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INDUSTRYNEWSTo have your press release published in PE&RS, 
contact Rae Kelley, rkelley@asprs.org.

ANNOUNCEMENTS
Vexcel 3D Cities, vexceldata.com, is now available with 
Cesium ion Self-Hosted, bringing high-quality 3D geospatial 
data for 60+ cities to a global audience. This new collabora-
tion enhances the 3D visualization and analysis capabilities 
for large metropolitan areas, helping sectors from govern-
ment to telecommunications, gaming, and more. Explore a 
new dimension with our 3D mesh models.
Here are highlights from the partnership:

 y Global Coverage—Covering over 62,000 km², Vexcel 3D 
Cities includes major cities at scale in the US, Europe, 
Australia, and Japan.

 y High-Quality Data—Leveraging Vexcel’s market-lead-
ing photogrammetric UltraCam sensors and extensive 
aerial imagery library, these models provide an immer-
sive and accurate 3D cityscape.

 y Optimized Performance—Using 3D Tiles OGC Commu-
nity Standard created by Cesium for enhanced stream-
ing and rendering.

 y Compatibility—Fully compatible across various plat-
forms like CesiumJS, Cesium for Unreal, Cesium for 
Unity, and Cesium for Omniverse, promoting flexible 
integration for various projects.

Learn more and explore some cities in 3D at: https://cesium.
com/blog/2024/06/25/vexcel-cesium.

¼½¼½

STACK Construction Technologies, an industry-leading 
cloud-based construction platform, announces a partnership 
with Nearmap, nearmap.com, one of the world’s largest 
location intelligence and aerial imagery solutions providers, 
to improve efficiency, reduce risks, and increase bid output 
for subcontractors. The new integration delivers benefits by 
leveraging high-resolution aerial images to improve esti-
mate accuracy and eliminate the need for onsite visits.
Exterior and site plans on existing buildings are not al-
ways available, leaving contractors to use lower-resolution 
satellite images and increasing safety risks, labor costs, and 
time wasted by performing redundant onsite visits. With the 
STACK and Nearmap integration, contractors can seamless-
ly import high-quality aerial images with automatic scaling 
to complete quotes. By leveraging STACK›s robust takeoff 
and estimating tools, contractors will increase bid outputs, 
have greater scalability, and eliminate risk with a fully 
remote process.
“The partnership between STACK and Nearmap will deliver 
valuable impact for contractors,” said Phil Ogilby, CEO and 
Co-Founder of STACK Construction Technologies. “With 
real-time access to Nearmap premium aerial imagery inte-
grated with STACK’s hyper-accurate preconstruction tools, 
our cloud-based platform empowers subcontractors to not 
only mitigate safety risks but maximize efficiency.”
The integration specifically empowers roofing contractors 
to deliver precise and detailed estimates on projects like 
re-roofing, storm damage, and repairs. What used to be a 

time-consuming task taking hours can now be accomplished 
in just minutes by reducing the amount of time contractors 
have to spend onsite. Nearmap imagery enables roofing 
contractors to view hazards remotely, like building height, 
landscape features, and powerlines, mitigating safety risks 
and reducing worker’s compensation rates. Estimators can 
expedite quote generation, ensuring customer satisfaction, 
while increasing their chances of securing more projects. 
The utilization of high-quality aerial images enhances the 
professionalism of the quotes, instilling confidence in project 
owners and assisting contractors in winning additional 
contracts.
“We’ve learned many of our customers want to choose how 
they access Nearmap imagery and insights within their 
technology stacks, which includes having the flexibility to 
access data instantly through the MapBrowser platform, or 
through a partner like STACK,” said Shelly Carroll, General 
Manager of Geospatial Solutions at Nearmap. “Nearmap is 
responding to this customer need by adding flexibility and 
market-leading content including high-resolution 2D aerial 
imagery and 3D content to better support contractors, en-
abling our customers to work smarter and more efficiently.”
“STACK and Nearmap business models are highly compat-
ible, our commitment to improving customer’s business is 
aligned, and we couldn’t be more thrilled about the strength 
and quick pace at which our partnership has come together,” 
said Ray DeZenzo, COO of STACK Construction Technolo-
gies. “We’re excited to continue leveraging future Nearmap 
solutions and innovations as this partnership evolves.”
The partnership between STACK and Nearmap marks the 
beginning of an exciting chapter in construction technolo-
gy to streamline the preconstruction process. As industry 
leaders, both organizations are committed to delivering out-
standing results, setting new standards for advancement, 
and accelerating growth for their contractor customers.

¼½¼½

NV5, nv5.com, completes Alaska Project with Innovative 
Multisensor Platform. 
Collecting geospatial data in Alaska is not for the faint of 
heart. The rugged terrain makes it dangerous and expensive 
to send people out in the field. The extreme weather leaves 
only limited windows of time to complete aerial surveys. Not 
to mention the challenges like rapid changes with freezes 
and thaws impact measurements on the coast, along rivers 
and over bodies of water. 
In prepping for a recent acquisition project to fully charac-
terize the subsurface river bottom in a glacial fed river in 
South Central Alaska, we knew we would have to address 
all of these challenges. Because the river was fed by a gla-
cier, the acquisition needed to be done in early spring before 
the glacial melt introduced silt that would make  bathymet-
ric lidar useless in turbid water. The project spanned from 
coastal mud flats near sea level over heavily braided chan-
nels to the glacier feeding the river at an elevation of more 

mailto:rkelley@asprs.org
https://vexceldata.com/products/3d-cities/
https://cesium.com/blog/2024/06/25/vexcel-cesium
https://cesium.com/blog/2024/06/25/vexcel-cesium
https://www.nearmap.com/products/imagery/vertical
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INDUSTRYNEWS
than 4,000 feet. The rapid elevation, combined with rainy 
and cloudy weather, made it unsafe to do the acquisition via 
fixed-wing aircraft.
Multisensor Platform on Helicopter Saves Time
Since time was paramount for this project, we devised a 
plan that enabled our team to do the entire survey during 
the brief windows when weather cooperated. We used a heli-
copter equipped with multiple sensors for bathymetric data, 
lidar, thermal video and oblique photos. So instead of flying 
a fixed wing aircraft at 1,200 feet, the helicopter allowed 
us to fly under the clouds and closer to the river to collect 
better, more accurate data and images. The helicopter also 
offered greater maneuverability, enabling our crew to pivot 
and cover all the needed flight lines quickly and efficiently.
Having this multisensor platform affixed to a helicopter 
enabled us to do the entire acquisition in less than two days. 
We were able to quickly deploy our team when weather 
broke, during low tide before the glacial melt started.  This 
approach saved the client time and money, and eliminated 
the need to send a large crew of ground surveyors to run 
hundreds of transects in a potentially dangerous river in 
remote Alaska.  
By flying lower and slower with the helicopter, we were able 
to capture higher density lidar and greater imagery ground 
sampling distance (GSD), providing a high level of detail to 
our client. The data collected this spring will be merged into 
a larger topobathymetric lidar dataset we collected in 2022, 
which will contribute to a broader watershed analysis.

¼½¼½

The Sanborn Map Company Inc. (Sanborn), a leader in 
the geospatial industry, today announced the acquisition of 
the assets of VeriDaaS, a cutting-edge technology company 
specializing in Geiger mode lidar. This acquisition aligns 
with Sanborn’s strategic vision to continue growth and 
provide the latest technology to customers. Sanborn will 
integrate VeriDaaS assets and innovative solutions into the 
Mapping Division, enhancing the company’s ability to deliv-
er comprehensive and advanced technological solutions and 
services to customers. This acquisition is expected to drive 
significant growth in the next few years for the company as 
the technology has matured significantly since it was first 
introduced.
“The acquisition of the photon counting lidar technology 
along with value added product generation is a significant 
step forward for Sanborn. This groundbreaking technology 

developed from significant previous investments perfectly 
complements our commitment to innovation and excellence. 
We will accelerate our growth in Lidar products and analyt-
ics expanding our capabilities to better serve our clients and 
partners,” stated John Copple, CEO of Sanborn.
VeriDaaS developed a significant number of market appli-
cations, with a portfolio that includes asset management, 
vegetation management, solar sighting, flood risk and 
resilience, wildfire management, urban change analysis and 
many other applications. The integration of this technology 
with Sanborn’s linear mode Lidar is expected to enhance 
Sanborn’s offerings and provide customers with superior 
services.
Sanborn was advised by The Environmental Financial 
Consulting Group, LLC (EFCG) Financial and terms of the 
transaction were not disclosed.
For more information about the acquisition and what it 
means for customers and partners please visit https://
sanborn.com/ or please contact Mr. Jason Caldwell, Vice 
President, Business Development, via phone: 719-264-5547, 
fax: 719-528-5093, email: jcaldwell@sanborn.com.

¼½¼½

The Texas Department of Transportation has select-
ed Woolpert, woolpert.com, to provide land surveying 
services under a $3 million, indefinite delivery, indefinite 
quantity (IDIQ) contract supporting the Houston District.
Under this contract, Woolpert will provide right-of-way 
maps, design and construction surveys, aerial mapping, 
horizontal and vertical control, and state land surveying 
services on an as-needed basis to support a range of high-
way improvement and maintenance projects throughout the 
Houston area.
Woolpert Survey Team Leader Thomas Cargill said that 
these projects will help improve roadway conditions and 
overall safety for drivers. Cargill, a registered professional 
land surveyor with 27 years of experience in the survey-
ing profession and 17 years as a TxDOT consultant, joined 
Woolpert’s survey team this year.
“The Houston District has a population of more than 7 mil-
lion, and its infrastructure supports more than 100 million 
vehicle miles each day,” Cargill said. “We know that safety 
is the department and the district’s No. 1 priority, and we 
are thrilled to provide the expansive surveying services 
needed to support their great work.”

CALENDAR

• 18-22 August, SPIE 2024, San Diego, California; https://spie.org/OP.

• 26 September, 37th Annual GIS in the Rockies, Denver, Colorado; http://gisintherockies.org/.

• 7-10 October, GIS-Pro 2024, Portland, Maine; https://urisa.org/page/GIS-Pro2024.

• 21-25 October, ASPRS International Technical Symposium, virtual; https://my.asprs.org/2024symposium.

• 18-22, November, URISA GIS Leadership Academy, Fort Worth, Texas; https://urisa.org/page/URISA_AdvancedGLA.

• 2-6, December, URISA GIS Leadership Academy, virtual; https://urisa.org/page/URISA_AdvancedGLA.

https://cts.businesswire.com/ct/CT?id=smartlink&url=https%3A%2F%2Fsanborn.com%2F&esheet=54091897&newsitemid=20240709240551&lan=en-US&anchor=https%3A%2F%2Fsanborn.com%2F&index=1&md5=358d1c0b71af46d3f4824f905997b94f
https://cts.businesswire.com/ct/CT?id=smartlink&url=https%3A%2F%2Fsanborn.com%2F&esheet=54091897&newsitemid=20240709240551&lan=en-US&anchor=https%3A%2F%2Fsanborn.com%2F&index=1&md5=358d1c0b71af46d3f4824f905997b94f
mailto:jcaldwell@sanborn.com
https://www.txdot.gov/
https://woolpert.com/
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471 Research Progress of Optical Satellite Remote Sensing 
Monitoring Asphalt Pavement Aging

Jingwen Wang, Dayong Yang, Zhiwei Xie, Han Wang, Zhigang Hao, Fanyu Zhou, 
and Xiaona Wang

The aging condition of asphalt pavement is an invaluable basis for traffic 
infrastructure evaluation. Due to the amount of time and high cost of monitoring 
and identifying asphalt pavement aging, many current studies focus on satellite 
remote sensing methods. In this article, some methods and technologies for 
monitoring asphalt pavement degradation by optical satellite remote sensing are 
introduced as a literature review. 

483 Mapping Winter Wheat Using Ensemble-Based Positive 
Unlabeled Learning Approach

Hanxiang Wang, Fan Yu, Junwei Xie, Huawei Wan, and Haotian Zheng

High-resolution remote sensing images can support machine learning methods 
to achieve remarkable results in agricultural monitoring. However, traditional 
supervised learning methods require pre-labeled training data and are unsuitable 
for non-fully labeled areas. Positive and Unlabeled Learning (PUL), can deal with 
unlabeled data. A loss function PU-Loss was proposed in this article to directly 
optimize the PUL evaluation metric and to address the data imbalance problem 
caused by unlabeled positive samples. 

493 Building Shadow Detection Based on Improved Quick Shift 
Algorithm in GF-2 Images

Yunzhi Chen, Chao Wang, Wei Wang, Xiang Zhang, and Nengcheng Chen

Shadows in remote sensing images contain crucial information about various 
features on the ground. In this article, a method for detecting building shadows in 
GF-2 images based on improved quick shift was proposed. 

503 Hyperspectral Reflectance Assessment for Preliminary 
Identification of Degraded Soil Zones in Industrial Sites, India

Amitava Dutta, Rashi Tyagi, Shilpi Sharma, and Manoj Datta

This article explores the potential of next-generation satellite hyperspectral 
imaging systems for screening and predicting surface-soil contamination and 
degradation by exploiting various spectral indices and signature-matching 
techniques at a heavily industrialized area in India. 

511 One-Dimensional-Mixed Convolution Neural Network and 
Covariance Pooling Model for Mineral Mapping of Porphyry Copper 
Deposit Using PRISMA Hyperspectral Data

Sima Peyghambari, Yun Zhang, Hassan Heidarian, and Milad Sekandari

Mapping distribution of alterations around porphyry copper deposits (PCDs) 
greatly affects mineral exploration. Diverse geological processes generate 
irregular alteration patterns with diverse spectral characteristics in mineral 
deposits. Applying remotely sensed hyperspectral images (HSIs) is an appealing 
technology for geologic surveyors to generate alteration maps. 
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Huge, thick ice sheets blanket much of the Antarctic continent. Amid all this ice, nu-
merous volcanoes dot the landscape. Many are partially buried, with only their tops 
exposed above the ice sheet’s surface—that is, except for Mount Siple. This stately 
island volcano stands in full view, from sea level to its summit elevation of more than 
3,100 meters (10,000 feet).

The OLI-2 (Operational Land Imager-2) on Landsat 9 captured the image of Mount Siple, 
cover, on February 26, 2024. Sunlight reflects from the snowy, icy surfaces, including 
the Getz Ice Shelf, which separates the volcano from mainland West Antarctica.

Mount Siple and other Antarctic volcanoes are located in a remote, extreme environ-
ment, making them a challenge for scientists to study and monitor. However, remote 
sensing can help. During the dark winter months, satellite sensors cannot collect the 
light needed for natural-color images like the cover image, but there are other ways 
to “see” in the dark.

This false-color image, above, was acquired by the VIIRS (Visible Infrared Imaging 
Radiometer Suite) on the Suomi NPP satellite. It shows a wider view of Mount Siple 
and mainland Antarctica on June 9, 2024, during the Antarctic winter. The image 
was overlaid on data from the Reference Elevation Model of Antarctica (REMA) to 
give a sense of the topography.

The colors in this image represent brightness temperature, which is useful for 
distinguishing the relative warmth (orange and pink) or coolness (purple and blue) of 
various features. Here, clouds appear cooler than the underlying icy surfaces.

Notice the plume streaming inland from near the summit of Mount Siple. The shape of 
the feature and its relative coolness compared to its surroundings resemble those of 
a volcanic plume. But according to Simon Carn, a volcanologist at Michigan Tech, it is 
more likely an orographic cloud. This cloud type forms when the shape of the landscape 
forces moist air up to altitudes where the water vapor cools and condenses. Carn notes 
that other satellite data show no indication of sulfur dioxide or ash in the plume. Nor is 
there a heat signal that would indicate hot volcanic material at or near the summit.

“The absence of all these features, and also the fact that similar features are often 
seen downwind of other non-volcanic topographic prominences in the Antarctic and 
Arctic, indicates that the plume is most likely orographically generated,” Carn said. 
“This is also consistent with the plume being ‘detached’ from (slightly downwind of) 
the volcano summit.”

Speculation about volcanic activity at Mount Siple has occurred in the past, including 
observations of a possible volcanic plume in 1988. That plume was later determined 
to be the result of atmospheric effects, according to a report from the Smithsonian 
Institution’s Global Volcanism Program. Researchers noted in a 2021 publication that 
limited observations have prevented detailed interpretations of Mount Siple’s volca-
nic history, writing: “At this stage, there is no indication that Mount Siple should be 
considered ‘active’.”

NASA Earth Observatory images by Michala Garrison, using VIIRS data from NASA 
EOSDIS LANCE, GIBS/Worldview, and the Suomi National Polar-orbiting Partnership, 
Reference Elevation Model of Antarctica (REMA) data from the Polar Geospatial 
Center at the University of Minnesota, and Landsat data from the U.S. Geological 
Survey. Story by Kathryn Hansen.

Both images can be viewed online by visiting the Landsat Image Gallery, https://
landsat.gsfc.nasa.gov/, image id 152988.

http://www.asprs.org
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GIS &Tips     Tricks By

What to Do with All Those Numbers?

By Al Karlin, Ph.D., CSM-L, GISP

Using computers to perform complex numerical calculations 
has become so commonplace that we frequently forget to 
curb our enthusiasm for “precision” and let the computer 
just take over.  I have had so many GIS students who would 
report polygon areas to 0.0000001 acres, just because the 
computer could produce a value.  Of course, 0.0000001 acres 
probably amounts to a teaspoon-full of soil!  So, while the 
computer can calculate those infinitesimally small values, 
when we display numbers on a map or in a table, we need to 
be careful and mindful of the precision.  

For this month’s 
Tips & Tricks, 
I’ll start with a 
shapefile containing 
polygons for the 
counties of Florida, 
and in ArcGIS Pro, 
add a field, SqMi 
(Square Miles) as a 
“Double”, with the 
default Number 
Format as shown 
in Figure 1.  You 
can also use QGIS 
or any other GIS 
software package that can read/write shapefiles.

Then I’ll calculate the value using the Esri “Calculate 
Geometry” tool:

Notice that the values in the table (Figure 3a) are expressed 
out six significant digits, as specified by the default 
parameters when creating the field.

While you can change the number of digits displayed in 
the table by opening the “Fields View” of the table, double-
clicking on the Number Format | Numeric cell to expose 
the ellipses (…) and then adjusting the Rounding | Decimal 
Places (to two), and Saving your changes, all this does is 
round the numbers as displayed in the table (Figure 3b) to 
your specified precision.

When I label the counties using the SqMi field, without 
respect to the values displayed in the table, I get label 
values, some of which are showing up to nine significant 
digits (Figure 4).

To put that into a real-world perspective, 0.000000001 miles 
would be  four square inches!  So, this brings up one of the 
re-occurring themes in this column … Never accept the 
defaults.” In this case, default also clearly demonstrates that 
it is up to the author of the map to determine the level of 
precision that is both necessary and appropriate for the data.  
However, as with everything GIS, there are multiple ways to 
produce the desired outcome.

Photogrammetric Engineering & Remote Sensing
Vol. 90, No. 8, August 2024, pp. 457-461.

0099-1112/22/457-461
© 2024 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.90.8.457

Figure 1. ArcGIS Pro default settings for a 
“Double” field.

Figure 2. ArcGIS Pro dialog box for calculating the area of 
the county polygons.

I have had so many GIS students who 
would report polygon areas to 0.0000001 
acres, just because the computer could 
produce a value.  Of course, 0.0000001 
acres probably amounts to a teaspoon-
full of soil!
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Figure 3a. ArcGIS Pro table showing calculated SqMi field displayed to default precision.

Figure 3b. ArcGIS Pro table showing calculated SqMi field displayed to customized precision. 

Figure 4. Florida county map labeled by the SqMi field displays default label precision when the table 
values are customized.
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In ArcGIS Pro:
TIP #1 — Quick and Dirty – One “quick and dirty” method 
to customize the precision displayed in the labels is to create 
the label as an Integer (i.e., a long) value.  This method will 
round the very precise 32-bit floating value to an integer (i.e., 
no decimals).  So, if you are making a very small-scale map 
and the numerical values are used as relative indicators, this 
might be a good solution.

1. If you have not created the SqMi field, just create a new 
field (SqMiInt; square miles, integer) as an integer field 
and then calculating the geometry as above, or

2. if you have already created the SqMi field, create the 
SqMiInt field and calculate SqMiInt = SqMi.  In either 
case, you will get a whole number, i.e., an integer, 
rounded up (Figure 5), and those integers displayed on 
the map (Figure 6).

Tip #2 — Methodical and Controlled – While the quick and 
dirty technique might be sufficient for some small-scale 
maps, sometimes you might need to take total control of the 
precision.  In a case where you want to report the values to 

0.01 square miles (~278,000 square feet, or ~6.4 acres), you 
need to use the computer precision but in moderation.  Once 
again, in ArcGIS Pro, you need to use the “Round” function, 
but this time, not in the table, but in the label.

As an example, to display labels with two-digits past the 
decimal:

1. Label using the SqMi field; it does not matter if you 
adjusted the table display or not, 

2. Right-click on the layer in the Contents pane,  
3. Navigate to the Label Properties … to open the Label 

dialog window,
4. Using the Arcade language and the Round() function, 

enter a custom expression in the Expression window 
where two is the number of digits past the decimal that 
you want to display (Figure 7).  In this case, I wanted to 
display the county area to 0.01 square miles:

The resulting map (Figure 8) shows two significant digits as 
labels which result from the expression in Figure 7.  

Figure 5. Table showing the SqMiInt field as an integer value.

Figure 6. Map of the counties using the SqMiInt field for labels. 
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In QGIS (3.32.2-LImA): 
Tip #3 — Labels in QGIS - As with ArcGIS Pro, it should 
not be surprising that by default, QGIS will also display the 
nine-digit precision in the SqMi field (Figure 9). (Note:  Set 
the field to use for labels by double-clicking on the layer or 
open the Layer Properties dialog.)

To customize the labels displayed in QGIS for the SqMi field:
1. Once a label field is selected, 
2. Use the Labels option on the Layer Properties dialog to 

change the attributes (font, size, color, precision, etc.) of 
the labels.  Here I changed the color, to red, size to 12 
points, and style to bold,

3. Check the ‘Formatted numbers” option (on the bottom 
of the dialog box), and 

4. Set the Decimal places to two (Figure 10.)

Figure 7. The Label Class dialog box in ArcGIS 
Pro showing an Arcade expression using the 
Round() function to specify two decimal 
places for the displayed labels.

Figure 8. ArcGIS Pro map showing the SqMi field labels as customized using the Arcade expression in Figure 7.

Figure 9.  Default labels for the SqMi field displayed in QGIS.
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The resulting map (Figure 11) displays the customized labels.

For general GIS Tips & Tricks send you questions, comments, and tips to: 
GISTT@ASPRS.org

Al Karlin, Ph.D., CMS-L, GISP is with Dewberry’s Geospatial and Technology 
Services group in Tampa, FL. As a senior geospatial scientist, Al works with all 
aspects of lidar, remote sensing, photogrammetry, and GIS-related projects.  

Figure 10. Once a label field is specified in the Display options, use the Label dialog box to customize 
the displayed values.

Figure 11. QGIS map showing customized SqMi field value labels.
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STAND OUT FROM THE REST
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ASPRS congratulates these recently Certified and Re-certified individuals:

RECERTIFIED PHOTOGRAMMETRIST

Patrick Moroney, Certification #R1377CP
Effective October 19, 2023, expires October 19, 2028

John Gerhard, Certification #R1236CP
Effective May 7, 2024, expires May 7, 2029

Robert Pakiela, Certification #R1394CP
Effective March 26, 2024, expires March 26, 2029

Raymond Miller, Certification #1645CP
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Harold Rempel III, Certification #R1418CP
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RECERTIFIED PHOTOGRAMMETRY TECHNOLOGIST

John Ong, Certification #R1578PT
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CERTIFIED LIDAR TECHNOLOGIST

Michael Thomas, Certification #LT089
Effective April 15, 2024, expires April 15 2027

Keaton Ford, Certification #LT090
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Michael Baranowski, Certification #R062LT
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RECERTIFIED MAPPING  
SCIENTIST REMOTE SENSING
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Effective January 27, 2024, expires January 27, 2029

Darin David, Certification #R211RS
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Effective December 2, 2022, expires December 2, 2027

RECERTIFIED MAPPING SCIENTIST LIDAR 

Angela Livingston, Certification #R035L
Effective February 4, 2024, expires February 4, 2029

ASPRS Certification validates your professional practice and experience. It differentiates you from others in the profession. For more information 
on the ASPRS Certification program: contact 

certification@asprs.org, visit https://www.asprs.org/general/asprs-certification-program.html.
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BOOKREVIEW

Remote Sensing of Soils by Ravi Shankar Dwivedi is a 
pivotal work that addresses the critical intersection of 
modern technology, environmental sustainability, and 
agricultural innovation. Dwivedi establishes the foundational 
understanding of remote sensing and its symbiotic relationship 
with technologies like Geographic Information Systems 
(GIS), Global Navigation Satellite Systems, and field data 
collection tools, which form the backbone of contemporary 
soil management strategies. This enables precise mapping, 
analysis, and interpretation of soil properties and conditions, 
essential for addressing global challenges such as food security, 
resource scarcity, and environmental degradation.
The book excels in two key areas: understanding soil 
composition and translating remote sensing data into 
actionable information. The author provides a concise 
overview of a wide array of airborne and spaceborne datasets, 
including multispectral, hyperspectral, lidar, and synthetic 
aperture radar (SAR). These datasets are integral for soil 
mapping, understanding soil texture and moisture content, 
and detecting erosion. The author also explores the intriguing 
science behind soil spectral reflectance patterns, showcasing 
how these patterns are crucial for deciphering soil properties. 
This knowledge is then applied to the intricacies of digital 
soil mapping, where the book highlights the challenges 
and opportunities in translating raw remote sensing data 
into actionable soil resource information beneficial for land 
management practices.
The author’s discussion on digital image processing provides 
a valuable exploration of the techniques for processing 
spectral measurements from remote sensors. It explores the 
complexities of creating accurate landscape representations 
from remote sensing data and examines various image 
processing methods, including restoration, enhancement, and 
classification. It covers the Gaussian maximum likelihood 
classifier, a widely used technique in this field. Remote Sensing 
of Soils also encompasses topics commonly used in image 
analysis, including techniques like Principal Component 
Analysis (PCA), image fusion methods, Hierarchical Clustering, 
the application of Neural Networks in supervised satellite 
image classification, and object-oriented classifiers, among 
others. These topics are fundamental in extracting meaningful 
information from remote sensing data, enabling researchers 
and practitioners to enhance the accuracy and efficiency of soil 
mapping, vegetation analysis, and environmental monitoring. 
The book provides readers with the necessary tools for 
advanced image-processing tasks.
The later segments of the book examine advanced topics such 
as soil moisture estimation and soil fertility evaluation, both 
crucial in modern agriculture and sustainable practices. The 
author’s exploration of remote sensing techniques for assessing 
these factors showcases the transformative potential of 
technology in optimizing crop growth and resource utilization.
What sets this book apart is its accessibility and relevance to 
a diverse audience. Whether one is a seasoned researcher, a 
technology developer, or a soil science student, Remote Sensing 
of Soils offers valuable insights and practical knowledge. The 

author’s clear language and comprehensive references make 
complex concepts understandable and applicable in real-world 
scenarios.
Future editions of Remote Sensing of Soils might benefit from 
exploring the potential of machine learning and deep learning 
in precision agriculture through an introductory chapter. 
Additionally, showcasing specific applications of geospatial 
science with machine learning and deep learning techniques 
in areas like soil moisture estimation, fertility evaluation, 
and soil classification could further enhance the book’s 
comprehensiveness and relevance for future advancements.
In essence, Remote Sensing of Soils is a valuable roadmap for 
leveraging advanced technologies like remote sensing, GIS, 
and geospatial analysis to address critical environmental and 
agricultural challenges. The book informs readers about the 
latest advancements and inspires them to explore innovative 
solutions for sustainable soil management and ecosystem 
preservation.

Remote Sensing of Soils
Ravi Shankar Dwivedi
500 pages. 2017. Springer. Hardcover, Paperback and Ebook. ISBN 
978-3-662-53738-1.

Reviewed by Pushkar P. Inamdar PhD, Data 
Scientist, Department of Epidemiology and 
Biostatistics, University of California San Francisco.

Photogrammetric Engineering & Remote Sensing
Vol. 90, No. 8, August 2024, pp. 463.

0099-1112/22/463
© 2024 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.90.8.463



464 August  2024 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

Gain a professional advantage with

ASPRS CERTIFICATION  

ASPRS offers certification  
in the following areas

Photogrammetry
Remote Sensing

GIS/LIS
Lidar
UAS

Each area has 2 levels  
of certification

Mapping Scientist
Technologist

All exams offered via computer based testing 
through Prometric.com

asprs.org/certificationasprs.org/certification
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scientific and technical 
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photogrammetry and the 
mapping sciences for 
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and information. 
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those who provide 
photogrammetric and 
mapping sciences services, 
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these services, that such 
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accurate and dependable. 

The ASPRS Certification 
Program has as its purpose 
the establishment and 
maintenance of high 
standards of ethical conduct 
and professional practice 
among photogrammetrists, 
mapping scientists, 
technologists, and interns.
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Journal Staff ASPRS APPROVES EDITION 2, VERSION 2 
OF THE ASPRS POSITIONAL ACCURACY 
STANDARDS FOR DIGITAL GEOSPATIAL 
DATA (2024)

The American Society for Photogrammetry and Remote 
Sensing (ASPRS) is pleased to announce adoption of the 

Positional Accuracy Standards for Geospatial Data, Edition 2, 
Version 2 (2024), which includes important modifications and 
additions to Edition 2, Version 1 published in August 2023.

Edition 2, Version 2 introduces four new addenda for:
a. Mapping with Lidar.
b. Mapping with Photogrammetry.
c. Mapping with Unmanned Aerial Systems (UAS).
d. Mapping with Oblique Imagery.

Together with the two addenda that were published in Edition 2, Version 1, 
the Standards offer the mapping community a total of six addenda detailing 
guidelines and best practices intended to help practitioners perform mapping 
and create geospatial products that comply with the adopted Standards. As 
the USGS Lidar Base Specification is well aligned with the ASPRS Positional 
Accuracy Standards, users of 3DEP data will reap benefits from the modifica-
tions introduced in this new version.

Edition 2, Version 2 was adopted after a formal public review period ending 
April 26, 2024. Public comments were incorporated into the final version 
adopted by the ASPRS Board of Directors on June 24, 2024. 

“The publication of this new edition of the accuracy standards came in response 
to evolving technologies and industry needs. It will have a positive and last-
ing impact on geospatial capabilities and all who benefit from these services, 
here in the United States of America and worldwide. It is a history-making 
accomplishment that we should all be proud of” said Dr. Qassim Abdullah, 
Vice President and Chief Scientist of Woolpert, who led the ASPRS Positional 
Accuracy Standards Working Group. “We are fortunate to have among our 
members such talented and willing volunteers who worked hard during the last 
two years to update these important Standards. This latest version represents 
a collaborative effort by 40 subject matter experts representing public, private, 
and academic sectors.” said Bandana Kar, ASPRS President.

The most significant changes introduced in Edition 2 of the ASPRS Positional 
Accuracy Standards for Digital Geospatial Data include:

1. Elimination of references to the 95% confidence level as an accuracy 
measure.

2. Relaxation of the accuracy requirement for ground control and check-
points.

3. Consideration of survey checkpoint accuracy when computing final 
product accuracy.

mailto:PERSeditor@asprs.org
mailto:jshan@ecn.purdue.edu
mailto:cjmce@lsu.edu
mailto:bookreview@asprs.org
mailto:Mapping_Matters@asprs.org
mailto:rkelley@asprs.org
mailto:maustin@asprs.org
http://
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4. Removal of the pass/fail requirement for Vegetated 
Vertical Accuracy (VVA) for lidar data.

5. Increase the minimum number of checkpoints re-
quired for product accuracy assessment from twenty 
(20) to thirty (30).

6. Limiting the maximum number of checkpoints for 
accuracy assessment to 120 for large projects.

7. Introduction of a new term, “three-dimensional posi-
tional accuracy.”

8. Addition of Guidelines and Best Practices Addenda for:
a. General Guidelines and Best Practices
b. Field Surveying of Ground Control and Check-

points
c. Mapping with Photogrammetry
d. Mapping with Lidar
e. Mapping with UAS
f. Mapping with Oblique Imagery

A more detailed explanation of the Edition 2 changes 
can be found in the Foreword. To download the complete 
Standards, visit https://publicdocuments.asprs.org/
PositionalAccuracyStd-Ed2-V2 or

The Standards are available in hardcopy format and can be 
purchased from the ASPRS Bookstore, www.asprs.org.

THE GEOSPATIAL TERMS DEFINED 
IN THE GLOSSARY OF THE MAPPING 
SCIENCES HAVE BEEN TRANSLATED 
INTO ARABIC!

Dr. Mohamed Ahmed Tarabzouni, Consultant 
to the President of King Abdul-Aziz City for 

Science and Technology (KACST), Riyadh, Saudi 
Arabia, translated the terms listed in the Glossary 
of the Mapping Sciences from English to Arabic.

When asked why he decided to translate the geospatial ter-
minology defined in the Glossary into Arabic, Dr. Tarabzouni 
responded “This started as a personal project, since my ap-
pointment by the UNDP to advocate to other Arab countries 
to explain the benefits of remote sensing and encourage them 
to embrace it. Due to the lack of terminology it was extreme-
ly difficult to fulfil this. I was selected as the representative 
of the UNDP, because during the symposium in Tunisia in 
1986, I was the only Arab to have a PHD in aerospace engi-
neering and remote sensing.

In 1986 Saudi was building the first Earth observation station 
in the Middle East with NASA and CNES, the contracts were 
very difficult to maneuver as they had to be drafted in Arabic, 
and the lack of terminology made it nearly impossible.

Since I’d been representing the government of Saudi, as the 
head of the Saudi delegation, in COPUOS since 1984, in New 
York and Vienna, and the languages of COPUOS are the 6 
languages of the United Nations, I found that during the im-
mediate translation there were difficulties for the interpret-
ers, and for many of the technical terms, the English word 
was used instead of an appropriate translation. “

Dr. Tarabzouni spent three years translating the terminolo-
gy. Much of which took place during the Covid19 Pandemic. 
When asked about the value this translation would have to 
the global geospatial community, he responded, “This is the 
first translation in the Arab world, available right now to my 
knowledge as there are currently no specialized dictionaries 
or glossaries about remote sensing, aerospace engineering 
and GIS terminology, so the value is intrinsic and will hope-
fully fill a painful void.”

The translation can be downloaded from the Bookstore tab 
on www.asprs.org.

ASPRS thanks Dr. Tarabzouni for his dedication to the 
geospatial industry by translating the terminology defined in 
the Glossary for the Mapping Sciences into Arabic. ASPRS 
is not responsible for errors or omissions made during the 
translation process.

http://www.asprs.org/Join-Now
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Special Issue Introduction 
Ushering a New Era of Hyperspectral Remote Sensing to 

Advance Remote Sensing Science in the Twenty-first Century
Prasad S. Thenkabail, Itiya Aneece, and Pardhasaradhi Teluguntla

Remote sensing science is entering a new era of advanced satellite 
sensors that, currently and in coming years, provide data in three 
distinct categories:

1. Hyperspatial data (sub-meter to 5 m spatial resolution) that are 
often acquired in about 4-10 multispectral broadbands (band-
widths >15 nm) and in 400-12,500 nm portion of the electro-
magnetic (EM) spectrum.

2. Superspectral data such as from the Landsat Next constellation 
of three satellites that are acquired typically in 10-60 m, 26 
multispectral broadbands (bandwidths >15 nm; but often much 
broader like 30 to 60 nm) and in 400-12,500 nm portion of the 
EM spectrum.

3. Hyperspectral data that are acquired in hundreds of narrowbands 
(bandwidths <15 nm) over 400-2500 nm or 400-12,500 nm with 
spatial resolution of <30 m.

All three data types will help advance remote sensing science by pro-
viding information in higher spatial, spectral, radiometric, and tempo-
ral resolutions. Nevertheless, these large data volumes and complexi-
ties bring significant challenges in handling, processing, and analysis. 
There are, of course, advances in big-data analytics, machine learning, 
deep learning, artificial intelligence (ML/DL/AI), and cloud comput-
ing that help overcome these challenges (Thenkabail et al., 2021a, 
Thenkabail et al., 2018). However, the greatest challenge offered by 
these new advanced data is in understanding and developing new sci-
ence that will help us model, map, and monitor myriad scientific appli-
cations. Addressing this challenge requires exploration of the charac-
teristics and limitations of hyperspectral data (Thenkabail et al., 2021a, 
Thenkabail et al., 2018), superspectral data (Landsat Next, 2024, Wu 
et al., 2019), and other advanced remote sensing data (Thenkabail et 
al., 2024) and the opportunities they offer to advance remote sensing 
science.

In this context, we have assembled a Photogrammetric Engineering and 
Remote Sensing (PE&RS) special issue on hyperspectral remote sensing 
titled “Ushering a New Era of Hyperspectral Remote Sensing to Ad-
vance Remote Sensing Science in the Twenty-first Century”. The goal of 
the special issue was to solicit scientific papers that advance new sci-
ence using new- and old- generation hyperspectral data. Great advanc-
es are taking place in remote sensing with the advent of new-genera-
tion hyperspectral sensors that offer data in hundreds of spectral bands. 
These include data from already in orbit sensors such as: 1. Germany’s 
Deutsches Zentrum fur Luftund Raumfahrt (DLR’s) Earth Sensing Im-
aging Spectrometer (DESIS) sensor onboard the International Space 
Station (ISS), 2. Italian Space Agency’s (ASI’s) PRISMA (Hyperspec-
tral Precursor of the Application Mission), and 3. Germany’s DLR’s 

Environmental Mapping and Analysis Program (EnMAP) (Figure 1). 
Further, Planet Labs PBC will soon launch two hyperspectral sensors 
called Tanager (Tanager-1 planned for July 2024). NASA is planning 
the launch of the hyperspectral Surface Biology and Geology (SBG) 
mission in the coming years. Further, we already have over 83,000+ 
hyperspectral images of the world acquired from NASA’s Earth Ob-
serving-1 (EO-1) Hyperion sensor that are freely available to anyone 
through the U.S. Geological Survey’s (USGS) data archives (https://
earthexplorer.usgs.gov/). These suites of sensors acquire data in 200 
plus hyperspectral narrowbands (HNBs) in 2.55 to 12 nm bandwidth, 
either in 400-1000 or 400-2,500 nm spectral range with SBG also ac-
quiring data in the thermal range. In addition, Landsat NEXT is plan-
ning a constellation of 3 satellites (A, B, C) each acquiring data for 26 
bands in the 400-12,000 nm wavelength range (Landsat Next, 2024). 
HNBs provide data as “spectral signatures,” in stark contrast to “a few 
data points along the spectrum” provided by multispectral broadbands 
(MBBs), that offer us the opportunity to use hyperspectral data for 
myriad applications (e.g., Figure 2).

The overarching goal of this special issue was to seek scientific 
papers that perform research utilizing old and new-generation hy-
perspectral narrowband (HNB) data and compare their performance 
with multispectral broadband (MBB) data for a wide array of science 
applications including methods, techniques, challenges, and advances.

Papers on the following topics were solicited:
1. Methods and techniques of understanding, processing, and com-

puting hyperspectral data with specific emphasis on ML/DL/AI 
and cloud computing.

2. Issues of hyperspectral data volumes, data redundancy, and 
overcoming Hughes’ phenomenon.

3. Building hyperspectral libraries for purposes of creating refer-
ence training, testing, and validation data for land remote sens-
ing applications.

4. Utilizing time-series multispectral and hyperspectral data over 
many years to build data cubes and apply advanced computa-
tional ML/DL/AI methods and approaches on the cloud.

5. Discussions of hyperspectral data analysis techniques like full 
spectral analysis versus optimal band analysis. 

6. Developing hyperspectral vegetation indices (HVIs) for targeted 

Photogrammetric Engineering & Remote Sensing
Vol. 90, No. 8, August 2024, pp. 467- 470.

0099-1112/22/467-470
© 2024 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.90.8.467



468 August  2024 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

Figure 1. EnMAP Hyperspectral Vs. Landsat 9 Multispectral. A comparison of hyperspectral data from new-generation Germany’s DLR’s Environmental Mapping and 
Analysis Program (EnMAP) sensor and multispectral data from USA’s NASA’s and USGS’s Landsat 9. A) Spectral signatures for agriculture, urban, and fallow samples 
from images acquired in May 2024. B) EnMAP image cube. C) Landsat 9 image cube. D) Sample locations on EnMAP image.Hyperspectral narrowband (HNB) data 
acquired from new generation Germany’s DLR’s Environmental Mapping and Analysis Program (EnMAP) sensor that was launched in the year 2022.

Figure 2. Spectral libraries and crop classifications using old and new generation hyperspectral narrowbands (HNB) data compared with multispectral broadband (MBB) 
data from Landsat. Old generation hyperspectral data comes from NASA’s Earth Observing-1 (EO-1) Hyperion. New generation data comes from German DESIS (DLR 
Earth Sensing Imaging Spectrometer) and Italian PRISMA (Hyperspectral Precursor of the Application Mission) sensors. The images show Hyperion image distribution 
over the world (A), Hyperion data-cube (B), DESIS data-cube (C), study area from where crop data are gathered (D), comparison of cotton crop data from hyperspectral 
Hyperion versus multispectral Landsat (E), spectral libraries of crops from Hyperion (F), DESIS (G), and PRISMA (H), and crop growth stage spectra of soybeans from 
Hyperion (I). In the last row, crop spectra of 4 crops from Hyperion (J) is shown. The Hyperion image is classified to map these 4 crops (K) and compared with reference 
data of crops from USDA cropland data layer or CDL (L). The final plot (M) shows classification accuracies that can be achieved in crop classifications using Hyperspec-
tral as opposed to multispectral Landsat [some of the images here are modified and adopted from Aneece and Thenkabail, 2022, Aneece et al., 2022, Aneece and 
Thenkabail, 2021, and Thenkabail et al., 2021b.
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applications to model and map plant biophysical (e.g., yield, bio-
mass, leaf area index), biochemical (e.g., nitrogen, anthocyanins, 
carotenoids), plant health/stress, and plant structural quantities.

7. Classification of complex vegetation and crop types/species us-
ing HNBs and HVIs and comparing them with the performance 
of multispectral broadband data.

Several papers were submitted for the call, of which those selected will 
appear in this and subsequent special issues. These papers use advanced 
hyperspectral data and analysis techniques for various science applica-
tions, providing knowledge that will be invaluable in advancing remote 
sensing science using hyperspectral data and methods (Aneece and Then-
kabail, 2022, Aneece et al., 2022, Thenkabail et al., 2021b, Thenkabail 
et al., 2018).

The paper by Sima Peyghambari et al. maps porphyry copper deposits 
(PCDs) using Italian PRISMA hyperspectral data acquired in 238 hy-
perspectral narrowbands (HNBs) in 12 nm bandwidth over 400-2500 
nm and deep learning neural network (NN) methods. The strength of 
the paper is the detailed assessments of various NNs for mineral as-
sessments. The methods include: 1. Fully connected neural network 
(FCNN) model, 2. Convolution neural network (CNN) including 1-di-
mensional CNN (1D CNN) and 2-dimensional CNN (2D CNN), and 3. 
Hybrid CNN. The paper compared PRISMA spectra of minerals such 
as Goethite, Muscovite, Kaolinite, Chlorite, and Calcite and matches 
with the USGS spectral library of minerals and ground spectra. Pey-
ghambari et al. proposed a novel 1D CNN that demonstrated an overall 
accuracy over 97% in mapping hydrothermal minerals using PRISMA 
data and helped overcome limitations and uncertainties in other well-
known neural network methods. 

Hyperspectral Reflectance Assessment for Preliminary Identification of 
Degraded Soil Zones in Industrial Sites, India by Amitava Dutta et al. 
demonstrates the value of using hyperspectral data in a reconnaissance 
survey of a large industrial complex for various levels of degraded soil 
zones. These preliminary studies will help with identifying potential 
mineral deposits, furthering their studies including ground observa-
tions, and exploiting these mineral deposits for extraction and devel-
opment. The study uses the 212 narrowband data acquired in 400-2500 
nm using Germany’s EnMAP. One of the greatest strengths of hyper-
spectral data is their ability to generate  (HVIs) (Aneece and Thenk-
abail, 2022, Thenkabail et al., 2018, Marshall and Thenkabail, 2015, 
Marshall and Thenkabail, 2014,  Mariotto et al., 2013, Thenkabail et 
al., 2013). Dutta et al. use six HVIs to study in soils the water content, 
salinity, desertification, soil texture, soil composition, and vegetation 
stress. These 6 HVIs are: 1. Normalized difference water index, 2. Sa-
linity index, 3. Desertification index, 4. Soil clay content index, 5. Iron 
oxide index, and 6. Vegetation stress index. The paper discusses these 
indices in detail and highlights their unique abilities to study specific 
features. The study highlights and discusses spectral matching tech-
niques and various ML algorithms. 

Building Shadow Detection Based on Improved Quick Shift Algorithm 
in GF-2 Images by Yunzhi Chen et al. uses sub-meter, 4 broadband hy-
perspatial data from Chinese Gaofen-2 satellite imagery to map build-
ing shadows. The paper explores challenges in utilizing high spatial 
resolution data. They reduce data redundancy by composing principal 

component (PC) images where PC1 explains about 80% variance in 4 
bands, establishing a brightness component to highlight low brightness 
values in the shadow region, and developing a normalized difference 
shadow index to highlight shadows. Also, Chen et al. utilize an ob-
ject-based classification by adopting a quick shift algorithm to break 
images into homogeneous components and then using a pixel-based 
random forest (RF) ML algorithm to classify, identify, and map build-
ing shadows. 

Research Progress of Optical Satellite Remote Sensing Monitoring 
Asphalt Pavement Aging by Jingwen Wang et al. espouses the use of 
remote sensing data for identifying asphalt pavement aging. The use of 
hyperspectral libraries of asphalt aging will be an effective and efficient 
approach to monitoring asphalt aging over large areas. The road reflec-
tivity changes with its age in different portions of the spectrum. For ex-
ample, the paper shows that the reflectivity of aging asphalt pavement 
increases significantly from 400 to 680 nm. As asphalt pavement ages, 
its spectral reflectivity decreases from 860 to 970 nm, while the reflec-
tivity of newly laid asphalt pavement increases. It is important to note 
that if hyperspectral libraries of asphalt are developed, they can be used 
as library spectra to match and study changes in spectra over time. This 
paper highlights the use and need for developing spectral libraries such 
as USGS mineral spectral library (Kokaly et al., 2017) and the global 
hyperspectral imaging spectral library of agricultural crops (GHISA) 
(Mariotto et al., 2020, Thenkabail et al., 2019).

Mapping Winter Wheat Using Ensemble-Based Positive Unlabeled 
Learning Approach by Hanxiang Wang et al. addresses the challenge 
of separating wheat crop from other similar crops using remote sens-
ing. The authors use nine ML models: Segformer-Batch-Instance-Lay-
er Normalization (BILN) (suggested by authors), DANet, U-Net, Seg-
former, DeeplabV3+, Weighted Support Vector Machine (WSVM), 
RF, SVM, and One Class SVM (OCSVM). The BILN demonstrates 
the positive and unlabeled learning (PUL) method to optimize refer-
ence data in image classification to obtain the best results in classifying 
wheat crop.

Overall, hyperspectral data provide a gigantic leap in remote sensing 
(Thenkabail et al., 2021b, Thenkabail et al., 2018), bringing tremendous 
opportunities for advancing remote sensing science by significantly in-
creasing classification accuracies; improving crop biophysical and bio-
chemical modeling; and developing HVIs for specific quantities (e.g., 
chlorophyll, biomass, crop water, pigments) to be modeled, mapped, 
and monitored. However, hyperspectral data are not a panacea, unless 
several challenges such as data volumes, data analysis methods and 
techniques, Hughes’ phenomenon, data redundancy, inter-sensor cali-
brations (amongst hyperspectral sensors and between hyperspectral and 
multispectral sensors), and other issues (e.g., developing HVIs for spe-
cific quantities) are well understood and addressed. This requires new 
research using data from new-generation hyperspectral sensors, as ex-
emplified by the papers in this special issue. Numerous other attempts 
are required by expanding goals and objectives to multiple applications.
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Research Progress of Optical Satellite Remote 
Sensing Monitoring Asphalt Pavement Aging

Jingwen Wang, Dayong Yang, Zhiwei Xie, Han Wang, Zhigang Hao, Fanyu Zhou, and Xiaona Wang

Abstract
The aging condition of asphalt pavement is an invaluable basis for 
traffic infrastructure evaluation. Due to the amount of time and high 
cost of monitoring and identifying asphalt pavement aging, many 
current studies focus on satellite remote sensing methods. In this paper, 
some methods and technologies for monitoring asphalt pavement 
degradation by optical satellite remote sensing are introduced as a 
literature review. Many researchers have developed spectrum libraries 
based on the actual aging of asphalt pavements, and it is possible 
to construct pavement health indices based on spectrum changes. 
Some indexes can extract different aging degrees of asphalt pavement 
from optical satellite images. Of course, current research can only 
preliminarily reflect the aging phenomenon of asphalt pavement and 
cannot accurately describe the distress characteristics of asphalt 
pavement. Future research needs to further strengthen mechanism 
research, develop higher resolution images, improve image processing 
technology, and adopt multi-means fusion analysis methods.

Introduction
As an efficient mode of transportation, the highway plays a pivotal 
role in the development of a national economy. China's highways have 
developed rapidly in the past 20 years. By the end of 2021, the total 
length of roads in China had grown to 5.2807 million kilometers. This 
is an increase of 82 600 kilometers from the end of the previous year. 
Highway density reached 55.01 km/100 square kilometers, an increase 
of 0.86 km/100 square kilometers. The length of highway maintenance 
reached 5.2516 million kilometers, accounting for 99.4% of the total 
highway mileage (Yin and Mei 2021). Whenever the road surface has 
problems and cannot be maintained in time, it will cause significant 
inconvenience to the daily lives of people and the transportation 
industry. This will put a great deal of pressure on the traffic department 
to supervise and maintain the road (Cheng et al. 2018). Therefore, the 
rapid investigation and detection of road conditions are of paramount 
significance for the safe and stable operation of highway traffic (Pan et 
al. 2017). However, different road materials, different road distresses, 
and different aging degrees of roads will bring considerable management 
difficulty to road supervision, management, maintenance, and renovation 
work (Cheng et al. 2018; Noronha et al. 2002). Therefore, the need for 
macro and extensive health monitoring and management of roads is 
becoming increasingly urgent (Cheng et al. 2018).

In the early stages of highway development, the survey of road con-
ditions was mainly conducted by road maintenance personnel through 
manual measurement with instruments (Pan et al. 2017). However, the 
manual detection method is inefficient and destructive to the road sur-
face. With the development of computer and sensor technologies, some 
advanced sensors and equipment such as onboard laser detectors and 
image acquisition systems have been used for road condition detection 
(Chambon and Moliard 2011; Themistocleous et al. 2014; Kahn 2021). 
These devices can obtain real-time road condition information and 
conduct qualitative diagnosis and quantitative evaluation and analysis 

to support scientific maintenance decisions (Cline et al. 2003; Liq et al. 
2012; Uddin 2011). Despite these technical means, there are still disad-
vantages, such as traffic obstruction, high costs, and time-consuming, 
in addition to the inability to quickly gather road condition information 
across a whole section of road. Compared with the vehicle-mounted 
optical monitoring system, it has the disadvantages of limited collec-
tion range and limited illumination direction. Satellite earth observa-
tion technology, especially high-resolution satellite remote sensing 
technology, shows great application potential in the application of 
road condition detection because of its more macroscopic, current, and 
objective characteristics (Jin 2011; Zhang and Bogus 2014; Mettas et 
al. 2015).

In recent years, a series of studies on road health monitoring using 
satellite remote sensing images have been carried out successively 
at home and abroad (Mei et al. 2014; Nikolaou 2016). However, in 
general, current satellite remote sensing technology is relatively rarely 
applied to road health monitoring. The use of satellite remote sensing 
means to monitor asphalt pavement aging is still in the preliminary ex-
ploration stage (Mettas et al. 2016; Schnebele et al. 2015). On the one 
hand, the response mechanism of satellite remote sensing technology 
to the asphalt pavement aging process is still in the research stage. On 
the other hand, the use of remote sensing technology and road condi-
tion monitoring have not yet formed mature methods and effective 
quantitative evaluation models (Cheng et al. 2018).

In this paper, we summarize the current road condition monitor-
ing methods based on optical satellite remote sensing technology. We 
analyze the research results and current problems and propose potential 
directions for future road condition monitoring technology using satel-
lite remote sensing (Pan et al. 2017).

Remote Sensing Interpretation Means of Optical Satellite
Optical Satellite Remote Sensing Monitoring Platform
Improving the spectral resolution and spatial resolution of space-borne 
spectral remote sensing data is the key to promoting satellite remote 
sensing technology. In the early 1970s, the United States launched ter-
restrial satellites in only four bands, with an average spectral resolution 
of 150 nm and a spatial resolution of only 78 m. The Thematic Mapper 
satellite of the 1980s increased to seven bands, with an average spec-
tral resolution of 137 nm in the visible to near-infrared spectrum, and 
a spatial resolution of 30 m. The French SPOT satellite, also launched 
in the 1980s, has a multispectral resolution of 87 nm and a spatial 
resolution of 10 m. Since the 1990s, the United States, the European 
Union, Japan, China, and India have successively launched several 
hyperspectral satellites. In October 2001, the United States launched 
the Fast Bird satellite with five bands and a spatial resolution of 0.61 
meters. In October 2009, the WorldView-2 satellite launched by the 
United States has eight bands and a spatial resolution of 0.5 meters. In 
December 2011, China launched the Resource-1 02C satellite with five 
bands in space, with a resolution of 2.36 m. In mid-August 2014, the 
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Mapping Winter Wheat Using Ensemble-Based 
Positive Unlabeled Learning Approach

Hanxiang Wang, Fan Yu, Junwei Xie, Huawei Wan, and Haotian Zheng

Abstract
High-resolution remote sensing images can support machine learn-
ing methods to achieve remarkable results in agricultural monitoring. 
However, traditional supervised learning methods require pre-labeled 
training data and are unsuitable for non-fully labeled areas. Positive 
and Unlabeled Learning (PUL), can deal with unlabeled data. A loss 
function PU-Loss was proposed in this study to directly optimize the 
PUL evaluation metric and to address the data imbalance problem 
caused by unlabeled positive samples. Moreover, a hybrid normaliza-
tion module Batch-Instance-Layer Normalization was proposed to 
perform multiple normalization methods based on the resolution size 
and to improve the model performance further. A real-world positive 
and unlabeled winter wheat data set was used to evaluate the pro-
posed method, which outperformed widely used models such as U-Net, 
DeepLabv3+, and DA-Net. The results demonstrated the potential 
of PUL for winter wheat identification in remote sensing images.

Introduction
Winter wheat is one of the important food crops and is closely related 
to people's healthy lives. Assessing the acreage and distribution of win-
ter wheat timely and accurately can assist in crop management, crop 
yield estimation, crop disaster warning, and crop planting plan making, 
which is of great importance to food security and people’s livelihood 
(Liu et al. 2019).

Accurate information on the distribution of winter wheat can usu-
ally be obtained by assigning professional mappers or experts with 
relevant expertise to conduct field surveys. Due to the time-consuming 
and laborious nature of manual surveys, timely mapping of widely 
distributed winter wheat is still a challenging task (Jean et al. 2016).

Remote Sensing (RS) technology, as an important tool for obtaining 
agricultural and natural resource data in precision agriculture, has been 
widely used in large-scale crop surveys. RS technology can provide 
more accurate and timely information on agricultural crops because of 
its advantages, such as large coverage, less restriction by ground condi-
tions, and short detection period, which has generated great economic 
and social benefits. High-resolution RS images can reflect the spatial 
relationship, topology, texture, and fine-grained features in more 
details, which provides conditions for automated methods to identify 
winter wheat growing areas(Sun et al. 2020).

Many RS classification algorithms, such as the RS index (Qu et 
al. 2021), Support Vector Machine (SVM) (Wei et al. 2020), Random 
Forest (RF) (Mohite et al. 2019), and Deep Convolutional Neural 
Network (DCNN) (Wang et al. 2020), can be applied to winter wheat 
classification. To train and evaluate models, a large number of image-
label pairs is required. Unfortunately, generating many segmentation 
labels for RS images of winter wheat remains challenging. Even with a 

large amount of RS data support, it is often only possible to use a limited 
number of labels due to personnel, technology, and funding difficulties.

Supervised learning has been widely used in remote sensing image 
classification. However, the model performance degrades when the 
supervised information is not sufficient, since supervised learning 
assumes that all classes included in the training set are exhaustively 
labeled. Learning from the data consists of positive and unlabeled 
examples is called Positive and Unlabeled Learning (PUL). In recent 
years, PUL-based studies have explored efficient training approaches 
for Positive and Unlabeled Data Sets (PUD). The goal of both PUL 
and traditional supervised learning is to train a classifier that distin-
guishes between positive and negative examples based on the attribute. 
The difference between supervised learning and PUL is that PUL is a 
class of algorithms that does not require fully supervised data and all 
unlabeled samples in the data set are also explicitly considered in the 
learning process (Bekker and Davis 2020). 

By integrating PUL with the winter wheat identification task, this 
study further explores the advantages of PUL in the classification of 
RS images with limited label. Inspired by presence and background 
learning back propagation (PBL-BP) method (Ao et al. 2017), this 
study propose a loss function for end-to-end training of DCNN model 
without estimating constants from the training set.

We noticed that winter wheat at different growth stages presents dif-
ferent optical appearances, making it challenging to distinguish it from 
other crops using current methods. Inspired by previous work (Nam 
and Kim 2019), we introduce a hybrid batch normalization technique 
called Batch-Instance-Layer Normalization (BILN), which adjusts hy-
brid ratios at different scales of feature map. This mechanism adapts to 
variations in winter wheat appearance, allowing for better distinguish-
ing features of winter wheat from other crops.

Appling the DCNN algorithm to the task of winter wheat recogni-
tion in the PUL scene, this study proposes an end-to-end winter wheat 
classification method that considers the learning of both positive and 
unlabeled samples. The contributions of this paper are as follows:
(1) We convert the evaluation metric of PUL into a general PUL loss 

function, which allows the model to optimize the evaluation met-
ric of PUL directly. We weighted it with cross-entropy loss and 
mean-absolute-error loss, and the mixed loss function is called 
PU-Loss. The DCNN model trained with PU-Loss can achieve 
higher classification performance.

(2) To adapt to the characteristics of winter wheat appearance 
changes under different scenes and growth periods, we propose 
a hybrid normalization method and deploy it on DCNN models 
with different size resolutions. The branches are called BILN. 
Experiments show that the proposed method adapts to the winter 
wheat appearance changes in different growth periods and has the 
highest test performance.
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Building Shadow Detection Based on Improved 
Quick Shift Algorithm in GF-2 Images

Yunzhi Chen, Chao Wang, Wei Wang, Xiang Zhang, and Nengcheng Chen 

Abstract
Shadows in remote sensing images contain crucial information about 
various features on the ground. In this study, a method for detect-
ing building shadows in GF-2 images based on improved quick 
shift was proposed. First, six feature variables were constructed: 
first principal component (PC1), brightness component (I), normal-
ized difference shadow index (NDSI), morphological shadow index 
(MSI), normalized difference water index (NDWI), and normalized 
difference vegetation index (NDVI). Then, the image was segmented 
to obtain homogeneous objects, which were then classified using a 
random forest model. Two improvements were added to the quick shift 
algorithm: using PC1, I, and MSI as input data instead of RGB im-
ages; and adding Canny edge constraints. Validation in six research 
areas yields Kappa coefficients of 0.928, 0.896, 0.89, 0.913, 0.879, 
and 0.909, confirming method feasibility. In addition, comparative 
experiments demonstrate its effectiveness and robustness across dif-
ferent land cover types while mitigating the segmentation scale effect.

Introduction
Shadows are a common element in remote sensing images and are 
caused by buildings, mountains, trees, and other ground objects block-
ing sun rays, resulting in the backlight of these ground objects forming 
a dark region in remote sensing images. Shadows can be classified into 

three categories according to the object causing the shadow: cloud, 
topographic, and urban shadows. The primary shadow types in remote 
sensing images vary across different resolutions: topography shadows 
and cloud shadows are the main shadows in low-resolution images, but 
urban shadows are the main shadow in high-resolution remote sensing 
images (Mostafa 2017).

Due to the popularity of high-resolution remote sensing images, 
many scholars use them to extract information and conduct various 
studies. However, the existence of shadows causes radiation distortion, 
confusing the original spectral feature of the images. Thus, the quality 
of information extracted from the images is reduced (Alavipanah et al. 
2022), affecting studies on target detection, terrain classification, auto-
matic driving, target tracking, and other applications. However, many 
scholars obtain ground object information from the shadow area. For 
instance, the shadows cast by buildings can provide valuable insights 
into their height and structure. These data can be used to calculate the 
urban floor area ratio, making it highly significant for city planning 
and development. Therefore, the detection and removal of shadows has 
attracted increasing attention from scholars.

Whether the goal is to use shadows to extract information or 
remove the influence they cause, shadow detection is the first issue 
to be addressed. At present, many scholars have conducted studies on 
shadow detection, proposing various shadow detection methods. These 
remote sensing image-based shadow detection methods are catego-
rized, with results shown in Figure 1. They can be divided into three 
categories: shadow index–based methods, machine learning–based 
methods, and deep learning–based methods.

Manual specification of shadow features is necessary in both the 
shadow index–based method and the traditional machine learning–
based method. These features can be directly derived from the band 
features in the original remote sensing image or obtained through other 
means. For example, Wang et al. (2019) converted RGB color space 
to HSV color space to obtain better shadow features; Hui and Tianwen 
(2013) used principal component analysis to obtain the first principal 
component (PC1) as the shadow feature; Liu et al. (2020) extracted 
the texture feature of the image as one of the shadow features; Fu et 
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Figure 1. Shadow detection method. The shadow detection method can be divided into three categories: shadow index–based, machine 
learning–based, and deep learning–based methods. ConvNet = convolutional deep neural network; DSSDNet = deep supervised convolutional 
neural network; RF = random forest; SVM = support vector machine.
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Hyperspectral Reflectance Assessment  
for Preliminary Identification of Degraded  

Soil Zones in Industrial Sites, India
Amitava Dutta, Rashi Tyagi, Shilpi Sharma, and Manoj Datta

Abstract
The study explores the potential of next-generation satellite hyper-
spectral imaging systems for screening and predicting surface-soil 
contamination and degradation by exploiting various spectral 
indices and signature-matching techniques at a heavily industrial-
ized area in India. The soil moisture content, desertification and 
salinity status, clay or fine material content, heavy metal content, 
vegetation health status, and stress levels were assessed from 
continuum-removed spectral reflectance values. Results indicated 
the presence of water in two tailings ponds, high salinity, and de-
sertification values in most of the tailings ponds and dump sites, clay 
boundary liner along four ponds, high heavy metal indices along 
three ponds and all dump sites, highly stressed vegetation near all 
tailings ponds and coal dump sites, and pollutants in nearby water 
channels. The results suggest a strategy for the initial identification 
of priority areas for ground-based investigations and an alterna-
tive rapid methodology to monitor large industrial hubs in India.

Introduction
Mapping of industrial byproducts or residues through their mineral 
composition at various sites, specifically in developing countries, is 
a topic of increasing interest because the residues are often high-risk 
factors for land, water, and air pollution. Fine industrial residue dust 
with inorganic pollutants and heavy metal traces could adversely affect 
human health and cause cancer if not mitigated strategically. The na-
ture of the industry and the level of the industry’s economic activities 
are indicated by monitoring physiochemical components of industrial 
byproducts, which in turn assists in developing a system with an effi-
cient and transparent environmental effect assessment and fair taxation. 
The industrial byproducts or residues can be reused and recycled under 
the framework of a cyclic economy, which could include reducing 
the consumption of virgin raw materials in the construction industry, 
landfilling and road development, and agricultural activities. Using 
this context, the exact nature and physiochemical characteristics of 
industrial byproducts or residues are critical when determining efficient 
reuse and recycling practice within the United Nations 17 Sustainable 
Development Goals.

The characteristics of industrial byproducts or residues in tailings 
ponds or dump sites are mostly determined through extensive ground 

sampling and subsequent wet chemistry or  laboratory analysis. Dump 
site characterization also involves interpolating quality parameters at 
nonsampled points within the site. These processes are expensive, time 
consuming, tedious, and sometimes subjective. Monitoring diversified 
large industrial hubs through traditional techniques is unsustainable 
for a fast-developing economy such as India. Remote sensing tech-
nologies—specifically satellite hyperspectral imaging—could provide 
rapid, precise, and economical monitoring of various industrial hubs 
and their effect on the surrounding environment while also identify-
ing policy gaps at the regional level (Choe et al. 2008; Pascucci et al. 
2012; Marion and Carrère 2018; Stankevich et al. 2018; Wan et al.; 
Zahra et al. 2024).

In recent decades, by diagnosing spectral signature characteristics 
of numerous materials, hyperspectral imaging has proven to be a pow-
erful and precise tool for environmental monitoring (Pabon et al. 2019; 
Aneece and Thenkabail 2022; Shaik et al. 2023; Dutta et al. 2024). 
Hyperspectral imaging has allowed researchers to exploit distinct spec-
tral absorption features—including their relative strength and shape—
for precise identification and mapping of the spatial distribution of 
several pollutants (Swayze et al. 2000; Mars and Crowley 2003; USGS 
2005; Pascucci et al. 2012; Zahra et al. 2024). 

Researchers have adopted diversified approaches (e.g., spectral 
indices) typically developed using normalized band ratioing at absorp-
tion features (Asadzadeh and Filho 2016; Dutta et al. 2023), spectral 
signature library-matching techniques (Clark et al. 2003; Pascucci 
et al. 2012; Marion and Carrère 2018; Pabon et al. 2019), physically 
based approaches (e.g., modified Gaussian model; Sunshine and 
Pieters 1993; Sunshine et al. 1990; Brossard et al. 2016), and, more 
recently, machine- and deep-learning techniques for characterization of 
industrial and mining tailings using hyperspectral imageries (Wang et 
al. 2021; Sun et al. 2023; Wang et al. 2023). 

Choe et al. (2008) exploited the spectral signature variations due to 
the presence of heavy metals in soils to map the spatial distribution in a 
mining tailings area in Spain. The absorption features of several heavy 
metals (Al, Cr, and Fe) were combined with ground samples to develop 
spectral indices–based predictive models for heavy metal contamina-
tion. Pascucci et al. (2012) found that aerial hyperspectral images can 
efficiently detect red mud dust residue of aluminum-extraction plants 
using unsupervised and spectral shape–based analysis techniques. They 
suggested adopting a similar approach for rapidly detecting industrial 
waste to support the development of preventive policies.

Marion and Carrère (2018) deployed an automatized Gaussian 
model on aerial hyperspectral images to map spectral characteristics at 
two different industrial plants in France. They found that hyperspectral 
imagery-based signatures can efficiently distinguish several industrial 
pollutants; the results were consistent with in situ measurements. 
Stankevich et al. (2018) successfully mapped radioactive pollution 
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One-Dimensional-Mixed Convolution Neural 
Network and Covariance Pooling Model for 

Mineral Mapping of Porphyry Copper Deposit 
Using PRISMA Hyperspectral Data

Sima Peyghambari, Yun Zhang, Hassan Heidarian, and Milad Sekandari

Abstract
Mapping distribution of alterations around porphyry copper depos-
its (PCDs) greatly affects mineral exploration. Diverse geological 
processes generate irregular alteration patterns with diverse spectral 
characteristics in mineral deposits. Applying remotely sensed hy-
perspectral images (HSIs) is an appealing technology for geologic 
surveyors to generate alteration maps. Conventional methods mainly 
use shallow spectral absorption features to discriminate minerals 
and cannot extract their important spectral information. Deep neural 
networks with nonlinear layers can evoke the deep spectral and 
spatial information of HSIs. Deep learning–based methods include 
fully connected neural networks, convolutional neural networks, 
and hybrid convolutional networks like mixed convolution neural 
network and covariance pooling (MCNN-CP) algorithms. However, 
each has its advantages and limitations. To significantly avoid losing 
important spectral features, we proposed a new method by fusing 
a one-dimensional convolutional neural network (1D-CNN) with 
MCNN-CP (1D-MCNN-CP), achieving an overall accuracy (97.44%) 
of mineral mapping from PRISMA HSIs. This research deduced that 
1D-MCNN-CP improved performance and reduced misclassifica-
tion errors among minerals sharing similar spectral features.

Introduction
The development of hyperspectral remote sensing technology, which 
can capture images with narrow and contiguous spectral channels, 
made significant progress in geological investigations and min-
eral exploration (Kruse 2004; Beiranvand Pour and Hashim 2014; 
Bedini 2017; Peyghambari and Zhang 2021). Different spaceborne 
and airborne hyperspectral sensors such as Hyperion, Hyperspectral 
Mapper (HyMap), Advanced Visible Infrared Imaging Spectrometer 
(AVIRIS), DLR Earth Sensing Imaging Spectrometer (DESIS), 
PRecursore IperSpettrale della Missione Applicativa (PRISMA), and 
the Environmental Mapping and Analysis Program (EnMAP  ) were 
used for lithological and mineral mapping (Kruse 2004; Bedini 2011; 
Agrawal et al. 2023; Tripathi and Garg 2023). Hyperspectral satel-
lite images acquired by Hyperion pioneered spaceborne hyperspectral 
remote sensing for decades (Beiranvand Pour and Hashim 2014; 
Chakouri et al. 2020; Guo et al. 2021). However, due to the low signal-
to-noise ratio (SNR) and global data availability of Hyperion data, 

new hyperspectral satellites (e.g., PRISMA, DESIS, and EnMAP) with 
better worldwide coverage and spectral features have been launched. 
Recently launched PRISMA satellite sensor acquires visible and near-
infrared (VNIR) spectral bands with SNR of >200:1 and shortwave 
infrared (SWIR) spectral bands with 100:1 SNR, which are reasonable 
for geologic mapping (Mishra et al. 2022; Shebl et al. 2023).

Identification and mapping of hydrothermal alteration zones are 
critical in mineral exploration projects. Porphyry copper deposits 
(PCDs) typically show potassic, phyllic, argillic, propylitic, and gossan 
hydrothermal alteration zones (Lowell and Gumbert 1970). Each al-
teration zone has been identified with specified hydrothermal minerals. 
Phyllic and argillic zones are defined by hydroxyl-bearing minerals 
such as muscovite and kaolinite, respectively. At the same time, the 
propylitic zone is distinguished by chlorite, epidote, and magnesium, 
iron, and calcium carbonates. The gossan zone includes iron-bearing 
minerals such as jarosite, hematite, and goethite. Different alteration 
minerals such as muscovite, kaolinite, chlorite, calcite, and goethite 
have distinctive absorption features in the VNIR and SWIR (400 to 
2500 nm) spectral region (Hunt 1977, 1979; Clark 1999). Regarding 
these distinctive absorption features, hyperspectral images are efficient 
tools to map hydrothermal alteration zones around various ore deposits 
(Sabins 1999; Beiranvand Pour and Hashim 2014; Zhang et al. 2016; 
Graham et al. 2018; Hu et al. 2019; Peyghambari and Zhang 2021).

There are different techniques for mapping hydrothermal minerals 
out of hyperspectral images (HSIs). Spectral matching methods mea-
sure the similarity between an unknown target spectrum and a known 
reference spectrum (van der Meer 2004). However, these methods have 
difficulties dealing with mixed spectra from remotely sensed HSIs. 
At the same time, subpixel techniques extract the targets’ spectra and 
compute their relative abundance within a pixel. As a subpixel method, 
mixture-tuned matched filtering (MTMF) is broadly used for mapping 
hydrothermal minerals. However, subjective thresholding is a signifi-
cant issue with subpixel mineral mapping from HSIs. Using remotely 
sensed imagery, traditional machine learning algorithms have recently 
been increasingly used in geologic mapping. Conventional machine 
learning algorithms, including random forest (RF), k-nearest neighbour 
(KNN), and support vector machine (SVM), are the most commonly 
used methods in geologic mapping (Karimzadeh and Tangestani 2021; 
Hajaj et al. 2023; Shebl et al. 2023). The traditional machine learning 
methods are robust in some HSI classification tasks, specifically land-
cover discrimination. However, due to the nonlinear nature of geologi-
cal materials (minerals), the importance of some deep spectral features, 
and the low SNR of hyperspectral data, traditional machine learning 
algorithms are not robust enough to map spectral variations of minerals.
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Recently, deep learning frameworks, a subsection of machine learn-
ing methods, have been developed as a robust technique to deal with 
the nonlinear nature of different objects and extract their deep spectral 
features (Li et al. 2019). Fully connected neural networks (FCNNs) are 
basic deep learning methods that include only fully connected neural 
networks or dense layers. To feed the FCNN, the hyperspectral data 
cubes must be flattened, which leads to missing the spatial information 
in the classification processes. Convolutional neural networks (CNNs) 
are the typical deep learning structures used in HSI classification (Guo 
et al. 2019). Basically, CNNs can extract the hierarchical spatial and 
spectral information from HSI. The one-dimensional convolutional 
network (1D-CNN) introduced by Hu et al. (2015) uses spectral vec-
tors as the input of the framework (Chen et al. 2016; Zhang, Zhang et 
al. 2016). Two-dimensional convolutional neural networks (2D-CNN) 
were proposed to consider the spatial features and contextual informa-
tion from the adjacent pixels (Chen et al. 2016; Guo et al. 2019). The 
three-dimensional convolutional neural networks (3D-CNN) were 
introduced  to learn spectral and spatial information simultaneously. 
However, they may suffer from overfitting and computational com-
plexities (Chen et al. 2016). Increasing the number of 3D convolu-
tional layers may degrade the classification accuracies.

According to the literature review, applying only 2D-CNN and 
3D-CNN has disadvantages, such as missing the spectral band 
information and increasing model complexities. To overcome this 
issue, Zhong et al. (2018) proposed spectral–spatial residual net-
works (SSRNs). However, SSRNs may make redundant networks 
and increase the computational cost. Roy et al. (2020) introduced the 
HybridSN, which used 2D-CNN on top of the 3D-CNN to extract more 
spatial features. Zheng et al. (2021) developed a hybrid CNN frame-
work that used mixed convolutions and covariance pooling named 
MCNN-CP to use the structural advantages of the 3D and 2D convolu-
tions for discriminative learning information and fewer parameters. 
The covariance pooling layer is applied to reduce the misclassification 
errors. Although this hybrid method boosts the classification results, it 
may lose some essential spectral information.

Several researchers used CNNs for the spatial and spectral extrac-
tion convolutional networks for lithologic and mineral mappings 
from remotely sensed hyperspectral data. Clabaut et al. (2016) used a 
2D-CNN structure to detect gossans in the Canadian Arctic. Ye et al. 
(2020) evaluated the performance of 3D-CNNs for lithologic mapping 
from GF-5 HSI. Liu et al. (2021) assessed the different 1D, 2D, and 
3D CNNs on the thermal infrared HSI with the aim of lithologic map-
ping around ore deposits. Fu et al. (2021) used a stacked autoencoder 
(SAE), 1D-CNN, 2D-CNN, a spectral–spatial feature fusion model, 
and MCNN-CP to compare hydrothermal alteration mapping from 
GF-5 HIS. Zhang, Yi et al. (2022) implemented 1D-CNN and fused 
1D- and 2D-CNNs for mineral mapping from the HSI data set.

Regarding the above considerations, this research proposes a 
new fused CNN model. It assesses its performance with some of 
the main deep learning algorithms to improve the hydrothermal 
alteration mapping around the worldwide well known Sarcheshmeh 
porphyry copper deposit. The deep learning models, including FCNN, 
1D-CNN, 2D-CNN, 3D-CNN, MCNN, and fused 1D-MCNN-CP, were 

implemented on the PRISMA HSI to make comparisons. The results 
demonstrated that MCNN-CP and fused 1D-CNN with MCNN-CP 
considerably boost the classification performance against 1D-, 2D-, 
and 3D-CNNs. Specifically, the 1D-MCNN-CP, as a combination of 
1D-, 2D-, and 3D-CNNs, can enhance the robustness of spectral–
spatial deep learning extractors to classify HSI data sets in mineral 
mapping. This research updates the reliability of spectral–spatial deep 
feature extractors in mapping hydrothermal minerals.

Deep Learning–Based Classification Models
Deep learning models have gained massive popularity in scientific 
computing. They use artificial neural networks to perform classification 
on large data sets. The FCNNs, recurrent neural networks (RNNs), long 
short-term memory networks (LSTMs), autoencoders (AEs), and CNNs 
commonly use deep learning techniques in image processing (Alzubaidi et 
al. 2021). For classifying geological materials, existing deep learning clas-
sification models can be grouped into the following categories: FCNN, 
1D-CNN, 2D-CNN, 3D-CNN, and hybrid models like MCNN-CP.

Fully Connected Neural Network (FCNN) Model
FCNNs comprise multiple layers of nodes or neurons in the input, 
hidden, and output layers. The FCNN model, or multi-layer perceptron 
(MLP), consists of dependent nonlinear functions, including a neuron 
that applies a linear transformation to the input vector through a weight 
matrix (Lei et al. 2021). Then, a nonlinear transformation using a 
nonlinear activation function is applied to the dot product of the input 
vector and a weight matrix. There are different activation functions: 
sigmoid,  hyperbolic tangent (tanh),  rectified linear unit (ReLu)  , etc. 
Due to its simplicity and not being computationally expensive, the 
ReLu function is considered the activation function for each hidden 
layer of neurons. In multiclass classification problems, the SoftMax 
activation function is applied to the last output layer. As a basic deep 
learning neural network structure, the FCNN was used in this study 
to discriminate different alteration minerals in PRISMA data (Figure 
1). This fully connected neural network sequence includes four dense 
layers of 128, 256, 256, and 64 neurons, respectively. The learning 
rate was left with a small default value of 0.0001, meaning it needed 
more training time (Wilson and Martinez 2001). The HSI cubes must 
be flattened as spectral vectors for the fully connected hidden layers. 
Therefore, it is likely that the essential spatial information of the input 
data could not be considered.

 Convolutional Neural Network (CNN)
CNNs have been widely used for the classification of hyperspectral 
data. The CNN structure typically comprises three different layers, 
including convolution, pooling, and fully connected network layers. The 
convolution layer consists of different kernels that slide and convolve 
across the input data to conduct the convolution operation. They exploit 
different levels of features from the input data at various locations to 
generate feature maps. Low-level kernels can extract the simpler and 
more distinctive features, while high-level kernels integrate all the 
previously detected features. The output of the convolve layers will 
be passed through a nonlinear activation function and sent to the next 

Figure 1. Fully connected neural network (FCNN) framework for remotely sensed hyperspectral image (HSI) classification.
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layer. The pooling layers are used to downsample the spatial dimen-
sions of the prior convolutional layer output. They decrease the required 
computation complexity and improve the translation invariance. Then, 
one or more fully connected (FC) layers are added to the preceding 
layers to generate the final output. They help to stack up the low-level 
information better and make final predictions (Hu et al. 2015; LeCun et 
al. 2015; Zhou et al. 2017). CNN models have fewer parameters than 
fully connected networks (FCNs), which can help mitigate overfitting. 
In deep networks, regularization techniques like dropout and batch 
normalization are typically integrated to enhance the model’s ability 
to generalize to unseen or test data (Penatti et al. 2015). The dropout 
layer reduces the correlation between neurons by deactivating some 
neurons in the network, which provides more flexibility to the model 
(Tsagkatakis et al. 2019). Batch normalization is another technique to 
generalize the deep network, which normalizes the output of each layer 
to zero mean and unit variance to increase the model’s initialization 
robustness and protect it from overfitting (Murugan and Durairaj 2017). 

1D-CNN
Due to their high effectiveness in processing hierarchical data, various 
CNNs are increasingly used in HSI classification. The classification re-
sults of the 1D-CNN model have been used for comparison with other 
CNN architectures. Hu et al. (2015) modified the 1D-CNN model, 
consisting of two convolutional and two maximum pooling layers for 
the hyperspectral classification. They capture essential features of the 
input data and convert them into feature maps. The spectral vector of 
each pixel of the HSI was considered the input data. The fully con-
nected layer operates on the feature maps and transforms them into 
feature vectors. The output of the fully connected layer is passed to 
the SoftMax function to create the final classification map (Figure 2). 
The 1D-CNN can capture spectral information; however, it ignores the 
important spatial information of the hyperspectral data.

 The 2D-CNN and 3D-CNN architectures are currently used in most 
HSI classification problem models. Due to the computationally expen-
sive nature of the 2D and 3D convolutional neural network frameworks 
and to reduce the spectral redundancy, the minimum noise fraction 
(MNF) transform was applied over the HSIs along the spectral bands. 
The result is transformed data into a new set of variables, including the 
same number of bands and spatial dimensions of the original HSIs. We 
selected the first 20 bands that contain and preserve the main spectral 
and spatial information of HSI. Assuming the HSI cube size is H × W × 
D, where W and H represent the width and height of the HIS, respec-
tively, and D indicates the number of channels, the reduced MNF data 
cube has a size equal to H × W × C  , where C is the channel dimension 
and C  D. Then, the MNF data are divided into small overlapping 3D 
cubes with a size equal to w × w × C, where w is the image cube width 
and height, and C is the number of MNF channels.

2D-CNN
2D-CNNs use 2D convolutional operations to scan across the input 
image using small kernels. The nonlinearity is then added to the 
convolved features by the activation function. In this research, we used 
(2,2) kernel size on the small 3D MNF cubes with the size of 7 × 7 × 
20 in 4 subsequent convolution layers. Only one maximum pooling 
layer is appended after the last convolution layer. Then, the output is 
flattened as the input vector of the fully connected layer (Figure 3). The 
activation function, SoftMax, is applied at the last layer to compute the 
probability of each class. Although 2D-CNN structures lead to preserv-
ing the important spatial features of the HSI, their 2D kernel type may 
result in ignoring significant spectral information of the HSI.

3D-CNN
The 3D-CNN framework uses the 3D kernel on the 3D data set to 
capture the spectral feature of the input data (Figure 4). In the 3D-CNN 
structure used in this study, we used 2 × 2 × 2 kernels in the first 

Figure 2. One-dimensional convolutional neural network (1D-CNN) framework for remotely sensed hyperspectral image (HSI) classification.

Figure 3. Two-dimensional convolutional neural network (2D-CNN) framework for remotely sensed hyperspectral image (HSI) classification.

Figure 4. Three-dimensional convolutional neural networks (3D-CNN) framework for remotely sensed hyperspectral image (HSI) classification.
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convolution layer and 3 × 3 × 3 kernels in the next three convolution 
layers over the 7 × 7 × 20 sized MNF data cubes to generate feature 
maps. The only maximum pooling layer is added to the last convo-
lution layer. After flattening, the output is passed through the fully 
connected neural networks. The ReLu activation function was added to 
each layer to add nonlinearity to the model. The SoftMax classifier is 
then used at the last layer to create the final classification map.

Hybrid CNNs
Whereas the HSI classification task aims to capture the spectral in-
formation along with spatial information, 2D-CNN cannot handle the 
spectral information, and 3D-CNN can extract the spectral and spatial 
information with the cost of computational complexity. Therefore, var-
ious hybrid 2D and 3D CNNs were proposed, such as HybridSN (Roy 
et al. 2020) and MCNN-CP (Zheng et al. 2021). The HybridSN is three 
spectral–spatial 3D-CNN followed by a spatial 2D-CNN and fully 
connected layers. As proposed by Zheng et al. (2021), MCNN-CP used 
the same number of 3D- and 2D-CNNs to extract the fused spatial and 
spectral features, which are followed by reshaping the output tensor 
M to the matrix X. Then a covariance pooling was introduced to fully 
extract the second-order information from fused spectral and spatial 
features and reduce the hyperparameters for further processing (Figure 
5). Although the MCNN-CP and other hybrid 2D- and 3D-CNNs can 
simultaneously deal with both spectral and spatial features of the HSI, 
they are still likely to lose the pixel-wise spectral information of the 
data. Their frameworks may affect adjacent pixels’ spectra, which can 
affect the accuracy of classification results.

Proposed 1D-MCNN-CP Model
Based on the advantages and limitations of the aforementioned CNN 
models, we integrate MCNN-CP as the spectral–spatial feature extrac-
tor and 1D-CNN as the spectral feature extractor to propose a fused 
1D-CNN and MCNN-CP model (named the 1D-MCMM-CP model), 

a two-branch feature fusion network, to use their complementary ad-
vantages and overcome their limitations. The spectral feature extractor 
aims to improve capturing the spectral features and the overall feature 
extraction process. It is worth mentioning that the spectral feature 
extractor was designed as 1D convolutional kernels over each pixel 
of the HSIs as the spectral vector. Using the 1D convolutional on the 
spectral vector makes the framework only focus on each pixel spectra 
during the spectral feature extraction (Figure 6). This process will re-
duce the involvement of spectrally unrelated information from adjacent 
pixels and enhance the classification performance. The contribution 
of adjacent pixel spectra has an unwanted spectral effect on each pixel 
spectrum, which is a frequent problem in geologic applications.

The extracted spectral–spatial features from the MCNN-CP were 
flattened and then fused with only the spectral features extracted from 1D 
convolutional and pooling layers. The two one-dimensional features are 
concatenated into a new one-dimensional vector with the total number of 
spectral–spatial and spectral features. Figure  6 shows a description of the 
proposed approach. It is worth mentioning that regularization techniques 
like dropout and batch normalization layers were added after each convo-
lutional layer to increase the model’s generalization capability. The shape 
of the 3D input for the spectral–spatial extractor was set as (7, 7, 20, 1), 
where 20 denotes the MNF subspace dimension, and the number of nodes 
in the output layer is set as 6, representing the number of classes in the 
data set. Random initialization is used to generate weights. Conducting a 
back-propagation algorithm, the model is trained using Adam optimizer 
by performing the SoftMax function. The batch size is 256, and the num-
ber of epochs is considered 100 for training the network.

Test Area, Data Source, and Ground Truth
Geological Setting of the Test Area
The test area is in the southeastern Uromiyeh-Dokhtar magmatic belt, 
Iran (Waterman and Hamilton 1975) (Figure 7a and 7b). This belt is an 

Figure 5. The mixed convolution neural network and covariance pooling (MCNN-CP) architecture was introduced by Zheng et al. (2021).

Figure 6. Proposed fused one-dimensional mixed convolution neural network and covariance pooling (1D-MCNN-CP) algorithm.
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Alpine–Himalayan orogenic belt that extends from Europe to west-
ern Pakistan. Like other collisional magmatic arcs such as the North 
American Cordillera, the Andes, China, and Papua New Guinea, the 
Uromiyeh-Dokhtar magmatic belt hosted important PCDs. As the larg-
est PCD in Iran, the Sarcheshmeh deposit is situated in the southeast-
ern part of the Uromiyeh-Dokhtar magmatic arc. Hosted in a diorite 
to granodiorite stock, the Sarcheshmeh deposit has 1200 Mt copper 
and molybdenum (Waterman and Hamilton 1975; Aftabi and Atapour 
2011). As a typical porphyry deposit, it has different hydrothermal 
alteration zones, including potassic, phyllic, argillic, and propylitic 
zones, respectively, from the inner to the marginal part of the deposit.

The Darrehzar porphyry deposit with 67 Mt copper is 8 km south-
east of the Sarcheshmeh deposit. It has been hosted in the hydrother-
mally altered diorite and granodiorite rocks. The deposit shows similar 
alteration zones, including potassic, phyllic, argillic, and propylitic. 
Further supergene processes have formed reddish or yellowish gossan 
zones during extensive oxidation and sulfide leaching (Hosseinjani 
Zadeh et al. 2014). The propylitic zones surrounded the interior phyllic 
and argillic zones (Mijalkovic and Saric 1973). The sereidun deposit, 
located in the east proximity of the Sarcheshmeh deposit, includes 
phyllic, argillic, advanced argillic, and propylitic alteration zones. This 
alteration is followed by argillic and advanced argillic alteration zones 
(Barzegar 2007; Kazemi Mehrnia et al. 2011).

Data Set
The hyperspectral PRISMA pushbroom sensor was launched by 
the Italian Space Agency in March 2019 in a sun-synchronous orbit 
with 29 days revisiting time (Loizzo et al. 2019; Cogliati et al. 2021; 
Agenzia Spaziale Italiana 2022). Acquiring 238 spectral bands in 400 
to 2500 nm (12-nm bandwidth), the PRISMA sensor has a 30-m spatial 
resolution. The PRISMA payload also contains a panchromatic (PAN) 
sensor, which captures the same area with a 5-m spatial resolution. The 
PRISMA images are acquired in interested areas ordered by the users, 
each covering a 30 × 30-km scene. The field investigations of altered 
minerals in the study area have been used to evaluate the accuracy of 
the results.

Generating Ground Truth Sample Data Set
To ensure a more reliable classification result, it is a key point to select 
and extract accurate features from the input data (Pal and Foody 2010). 
Thus, it is essential for supervised classifiers to select the best repre-
sentative training and validating data. This research used several im-
age-processing methods to identify and discriminate different minerals 
effectively. False color combination (FCC) of PRISMA bands (66-50-
22 as RGB), as shown in Figure 8a, reasonably discriminated different 
alteration zones in the study area. MNF, a feature extraction technique, 
has been used to enhance the spectral contrast and discriminate differ-
ent alteration zones within the area (Figure 8b). Developed by Green et 

Figure 7. (a) Geological location of Sarcheshmeh deposit in Urumieh Dokhtar magmatic arc belt (Beiranvand Pour and Hashim 2011). (b) 
Geological map of Sarcheshmeh, Darrezar, and Sereidun porphyry copper deposit (modified after Dimitrijevic et al. 1971).

Figure 8. (a) False color combination (FCC) of PRISMA bands as RGB (B66-B50-B22). (b) Combination of first minimum noise fraction 
(MNF) bands to enhance the visual discrimination of different minerals.
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al. (1988), the MNF transformation is an effective technique to reduce 
the inherent dimensionality of the hyperspectral data set and separate 
the random noise by transforming it into a series of images with a 
significant order. Combining the first MNF bands as RGB allows the 
grouping of similar pixels and effectively delineates the alteration 
zones. FCC and a combination of MNF bands could enhance the visual 
inspection of the HSI and confirm the geological fieldwork.

For supervised machine learning techniques and deep learning 
methods, it is necessary to have an appropriate sample data set to ef-
fectively analyze the data and extract and map the information to the 
output. A well labeled sample data set from distinct target minerals 
is required to analyze hyperspectral data to identify and discriminate 
different minerals. Supervised machine learning and especially deep 
learning algorithms need to have more training samples to perform 
better. However, the ground and hyperspectral data have a scale differ-
ence due to the low spatial resolution and ill-posed mixing problem in 
satellite-based hyperspectral remote sensing. Thus, the image spectrum 
is required to generate the sample ground truth data set.

In this research, we selected samples from certain regions of FCC 
and MNF band combinations. Fieldwork investigations obtained the 
location of sampled areas from the image. In the sample selection, we 
visually inspected the spectral curve and its absorption feature from all 
the pixels of the image. Five mineral types have been sampled from the 
PRISMA hyperspectral image from the Sarcheshmeh deposit and the 
surrounding area. The representative spectral feature of each mineral is 
shown in Figure 9. The spectral curves of the U.S. Geological Survey 
(USGS) library minerals have been added for comparison.

Muscovite, as a descriptive mineral of phyllic alteration, shows 
a distinct absorption at 2206 because of Al-OH vibration and a less 
intense absorption feature at 2240 and 2340 nm related to the pres-
ence of Al-OH molecules (Figure 9a) (Abrams et al. 1983). However, 
the abundance of iron oxide minerals causes an absorption at 930 nm 
in the muscovite spectral curve. Kaolinite, one of the descriptive clay 
minerals for argillic alteration, shows distinctive double absorption fea-
tures at 2175 and 2206 nm due to the Al-OH vibration process (Figure 
9b) (Clark 1999; Pontual et al. 2008). Because of iron and magnesium 
hydroxyls, chlorite, as the representative of the propylitic alteration 
zone, shows distinctive absorption features at 2250 and 2330 nm 

wavelength (Figure 9c) (Clark 1999). Calcite as a carbonate mineral 
exhibits an intense absorption feature at 2342 nm and less absorption at 
2305 nm (Figure 9d). Iron oxides, another important group of minerals, 
were recognized from the PRISMA data. Because of charge transfer 
and crystal field, goethite and hematite have a diagnostic spectral ab-
sorption in the VNIR (Cudahy and Ramanaidou 1997; Zhang, Yi et al. 
2016). Goethite (FeOx) shows an intense absorption at 930 nm and less 
absorption at 630 to 710 nm (Figure 9e) (Morris et al. 1985; Ducart et 
al. 2016). However, it also shows the 2206-nm absorption feature from 
the mixture with Al-OH minerals. Each mineral class was labeled as 
class 1 to 5. The average spectral features of each class are consistent 
with the USGS library spectra, representing the selected samples’ 
reliability. A class labeled as the image background was added to the 
mineral class samples. The background samples were chosen from the 
pixels that do not overlap with the mineral samples and have spectrally 
different absorption features (Figure 9f). Table 1 shows the number of 
selected samples for this research. Figure 10 represents the distribution 
of ground truth samples used in this study.

Table 1. Sample data set of the test area.
Class No. Category Sample Pixel Count

Class 1 Goethite 1000
Class 2 Muscovite 1224
Class 3 Kaolinite 1010
Class 4 Chlorite 3274
Class 5 Calcite 1000
Class 6 Background 1324

Experiments
This research used the atmospherically corrected PRISMA (L2D level) 
of the study area. The absolute geolocation error of about 100 m of 
the L2D PRISMA was improved using the Landsat-8 multispectral 
data. Several preprocessing methods have been applied to the surface 
reflectance PRISMA data to ensure better results. The bad bands, in-
cluding those covering water absorption features (B57 to B63, B69 to 
B73, B83 to B93, B105 to B121, and B149 to B179), were eliminated; 

Figure 9. Mean PRISMA L2D spectrum of corresponding ground truth samples representative hydrothermal minerals, including muscovite (a), 
kaolinite (b), chlorite (c), calcite (d), goethite (e), and background (f) extracted from PRISMA imagery. The U.S. Geological Survey (USGS) 
spectrum (blue lines) is specified as blue for comparison.
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only 156 of 238 primary bands were used for further processing. The 
PRISMA hyperspectral sensor suffers from smile properties, which 
cause distortions mostly in the VNIR spectrum wavelengths and can 
affect the accuracy of further classifications. The MNF method has 
been applied to reduce the smile effect on VNIR. To avoid the evalua-
tion of the atmospheric components, the internal average relative (IAR) 
reflectance correction was used on the rest of the bands to normalize 
the image to a scene-average spectrum. The resulting spectral curve 
can be easily interpreted and compared with the USGS spectral library. 
These steps are performed using ENVI (5.6.3) software. The labeled 
data set was divided into training, test, and validation sets at 7:1.5:1.5. 
A total of 70% of the samples were used to train the model, and 15% 
were used as the validation set for the model performance evalua-
tion. In addition, 15% of the samples were used as the test set, which 
was not used in training. They were used to evaluate the generaliza-
tion capability of the model. Figure 11 represents the flowchart of the 
processing steps of our proposed 1D-MCNN-CP method, together with 
the processing steps of other existing CNN-based mineral classifica-
tion methods (FCNN, 1D-CNN, 2D-CNN, 3D-CNN, and MCNN-CP). 
All the experiments are conducted under the same conditions using the 
same PRISMA data set for performance evaluation. The processing 
steps have been performed in Python 3.8.

Classification Results
Figure 12 displays the FCNN, 1D-CNN, 2D-CNN, 3D-CNN, MCNN-
CP, and fused 1D-MCNN-CP classification maps. Table 2 represents 
the final training and validation accuracies of the six deep learning 
models. The training and validation accuracies of the six deep learning 
models are more than 90%. They are consistent with the overall ac-
curacies, representing these models’ good stability and generalization 
capability. To evaluate the accuracy of different methods, including 
the proposed approach, different evaluation measurements, such as 
average accuracy (AA), overall accuracy (OA), and kappa coefficient 
(Kappa) are used (Table 3). 

Figure 10. Distribution of ground truth samples in the Sarcheshmeh area.

Figure 11. The processing steps of our proposed one-dimensional 
mixed convolution neural network and covariance pooling 
(1D-MCNN-CP) method and the fully connected neural network 
(FCNN), one-dimensional convolutional neural network (1D-CNN), 
two-dimensional (2D)-CNN), three-dimensional (3D)-CNN), and 
MCNN-CP methods were used in this study for mineral mapping 
from hyperspectral data.
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Table 4 represents the F1 score of various classes over the different 
deep learning methods. The F1 score indicates the strength of classifi-
cation models for different classes’ performance. This implies that the 
model can efficiently discriminate positive cases by minimizing false 
positives and negatives. The confusion matrix represents the number 
of correctly predicted classes of classification models. Figure 13 shows 
the confusion matrix of different models performed in this study.

The results show that the spectral classifiers FCNN and 1D-CNN 
show the lowest OA accuracies, 91.49% and 91.94%, respectively. 
Regarding the F1 score (Table 4), they show weak performances in 
classifying goethite, muscovite, calcite, and background. According to 
confusion matrix outputs, the FCNN mostly misclassified goethite as 
chlorite and kaolinite as muscovite and goethite due to spectral simi-
larities. It also shows the misclassification of calcite and background. 

Figure 12. Classification results of fully connected neural network (FCNN) (a), one-dimensional convolutional neural network (1D-CNN) (b), 
two-dimensional (2D)-CNN (c), three-dimensional (3D)-CNN (d), mixed convolution neural network and covariance pooling (MCNN-CP) (e), 
and fused 1D-MCNN-CP (f).

Table 2. Training and validation accuracies of the deep learning 
methods were used over the PRISMA data.

Method Training Accuracy Validation Accuracy
FCNN 91.48 91.57

1D-CNN 93.06 92.20
2D-CNN 91.77 92.65
3D-CNN 95.16 93.37

MCNN-CP 97.35 95.71
1D-MCNN-CP 98.76 96.73

1D = one-dimensional; 2D = two-dimensional; 3D = three-dimensional; CNN 
= convolutional neural network; FCNN = fully connected neural network; 
MCNN-CP = mixed convolution neural network and covariance pooling.
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The 1D-CNN spectral classification model misclassified goethite as 
muscovite, kaolinite, and chlorite; kaolinite as muscovite; and chlorite 
and calcite as background. The spatial 2D-CNN model shows an OA 
accuracy of 92.77%. It shows relatively better performance in terms of 
F1 scores than spectral models. However, based on the confusion ma-
trix, it still suffers from misclassifying goethite as muscovite, kaolinite 
as muscovite, muscovite as goethite and kaolinite, and background 
as calcite. The spectral–spatial 3D-CNN obviously shows higher ac-
curacy in terms of OA (93.45%) and better performance in terms of 
F1 score for different classes. The confusion matrix mostly misclas-
sifies background as chlorite, muscovite as kaolinite, and goethite 
as muscovite. Integrating spectral and spatial features in MCNN-CP 
offered good classification accuracies regarding OA, AA, and Kappa 
(Table 3). Regarding the F1 score, the MCNN-CP also performs better 
than spectral and spatial models. According to the confusion matrix, 
it only suffers from the misclassification of muscovite as goethite 
and kaolinite and kaolinite as muscovite. The fused 1D-MCNN-CP 
shows the OA, AA, and Kappa accuracies as 97.44%, 97.30%, and 
96.91%, respectively, with an improvement of around 1% compared to 
the MCNN-CP method. The remarkably higher F1 score of the fused 
approach compared to MCNN-CP indicates its best performance. It 
boosted the accuracy of muscovite and background with low misclassi-
fication errors. Although the MCNN-CP accurately discriminates most 
minerals based on F1 scores, the fused model performs better. Adding 
the 1D-CNN, fused the spectral feature of each pixel independently to 
avoid the effects of spectral features of adjacent pixels. The results of 
applied models indicated that adding pixel-wise spectral features to the 
spectral–spatial classifiers can learn more distinctive features and give 
better output mineral maps.

The classification maps of different alteration minerals around the 
Sarcheshmeh porphyry copper deposit were verified by field inves-
tigations (Figure 14). There is a reasonable correlation between the 
distribution of hydrothermal alteration minerals like muscovite and 
kaolinite in the classification outputs and their locations based on 
geological studies (Figure 14). According to Figure 14, sites 1, 2, and 
3 represent phyllic, argillic, and gossan alterations, consistent with the 
classification mineral maps showing muscovite, kaolinite, and goethite, 
respectively. Sites 4 and 5 show phyllic and argillic alterations in the 
Darrehzar deposit and are consistent with the classification output. Site 
6 in the Darrehzar deposit represents the aluminum, iron, and magne-
sium sulfate-bearing sediments correlated with iron-bearing gossan 
zones in the mineral map.

Ablation Study
The ablation study focused on the configurations of 1D-MCNN-CP 
on the same hyperspectral data presented in Table 5. For clarity in the 
evaluation, the model structures are segmented into four primary cat-
egories: 1D-MCNN-CP, MCNN-CP, 1D-3D-CNN, and 1D-2D-CNN. 
Notably, the 1D-MCNN-CP achieves better classification accuracy 
than the 1D-3D-CNN and 1D-2D-CNN. 

Table 3. Classification results of deep learning methods were used over the PRISMA data.
Method FCNN 1D-CNN 2D-CNN 3D-CNN MCNN-CP 1D-MCNN-CP

Overall accuracy (%) 91.49 91.94 92.77 93.45 96.68 97.44
Average Accuracy (%) 91.23 91.32 92.84 93.89 94.97 97.30

Kappa × 100 89.76 90.25 91.30 92.13 94.11 96.91
1D = one-dimensional; 2D = two-dimensional; 3D = three-dimensional; CNN = convolutional neural network; FCNN = fully connected neural network; MCNN-CP 
= mixed convolution neural network and covariance pooling.

Table 4. F1 scores (%) measurements of different deep learning methods.
Method FCNN 1D-CNN 2D-CNN 3D-CNN MCNN-CP 1D-MCNN-CP
Goethite 81.27 91.22 88.78 93.17 92.09 96.24

Muscovite 96.14 91.40 90.14 93.46 90.15 96.76
Kaolinite 94.52 90.13 93.27 95.19 93.98 97.07
Chlorite 86.79 89.42 96.97 89.37 96.96 97.81
Calcite 93.95 95.83 93.74 98.56 99.05 98.06

Background 95.40 93.04 93.38 91.68 97.48 98.41
1D = one-dimensional; 2D = two-dimensional; 3D = three-dimensional; CNN = convolutional neural network; FCNN = fully connected neural network; MCNN-CP 
= mixed convolution neural network and covariance pooling.

Figure 13. The confusion matrix of fully connected neural network 
(FCNN) (a), one-dimensional convolutional neural network 
(1D-CNN) (b), two-dimensional (2D)-CNN (c), three-dimensional 
(3D)-CNN (d), mixed convolution neural network and covariance 
pooling (MCNN-CP) (e), and fused 1D-MCNN-CP (f) models for 
the test data.
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Discussion
Experimenting with different deep learning algorithms to extract the 
spectral and spatial features of different hydrothermal alteration miner-
als from the PRISMA HSI data set reveals that the fusion of extracted 
spectral features with the spectral–spatial extracted features can 
promote the classification results. Conventional spectral mapping, such 
as band ratio and feature extraction methods like principal components 
analysis (PCA) and MNF, are not able to use valuable information 
from all the spectral bands of the HSI data set. These approaches can 
identify the discriminative spectral features. However, finding outcrops 
with distinct spectral absorption features in geological sites is not easy. 
The distinct geologic materials are mainly covered by weathered cov-
ering materials such as dust and lichen. The spectral matching methods 
can inspect the overall spectra; however, the noise might affect their 
performance. Also, they cannot distinguish the minerals with similar 

spectral features. On the other hand, subpixel techniques like MTMF 
methods have limitations with the subjective thresholding problem. 
Machine learning algorithms were introduced to help classify and map 
geologic materials. Although they consider all the spectral bands, they 
might have limitations in dealing with massive HSI data sets with 
complicated and different levels of spectral information.

In contrast with traditional methods, deep learning algorithms ben-
efit from multi-layer frameworks with nonlinear functions to handle 
the HSI data set with a hierarchical structure. These architectures can 
simultaneously learn different levels of spectral and spatial informa-
tion. Applying various types of deep learning in this study reveals that 
only spectral and spatial feature extraction methods such as FCNN, 
1D-CNN, and 2D-CNN make identifying all the geological objects 
impossible. Integrating the spectral and spatial feature extractor layers 
can lead to discriminating minerals with similar spectral features and 

Figure 14. Field investigation results compared to those of the generated mineral maps.
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eliminating the salt and pepper noise from prior classification methods. 
Applying the 3D-CNN as the spectral–spatial extractor led to the min-
eral map having more accuracy in detecting distinct minerals and less 
scattered noises. However, there are some differences in discriminat-
ing backgrounds and minerals like calcite. Hybrid MCNN-CP shows 
improvement in terms of accuracy. However, it could not discriminate 
against some of the minerals. Adding the spectral extractor as 1D-CNN 
improves the detection of various minerals.

Accurately discriminating the hydrothermal alteration minerals, 
including goethite, muscovite, kaolinite, and chlorite, may generate the 
proper distribution of gossan, phyllic, argillic, and propylitic alteration 
zones, respectively, around the PCDs. According to the deep learn-
ing results in this research, 3D-CNN, MCNN-CP, and 1D-MCNN-CP 
show better performances, which might help predict areas with the 
potential for mineralization.

Conclusions
This research has aimed to use deep learning algorithms to extract 
the spectral and spatial features of different hydrothermal minerals 
and map them around the PCDs. The PRISMA HSI data set over the 
Sarcheshmeh porphyry copper deposit (southeastern Iran) was selected 
as the case study data. This geologic site is one of the well known 
PCDs around the world. Systematic preprocessing and processing steps 
have been applied to the HSI data set. Several deep learning frame-
works have been constructed to extract the HSI data set’s spectral, 
spatial, and spectral–spatial features.

Among the different models used, the spectral–spatial extrac-
tors achieved better accuracy. They benefit from the 1D-CNN and 
2D-CNN models to delineate the HSI data’s most useful spectral and 
spatial information. They also reduced the “salt and pepper” scatter 
noise and the misclassification of different minerals. Among these 
integrated methods, including 3D-CNN, MCNN-CP, and proposed 
fused 1D-MCNN-CP algorithms, the 1D-MCNN-CP approach shows 
the best performance in terms of OA (97.44%) due to its deep structure 
and adding pixel-wise spectral features. The results of the deep learn-
ing methods were validated via the field study samples and several 
previous field-based geologic maps around the studied area.
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MAPPING MATTERS
YOUR QUESTIONS ANSWERED
by Qassim Abdullah, Ph.D., PLS, CP 
 Woolpert Vice President  and Chief Scientist

The layman's perspective on technical theory and practical applications of mapping and GIS

Have you ever wondered  
about what can and can’t 
be achieved with geospatial 
technologies and processes?

Would you like to understand 
the geospatial industry in 
layman’s terms?

Have you been intimidated 
by formulas or equations in 
scientific journal articles and 
published reports?

Do you have a challenging 
technical question that no 
one you know can answer?

If you answered “YES” to any of these questions, 
then you need to read Dr. Qassim Abdullah’s 
column, Mapping Matters. 
In it, he answers all geospatial questions—no matter 
how challenging—and offers accessible solutions.

Send your questions to Mapping_Matters@asprs.org

To browse previous articles of Mapping Matters,  
visit http://www.asprs.org/Mapping-Matters.html

“Your mapping matters 
publications have helped us a lot in 

refining our knowledge on the world of 
Photogrammetry. I always admire what you 
are doing to the science of Photogrammetry. 

Thank You Very much! the world wants 
more of enthusiast scientists like you."

“I read through your comments 
and calculations twice. It is very clear 

understandable. I am Honored there are 
experienced professionals like you, willing to 

help fellow members and promote knowledge 
in the Geo-Spatial Sciences.”

YOUR COMPANION TO SUCCESS



524 August  2024 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

ASPRS has changed the subscription model of our monthly 
journal, PE&RS. ASPRS is waiving open-access fees for primary 
authors from subscribing institutions. Additionally, primary authors 
who are Individual Members of ASPRS will be able to publish one 
open-access article per year at no cost and will receive a 50% 
discount on open-access fees for additional articles. 

• Open Access matters! By providing
unrestricted access to research
we can advance the geospatial
industry and provide research
that is available to everyone.

• Institutions and authors receive more
recognition! Giving permission to
everyone to read, share, reuse the
research without asking for permission,
as long as the author is credited.

• Reputation matters! Known for its
high standards, PE&RS is the industry
leading peer-review journal. Adding
open access increases authors' visibility
and reputation for quality research.

• Fostering the geospatial industry!
Open access allows for sharing without
restriction.  Research is freely available
to everyone without an embargo period.

Under the previous subscription model, authors and institutions paid $1500 
or more in open-access fees per article. This will represent a significant cost 
savings. Open-access publications benefit authors through greater visibility of 
their work and conformance with open science mandates of funding agencies.

Subscriptions asprs.org/subscribe
Membership asprs.org/membership



The ASPRS Foundation 
was established to advance 
the understanding and 
use of spatial data for the 
betterment of humankind. 

The Foundation provides grants, 
scholarships, loans and other forms of aid 
to individuals or organizations pursuing 
knowledge of imaging and geospatial 
information science and technology, and 
their applications across the scientific, 
governmental, and commercial sectors. 

Support the foundation, so when 
they are ready, we are too.

asprsfoundation.org/donate

Too young to drive 
the car? Perhaps! 
But not too young 
to be curious about 
geospatial sciences.



JOIN ASPRS 
TODAY!

LEARN
• Read our journal, PE&RS

• Attend professional development 
workshops, GeoBytes, and 
online courses through the 
ASPRS ProLearn platform

• Earn professional 
development hours (PDH)

• Attend our national & regional 
meetings and conferences

DO
• Write for PE&RS

• Innovate to create new 
geospatial technologies

• Present at our national & regional 
meetings and conferences

• Engage & network

GIVE
• Participate in the development 

of standards & best practices

• Influence state licensure 
through our NCEES affiliation

• Mentor colleagues  
& support students

• Educate others about  
geospatial science & technology

BELONG
• Establish yourself as a 

geospatial expert

• Grow business relationships

• Brand yourself and your 
company as geospatial leaders 

• Connect to the world via 
our affiliation with ISPRS

Don’t delay, join today at asprs.org

ACCELERATE YOUR CAREER!
PHOTOGRAMMETRY · REMOTE SENSING · GIS · LIDAR · UAS …and more!
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