southwest. This eruption was effusive—not explosive 
like the Eyjafjallajökull eruption in 2010—and the plume contained minimal ash, so it 
did not cause any disruptions to either domestic or international flights.

Volcanic plumes like the one shown here typically contain water vapor, sulfur diox-
ide, carbon dioxide, and small amounts of other volcanic gases. Researchers from the 
Icelandic Met Office and the University of Iceland have noted that, at times, magma 
has interacted with groundwater, adding to the amount of water vapor in the plume. 
The TROPOMI (Tropospheric Monitoring Instrument) on the Sentinel-5 Precursor 
mission observed sulfur dioxide (SO2) within the plume, Michigan Tech volcanologist 
Simon Carn noted on X.

After the initial burst of activity on February 8, the intensity of the eruption faded. In 
an update on February 9, the Icelandic Met Office reported that seismic sensors had 
stopped detecting volcanic tremors and that a recent drone flight showed no activity 
over the eruption site—signs that the latest eruption was ending.

However, on February 12, the agency reported that the land surface above an 
underground magma reservoir near Svartsengi had again begun to swell by 0.5 to 
1 centimeters per day, a rate similar to what was observed prior to other recent 
eruptions. “It is therefore highly likely that the cycle continues in a few weeks with 
another dyke propagation and a volcanic eruption,” the agency said.

NASA Earth Observatory image by Lauren Dauphin, using MODIS data from NASA 
EOSDIS LANCE and GIBS/Worldview. Story by Adam Voiland.

Both images can be viewed online by visiting the Landsat Image Gallery, https://
landsat.gsfc.nasa.gov/, image id 152428.

http://www.asprs.org
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Standard Deviation Versus Root-Mean-Squares 
Errors Estimation
Before we discuss the difference between the two statistical 
measures of Standard Deviation and the RMSE as accuracy mea-
sures, let us elaborate on the statistical meaning of each of them.

Standard Deviation
Standard Deviation is a statistical measure for the fluctuation 
or dispersion of individual errors around the mean value of all 
errors in dataset. Figure 1 illustrates how the errors fluctuate 
around a mean error value of 0.17m. Such fluctuation is repre-
sented by the standard deviation value, or 0.07m. 

The Standard Deviation is calculated as the square root of vari-
ance by determining each error’s deviation relative to the mean 
as given in the following equation:  

where: 
x is the mean error in the specified direction,
xi is the ith error in the specified direction,
n is the number of checkpoints tested,
i is an integer ranging from 1 to n.

Best Practices in Evaluating Geospatial Best Practices in Evaluating Geospatial 
Mapping Accuracy according to the New Mapping Accuracy according to the New 
ASPRS Accuracy StandardsASPRS Accuracy Standards

By Qassim Abdullah, Ph.D., PLS, CP, Woolpert Vice President and  
Chief Scientist

This highlight article was inspired by a comment I 
received from Mr. Richard C. Maher, PLS, President 
of KDM Meridian, where he said:

“I attended both of your American Society for 
Photogrammetry and Remote Sensing (ASPRS) 
workshops during Geo Week 2024 in Denver. Even 
after 24 years as a land surveyor, I can still use 
refreshing on how to explain the basics to my clients 
and to surveyors-in-training. Your in-depth discus-
sion on the difference between the Standard Devia-
tion (SD) and the Root-Mean-Squares (RMSE) was 
very appreciated. I also appreciated the concepts of 
the true datum and the survey (pseudo) datum you 
introduced. As one who loves to test and prove that 
our equipment can rarely do better than the specifi-
cations, I’ll say unequivocally that surveyors using 
Real-Time Kinematic (RTK) positioning are far too 
optimistic about their true accuracy and commonly 
don’t understand apparent relative accuracy due to a 
fundamental misunderstanding of the error sources 
different between GPS and conventional measure-
ments. The nature of random error in GPS follows a 
different stochastic model than conventional instru-
mentation. If surveyors simply employed the same 
checking standards and methods you prescribe in 
the ASPRS Specifications, they’d stop telling me how 
well their GPS did under a canopy, or how they can 
get “hundredths”.  My intention isn’t to make their 
work more difficult but to ensure that our methods 
are rigorous and reliable... I’m interested in seeing 
your future appendix that talks about suggested sur-
vey accuracies when not provided by surveyors. Due 
to the importance of these topics to the thousands 
of practicing surveyors in the nation who could not 
attend Geo Week, could you please shed light on the 
concepts you presented in Denver regarding survey-
ing and mapping accuracy and the role of the correct 
understanding of the datum play in it?”

In my response to Mr. Maher’s request, I will address 
these important issues in separate sections, easier for 
the reader to follow and digest.

Figure 1. Standard deviation measures the error fluctuation around a mean 
value of 0.17m.
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Root-Mean-Square Error (RMSE)
RMSE is the square root of the average of the set of squared 
differences between data set coordinate values and coordi-
nate values from an independent source of higher accuracy 
for identical points. It is obvious from such definition that 
RMSE differs from Standard Deviation by the magnitude 
of the error mean existing in the data. That becomes clear 
when you analyze the last equation of the standard deviation 
and the following Root-Mean-Square Error:

where:
xi(map) is the coordinate in the specified direction of the 
ith checkpoint in the data set,
xi(surveyed) is the coordinate in the specified direction of 
the ith checkpoint in the independent source of higher 
accuracy,
n is the number of checkpoints tested,
i is an integer ranging from 1 to n.

When RMSE is computed, we do not subtract the mean error 
from the checkpoint error, so RMSE represents the full spec-
trum of the error that found in a checkpoint including the mean 
error, while in computing the standard deviation, we subtract 
the mean error from every checkpoint error making it a mea-
sure for the fluctuation of individual errors around the mean 
value of all errors. This RMSE characteristic makes it useful in 
flagging biases in data, as it provides an early warning system 
for the technician that the standard deviation fails to do so. 

Biases and Systematic Errors in Data
Now, we understand the difference between the standard 
deviation and RMSE, let us see how such favoring of the 
RMSE helps the Geospatial mapping production process and 
validating the accuracy of its products. Geospatial mapping 
products are subject to systematic errors or biases from a va-
riety of sources. These biases can be caused by things like us-
ing the wrong version of a datum during the product produc-
tion process, or using the wrong instrument height for the 
tripod during the survey computations for the ground control 
points or the checkpoints. There are other sources of biases 
that can be introduced during the production processes. For 
instance, using the wrong elevation values in a digital eleva-
tion data can results in biases during the orthorectification 
process, and using the wrong camera parameters (such as 
focal length) or the wrong lens distortion model can lead to 
biases in the final mapping product.

Systematic error can cause the product to fall below accept-
able project accuracy levels. Thankfully, provided the appro-
priate methodologies are applied, systematic error can be 

identified, modeled, and removed from the data. This is not 
the case with random error: even if we discover it, we cannot 
eliminate it. However, we can minimize random error mag-
nitude through adherence to stringent production process, 
adopting sound quality control practices, or the use of more 
accurate instruments. To illustrate systematic errors or bi-
ases in data, we will evaluate the scoreboards of four archers 
that vary in their aiming skills, illustrated in Figure 2. 

For board A, the archer landed the arrows around the bulls-
eye, but the shots are scattered spatially around the center 
point. By contrast, board B reflects good spatial clustering, 
but the shots are clustered around a point far away from the 
bullseye. Board C is what you want your accuracy to be, with 
all shots clustered at the spot aimed for. Board D demon-
strates extremely undesirable results, possessing neither 
good clustering, nor good aiming. 

When we measure accuracy, results like boards B and C are 
the most desirable. Board C should be preferred, as it rep-
resents clean results: all shots are at the bullseye. We can 
describe Archer C as “accurate and precise”. Although Archer 
B’s results lack good aim, the shots are clustered well; here we 
describe Archer B as “precise but not accurate”. Even though 
Archer B is not accurate, why are these results still accept-
able?  Examine the scoreboard for Archer B again: if we shift 
the locations of all the clustered arrows by a fixed distance 
d, or 7.0-cm, the results will match the results from board 
C. This distance d or 7.0-cm represents the systematic error; 
once it is corrected, the final accuracy will be satisfactory.

But why did such a precise archer miss the bullseye to begin 
with? We must consider what may have taken place at the 
archery range to cause Archer B to miss. Perhaps the archer 
was using a sight scope hooked to the archer bow. Having all 
the arrows land in a tight cluster away from the bullseye is 
a strong indication of a mechanical failure of the sight scope 
that caused the arrows to go to the wrong place. Once Archer 
B’s sight scope is properly calibrated, the archer scoreboard 
in the second archery session will look just like Archer C’s 
board. The same logic can be applied to geospatial products 
like lidar point clouds or orthoimagery. That is why it is 
crucial to use accurate checkpoints when verifying product 
accuracy. Such checkpoints will help us quantify any existing 
systematic errors, allowing us to remove this error from the 
data in the same way that properly calibrating Archer B’s 
sight scope corrected the archer future shots.

Figure 2. Scoreboards for four archers with varied aiming skills. 
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True Daum Versus Surveying Psudo Datum
When we conduct field surveying, we are trying to deter-
mine terrain positions and shapes in reference to a specific 
geodetic datum. According to the U.S. National Geodetic 
Survey (NGS), a geodetic datum is defined as “an abstract 
coordinate system with a reference surface (such as sea level, 
as a vertical datum) that serves to provide known locations 
to begin surveys and create maps.” Because our surveying 
techniques, and therefore our mapping techniques, are not 
perfect, our surveying techniques only provide approxi-
mate positions that put us close to the true, datum-derived 
positions (Figure 3). When we use an inaccurately surveyed 
network to control another process such as aerial triangula-
tion, in reality we are fitting the aerial triangulation solution 
to an observed datum. The degree of approximation depends 
on the accuracy of the surveying technique or technology 
employed in that survey. The RTK field surveying technique, 
for example, can produce positions that are accurate to 2cm 
horizontally and perhaps 2-3cm vertically. The differential 
leveling technique used to determine height can produce el-
evations that are accurate to the sub-centimeter. The lesson 
to learn here is that our surveying techniques, no matter 
how accurate, do not represent the true datum—but they can 
get us close to it.    

Surveying and Survey (Pseudo) Datum
When we task surveyors to survey the ground control net-
work in reference to a certain datum, usually a true datum 
such as NAD83 or WGS84, they can only determine the 
positions of the control network to that datum as close as the 
surveying techniques allow. In other words, the coordinates 
that are being used to control the mapping process repre-
sent an observed or survey datum that represents a pseudo 
datum, green mesh in Figure 3, but not the original intended 
or true datum represented with the solid green in Figure 3. 
For example, if we are trying to determine point coordinates 
in NAD83(2011), the surveyed coordinates used in aerial 
triangulation or lidar calibration represent a datum that is 
close to NAD83(2011) but not exactly NAD83(2011) due to 
the inaccuracy in our surveying techniques. That inaccurate 
survey represents a survey datum. Besides the inaccuracy 
in the surveying techniques, another layer of errors (i.e., 
distortion) could be added to the surveyed coordinates when 
we convert geographic positions (in latitude and longitude) to 
projected coordinates or grid coordinates, such as state plane 
coordinate systems. 

Mapping to the Mapping Datum
Any mapping process we conduct today inherits two modeling 
errors that influence product accuracy. The first modeling 
error is caused by the inaccuracy of the internal geometric 
determination during the aerial triangulation, or the boresight 
calibration in the case of lidar processing. The second modeling 
error is introduced by the auxiliary systems, such as GPS and 
IMU, and has inherent errors caused by the survey datum. 

Therefore, when we use mapping products to extract location 
information, we are determining these locations in reference to 
the survey or pseudo datum and not the true intended datum. 
The point coordinates for NAD83(2011) are determined not 
according to the survey datum of the ground control network 
but through a new reality of mapping datum. The mapping 
datum, represented with the blue mesh in Figure 3, inherits 
the errors of the survey datum, which were caused by the 
inaccuracy of our surveying techniques and the errors caused 
by our mapping processes and techniques ACCSurveyDatum and  
ACCMappingDatum  in Figure 3. 

Correct Approach to Accuracy Computation
To reference the accuracy of determining a mapped object 
location within a mapping product to the original intended 
datum like NAD83(2011), we need to examine the layers of 
errors that were introduced during the ground surveying and 
mapping processes (Figure 3). 

Currently, users of geospatial data express product accu-
racy based on the agreement or disagreement of the tested 
product per the surveyed checkpoints, ignoring checkpoint 
or ground control errors that have resulted from inaccurate 
surveying techniques. In other words, users consider the 
surveyed points    to be free of error. The following section 
details how errors are propagated into the mapping product 
when we are trying to determine the location of a ground 
point “A”. Let us introduce the following terms, refer to Fig-
ure 3 for localizing such error terms:

ACCSurveyDatum equals the accuracy in determining the 
survey datum, generated when realizing the intended or true 
datum through surveying techniques. In other words, it rep-
resents the errors in the surveyed checkpoints. Due to this 
inaccuracy, the point will be located at location A.. (Figure 4).

ACCMappingDatum equals the accuracy of determining the 
mapping datum, or the errors introduced during the map-
ping process, in reference to the already inaccurate survey 
datum represented by the surveyed checkpoints. In other 
words, it is the fit of the aerial triangulation (for imagery) or 
the boresight/calibration (for lidar) to the surveyed ground 
control points represented as the survey datum. This accu-

Figure 3. Datums and error propagation in geospatial data.
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racy is measured using the surveyed checkpoints during the 
product accuracy verification process. Due to this inaccuracy, 
the point will be located at location A... (Figure 4).

ACCTrueDatum equals the accuracy of the mapping product 
in reference to the true datum, as in NAD83(2011). The point 
location A. (Figure 4) is considered the most accurate location 
determined in reference to the true datum.

Using the above definitions, the correct product accuracy 
should be modeled using error propagation principles accord-
ing to the following formula:

ACCTrueDatum = √ACCMappingDatum2 + ACCSurveyDatum2 ... (1)

However, according to our current practices, product accura-
cy is computed according to the following formula, ignoring 
errors in the surveying techniques:

ACCTrueDatum = ACCMappingDatum  ...................................... (2)

More details and examples on the suggested approach can 
be found in my published article1 on the topic and Edition 2, 
V2 of the ASPRS Positional Accuracy Standards for Digital 
Geospatial Data. 

The New Approach in Computing   
Map Accuracy
According to this new approach on computing maps accuracy 
and since we are dealing with three-dimensional error com-
ponents, we would need to employ vector algebra to accurate-
ly compute the cumulative error.

Computing Horizontal Accuracy
To compute the horizontal accuracy for a two-dimensional 
map, as with orthorectified imagery, we will ignore the error 
component of the height survey. In other words, we will use 
the error component from easting and northing only. We will 
also assume that the accuracy of determining the X coordi-
nates (or easting) is equal to the accuracy of determining the 
Y coordinates (or northing). Using error propagation princi-
ples and Euclidean vector in Figures 4 and 5, we can derive 
the following values for product horizontal accuracy: 

AccXTrueDatum = √AccXTrueDatum2 + AccXSurveyDatum2 .... (3)

AccYTrueDatum = √AccXTrueDatum2 + AccYSurveyDatum2  ... (4)

AccXYTrueDatum = √AccXTrueDatum2 + AccYTrueDatum2..... (5)

As an example, when modeling horizontal product accuracy 
according to the above formulas, let us assume the following:

a) We are evaluating the horizontal accuracy for orthoim-
agery using independent checkpoints.

b) The control survey report states that the survey for the 
checkpoints, which was conducted using RTK tech-
niques, resulted in accuracy of RMSEXorY equal to 2cm.

c) When the checkpoints were used to verify the hori-
zontal accuracy of the orthoimagery, it resulted in an 
accuracy of RMSEXorY equal to 3cm.

1 Abdullah, Q., Rethinking Error Estimations in Geospatial Data: The Correct Way to Determine Product Accuracy, Photogrammetric Engineering & Remote 
Sensing, Vol. 86, No. 7, July 2020, pp. 397–403.

Figure 4. Influence of error propagation on 
point location accuracy

Figure 5. Vector representations of error components.

“ASPRS positional accuracy standard 
advise that a mean error value that 
is more than 25% of the RMSE, is an 
indication of biases in the data that 
need to be dealt with and resolved 
before accepting and delivering the 
Lidar data.”



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING May 2024  269

Solution
Using equations 3, 4 and 5:

AccXTrueDatum = √AccXMappingDatum2 + AccXSurveyDatum2  = √32 + 22  = 3.61cm

AccYTrueDatum = √AccYMappingDatum2 + AccYSurveyDatum2  = √32 + 22  = 3.61cm

AccXYTrueDatum = √AccXTrueDatum2 + AccYTrueDatum2  = √3.61cm2 + 3.61cm2  = 5.1cm

The value of 5.1cm is the true accuracy of the product versus the following value of 4.24cm used commonly today that ignores 
the errors introduced during the ground surveying process:

AccXYTrueDatum = √AccXMappingDatum2 + AccYMappingDatum2  = √3cm2 + 3cm2  = 4.24cm

Computing Vertical Accuracy
Similarly, for vertical accuracy determination of elevation 
data derived from lidar or photogrammetric methods, we 
need to consider the error in the surveyed elevation as an 
important component. Using error propagation principles 
and Euclidean vector of Figure 6, we can derive the following 
value for vertical product accuracy: 

AccZTrueDatum = √AccZMappingDatum2 + AccZSurveyDatum2 ...(6)

As an example, when modeling vertical product accuracy 
according to the above formulas, let us assume the following:

a) That we are evaluating the vertical accuracy for a mo-
bile lidar dataset using independent checkpoints.

b) The control survey report states that the survey of the 
checkpoints, which was conducted using RTK tech-
niques, resulted in an accuracy of RMSEZ equal to 3cm

c) When the checkpoints were used to verify the vertical 
accuracy of the lidar data, it resulted in an accuracy of 
RMSEZ equal to 1cm.

Solution
Using Equation 6:

AccZTrueDatum = √AccZMappingDatum2 + AccZSurveyDatum2  = √12 + 32   = 3.16cm

The value of 3.16cm is the true vertical accuracy of the lidar 
dataset versus the value of 1cm, derived by the mapping 
technique used commonly that ignores the errors introduced 
during the ground surveying process.

The Role of RMSE in Revealing Biases in Data 
Now, let’s see how we are going to assess the accuracy com-
putations, and whether we can spot problems in the data. 
We now assume a scenario in which systematic error was in-
troduced into a lidar dataset during the product generation. 
Say a technician used the wrong version of the geoid model 
when converting the ellipsoidal heights of the point cloud to 
orthometric heights, which caused a systematic error or bias 
of 0.16 m in the computed elevation of the processed lidar 
point cloud. Table 1 lists the results of the accuracy assess-
ment where 30 check points used for the test. 

To analyze the accuracy results, first, look at the error mean 
value in table 1. We clearly notice that the mean error is high 
as compared to the RMSE and the standard deviation. ASPRS 
positional accuracy standard advise that a mean error value 
that is more than 25% of the RMSE, is an indication of bias-
es in the data that need to be dealt with and resolved before 
accepting and delivering the Lidar data. So, we will focus on the 
results in Table 1 for further analysis. A high mean error value 
is a good indication that biases are present in the data, but we 
need to further investigate how high the mean value is com-
pared to RMSE and standard deviation. Slight differences be-
tween these statistical measures’ values are acceptable. Look-
ing at the results of Table 1, the mean error reaches 91% of the 
RMSE value which is not acceptable by the ASPRS positional 
accuracy standard measures. We also need to compare the 
RMSE to the standard deviation. Note that they are 0.069 m 
and 0.170 m, respectively. Having an RMSE value that is more 
than twice the standard deviation is a strong indication that 
biases may be present in the data. Remember, in the absence of 
systematic error, i.e., biases, the RMSE and the standard devi-
ation should be equal. This conclusion is also supported by the 
fact that the mean is twice as high as the standard deviation. 

Figure 6. Influence of error propagation on point elevation accuracy.
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Table 1. Accuracy assessment for a biased dataset.

Point #
Surveyed Coordinates Lidar Error 

Values 
(m)Easting (m) Northing (m) Elevation (m) Elevation (m)

CP_1 746093.605 97840.580 332.708 332.469 0.239

CP_2 746084.481 97875.486 333.856 333.646 0.209

CP_3 746076.993 97906.423 334.791 334.636 0.155

CP_4 746069.043 97934.869 335.829 335.582 0.247

CP_5 746059.191 97968.525 336.837 336.708 0.129

CP_6 746051.284 97996.814 337.671 337.652 0.018

CP_7 746044.837 98025.039 338.717 338.553 0.163

CP_8 746036.494 98055.805 339.823 339.591 0.232

CP_9 746027.369 98082.550 340.646 340.513 0.134

CP_10 746019.781 98112.192 341.636 341.498 0.138

CP_11 746012.222 98144.373 342.792 342.577 0.215

CP_12 746006.094 98171.008 343.667 343.426 0.241

CP_13 745998.080 98196.380 344.486 344.326 0.160

CP_14 745987.766 98231.319 345.597 345.498 0.100

CP_15 745939.681 98221.349 347.036 346.789 0.247

CP_16 745950.670 98190.848 345.788 345.655 0.133

CP_17 745956.968 98166.660 344.999 344.795 0.204

CP_18 745966.818 98133.845 343.825 343.644 0.182

CP_19 745977.417 98100.689 342.676 342.489 0.187

CP_20 745986.146 98071.263 341.594 341.451 0.143

CP_21 745994.431 98044.637 340.573 340.505 0.068

CP_22 746003.437 98011.200 339.403 339.336 0.067

CP_23 746013.675 97977.662 338.426 338.185 0.241

CP_24 746020.633 97952.708 337.451 337.282 0.169

CP_25 746029.450 97922.620 336.316 336.219 0.097

CP_26 746037.820 97896.313 335.422 335.295 0.127

CP_27 746073.182 98205.333 343.418 343.186 0.231

CP_28 746137.202 98304.228 344.254 344.253 0.001

CP_29 746046.203 97866.550 334.320 334.253 0.067

CP_30 746056.297 97832.573 333.199 333.063 0.136

Number of Checkpoints 30

Minimum Error 0.001

Maximum Error 0.247

Mean Error 0.156

Median Error 0.157

Standard Deviation 0.069

RMSE 0.170

Horizontal Positional Accuracy (E & N) N/A

Vertical Positional Accuracy 0.170

3D Positional Accuracy N/A

Now that we have concluded that the data has 
biases in it, let us see how we will remove this 
bias without reproducing the product from 
scratch. For lidar data, we will need to raise or 
lower the computed heights for the point cloud 
by the amount of the bias—in this case, 0.16 
m. Since the mean is a positive value, and 
the values in the “Error Values” column were 
computed by subtracting the lidar elevation 
from the checkpoint elevation, or:

Error = Surveyed Elevation – Lidar Elevation

we can then conclude that the terrain ele-
vation as determined from the lidar data is 
lower than that measured by the surveyed 
checkpoints. Thus, we need to raise the lidar 
elevation by 0.16 m. Table 2 illustrates the 
bias treatment we introduced above where 
the modified accuracy assessment values are 
listed in column “Unbiased Error Values”. 
All we did here was raising, or z-bump, the 
elevations of the point cloud by the amount of 
the bias, 0.16 m.

Similarly, if such analysis were conducted to 
investigate the horizontal positional accuracy 
of an orthoimage, all we would need to do is 
modify the coordinates of the tile’s header by 
the amount of the calculated biases without 
the need to reproduce the orthoimages. It 
is worth mentioning that removing the bias 
based on the “mean” value will not neces-
sarily reduce the value of the RMSE by the 
same amount, as the degree of improvement 
in the recalculated RMSE value depends on 
the value of the standard deviation. For data 
sets with low standard deviation value and 
low rates of fluctuation, removal of the biases 
will improve the RMSE by a more significant 
degree. With the data cleaned from the bias 
effect, all conditions for good accuracy results 
are satisfied and clearly presented in Table 2. 
The mean error is zero as it was removed, and 
the standard deviation and the RMSE values 
are equal. 
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Table 2. Accuracy assessment after bias removal.

Point #
Surveyed Coordinates Biased Lidar Unbiased Lidar

Unbiased Error 
Values (m)Easting (m) Northing (m) Elevation (m) Elevation (m) Elevation (m)

CP_1 746093.605 97840.580 332.708 332.469 332.625 0.083

CP_2 746084.481 97875.486 333.856 333.646 333.802 0.053

CP_3 746076.993 97906.423 334.791 334.636 334.792 -0.001

CP_4 746069.043 97934.869 335.829 335.582 335.738 0.091

CP_5 746059.191 97968.525 336.837 336.708 336.864 -0.027

CP_6 746051.284 97996.814 337.671 337.652 337.808 -0.138

CP_7 746044.837 98025.039 338.717 338.553 338.709 0.007

CP_8 746036.494 98055.805 339.823 339.591 339.747 0.076

CP_9 746027.369 98082.550 340.646 340.513 340.669 -0.022

CP_10 746019.781 98112.192 341.636 341.498 341.654 -0.018

CP_11 746012.222 98144.373 342.792 342.577 342.733 0.059

CP_12 746006.094 98171.008 343.667 343.426 343.582 0.085

CP_13 745998.080 98196.380 344.486 344.326 344.482 0.004

CP_14 745987.766 98231.319 345.597 345.498 345.654 -0.056

CP_15 745939.681 98221.349 347.036 346.789 346.945 0.091

CP_16 745950.670 98190.848 345.788 345.655 345.811 -0.023

CP_17 745956.968 98166.660 344.999 344.795 344.951 0.048

CP_18 745966.818 98133.845 343.825 343.644 343.800 0.026

CP_19 745977.417 98100.689 342.676 342.489 342.645 0.031

CP_20 745986.146 98071.263 341.594 341.451 341.607 -0.013

CP_21 745994.431 98044.637 340.573 340.505 340.661 -0.088

CP_22 746003.437 98011.200 339.403 339.336 339.492 -0.089

CP_23 746013.675 97977.662 338.426 338.185 338.341 0.085

CP_24 746020.633 97952.708 337.451 337.282 337.438 0.013

CP_25 746029.450 97922.620 336.316 336.219 336.375 -0.059

CP_26 746037.820 97896.313 335.422 335.295 335.451 -0.029

CP_27 746073.182 98205.333 343.418 343.186 343.342 0.075

CP_28 746137.202 98304.228 344.254 344.253 344.409 -0.155

CP_29 746046.203 97866.550 334.320 334.253 334.409 -0.089

CP_30 746056.297 97832.573 333.199 333.063 333.219 -0.020

Number of Checkpoints 30

Minimum Error -0.155

Maximum Error 0.091

Mean Error 0.000

Median Error 0.001

Standard Deviation 0.069

RMSE 0.067

Horizontal Positional Accuracy (E & N) N/A

Vertical Positional Accuracy 0.067

3D Positional Accuracy N/A
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The New Approach and 
Challenges for Users
As we introduced the new approach in mod-
eling products accuracy, I was surprised by 
the following findings:

Survey Accuracy and Surveyors 
Awareness
As expressed in equation 1, the new ap-
proach requires the user to enter an abso-
lute accuracy figure for the surveyed local 
network. To my surprise, I found many 
surveyors I spoke with, were either not 
aware of where to find such accuracy figure 
in the instrument processing report, or they 
blindly trust some numbers that reported in 
such reports, where the accuracy is present-
ed as quality measure that does not relate to 
the absolute accuracy that the new approach 
calls for. I reviewed several processing 
reports from some surveying instruments 
where such figure approaches zero., i.e. 0.002 m. 

Surveying Instruments Manufacturers and Survey Accuracy
To that affect, the ASPRS accuracy standard working group 
contacted several manufacturers of surveying instruments, 
but we did not get a straight answer to our request as most 
manufacturers do not report such absolute accuracy figures. 
To me, it seems such a reported accuracy figure of close to 
zero, represents a precision measure from multiple survey 
sessions of the same point. Users of such instruments need to 
know that all current surveying instruments, no matter how 
accurate, cannot produce a surveying accuracy of 0.002 meter. 

Surveyors and Mappers Power
Surveyors and other users of such instruments need to 
unite their efforts to exert some efforts with the surveying 
equipment manufacturers to provide access to the absolute 
accuracy of the network survey, without it we cannot comply 
with the accuracy assessment method dictated by the new 
ASPRS positional accuracy standard. For the time being, and 
until manufacturers provide us with such accuracy, Table 3 
that we included in the forthcoming version of the ASPRS 
Positional Accuracy Standards can be used as the default 
accuracy values in situations where the survey accuracy is 
not available or known.

The Need to Revise the Professional Practice 
Certifcation Programs
The issues raised in this article are a clear indication of the 
lack of awareness among professionals about the very issue 
impacting basic surveying and mapping practices. I call 
on all professional societies such as NSPS, ASPRS, ASCE, 
TRB, and others to lead an awareness campaign to educate 
their members on the importance of this issue. The time is 
right to start such a campaign as we head towards an entire 
National Spatial Reference System (NSRS) modernization 
program that the NOAA and the NGS are leading us to. The 
new North American Terrestrial Reference Frame of 2022 
(NATRF2022) and the North American-Pacific Geopotential 
Datum of 2022 (NAPGD2022) will offer more accurate and 
evolving horizontal and vertical datum which makes the 
issues raised in this article even more crucial to the success 
of our business. Similarly, I put forward a call to all state 
agencies which are tasked with the professional certification 
of surveyors, mappers, and engineers and the NCEES to 
revise their certification testing materials to include topics 
raised in this article. Without doing this, we risk the health, 
safety, and welfare of the public.

This article will be published concurrently in Lidar Magazine.

Table 3. Best Predicted Accuracies for Surveying Techniques1.

Survey Methodology
Best Predicted Accuracy Values

Horizontal Vertical 3D

Adjusted Closed Loop – Digital Levelling  5mm  

Real Time Network Following Section C – 
Recommended Procedures 10mm 16mm 19mm

Real Time PPP After Convergence Following 
Section D – Recommended Procedures 15mm 24mm 28mm

Rea Time Kinematic (RTK) Single Measure-
ment Following Section B – Recommended 
Procedures

20mm 32mm 38mm

Closed Conventional Traverse Following Sec-
tion E – Recommended Procedures 25mm 40mm 47mm

Real Time PPP After Convergence, Single 
Measurement 20mm 50mm 54mm

2  Addendum II of the ASPRS Positional Accuracy Standards, Edition 2, V2.

“Surveyors and other users of such 
instruments need to unite their efforts 
to exert some efforts with the surveying 
equipment manufacturers to provide 
access to the absolute accuracy of the 
network survey”
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GIS &Tips     Tricks By

Need More Tools?  Try These...

By Al Karlin, Ph.D., CSM-L, GISP

Geoprocessing tools are the nuts of bolts of GIS processing. 
An “off-the-shelf” GIS software package could come with 
several hundred standard tools. But what are the options 
for a beginning or intermediate GIS analyst when you face 
a GIS question that requires a new or different tool. Well… 
there are actually multiple options available, some easier 
to access than others.  Below are a few “tips” for finding 
tools not included with the off-the-shelf GIS products.  
Please note that these are options, and not endorsements or 
recommendations.

For ArcGIS (DeSktop AnD pro)
Tip #1 — Although off-the-shelf ArcGIS Pro comes with 41 
toolboxes, there is always room for one more.  One of my 
favorite “add-ins” is Arc Hydro (Figure 1).  If you are look-
ing for tools directed specifically for water resources, this is 
the toolset for you. This toolbox is available from Esri, at no 
cost,  https://www.esri.com/en-us/industries/water-resources/
arc-hydro/downloads?rsource=https%3A%2F%2Fdownloads.
esri.com%2Farchydro%2Farchydro%2FSetup%2F. 

This toolset is available for most versions of ArcGIS Desktop 
(ArcMap 9.3 and higher), as well as, ArcGIS Pro (2.5 and 
higher) and comes with a wealth of documentation. Best 
of all, just download the .MSI file, double-click on it and it 
installs itself.  The “gottcha” with this toolset is that Esri 

is constantly upgrading it with new tools and functionality.  
The version number will be in the “Settings | Apps | 
Installed apps” description if you forgot to note it somewhere, 
so after a few months, you might want to update.  (Hint:  I 
generally append the version number to the downloaded 
.MSI file along with the date I downloaded it.)

Tip #2 —  For those a little more adventurous and willing to 
accept an “AS IS” add-in, the WhiteBox tools (Figure 2) from 
MIT are a really good choice. This Python-based toolset brings 
a wide variety of GIS functions, some of which overlap with 
the “off-the-shelf” tools, but there are several unique tools; 
Machine Learning and Precision Agriculture for example.

The WhiteBox toolset for ArcGIS is available at no cost from 
GitHub, https://github.com/opengeos/WhiteboxTools-ArcGIS/
tree/master/WBT .  The WhiteBox tools are also available 
as a Python, Jupyter, and R library.  Installation is pretty 
easy and the toolset is available “adding” the toolset to the 
Toolboxes in ArcGIS Pro | Catalog.
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Figure 1. The Esri Arc Hydro Toolset in ArcGIS Pro.

Figure 2.  The WhiteBox Toolset in ArcGIS Pro.

https://www.esri.com/en-us/industries/water-resources/arc-hydro/downloads?rsource=https%3A%2F%2Fdownloads.esri.com%2Farchydro%2Farchydro%2FSetup%2F
https://www.esri.com/en-us/industries/water-resources/arc-hydro/downloads?rsource=https%3A%2F%2Fdownloads.esri.com%2Farchydro%2Farchydro%2FSetup%2F
https://www.esri.com/en-us/industries/water-resources/arc-hydro/downloads?rsource=https%3A%2F%2Fdownloads.esri.com%2Farchydro%2Farchydro%2FSetup%2F
https://github.com/opengeos/WhiteboxTools-ArcGIS/tree/master/WBT
https://github.com/opengeos/WhiteboxTools-ArcGIS/tree/master/WBT
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Tip 3 — For those less adventurous and more financially 
solvent, there are several commercially available add-in tool-
sets.  One of the more robust while still economical packages 
is a tried-and- true package called “XTools”.  This toolset 
is offered as a “try before you buy” package that includes 
more than 100 tools and functions for spatial analysis, shape 
conversions and table management.  There are versions 
available for both ArcGIS Desktop and ArcGIS Pro that can 
be downloaded from https://xtools.pro/en/overview/. 

For QGIS
Tip #4 — The Whitebox toolset is also available to QGIS 
users. There is a Python Plugin Repository, https://plugins.
qgis.org/plugins/wbt_for_qgis/ .

Tip #5 — QGIS maintains a large repository of plug-ins that 
cover a wide range of GIS analytics, ranging from Shape and 
Lat/Long Tools to Rubbersheeting and Image Classification.  
These and more are available at no cost for download at: 
https://plugins.qgis.org/. 

For “Free” GIS SoFtwAre
Tip #6 — While the above tips assume that you are using 
either an Esri product or an opensource product, like QGIS, 
there are other “free” downloadable options, and some even 
run on MacOS, a rarity in the GIS world.  It may take a bit 
of patience to find the right product for your analysis, but 
GISGeography.com (https://gisgeography.com/free-gis-soft-
ware/)  is a good place to start your search.

Finally, while you are at the GISGeography.com site, for the 
most adventurous, there are several Python libraries (https://
gisgeography.com/python-libraries-gis-mapping/) tutorials, 
and other support documentation to “make your own” tools.  

Send your questions, comments, and tips to GISTT@ASPRS.org.

Al Karlin, Ph.D., CMS-L, GISP is with Dewberry’s Geospa-
tial and Technology Services group in Tampa, FL. As a se-
nior geospatial scientist, Al works with all aspects of lidar, 
remote sensing, photogrammetry, and GIS-related projects.  

The PE&RS GIS Tips and Tricks column has 
been appearing monthly since 2018.

Together with colleagues from the GIS 
community, we have provided tips on using 
Esri, Global Mapper, MicroStation and Open 
Source (QGIS) GIS software products, as well 
as several Python and cartography tricks that 
we have accumulated over the years. 

As a reader of the column, we would be 
happy to hear from you regarding suggestions 
for future topics, questions, and of course, 
contributions. Looking forward to hearing 
from you at: GISTT@ASPRS.org.

https://xtools.pro/en/overview/
https://plugins.qgis.org/plugins/wbt_for_qgis/
https://plugins.qgis.org/plugins/wbt_for_qgis/
https://plugins.qgis.org/
https://gisgeography.com/free-gis-software/
https://gisgeography.com/free-gis-software/
https://gisgeography.com/python-libraries-gis-mapping/
https://gisgeography.com/python-libraries-gis-mapping/
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A Pixel Texture Index Algorithm and Its Application
Xiaodan Sun and Xiaofang Sun

Abstract
Image segmentation is essential for object-oriented analysis, and 
classification is a critical parameter influencing analysis accuracy. 
However, image classification and segmentation based on spectral 
features are easily perturbed by the high-frequency information of a 
high spatial resolution remotely sensed (HSRRS) image, degrading 
its classification and segmentation quality. This article first presents 
a pixel texture index (PTI) by describing the texture and edge in a 
local area surrounding a pixel. Indeed.. The experimental results 
highlight that the HSRRS image classification and segmentation 
quality can be effectively improved by combining it with the PTI 
image. Indeed, the overall accuracy improved from 7% to 14%, 
and the kappa can be increased from 11% to 24%, respectively. 
Five supervised evaluative indicators (i.e., oversegmentation, 
undersegmentation, edge-matching degree, number of segmentation 
blocks, and shape error) have reduced from 27.6% to 75%.

Introduction
In recent years, high spatial resolution remotely sensed (HSRRS) 
images with multi-spectral bands such as WorldView-II, IKONOS, 
and QuickBird (Blaschke et al. 2014) have provided copious amounts 
of data for many fields, such as marine, forestry, agricultural resource 
management, dynamic land use monitoring, disaster prevention, and 
assessment, population census, and mineral resource development and 
utilization. Accordingly, the development and improvement of image 
analysis technology promote the application potential of HSRRS 
images, which is also a crucial aspect of remote sensing technology.

Object-oriented analysis is generally used for HSRRS images, 
as an object provides more features than pixel-oriented analysis, 
making HSRRS image analysis more intelligent, accurate, and 
efficient (Blaschke et al. 2014; Chen et al. 2017). The HSRRS 
image has sharp high-frequency information, e.g., texture and edges. 
However, the spectral values within the same land-cover type are 
more complex, reducing the HSRRS image’s classification and 
segmentation quality. Segmentation is essential for object-oriented 
analysis, and classification is key in influencing analysis accuracy 
(Corcoran et al. 2010; Lin et al. 2019). To overcome this problem, we 
simultaneously combined the texture features and edges of land-cover 
types during classification and segmentation, effectively reducing the 
misclassification caused by the spectral homogeneity of the different 
land-cover types and the “oversegmentation” phenomenon caused 
by the spectral heterogeneity of the same land-cover type. Therefore, 
simultaneously obtaining the texture features and edges of various 
land-cover types prior to image segmentation or classification is a 
problem to be solved. 

The texture is essential to identifying land-cover types and is gener-
ated by the regular changes in the image’s spectral features. Currently, 

the following texture-based methods have been proposed: (1) Statistical 
analysis description methods that obtain first-order, second-order, or 
higher-order statistical texture features of an object, which include the 
gray-level co-occurrence matrix (GLCM) (Palm 2004; Samiappan et al. 
2017; Zhang et al. 2020), semi-variance graph (Balaguer et al. 2010; 
He and Changqing 2011; Wu et al. 2015), and autocorrelation function 
(Lin et al. 1997; Brochard et al. 2001; Hu et al. 2018). This description 
method is simple and easy to use and implement. Its texture analysis 
process differs significantly from the human visual mechanism and is 
sensitive to image noise. (2) Geometric structure description methods 
that extract an object’s texture primitives (i.e., the basic texture ele-
ments) and copy and arrange them according to preset rules to charac-
terize the texture features, such as syntactic texture analysis ( Lu and Fu 
1978; Arvor et al. 2013) and mathematical morphology (Decenciere et 
al. 2001; Feng et al. 2021). This method is only appropriate for describ-
ing regular textures, as its ability to describe irregular textures is inad-
equate. (3) Extraction of texture features by using time-frequency and 
multi-scale signal processing analysis techniques (e.g., wavelet, Gabor, 
Fourier, and discrete cosine transforms) (Arivazhagan and Ganesan 
2003; Arivazhagan et al. 2006; Zhang et al. 2006; Qian et al. 2012; 
Rebhi et al. 2019; Teillet et al. 2021;Zhang and Li. 2022). Texture 
features are classified as high-frequency information and can be easily 
decomposed into noise during signal processing. (4) Model description 
methods (e.g., Markov random field, fractal model, and autoregression 
model) (Alata and Olivier 2003; Dai et al. 2020; Padhy et al. 2021) that 
use model parameters to represent texture features. Since model train-
ing is an iterative optimization process, these methods have high time–
space complexity. (5) Graph theory description methods that use graph 
theory (e.g., local graph structure and tourist walking map) (Backes et 
al. 2010; Sayeed et al. 2013; Abdullah et al. 2014; Liu et al. 2015) to 
analyze the texture and extract some significant graphical data (e.g., 
points, lines, and planes) to describe the texture features. Typically, this 
method is used for facial recognition and textile identification. (6) The 
machine learning description method, which is based on a large amount 
of training sample data in the texture library, obtains texture feature de-
scription data through machine/deep learning (such as extreme learning 
machine and convolutional neural network) (Andrearczyk and Whelan 
2016; Duan et al. 2017; Liu and Ren. 2022; Zhang et al. 2022). This 
method requires collecting a large amount of texture sample data, and 
the calculation process is complex, time-consuming, and labor-inten-
sive. (7) Entropy-based methods, such as the two-dimensional sample 
entropy method, the two-dimensional distribution entropy method, 
and the two-dimensional multi-scale entropy method, that analyze the 
correlation between the irregularity and complexity of the texture from 
the perspective of two-dimensional space and extract the entropy mea-
surement data to characterize the texture features (Zunino and Ribeiro 
2016; Silva et al. 2018; Espinosa et al. 2021). This type of method is 
better suited to describe irregular and complex textures.

However, existing methods can only extract texture features, most 
of which are used for image classification or object identification, 
while no method can simultaneously extract an object’s texture and 
edge features for image classification or segmentation. So far, pixel-
level indices (such as Normalized Difference Vegetation Index, NDVI 
and Normalized Difference Water Index, NDWI) have highlighted 
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the thematic information in images from the perspective of spectral 
features. NDVI is a remote sensing index used for measuring vegeta-
tion coverage and growth conditions, while NDWI is a remote sensing 
index used for detecting water bodies and wetlands. Nevertheless, 
no one has proposed a pixel-level index highlighting various texture 
and edge features of land features. Based on the current situation, 
this article proposes an algorithm to analyze ground texture and edge 
features from the perspective of pixels. Specifically, the developed 
algorithm obtains pixel texture index (PTI) image data by evaluating 
the contextual relationship of texture features between pixels in a local 
area. In PTI images, the homogeneity of texture and edge features of 
various ground features can be reflected. Combining PTI image data 
can effectively improve the classification and segmentation quality of 
HSRRS images. 

The rest of this article is organized as follows. “Principles and 
Methods” describes the PTI algorithm. “Experiments” discusses the 
application of the PTI algorithm in the classification and segmentation 
of HSRRS images such as QuickBird and WorldView-II. “Results and 
Analysis” analyzes and evaluates the experimental results. Finally, the 
article ends with “Conclusions.”

Principles and Methods
In order to briefly discuss the principles and methods proposed in this 
article, a panchromatic (PAN) image is used as an example. Texture 
features of land-cover types in a PAN image of size R × C vary greatly 
in sharpness, brightness, and regularity due to illumination variations. 
To mitigate the effect of illumination on texture feature analysis, a 
local texture binary code (LTBC) was proposed using the local binary 
pattern operator (Qian et al. 2011; Liu et al. 2016; Liu and Ma. 2022), 
which was used to redescribe the image data and create an LTBC im-
age. In the LTBC image, the textures of land-cover types are distinc-
tively and identically reflected, affording texture feature analysis7.

Local Texture Binary Code 
In a 3 × 3 window centered on pixel S(S = 1 …R × C), LTBC compares 
the spectral median with the spectral features of the adjacent pixels 
in this window and provides the corresponding binary codes of the 
adjacent pixels based on the comparison results:


bk = 


1 (vk > midv)
0 (vk ≤ midv)

(1)

where bk is the binary code of the kth (k = 1 … 8, k ≠ S) pixel adjacent 
to pixel S within the window, vk is the spectral feature of the ith adjacent 
pixel around pixel S, and midV is the spectral median of the window. For 
example, in a 3×3 window, the spectral features of its adjacent pixels v1 
~ v8 around pixel S are 9, 62, 89, 6, 9, 100, 87, and 101. Then, the spec-
tral feature of pixel S vS is (Figure 1a), and the spectral median within 
the window is 62 (midV = 62), and the binary codes of the adjacent 
pixels v1 to v8 are obtained through the LTBC definition (Figure 1b). 

Moreover, the binary codes of v1 to v8 are arranged clockwise to obtain 
the LTBCS on the central pixel S (Figure 1c). The LTBC definition 
demonstrates that it solely refers to the spectral features of the pixels 
within a localized area but not to the pixels of other areas. Therefore, 
the changes in lighting in different regions have almost no effect on the 
calculation process of LTBC. This allows for a clear presentation of 
texture features of ground objects in areas with different lighting inten-
sities in LTBC images, which is the basis for subsequent textures. Thus, 
edge feature extraction work provides a good data source.

To demonstrate that the textures of land-cover types can be dis-
tinctively and identically reflected in the LTBC image, we use LTBC 
to redescribe the PAN images of the six land-cover types provided 
in Figure 2a, 2c, 2e, 2g, 2i, and 2k: cultivated land, water, forest, 
grassland, bare soil, and sand. The corresponding LTBC images are 
depicted in Figures 2b, 2d, 2f, 2h, 2j, and 2l. Under different illumina-
tion, the textures on six land-cover types in the PAN images differ 
significantly in sharpness and brightness. Meanwhile, in the LTBC 
images, the influence of illumination is eliminated, and the sharp-
ness and brightness of the textures on six land-cover types have been 
enhanced. To further prove that the LTBC can effectively enhance the 
textures’ sharpness, significance, and regularity, the two indexes (i.e., 
angular second moment [ASM] and contrast) of the GLCM were used 
to evaluate the texture features of six land-cover types quantitatively. 
The ASM index reflects whether the changes in texture features are 
regular, and the larger the ASM value, the more regular the changes in 
texture features. The contrast index reflects the clarity and saliency of 
texture features, and the higher its value, the clearer and more obvious 
the texture features. The evaluation results are displayed in Figure 3. 
Compared to the evaluation results of PAN images, the ASM on the 
texture features of six land-cover types increased to a certain degree 
in the LTBC images, indicating that the texture features became more 
regular. Meanwhile, the contrast of texture features of six land-cover 
types increased significantly, inferring that the sharpness and signifi-
cance of the LTBC images improved significantly. In short, the LTBC 
image is more suitable for texture feature analysis than the PAN image.

Pixel Texture Index and Its Algorithm
After obtaining the LTBC images, the pixel texture index is proposed 
to evaluate the context of the texture features between each pixel and 
its adjacent pixels based on the LTBC image data. Since the LTBC data 
of the pixels within the same land-cover type are similar, this similarity 
is used to describe the context of texture features between the pixels. 
Thus, PTI reflects the homogeneity of texture features within the same 
land-cover type. Furthermore, the PTI image highlights the edges of 
different land-cover types, including the growth of direction lines and 
the calculation of PTIS.

Growth of Direction Lines
In a circular window centered on pixel S(S = 1……R × C), eight rays 
(i.e., direction lines) are independently extended in eight directions 
from pixel S, with each direction having a length determined by the 
number of pixels on the direction line. This article uses the similarity 

                  (a)                      (b) (c)

Figure 1. Flow chart of LTBCS. (a) Diagram of the window. (b) Binary code of the window. (c) LTBCS on central pixel S. LTBC = local texture 
binary code. 
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between two LTBC pixel values to describe the homogeneity of texture 
features between pixels. The more similar the LTBC values of the two 
pixels, the higher the homogeneity of texture features between the two 
pixels. The homogeneities of texture features between the pixels along 
the eight directions are proportional to the lengths of the eight direction 
lines in the window (Figure 4). SIM i

S represents the homogeneities of 
texture features between the central pixel S and its adjacent pixels on 
the ith (i = 1, 2 … 8) direction line. SIM i

S is defined as follows:

Figure 2. Panchromatic (PAN) images and corresponding local texture binary code (LTBC) images on six land-cover types. (a, c, e, g, i, k) PAN 
images on cultivated land (a), water (c), forest (e), grassland (g), bare soil (i), sand (k). (b, d, f, h, j, l) Corresponding LTBC images on cultivated 
land (b), water (d), forest (f), grassland (h), bare soil (j), and sand (l).

Figure 3. Angular second moment (ASM) and contrast on the texture 
features of six land-cover types. (a) Histogram of ASM. (b) Histogram 
of contrast. LTBC = local texture binary code; PAN = panchromatic.

Figure 4. Schematic diagram of eight direction lines from the central 
pixel S.
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 SIM i
S = LTBCS 9 LTBCi

g (2)

where LTBCS represents the LTBC of the central pixel S, LTBCi
g is the 

LTBC of an adjacent pixel g on the ith direction line, and 9 represents 
the XNOR bit operation, such as 191 = 1, 090 = 1, 190 = 0, 091 = 
0. Assuming that LTBCS = 01101110 and LTBCi

g = 10001101, SIM i
S = 

LTBCS 9LTBCi
g = 01101110910001101 = 00011100. Hence, the more 

the number “1” digits in SIM i
S, the more similar the LTBC values of 

pixel S and its adjacent pixel g. Therefore, the number of digits “1” in 
SIM i

S can be used as a criterion to measure the texture feature simi-
larity between pixel S and its adjacent pixel g, which can determine 
whether the ith direction line continues to grow. If the digit “1” in SIM i

S 
is greater than or equal to a preset threshold T1, the ith direction line 
continues to grow until either the digit “1” in SIM i

S is less than T1 or the 
length of ith direction line exceeds the preset threshold T2.

Calculation of PTI
After generating all direction lines surrounding the central pixel S, 
the texture index PTIS of the central pixel S is obtained by simply 
calculating the lengths of the direction lines. To ensure the rationality 
of PTIS on the central pixel S, PTIS is the weighted sum of the lengths 
of all direction lines (Equation 3), which is normalized into [0, 255] 
(Equation 4):

  

(3)

  
(4)

where f(·) represents the occurrence frequency of the length value 
in the set of length values, PTI'max and PTI'min are the maximum and 
minimum values in PTI data, and li

S is the length of the ith direction line, 
defined as the following Euclidean distance:

  
(5)

where xi
end and yi

end represent the horizontal and vertical coordinates of 
the pixel at the end of the ith direction line, and xS and yS represent the 
horizontal and vertical coordinates of the central pixel S. Specifically, 
if the ith direction line does not grow, li

S = 0. The PTI process is for-
mally presented in Algorithm 1.

When using the PTI algorithm to describe texture features in 
LTBC images from the perspective of pixels, the threshold T2(T2≥2) 
determines the maximum length of each directional line. Threshold 

T1(1≤T1≤8) determines whether the central pixel and its adjacent pixels 
have similar texture features and whether each direction line continues 
to expand. Therefore, whether the settings of T1 and T2 are reason-
able and will directly affect the quality of PTI image data should be 
explored further.

Settings of Thresholds T1 and T2 
In order to propose a reasonable method for setting thresholds T1 
and T2, we select a PAN image of IKONOS as the experimental area 
(Figure 5a). The experimental area image has a size of 281 255 pixels 
and a spatial resolution of 1 m, depicting water, bare soil, forest, 
and cultivated land. However, we redescribe the experimental area 
using LTBC to eliminate the illumination influence on the texture 
feature analysis, in which the corresponding LTBC image (Figure 5b) 
presents high-resolution texture features of different land-cover types. 
Subsequently, it is very important to determine reasonable thresholds 
T1 and T2 before the PTI image is obtained based on the LTBC image 
(Figure 5b) using the PTI algorithm (see “Calculation of PTI”). Due 
to the noncorrelation between thresholds T1 and T2, the argumentation 
process regarding the reasonable values of T1 and T2 can be discussed 
separately and independently.

Algorithm 1. PTI 

Date: Ready-for-analysis LTBC image LTBCR×C

Date: Threshold T1(1≤T1≤8) 
Date: Threshold T2(T2≥2)
Result: PTI image  PTIR×C
Begin:
 for each S = 1 : R×C do
   for each i = 1 : N do
     j = 1
     SIM i

S = LTBCS 9LTBC i
g (Equation 2)

     if SIMi
S  ≥ T1 and j ≤ T2 then: 

       j+ = 1
     else:

       
(Equation 5)

     

(Equation 3)

  for each S = 1 : R × C do

     
(Equation 4)

 Return PTIR×C 

(a) (b)

Figure 5. Panchromatic (PAN) image and experimental data of the experimental area. (a) PAN image. (b) Local texture binary code (LTBC) image.

280 May 2024 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



IPTI Index
In the PTI image, if the PTI of different land-cover types is more 
discrete and the PTI of the same land-cover type is more cohesive, 
then the PTI image is more suitable for image segmentation. Hence, 
the indicator IPTI is proposed, which is directly proportional to the 
dispersion of PTI about interclass pixels and inversely proportional to 
the dispersion of PTI about intraclass pixels. The higher the IPTI value, 
the better the quality of PTI image data. The sum of the absolute values 
of the difference in the mean values about PTI of each land-cover type 
sample represents the dispersion of PTI about interclass pixels. The 
sum of the absolute values of the difference between the PTI of each 
sample pixel and the mean value about PTI of the sample pixels in the 
same land-cover type represents the dispersion of PTI about intraclass 
pixels. The calculation formula is as follows:

   

(6)

where N is the total of land-cover types in the image, M is the total of 
sample pixels in each land-cover type, µj represents the mean value 
about PTI of the sample pixels in the jth land-cover type, µk(k ≠ j) 
represents the mean value of PTI of the sample pixels in the kth land-
cover type, and PTIi

j represents the PTI of the ith sample pixel in the jth 
land-cover type.

Settings of T1 and T2

From the image in Figure 5a, 50 sample pixels were collected from 
each land-cover type using random sampling. Assuming threshold 
T2 was temporarily set to 10, we calculated the corresponding IPTI 
when T1 increased from 1 to 8. The line chart of Figure 6a reflects 

the relationship between IPTI and T1, highlighting that when T1= 6, IPTI 
maximizes; thus, T1 = 6 is reasonable.

When T1 = 6, the corresponding IPTI was calculated when T2 in-
creased from 2 to 20. The line chart of Figure 6b reflects the relation-
ship between IPTI and T2 (when T1 = 6), revealing that for T2 = 5, IPTI 
maximizes, and therefore T2 = 5 is a reasonable value.

Based on the above experimental results, T1 is set to 6, and T2 is 
set to 5. Based on the LTBC image (Figure 5b), the PTI algorithm 
(see “Calculation of PTI”) is used to obtain the PTI image (Figure 
7a). Finally, the image of the experimental area is segmented using 
Definiens Developer software, with the segmental scale set to 60. The 
other segmentation parameters use the default values. Compared with 
the segmental result of the PAN image (Figure 7b), the “oversegmenta-
tion” and “undersegmentation” phenomena are significantly reduced 
by combining PAN and PTI images (Figure 7c), thus improving the 
segmentation quality, almost reflecting the land use situation.

Experiments 
To avoid the contingency in the abovementioned experiments and 
verify the superiority and robustness of the proposed PTI algorithm, 
two experimental areas were selected from two distinct types of 
HSRRS images. Figure 8 depicts the experimental procedure, with 
the corresponding experiments demonstrating that the PTI image can 
effectively improve the image classification and segmentation quality. 
The first experimental area was selected from the QuickBird, with 
Figure 9 depicting the original and the corresponding LTBC images 
of all bands. The multi-spectral (i.e., blue [450 to 520 nm], green [520 
to 600 nm], red [630 to 690 nm], and near-infrared [NIR, 760 to 900 
nm]) images of this experimental area are 211 × 181 pixels, and the 
spatial resolution is 2.44 m. The PAN (610 to 720 nm) image of this 

                (a)            (b)

Figure 6. Calculation results of IPTI. (a) Relationship between IPTI and T1(when T2 = 10). (b) Relationship between IPTI and T2 (when T1 = 6. PTI = 
pixel texture index.

                (a)                             (b)                   (c)

Figure 7. Panchromatic (PAN) image and experimental data of the experimental area. (a) Pixel texture index (PTI) image. (b) Segmental result 
based on PAN image. (c) Segmental result by combining PAN image with PTI image.
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experimental area is 792 × 734 pixels, and the spatial resolution is 0.61 
m, presenting artificial land-cover types and noise (such as shadow). 

The second experimental area was selected from the WorldView-II. 
The Coastal-band (400 to 450 nm), yellow (585 to 625 nm), red-edge 
(705 to 745 nm), and NIR-II (860 to 1040 nm) images provided by 
WorldView-II are specifically used for vegetation identification and 

analysis. The images of the four bands were selected for this experi-
ment because vegetation is the main land-cover type of the second 
experimental area. The original and corresponding LTBC images of 
all bands are illustrated in Figure 10. The multi-spectral images of 
this experimental area are 141 × 131 pixels, and the spatial resolution 
is 1.8 m. The PAN (450 to 800 nm) image of this experimental area 

Figure 8. Flow chart of the experimental procedure. HSRRS = high spatial resolution remotely sensed; LTBC = local texture binary code; PTI = 
pixel texture index. 

Figure 9. High spatial resolution remotely sensed (HSRRS) images and the corresponding local texture binary code (LTBC) images of the 
first experimental area. (a) Blue image and corresponding LTBC image. (b) Green image and corresponding LTBC image. (c) Red image and 
corresponding LTBC image. (d) Near-infrared (NIR) image and corresponding LTBC image. (e) PAN image and corresponding LTBC image.
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image is 561 × 524 pixels with a spatial resolution of 0.5 m, presenting 
cultivated land, forest, water, and bare soil. The two experimental areas 
reflect two distinct land use situations. 

Since multi-spectral images have multi-dimensional spectral 
features, these images are suitable for classification experiment. 
Specifically, it is suitable for segmental experiment based on a single 
spectral feature provided by PAN image. This article verifies the PTI 
algorithm’s superiority and robustness from classification of multi-
spectral images and segmentation of PAN images. 

Classifications of Multi-spectral Images
Firstly, classification experiments of multi-spectral images were 
performed. Before deriving the PTI images, the IPTI (see “IPTI Index”) 
was used to determine the reasonable values of the thresholds T1 and 
T2. Using random sampling, 40 sample pixels were collected from 
each land-cover type of the two experimental areas. The threshold T2 
of the first experimental area was temporarily set to 15, the threshold 
T2 of the second experimental area was temporarily set to 10, and the 
corresponding IPTI (Equation 6) was calculated when T1 increased from 
1 to 8. Figures 11a and 12a illustrate the relationship between IPTI and 
T1 about the two experimental areas. In Figure 11a, due to the high 

Figure 10. High spatial resolution remotely sensed (HSRRS) images and the corresponding local texture binary code (LTBC) images of the 
second experimental area. (a) Coastal-band image and corresponding LTBC image. (b) Yellow image and corresponding LTBC image. (c) 
Near-infrared II (NIR-II) image and corresponding LTBC image. (d) Red-edge image and the corresponding LTBC image. (e) PAN image and 
corresponding LTBC image.

                  (a)                  (b)
Figure 11. Calculation results of IPTI of the first experimental area about multi-spectral images. (a) Relationship between IPTI and T1 (when T2 = 
15). (b) Relationship between IPTI and T2 (when T1 = 6). NIR = near-infrared; PTI = pixel texture index.
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correlation of the data between visual bands (i.e., blue, green, red), 
the trends of IPTI about the sample points in visual bands are similar. 
However, the correlation between the NIR band and visible bands is 
not high, so there is a significant difference in the trend of IPTI about the 
sample points in NIR bands compared to the former. When T1 = 6, IPTI 
maximizes, and therefore, the reasonable value of T1 is 6 for the first 
experimental area. In Figure 12a, due to the high correlation between 
Coastal-band and yellow, the trends of IPTI about the sample points in 
the two bands are similar. The correlation between red-edge and NIR-
II is relatively high, so the trends of IPTI about the sample points in the 
two bands are similar. When T1 = 7, IPTI maximizes, and therefore, the 
reasonable value of T1 is 7 for the second experimental area.

For the first experimental area, we considered T1 = 6, and the cor-
responding IPTI was calculated while T2 increased from 15 to 70. Figure 
11b depicts the relationship between IPTI and T2, suggesting that when 
T2= 35, 46, 63, and 45, IPTI in blue, green, red, and NIR maximizes, re-
spectively. When T2 exceeds these values, IPTI decreases and then tends 
to stabilize. Therefore, the reasonable values of T2 in four bands are 35, 
46, 63, and 45. Based on the thresholds T1 and T2 calculated above, we 
derived PTI images (Figure 13) from the LTBC images (Figure 9a–d) 
using the PTI algorithm (see “Calculation of PTI”). For the second 

experimental area T1 = 7, and the corresponding IPTI was calculated, 
while T2 increased from 5 to 33. Figure 12b depicts the relationship 
between IPTI and T2, suggesting that when T2 = 24, 24, 25, and 26, IPTI 
in Coastal-band, yellow, red-edge, and NIR-II maximizes, respectively. 
When T2 exceeds these values, IPTI slightly decreases and tends to stabi-
lize finally. Therefore, the reasonable values of T2 in four bands are 24, 
24, 25, and 26. Based on the T1 and T2 thresholds calculated above, we 
derived PTI images (Figure 14) from the LTBC images (Figure 10a–d) 
using the PTI algorithm (see “Calculation of PTI”). The homogeneity 
of each land-cover type’s texture features and each land-cover type’s 
edges is presented in the PTI images of all bands.

Correlation analysis was performed between the multi-spectral and 
PTI images of the two experimental areas to obtain the correlation co-
efficient matrixes. Tables 1 and 2 highlight that the correlation between 
PTI images and the multi-spectral images is very low. This statistic 
indicates that the information redundancy between PTI and multi-
spectral images is very low. It describes the various land-cover types’ 
high frequency, which increases the dimension of the image classifica-
tion feature space and provides effective data support for improving 
classification accuracy.

                 (a)                  (b)

Figure 12. Calculation results of IPTI of the second experimental area about multi-spectral images. (a) Relationship between IPTI and T1 (when T2 
=10). (b) Relationship between IPTI and T2 (when T1 = 7). NIR2 = near-infrared II; PTI = pixel texture index.

                        (a)                        (b)                (c)         (d)

Figure 13. Pixel texture index (PTI) images of the first experimental area about multi-spectral images. (a) PTIBlue image. (b) PTIGreen image. 
(c) PTIRed image. (d) PTINIR image.

                        (a)                        (b)                (c)         (d)

Figure 14. Pixel texture index (PTI) images of the second experimental area about multi-spectral images. (a) PTICoastal-band image. (b) PTIYellow 
image. (c) PTIRed-edge image. and (d) PTINIR-II image.
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In order to verify the effect of PTI image data on image classifi-
cation, a simple supervised classification technique was adopted to 
classify the land-cover types of the two experimental areas into five 
categories. The classification of each experimental area was performed 
twice. The first classification was executed based on multi-spectral 
images, referred to as data 1. The second classification was executed 
by combining low-correlation multi-spectral images and PTI images, 
referred to as data 2. Data 2 of the first experimental area included 
red, NIR, PTIRed, PTINIR, and Data 2 of the second experimental area 
included yellow, red-edge, NIR-II, PTICoastal-band, PTIRed-edge, PTINIR-II. 

Additionally, to evaluate the classification results, the PAN images of 
the experimental area were used as references; combined with the actual 
land use situation, manual mapping was used to obtain the correct clas-
sification results (Figures 15a and 16a). The classification results of the 
two experimental areas are depicted in Figures 15b, 15c, 16b, and 16c.

Segmentations of PAN Images
Subsequently, segmental experiments of PAN images were performed. 
Specifically, using random sampling, 70 sample pixels were collected 
from each land-cover type for the first experimental area. The thresh-
old T2 was temporarily set to 60, and the corresponding IPTI (Equation 

Table 1. Correlation coefficient matrix of the eight bands about the first experimental area.
Correlation coefficient Blue Green Red NIR PTIBlue PTIGreen PTIRed PTINIR

Blue 1.000 0.990 0.955 0.584 −0.003 −0.003 0.016 0.018 

Green 0.990 1.000 0.980 0.599 −0.002 −0.003 0.018 0.012 

Red 0.955 0.980 1.000 0.553 0.006 0.003 0.018 0.024 

NIR 0.584 0.599 0.553 1.000 −0.114 −0.100 −0.062 −0.247 

PTIBlue −0.003 −0.002 0.006 −0.114 1.000 0.867 0.800 0.506 

PTIGreen −0.003 −0.003 0.003 −0.100 0.867 1.000 0.813 0.508 

PTIRed 0.016 0.018 0.018 −0.062 0.800 0.813 1.000 0.445 

PTINIR 0.018 0.012 0.024 −0.247 0.506 0.508 0.445 1.000 

NIR = near-infrared; PTI = pixel texture index.

Table 2. Correlation coefficient matrix of the eight bands about the second experimental area.
Correlation coefficient Coastal-band Yellow Red-edge NIR-II PTICoastal-band PTIYellow PTIRed-edge PTINIR-II

 Coastal-band 1.000 0.989 0.348 −0.333 0.147 0.191 0.140 0.170

Yellow 0.989 1.000 0.278 −0.376 0.150 0.200 0.141 0.179

Red-edge 0.348 0.278 1.000 0.714 0.026 0.019 0.021 −0.004

NIR-II −0.333 −0.376 0.714 1.000 −0.079 −0.115 −0.071 −0.132

PTICoastal-band 0.147 0.150 0.026 −0.079 1.000 0.703 0.255 0.273

PTIYellow 0.191 0.200 0.019 −0.115 0.703 1.000 0.249 0.299

PTIRed-edge 0.140 0.141 0.021 −0.071 0.255 0.249 1.000 0.400

PTINIR-II 0.170 0.179 −0.004 −0.132 0.273 0.299 0.400 1.000

           (a)             (b)        (c)
Figure 15. Experimental results of the first experimental area about multi-spectral images. (a) Manually corrected classification result. (b) 
Classification result based on data 1. (c) Classification result based on data 2.

           (a)             (b)        (c)
Figure 16. Experimental results of the second experimental area about multi-spectral images. (a) Manually corrected classification result. (b) 
Classification result based on data 1. (c) Classification result based on data 2.
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6) was calculated when T1 increased from 1 to 8. Figure 17a illustrates 
the relationship between IPTI and T1, revealing that when T1 = 6, IPTI 
maximizes, and therefore, the reasonable value of T1 is 6. Then, for T1 
= 6 the corresponding IPTI was calculated, while T2 increased from 50 
to 60. Figure 17b depicts the relationship between IPTI and T2 , suggest-
ing that when T2 = 57, IPTI maximizes, and therefore, the reasonable 
value of T2 is 57.

Second, using random sampling, 60 sample pixels were collected 
from each land-cover type for the second experimental area. The 
threshold T2 was temporarily set to 10. The corresponding IPTI was cal-
culated. When the threshold T1 increased from 1 to 8, and a line chart 
was used to reflect the relationship between IPTI and T1 (Figure 18a). It 

showed that when T1 = 6, the IPTI reached its maximum therefore the 
reasonable value of T1 is 6. When T1 = 6, the corresponding IPTI was 
calculated when the threshold T2 increases from 2 to 10, and a line 
chart is used to reflect the relationship between IPTI and T2 (Figure 18b). 
It showed that when T2 = 4, the IPTI reached its maximum; therefore the 
reasonable value of T2 is 4.

Based on the thresholds T1 and T2 calculated above, we derived PTI 
images from the LTBC images (Figure 9b and 9d) using the PTI algo-
rithm (see “Calculation of PTI”). The homogeneity of each land-cover 
type’s texture features and each land-cover type’s edges is presented in 
the PTI images (Figure 19).

                 (a)                  (b)

Figure 17. Calculation results of IPTI of the first experimental area about panchromatic (PAN) image. (a) Relationship between IPTI and T1 (when 
T2 = 60. (b) Relationship between IPTI and T2 (when T1 = 6). PTI = pixel texture index.

                 (a)                  (b)

Figure 18. Calculation results of IPTI of the second experimental area about panchromatic (PAN) image. (a) Relationship between IPTI and T1 
(when T2 = 10). (b) Relationship between IPTI and T2 (when T1 = 6). PTI = pixel texture index.

                 (a)                  (b)

Figure 19. Pixel texture index (PTI) images of two experimental areas about panchromatic (PAN) images. (a) PTI image of the first 
experimental area. (b) PTI image of the second experimental area.

286 May 2024 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



The segmentation parameters for the first experiment are a segmen-
tation scale of 150 and a shape factor of 0.3, while the other parameters 
are the default. Accordingly, the segmentation scale is set to 80 for the 
second experimental area, and the other parameters are the default. 
Based on the two data sets, the PAN images of the two experimental 
areas are segmented twice. The first set of data solely comprises a 
PAN image (Figures 9e and 10e), referred to as data 1, and the second 
set consists of PAN images (Figures 9e and 10e) and its PTI images 
(Figure 19a and 19b), referred to as data 2. The segmentation results 
are presented in Figure 20, where the blue lines represent the image 
segmentation-generated contour lines of the objects.

Results and Analysis
We first used manual visual interpretation to analyze and compare 
the experimental results to ensure the evaluation rationality. Then, 
we combined classification and segmentation metrics to evaluate the 
experimental results objectively.

Analysis of Classification Results
The classification results of the two experimental areas were evalu-
ated using manual visual interpretation, the confusion matrix, overall 
accuracy, and the kappa coefficient. 

Manual Visual Interpretation
First, by using manual visual interpretation, the classification results 
of the two experimental areas were compared. It was found that: (1) 
In the classification result based on data 1 of the first experimental 
area, many shadow pixels were misclassified as buildings, while some 
light-gray building pixels were misclassified as roads, resulting in low 
classification accuracy of these land-cover types. Meanwhile, due to 
the interference of traffic line pixels on classification, the completeness 
of the road was not high in the result. However, in the classification 
result based on data 2 of the experimental area, the misclassifica-
tions between building and shadow and between building and road 
were significantly reduced, and the completeness of the road was also 
improved. (2) In the classification result based on data 1 of the second 
experimental area, some forest pixels were misclassified as grass-
land, and some grassland pixels were misclassified as cultivated land. 
Meanwhile, because some bare soil areas are covered with a small 
amount of vegetation, some pixels were classified as grassland. In the 
classification result, the bare soil area was incomplete and inconsistent 
with the land use status. In the classification result based on data 2 of 
the experimental area, the misclassifications between forest and grass-
land and between grassland and cultivated land were reduced, and the 
completeness of the bare soil area significantly improved.

Figure 20. Experimental results of two experimental areas about PAN images. (a) Segmental result of the first experimental area based on data 
1. (b) Segmental result of the first experimental area based on data 2. (c) Segmental result of the second experimental area based on data 1. (d) 
Segmental result of the second experimental area based on data 2.
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Accuracy Verification
Secondly, the classification accuracy was verified using the confusion 
matrix, overall accuracy, and the kappa coefficient. Using the parti-
tion random sampling method, 90 validation pixels were extracted 
from each land-cover type in two experimental areas. Referring to 
the correct classification results by manually drawing the two experi-
mental areas (Figures 15a and 16a), accuracy verification was carried 
out through human–computer interaction. The results are reported 
in Tables 3 and 4, revealing that the overall classification accuracy 

based on data 2 improved from 7% to 14%, and its kappa coefficient 
increased from 11% to 24%.

Analysis and Evaluation of Classification Results
Through manual visual interpretation and accuracy verification of 
the data, we found that the classification accuracy based on data 1 is 
inferior to the classification results based on data 2. This is because, 
first, for the first experimental area, the spectral values of the pixels of 
building shadow in blue, red, and green are close to those of the dark-
gray buildings. There are significant differences between the spectral 
values of these pixels in NIR and PTIRed, PTINIR (Figure 21a). The 
spectral values of the pixels of light-gray buildings in blue, green, and Table 3. Accuracy validation results of the first experimental area.
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White 

building 82 0 0 0 11 93

Building 0 79 0 47 8 134
Vegetation 0 0 85 0 2 87

Shadow 0 0 3 31 2 36
Road 8 11 2 12 67 100
Total 90 90 90 90 90 450

Overall accuracy (%) 76% 
Kappa 0.71 
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building 85 0 0 0 5 90

Building 0 81 0 4 5 90

Vegetation 0 0 86 6 2 94

Shadow 0 4 2 76 1 83

Road 5 5 2 4 77 93

Total 90 90 90 90 90 450
Overall accuracy (%) 90%

Kappa 0.88 

Table 4. Accuracy validation results of the second experimental area.
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Forest land 72 0 0 0 0 72
Grassland 14 71 12 12 0 109
Cultivated 

land
0 10 73 0 0 83

Bare soil 4 6 5 78 0 93
Water 0 3 0 0 90 93
Total 90 90 90 90 90 450

Overall accuracy (%) 85%
Kappa 0.82 
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Forest land 80 0 0 0 0 80
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land
2 5 82 3 0 92

Bare soil 0 4 3 83 0 90
Water 0 0 0 0 90 90
Total 90 90 90 90 90 450

Overall accuracy (%) 92%
Kappa 0.91

Figure 21. Comparison of spectral mean values of some pixels in the first experimental area about multi-spectral images. (a) Dark-gray building 
pixels versus shadow pixels. (b) Light-gray building pixels versus road pixels. (c) Road pixels versus traffic lines pixels. NIR = near-infrared; 
PTI = pixel texture index.
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NIR are close to that of the road. In addition, there are significant dif-
ferences between the spectral values of these pixels in red, PTIRed and 
PTINIR (Figure 21b). Therefore, in the classification result based on data 
1, many pixels of the building shadow were misclassified as buildings, 
and some light-gray buildings were misclassified as roads. The classifi-
cation accuracy of these pixels significantly improved in the classifica-
tion result based on data 2. Meanwhile, there are significant differences 
between the spectral values of traffic line pixels in blue, green, and red 
and the spectral values of road pixels (Figure 21c). After classification, 
these pixels were classified into nonroad, reducing the road’s integrity. 
However, the spectral values of traffic line pixels in NIR, PTIRed , and 
PTINIR are similar to that of the road. Therefore, in the classification 
result based on data 2, these pixels were classified as roads, improving 
the integrity of the road.

For the second experimental area, the spectral values of some light-
green forest pixels in yellow and red-edge are relatively close to that of 
grassland pixels, and there are some differences between the spectral 
values of these pixels in the Coastal-band, NIR-II, PTIRed-edge, PTINIR-II, 
and PTICoastal-band PTICoastal-band (Figure 22a). The spectral values of some 
grassland pixels in Coastal-band, yellow, and NIR-II are similar to that 
of cultivated land pixels, and there are some differences between the 
spectral values of these grassland pixels in red-edge, PTIRed-edge, PTINIR-

II, and PTICoastal-band PTICoastal-band and that of cultivated land pixels (Figure 
22b). The homogeneity of spectral values leads to some light-green 
forest pixels being misclassified as grasslands and some grassland 
pixels misclassified as cultivated land in the classification result based 
on data 1. However, the heterogeneity of spectral features enhances the 
classification accuracy of these pixels in the classification result based 
on data 2. The vegetation pixels covering bare soil have significant 
differences in the spectral values of Coastal-band, yellow, and NIR-II 
compared to those of bare soil pixels (Figure 22c). These pixels are 
divided into nonbare soil, which reduced the integrity of the bare soil 
in the classification result based on data 1. The spectral values of these 
vegetation pixels In Red-edge, PTIRed-edge, PTINIR-II, and PTICoastal-band 
are very close to that of bare soil (Figure 22c). Therefore, most of the 
vegetation pixels covering bare soil were classified as bare soil, and the 

integrity of the bare soil was significantly improved in the classifica-
tion result based on data 2.

Based on the analysis and discussion of the classification results 
based on two sets of data about two experimental areas, we conclude 
that PTI images contain texture and edge features that are completely 
different from spectral features. Combining such image data can 
expand the classification feature space’s dimension and improve the 
classification accuracy.

Analysis of Segmental Results
To ensure the rationality of evaluation, we visually compared and 
quantitatively evaluated and analyzed the segmental results in two 
experimental areas. 

Visual Comparison
Visually comparing the segmentation results of the first experimen-
tal area based on the two data sets reveals the following: (1) For the 
segmentation results based on data 1 (Figure 20a), due to the spectral 
heterogeneity within the same land-cover type, the buildings in white 
boxes , , , and  are oversegmented into many small objects, 
i.e., “oversegmentation,” and the boundaries of these polygons do not 
correspond to the actual edges of the buildings. However, in the white 
boxes of the segmentation results based on data 2 (Figure 20b), the 
oversegmentation phenomenon disappears. In addition, the contour 
lines of the objects are nearly consistent with the actual edges of 
buildings. (2) For the segmentation results based on data 1 (Figure 
20a), due to the spectral heterogeneity within the same land-cover 
type, the shadow of the building in white boxes , , , and  is 
oversegmented. On the other hand, the shadow is segmented more ac-
curately in the results of data 2 (Figure 20b). (3) During segmentation, 
spectral heterogeneity causes the vegetation in white boxes  and  
to be oversegmented when considering data 1 (Figure 20a), while the 
segmentation integrity of vegetation improves when considering data 2 
(Figure 20b).

Subsequently, visually comparing the segmentation results of the 
second experimental area based on the two sets of data reveals: (1) 
For the segmentation result based on data 1 (Figure 20c), due to the 

Figure 22. Comparison of the spectral mean values of some pixels in the second experimental area about multi-spectral images. (a) Light-green 
forestland pixels versus grassland pixels. (b) Grassland pixels versus cultivated-land pixels. (c) Vegetation on bare soil pixels versus bare soil 
pixels. NIRII = near-infrared II; PTI = pixel texture index.
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spectral heterogeneity within the same land-cover type, the wood-
land in white box  is oversegmented into multiple objects, while 
the woodland in the segmental result based on data 2 (Figure 20d) is 
completely segmented. (2) In the segmentation results based on data 1 
(Figure 20c), due to the spectral heterogeneity within the same land-
cover type and of different land-cover types, the farmland in white box 
 suffers from oversegmentation and undersegmentation. However, 
these phenomena disappear in the white box of the segmental result 
based on data 2 (Figure 20d). (3) For the segmentation results based on 
data 1 (Figure 20c), due to the spectral heterogeneity, bare soil in white 
box  is oversegmented, while in the segmentation results based on 
data 2 (Figure 20d), the oversegmentation problem was significantly 
improved. (4) Some edges of terraces in white box  are not displayed 
in the segmental result based on data 1 (Figure 20c), but they are 
shown in the segmental results based on data 2 (Figure 20d).

Quantitative Evaluation of Segmental Results
Opposing the unsuitable image classification evaluation indicators, i.e., 
overall accuracy and kappa coefficient, this article uses five supervised 
evaluative indicators: oversegmentation (OS), undersegmentation 
(US), edge matching degree (ED), number of segmentation blocks 
(FG), and shape error (SH), which evaluate the difference between 
the segmentation result and the ground truth segmentation to evaluate 
the segmentation quality quantitatively (Wu et al. 2013; Chen et al. 
2017). All metrics have a range of [0, 1], and their values are inversely 
proportional to the difference between the segmentation result and the 
ground truth segmentation. The evaluation is conducted as follows: 
Based on the PAN image, the corrected segmental results for the two 
experimental areas are obtained by a manual drawing (Figures 23a 
and 24a). Then, according to the distributed proportion of each land-
cover type, sample objects are randomly selected from different image 
regions. The sampling results are presented in Figures 23b, 23c, 24b, 
and 24c, and the sample objects are outlined in red. Eventually, the five 
evaluative indicators estimate the difference between sample objects 
and their respective ground truth segmentation (Table 5).

Table 5. Quantitative evaluation about segmental results of both 
experimental areas.

Segmental Results

Supervised Evaluative Indicators

OS US ED FG SH

Segmental result based on data 1 
of the first experimental area 0.1494 0.0088 0.6469 0.8565 0.0779

Segmental result based on data 2 
of the first experimental area 0.0623 0.0047 0.3801 0.2135 0.0416

Segmental result based on data 1 
of the second experimental area 0.7379 0.1282 0.9477 0.9519 0.0896

Segmental result based on data 2 
of the second experimental area 0.3256 0.0773 0.5782 0.518 0.0648

ED = edge-matching degree; FG = number of segmentation blocks; OS = 
oversegmentation; SH = shape error; US = undersegmentation.

Analysis and Evaluation of Segmental Results
The values of five evaluation indicators (Wu et al. 2013) reveal the fol-
lowing: (1) Compared to the values of OS and US in data 1, the decline 
rates of OS and US values of the segmentation result based on data 2 
about the first experimental area are 58.2% and 46.5%, respectively. 
The decline rates of OS and US values of the segmentation result based 
on data 2 about the second experimental area are 55.8% and 39.7%. The 
large decline rates of OS and US values about the segmentation results 
based on data 2 indicate that the oversegmentation and undersegmenta-
tion phenomena are effectively reduced by combining PTI and PAN 
images during segmentation. (2) Compared to the values of ED, FG, 
and SH for data 1, the decline rates of ED, FG, and SH values of the 
segmentation result based on data 2 about the first experimental area are 
41.2%, 75%, and 46.5%. The decline rates of ED, FG, and SH values of 
the segmentation result based on data 2 about the second experimental 
area are 38.9%, 45.5%, and 27.6%. The decline rates of ED, FG, and 
SH values about the segmentation results based on data 2 indicate that 

               (a)          (b)      (c)
Figure 23. Manually corrected segmental results and sample objects of the first experimental area about PAN image. (a) Manually corrected 
segmental result; (b) Sample objects of the segmental results based on data 1. (c) Sample objects of the segmental result based on data 2.

           (a)          (b)      (c)
Figure 24. Manually corrected segmental results and sample objects of the second experimental area about PAN images. (a) Manually corrected 
segmental result. (b) Sample objects of the segmental results based on data 1. (c) Sample objects of the segmental results based on data 2.
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the segmentation results based on data 2 are more similar to the ground 
truth segmentation than the segmentation result based on data 1.

Furthermore, the high-quality segmentation results based on data 
2 indicate that PTI is a good texture descriptor. Indeed, it improves 
the homogeneity of texture features within the same land-cover type 
by using the context of the intrapixel texture features and ultimately 
highlighting the edges of the land-cover types. Meanwhile, the PTI 
image is obtained based on the LTBC image using the PTI algorithm 
(see “Calculation of PTI”), which can mitigate the effect of different 
illumination on PTI image data. Overall, we conclude that combining 
PTI and PAN images eliminates the interference of high-frequency 
information during the segmentation process and introduces texture 
and edge features to improve the segmentation quality.

Conclusions
This article proposes a PTI and its corresponding algorithm that 
mitigates the interference of different illumination to the analyti-
cal process of texture features without placing constraints regarding 
texture regularity. The experiments on three types of HSRRS im-
ages (i.e., IKONOS, QuickBird, and WorldView-II) prove that PTI 
simultaneously enhances the homogeneity of texture features within 
the same land-cover type and the edge features of different land-cover 
types. Combining this image data can expand the classification feature 
space’s dimension and improve the classification accuracy and quality. 
Indeed, accuracy improved from 7% to 14%, and the kappa increased 
from 11% to 24%. Additionally, the experiments prove that combining 
such features for image segmentation effectively reduces the overseg-
mentation and undersegmentation phenomena. Five supervised evalua-
tive indicators are reduced from 27.6% to 75%. 
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Parcel-Level Crop Classification in Plain 
Fragmented Regions Based on Multi-Source 

Remote Sensing Images 
Qiao Zhang, Ziyi Luo, Yang Shen, and Zhoufeng Wang

Abstract
Accurately obtaining crop cultivation extent and estimating the cul-
tivated area are significant for adjusting regional planting structure. 
This study proposes a parcel-level crop classification method using 
time-series, medium-resolution, remote sensing images and single-
phase, high-spatial-resolution, remote sensing images. The deep 
learning semantic segmentation network feature pyramid network 
with squeeze-and-excitation network (FPN–SENet) and multi-scale 
segmentation were used to extract cultivated land parcels from 
Gaofen-2 imagery, while the pixel-level crop types were classified by 
using support vector machine algorithms from time-series Sentinel-2 
images. Then, the parcel-level crop classification was obtained from 
the pixel-level crop types and land parcels. The proposed method was 
tested in southwestern China to extract main winter–spring crops and 
achieved a good performance. Specifically, the FPN-SENet model 
outperformed other models in cultivated land extraction, with an F1 
of 0.872. The crop classification overall accuracy is  0.910 and the 
kappa coefficient is 0.861. This study provides a technical reference 
for monitoring cultivated land and can be applied in other regions.

Introduction
By 2050, the worsening soil, land, and water resources on a global 
scale will present a huge challenge in meeting the food demands of 
over 10 billion people (United Nations 2017; Food and Agriculture 
Organization of the United Nations FAO 2021). Food security is a 
pressing global concern, and the strictest protection policies should 
be implemented on cultivated land, the basis of food production. 
Therefore, accurately monitoring cultivated land is significant for 
adjusting regional planting structure, improving management of crops, 
and ensuring food security (Yan et al. 2015). As a new earth observa-
tion technology, remote sensing has the characteristics of excellent 
efficiency, wide range, and high accuracy. In recent years, with the 
continuous development of remote sensing technology, ground object 
identification based on remote sensing has gradually replaced the 
traditional manual field investigation and has been widely used in ag-
riculture, such as crop classification and monitoring regional planting 
structure  (Yan et al. 2015; Kong et al. 2016). 

With the increase in available remote sensing images, such as those 
from Moderate Resolution Imaging Spectroradiometer (MODIS), 

Landsat, and Sentinel, it is found that a single-phase image cannot be 
universally applied in precise crop classification due to the limitations 
of resolution, cloud, and rain. Meanwhile, multi-temporal images are 
found to be able to achieve higher classification accuracy (Yang et al. 
2019; Li et al. 2021). Since the multi-temporal images contain an enor-
mous amount of vegetation phenological information, these images can 
show the unique phenological characteristics of the crops during the 
growth cycle (Xie et al. 2008; Chen and Liu 2023). Therefore, time-
series images are widely used in current research (Zheng et al. 2015), 
among which the time-series medium-to-high resolution images are 
the main data source in mapping crops now (Du et al. 2019). Several 
methods like maximum likelihood (ML) (Ha et al. 2020), support 
vector machine (SVM) (Foody and Mathur 2004), random forest (RF) 
(Breiman 2001), and classification and regression tree (CART) (Loh 
2011) were proposed for crop classification using time-series medium-
to-high resolution images (Belgiu and Csilik 2018; Zhang et al. 2020). 

However, due to the complex land cover situation, the accuracy of 
crop mapping is not very high with only phenological characteristics 
from time-series images during its growth cycle, especially in highly 
heterogeneous cultivated land and broken areas (Wu et al. 2017). For 
example, some regions, such as the Chengdu Plain in the Southwest 
of China, are mainly smallholder agriculture (Du et al. 2019), with 
fragmented cultivated land parcels and complex planting structures. If 
crops were mapped by time series medium-resolution images, there are 
3 main challenges: over-or-under estimate of the crop areas caused by 
obvious mixed pixels at the edge of cultivated lands (Wu et al. 2017; 
Wen et al. 2023), a noticeable salt-and-pepper effect (Blaschke et al. 
2000) caused by crops at various growing stages and the spatial het-
erogeneity (Chen and Liu 2023), and misidentified crop classification 
due to the similar phenological characteristics in areas with complex 
planting structure. These challenges make it difficult to meet practi-
cal needs with the mapping results. To address these problems, a good 
solution is to introduce the parcel edges as boundary constraints for the 
pixel-level crop classification.  

High-spatial-resolution images can provide the necessary details to 
observe smallholder agriculture (Du et al. 2019), and some scholars 
have extracted cultivated land boundaries and parcels from such imag-
es (Xu et al. 2022). Yao et al. (2014) used the traditional object-based 
image classification (OBIC) method to extract the cultivated land from 
the RapidEye images. They also found that the segmentation technique 
can obtain objects with similar spectral-spatial characteristics, and the 
segmentation scheme determines the accuracy of classification results. 

With the development of deep learning, it can extract cultivated 
land boundaries with high precision (Liu et al. 2022). Deep learning 
is a self-supervised feature learning method that simulates and learns 
how the human brain thinks by constructing neural networks (Hinton 
et al. 2006). Unlike other traditional classifiers, it can learn a deep 
nonlinear network structure, approximate complex functions to extract 
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Evaluation of SMAP and CYGNSS Soil Moistures  
in Drought Prediction Using Multiple Linear 

Regression and GLDAS Product
Komi Edokossi, Shuanggen Jin, Andres Calabia, Iñigo Molina, and Usman Mazhar

Abstract
Drought is a devastating natural hazard and exerts profound effects 
on both the environment and society. Predicting drought occurrences 
is significant in aiding decision-making and implementing effective 
mitigation strategies. In regions characterized by limited data avail-
ability, such as Southern Africa, the use of satellite remote sensing 
data promises an excellent opportunity for achieving this predictive 
goal. In this study, we assess the effectiveness of Soil Moisture Active 
Passive (SMAP) and Cyclone Global Navigation Satellite System 
(CYGNSS) soil moisture data in predicting drought conditions using 
multiple linear regression–predicted data and Global Land Data 
Assimilation System (GLDAS) soil moisture data. SMAP and CYGNSS 
data exhibit strong spatiotemporal congruence with the predicted soil 
moisture data. Pearson correlation coefficients further underscore 
this consistency, with correlations of r = 0.78 between GLDAS and 
SMAP, r = 0.61 between GLDAS and CYGNSS, and r = 0.84 between 
GLDAS and the estimated soil moisture. The proficient performance of 
SMAP and CYGNSS soil moisture data in tandem with other vari-
ables underscores their efficacy in predicting drought conditions.

Introduction
Drought constitutes a significant natural hazard characterized by 
prolonged periods of low precipitation and elevated temperatures, 
leading to heightened evapotranspiration rates (Jin and Zhang 2016; 
Huang and Jin 2020; Elameen et al. 2023). This climatic phenomenon 
directly impacts agricultural yields due to deficits in soil moisture 
(Marsh, 2007; Dai 2011). Within the context of the Southern Africa 
region, the effect of recent drought events, spanning from 2015–2016 
to 2018–2020, has been particularly profound. These occurrences 
have exacted a heavy toll on both human livelihoods and crop yields. 

For instance, during the drought of 2015–2016, crop production 
underwent a precipitous decline of up to 66%, concurrently affecting 
over a quarter of the region's population (Ainembabazi, 2018). During 
2018–2019, the drought affected more than 40% of the population 
(Johannesburg Regional Bureau 2020), and the crop production was 
10% below the average (World Food Program 2019). 

The scientific literature commonly recognizes four distinct categories 
of drought (Mishra and Singh 2010): meteorological, agricultural, 
hydrological, and socioeconomic. Meteorological drought manifests 
as an insufficient occurrence of precipitation over a given time span—
whether short or prolonged—resulting in a deficit of soil moisture 
that adversely affects plants, giving rise to what is termed agricultural 
drought. Hydrological drought materializes when there is an insufficiency 
in water availability across streams, reservoirs, and groundwater sources. 
In contrast, socioeconomic drought pertains to the inability of water 
supply to adequately meet demand (Mishra and Singh 2010).

The prediction of drought occurrences plays a pivotal role in 
facilitating early warnings and mitigating their subsequent effects. 
Over time, numerous methodologies and formulations have been 
developed and used to achieve this objective. The predominant 
approaches comprise statistical methods and dynamical methods, 
which harness climate and/or hydrologic models to simulate the 
intricate physical processes of the atmosphere, land, and oceans (Hao 
et al. 2018). Within the realm of statistical methods, a spectrum of 
techniques is embraced, including time series models, regression 
models, artificial intelligence models, Markov chain models, and 
conditional probability models. These methodologies stand out as 
extensively used avenues. In the context of statistical methodologies, 
the identification of appropriate predictors derived from atmospheric, 
terrestrial, and oceanic domains, as well as the determination of 
predictands for the target timeframe, is of paramount importance 
(Hao et al. 2018). For instance, the efficacy of time series models 
predominantly hinges on the persistence of certain indicators, 
which serves as the bedrock for achieving accurate predictions. The 
autoregressive integrated moving average technique emerges as 
an exceptionally apt choice for prediction within climatology and 
hydrology, as it effectively handles linear relationships between 
predictors and predictands, albeit without capturing nonlinearity. In 
the realm of statistical prediction, the conventional linear regression 
method finds applications in hydrology and climatology. This method 
establishes a linear connection between the predictand and suitable 
predictors, representing the simplest avenue for climatohydrological 
prediction. The modeling of the association between drought indices 
and predictors often uses the regression model (Barros and Bowden 
2008; Liu and Juárez 2001; Panu and Sharma 2002; Sun et al. 2012). 
In scenarios in which nonlinear relationships are at play, the locally 
weighted polynomial regression offers a valuable alternative for 
modeling associations (Hwang and Carbone 2009; Liu and Hwang 

Komi Edokossi is with the School of Remote Sensing and Geomatics 
Engineering, Nanjing University of Information Science and 
Technology,  Nanjing 210044, China.

Shuanggen Jin is with the School of Remote Sensing and Geomatics 
Engineering, Nanjing University of Information Science and 
Technology, Nanjing 210044, China; the Shanghai Astronomical 
Observatory, Chinese Academy of Sciences, Nanjing 210044, China; 
and the School of Surveying and Land Information Engineering, 
Henan Polytechnic University, Nanjing 210044 (sgjin@nuist.edu.cn).

Andres Calabia is with the Department of Physics and Mathematics, 
University of Acala, Nanjing 210044.

Iñigo Molina is with the School of Remote Sensing and Geomatics 
Engineering, Nanjing University of Information Science and Technology, 
Nanjing 210044; and the School of Land Surveying, Geodesy and Mapping 
Engineering, Universidad Politécnica de Madrid, Nanjing 210044.

Usman Mazhar is with the School of Remote Sensing and Geomatics 
Engineering, Nanjing University of Information Science and 
Technology, Nanjing 210044.

Corresponding author: Shuanggen Jin (sgjin@nuist.edu.cn)

Contributed by Prasad S. Thenkabail, October 13, 2023 (sent for review 
November 8, 2023; reviewed by Itiya Aneece, Xiaodong Li, Xutong Niu).

Photogrammetric Engineering & Remote Sensing
Vol. 90, No. 5, May 2024, pp. 303–312.

0099-1112/22/303–312
© 2024 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.23-00075R2

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING May 2024 303



304 May 2024 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

PEER-REVIEWED CONTENT
IS ONLY AVAILABLE TO

ASPRS MEMBERS AND SUBSCRIBERS

FOR MORE INFORMATION VISIT
MY.ASPRS.ORG



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING May 2024  305

PEER-REVIEWED CONTENT
IS ONLY AVAILABLE TO

ASPRS MEMBERS AND SUBSCRIBERS

FOR MORE INFORMATION VISIT
MY.ASPRS.ORG



306 May 2024 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

PEER-REVIEWED CONTENT
IS ONLY AVAILABLE TO

ASPRS MEMBERS AND SUBSCRIBERS

FOR MORE INFORMATION VISIT
MY.ASPRS.ORG



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING May 2024  307

PEER-REVIEWED CONTENT
IS ONLY AVAILABLE TO

ASPRS MEMBERS AND SUBSCRIBERS

FOR MORE INFORMATION VISIT
MY.ASPRS.ORG



308 May 2024 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

PEER-REVIEWED CONTENT
IS ONLY AVAILABLE TO

ASPRS MEMBERS AND SUBSCRIBERS

FOR MORE INFORMATION VISIT
MY.ASPRS.ORG



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING May 2024  309

PEER-REVIEWED CONTENT
IS ONLY AVAILABLE TO

ASPRS MEMBERS AND SUBSCRIBERS

FOR MORE INFORMATION VISIT
MY.ASPRS.ORG



310 May 2024 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

PEER-REVIEWED CONTENT
IS ONLY AVAILABLE TO

ASPRS MEMBERS AND SUBSCRIBERS

FOR MORE INFORMATION VISIT
MY.ASPRS.ORG



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING May 2024  311

PEER-REVIEWED CONTENT
IS ONLY AVAILABLE TO

ASPRS MEMBERS AND SUBSCRIBERS

FOR MORE INFORMATION VISIT
MY.ASPRS.ORG



312 May 2024 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

PEER-REVIEWED CONTENT
IS ONLY AVAILABLE TO

ASPRS MEMBERS AND SUBSCRIBERS

FOR MORE INFORMATION VISIT
MY.ASPRS.ORG



Debris Flow Susceptibility Evaluation Based on 
Multi-level Feature Extraction CNN Model:  
A Case Study of Nujiang Prefecture, China 

Xu Wang, Baoyun Wang, Ruohao Yuan, Yumeng Luo, and Cunxi Liu

Abstract
Debris flow susceptibility evaluation plays a crucial role in the 
prevention and control of debris flow disasters. Therefore, this paper 
proposes a convolutional neural network model named multi-level 
feature extraction network (MFENet). First, a dual-channel CNN 
architecture incorporating the Embedding Channel Attention mecha-
nism is used to extract shallow features from both digital elevation 
model images and multispectral images. Subsequently, channel 
shuffle and feature concatenation are applied to the features from 
the two channels to obtain fused feature sets. Following this, a 
deep feature extraction is performed on the fused feature sets us-
ing a residual module improved by maximum pooling. Finally, the 
susceptibility index of gullies to debris flows is calculated based 
on the similarity scores. Experimental results demonstrate that the 
model exhibits favorable classification performance, with an accu-
racy of 73.45%. Furthermore, the percentage of debris flow val-
leys in high and very high susceptibility zones reaches 93.97%.

Introduction
Debris flows refer to a specific type of flood event characterized by the 
rapid transport of a significant amount of solid materials, such as mud, 
sand, rocks, and large boulders, triggered by heavy precipitation in 
mountain valleys or slopes. Debris flows are characterized by their sud-
den onset, high velocity, large discharge, substantial material capacity, 
and destructive potential. Incidents of debris flows often result in the de-
struction of transportation infrastructure, including roads and railways, 
as well as residential areas, leading to significant losses (Lopes et al. 
2016). This prompts many researchers to evaluate debris flow suscepti-
bility, aiming to prevent and control disasters (Musumeci et al. 2021).

Since the 1970s, the evaluation of debris flow susceptibility has 
gradually become an important research direction for disaster preven-
tion and mitigation. The former Soviet Union published a national zon-
ing map for debris flow-prone regions (Fleischmann 1985). Japanese 
experts determined debris flow susceptibility based on three aspects: 
landforms, morphology of debris flow, and rainfall (Li 1997; Takahashi 
1991). Chinese researchers (Liu 1991) divided ten counties and cities 

in Zhaotong City, Yunnan Province, into four levels of hazard zones 
using a regional debris flow hazard determination method. During 
this stage of debris flow research, qualitative evaluation was the main 
approach, relying heavily on expert experience and field investigations, 
which were time-consuming, labor-intensive, inefficient, and carried 
certain risks. With the rapid development of remote sensing, geograph-
ic information systems, and global positioning systems (referred to as 
"3S" technologies) in the late 1990s, these technologies began to be 
applied in the investigation and monitoring of debris flows, promoting 
the development of quantitative evaluation in geological disaster re-
search. Researchers started using 3S technologies and statistical meth-
ods for debris flow susceptibility evaluation (Zhang et al. 2019; Jamali 
et al. 2020; Li et al. 2022). Li (2019) used remote sensing imagery as 
data sources and selected the certainly factor model (CF) and CF-
based multi-factor overlay weight method for debris flow susceptibility 
evaluation. Li et al. (2019) also used remote sensing and geographic 
information technologies, combined with three-dimensional visualiza-
tion techniques, to extract debris flow information. They selected nine 
evaluation factors and used an improved analytic hierarchy process for 
susceptibility evaluation.

With the popularity of machine learning, researchers have found 
that it can capture the nonlinear relationship between debris flow 
susceptibility and evaluation factors more accurately. Various ma-
chine learning algorithms have been widely applied in debris flow 
susceptibility evaluation. Wang (2018), Liu and Qiao (2021), and Li 
et al. (2010) have established debris flow susceptibility models based 
on support vector machines. Wang Xin et al. (2022) used correla-
tion analysis to select influential factor indicators and constructed 
a dynamic zoning model for debris flow susceptibility using a back 
propagation neural network. Liu et al. (2018) built a debris flow 
susceptibility evaluation model by random forests. Machine learning 
algorithms have shown good performance in debris flow susceptibility 
evaluation. However, they require subjective selection of susceptibil-
ity factors through correlation analysis or other methods and involve 
significant human intervention, resulting in a lower degree of clas-
sification automation. Convolutional neural networks (CNNs) have 
significant advantages in image classification and other fields, avoiding 
the process of selecting susceptibility evaluation factors and simplify-
ing the complexity of feature extraction and data reconstruction in the 
classification process. Che (2021) proposed a debris flow susceptibility 
evaluation method based on a CNN model, demonstrating the superior-
ity of the model. Zhang (2021) established a multi-sequence residual 
network model based on the attention mechanism to predict debris 
flow velocity, demonstrating the coupling correlation between velocity 
and various triggering factors, with slope and bulk density significantly 
affecting velocity. However, there are still some issues to be addressed. 
Debris flow is a type of geological hazard in valleys, and it is crucial 
to construct a CNN model that can adequately represent the spatial 
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