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February 10-12, 2025 | Colorado Convention Center | Denver, CO, USA

ASPRS Workshops | February 10, 2024

Workshop 1 | Room 2A | $250 | 4 hours | 8am–12 noon
Practical Approach to Using the ASPRS Positional Accuracy 
Standards for Digital Geospatial Data
Dr. Qassim Abdullah, Woolpert, Vice-President and Chief Scientist; 
ASPRS Positional Accuracy Standards Working Group, Chair

Workshop 2 | Room 2A | $250 | 4 hours | 1–5pm
Requirement: Smartphone
Preparation for ASPRS Certification
Harold Rempel, cp, cms, gisp, ESP Associates, Senior Geospatial 
Project Manager
Oscar Duran, CP, LSIT, Senior Geomatics Analyst, Towill, Inc.

Workshop 3 | Room 2B | $195 | 2 hours | 8am–10am
Airborne Bathymetric Lidar: Theory and Applications
Dr. Christopher Parrish, Oregon State University, Department of 
Civil and Construction Engineering, Associate Research Professor; 
ASPRS, Immediate Past President
Amar Nayegandhi, Woolpert, Global Head of Technology and 
Innovation

Workshop 4 | Room 2B | $195 | 2 hours| 10:30am–12:30pm
Requirement: Laptop 
Lidar Mapping in Transportation, Forestry, and Agriculture
Dr. Ayman Habib, Thomas A. Page Professor in Civil Engineering, 
Purdue University
Oscar Duran, cp, lsit, Senior Geomatics Analyst, Towill, Inc.

Workshop 5 | Room 2B | $195 | 2 hours | 1–3pm
Professional Mapping Using Drones
Dr. Qassim Abdullah, Woolpert, Vice-President and Chief Scientist; 
ASPRS Positional Accuracy Standards Working Group, Chair

Workshop 6 | Room 2B | $195 | 2 hours | 3:30–5:30pm
Best Practices for Field Survey of Ground Control and Checkpoints
Jim Gillis, nsls, cls, rpls, cp, cms, Consultant, ASPRS Positional 
Accuracy Standards Working Group, Addendum II, Chair
Jamie Gillis, RPLS, PLS, PS, CP, Vice President, GeoTerra Surveying 
& Mapping, LLC

Workshop 7 | Room 1D | $195 | 2 hours | 8am–10am
Requirement: Laptop 
Unlocking the Power of GeoAI with ArcGIS
David Wright, Esri, Imagery and Remote Sensing, Lead Solution 
Engineer
Canserina Kurnia, Esri, Education, Senior Solution Engineer

Workshop 8 | Room 1D | $195 | 2 hours | 10:30am–12:30pm
Requirement: Laptop 
Transforming Our World with GeoAI
Dr. Youssef Kaddoura, Geomatics Specialist, University of Florida
Mike Bartholomew, psm, Director, Biscayne Engineering Company, Inc.

Workshop 9 | Room 1D | $195 | 2 hours | 1pm – 3pm
Requirement: Laptop 
Advanced Remote Sensing Data Processing and Deep Learning with 
PyTorch
Dr. Tao Liu, Michigan Technological University, College of Forest 
Resources and Environmental Engineering, Assistant Professor in 
Remote Sensing and GIS

Workshop 10 | Room 1D | $195 | 2 hours | 3:30–5:30pm
Best Practices for Acquisition and Processing of Oblique Imagery
Srini Dharmapuri, Vice President and Chief Scientist, Sanborn, ASPRS 
Positional Accuracy Standards Working Group, Addendum VI, Chair
David Day, Vice President of Shared Services, Vexcel Imaging
Clay Smith, Director of Kentucky Operations, NV5 Geospatial

Scan for workshop registration

my.asprs.org/2025Conference

COME VISIT ASPRS IN BOOTH 1533
my.asprs.org/2025Conference

ASPRS Committee Meetings
ASPRS Division and Committee Meetings held during Geo Week are 
open to the public and do not require a conference badge or ASPRS 
membership to attend. These meetings are intended to:

1. Provide an opportunity for thought leaders to get together face-to-
face to discuss important ASPRS-sponsored initiatives that feed 
into our overarching mission, such as :
• development of standards and best-practice guidelines
• development of education materials to facilitate the 

implementation of these standards and guidelines
• develop strategies to further broad implementation of these 

standards and guidelines across the industry/profession
• identify themes of interest to the readership of our monthly 

journal
• identify potential authors of journal articles on these topics
• support our professional certification program, particularly  

with respect to exam content
2. Host invited presentations on focused topics that are of keen 

interest to smaller groups of technically-focused individuals.
3. Provide an opportunity for conference attendees who are not 

ASPRS members to learn more about the Society and the benefits 
of individual membership.

Monday, February 10
Student Advisory Council ............................................. Bluebird 3F | 8:30–9am
Higher Logic Microsite Help Session ...................Bluebird 3F | 9–10:30am
Photogrammetric Applications Division ............Bluebird 3E | 9–11:30am
Evaluation for Certification Committee ............. Bluebird 3F | 12–1:00pm
UAS Division ...................................................................... Bluebird 3E | 12:30–1pm
GIS Division Committee .................................................Bluebird 3F | 1–1:30pm
Early Career Professionals Council........................Bluebird 3E | 1–1:30pm
Photogrammetric Applications Division ........Bluebird 3E | 3:30–4:30pm
Heartland Region..............................................................Bluebird 3F | 4:30– 5pm

Tuesday, February 11
Bathymetric Lidar Working Group ........................... Bluebird 3E | 10–11am
Remote Sensing Applications Division .....Bluebird 3E | 11:30–12:00pm
Awards and Scholarship Committee ............................Bluebird 3F | 1–2pm
Rocky Mountain Region ........................................................Bluebird 3E | 1–2pm
Data Preservation and Archiving Committee ..........Bluebird 3F | 2–3pm
Standards Committee ............................................................Bluebird 3E | 2–3pm
Lidar Division .................................................................Bluebird 3F | 3:30–4:30pm
Primary Data Acquisition Division .....................Bluebird 3E | 3:30–4:30pm

Wednesday, February 12
NSRS Modernization Working Group .......................Bluebird 3F |  9–10am
LAS Working Group.................................................................Bluebird 3E | 1–2pm

Awards Ceremony
Tuesday, February 11 | Bluebird 3C | 4:30–5:30pm
Sponsored by Woolpert

Awards include Professional Awards, Society Awards, 
Installations of Officers, and Outstanding Paper Awards. We will 
have drawings throughout the ceremony for your chance to win 
a prize! We look forward to celebrating with you!

Future Leaders Hub
The posters and the presentation recordings of the 2024 ASPRS 
GeoChallenge as well as posters of the ASPRS Student Chapters 
will be showcased in the Future Leaders Hub in the Exhibit Hall.

Scan for Committee Meeting 
schedule and Zoom links
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ASPRS MEMBERSHIP

Joining ASPRS is a great way to boost your 
resume and learn valuable life lessons

WHERE D
O

 Y
O

U
 W

A
N

T 
TO

 G
O? W

HOM DO YOU WANT TO BEC
O

M
E?

WHY GET INVOLVED WITH ASPRS?
• Develop leadership skills
• Experience working on a team
• Gain valuable soft skills
• Network
• Learn about yourself
• Have fun!

Scholarships
The many ASPRS scholarships are only 
available to student members

Certification
The ASPRS certification program for mapping 
scientists, photogrammetrists and technologists 
is the only fully Accredited certification program 
in the geospatial sciences

Continuing Education
Earn professional development hours and CEUs by 
attending workshops at our conferences and on-line as 
well as our monthly on-line geobytes series

PE&RS
Our monthly journal, is packed with informative and timely 
articles designed to keep you abreast of current develop-
ments in your field. Now available in e-format.

Get Connected
facebook.com/ASPRS.org

linkedin.com/company/asprs/about/

twitter.com/ASPRSorg

youtube.com/user/ASPRS

Image and text courtesy 
the ASPRS Florida Region
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81	 Guest Editorial, February 2025 Special Issue
	 Hyperspectral Special Issues to Advance 

Remote Sensing Science
Prasad S. Thenkabail, Itiya Aneece, and Pardhasaradhi Teluguntla

85	 Spatiotemporal Behavior of Active Forest 
Fires Using Time-Series MODIS C6 Data
Syed Azimuddin and R.S. Dwivedi

Forest fires have a profound influence on the economy, ecology, and 
environment. Realizing the potential of remote sensing in forest fire 
management, a study was taken up to investigate the spatiotemporal behavior 
of active forest fires in a mountainous terrain of Uttarakhand State, north India, 
using 15 years’ time-series historical MODIS (C6) active fire point products.

91	 Artificial Neural Network Multi-layer Perceptron 
Models to Classify California’s Crops using 
Harmonized Landsat Sentinel (HLS) Data
Richard McCormick, Prasad S. Thenkabail, Itiya Aneece, Pardhasaradhi Teluguntla, 
Adam J. Oliphant, and Daniel Foley

Advances in remote sensing and machine learning are enhancing cropland 
classification, vital for global food and water security. We used multispectral 
Harmonized Landsat 8 Sentinel-2 (HLS) 30-m data in an artificial neural 
network (ANN) multi-layer perceptron (MLP) model to classify five crop classes 
(cotton, alfalfa, tree crops, grapes, and others) in California’s Central Valley.

101	Individual Tree Segmentation Using Deep Learning 
and Climbing Algorithm: A Method for Achieving 
High-precision Single-tree Segmentation in High-
density Forests under Complex Environments
He Ma, Fangmin Zhang, Simin Chen, and Jinge Yu

Accurate individual tree segmentation, which is important for forestry 
investigation, is still a difficult and challenging task. In this study, we 
developed a climbing algorithm and combined it with a deep learning 
model to extract forests and achieve individual tree segmentation using 
lidar point clouds. We tested the algorithm on mixed forests within 
complex environments scanned by unmanned aircraft system lidar in 
ecological restoration mining areas along the Yangtze River of China.

111	Lightweight Ship Object Detection Algorithm 
for Remote Sensing Images Based on Multi-
scale Perception and Feature Enhancement
Wei Sun, Xinyi Shen, Xiaorui Zhang, and Fei Guan

As global trade and maritime traffic develop, exploring ship detection in 
remote sensing images has become a research hotspot. However, ships 
in remote sensing images are so small that it leads to a high detection 
leakage rate and excessive model parameters, making them difficult to 
apply on remote sensing equipment with limited resources. To address 
the challenge, we propose a light-weight ship object detection algorithm, 
adaptive layered multi-scale You Only Look Once version 8 (ALM-
YOLOv8), based on multi-scale perception and feature enhancement.

See the Cover Description on Page 68

Dr. Jie Shan



68	 Februar y  2025	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

PHOTOGRAMMETRIC 		
ENGINEERING & 
REMOTE SENSING 
Journal Staff

Publisher ASPRS
Editor-In-Chief Rongjun Qin
Director of Publications Rae Kelley
Electronic Publications Manager/Graphic Artist 	
Matthew Austin

Photogrammetric Engineering & Remote Sensing is the official journal 
of the American Society for Photogrammetry and Remote Sensing. It is 
devoted to the exchange of ideas and information about the applications 
of photogrammetry, remote sensing, and geographic information systems. 
The technical activities of the Society are conducted through the following 
Technical Divisions: Geographic Information Systems, Photogrammetric 
Applications, Lidar, Primary Data Acquisition, Professional Practice, Remote 
Sensing Applications, and Unmanned Autonomous Systems. Additional 
information on the functioning of the Technical Divisions and the Society 
can be found in the Yearbook issue of PE&RS.

All written correspondence should be directed to the American Society 
for Photogrammetry and Remote Sensing, PO Box 14713, Baton Rouge, LA 
70898, including general inquiries, memberships, subscriptions, business 
and editorial matters, address changes, manuscripts for publication, 
advertising, back issues, and publications. The telephone number of the 
Society Headquarters is 225-408-4747; the fax number is 225-408-4422; the 
web address is www.asprs.org.

PE&RS. PE&RS (ISSN0099-1112) is published monthly by the American 
Society for Photogrammetry and Remote Sensing, 8550 United Plaza Blvd, 
Suite 1001, Baton Rouge, Louisiana 70809. Periodical postage paid at 
Bethesda, Maryland and at additional mailing offices.

SUBSCRIPTION. PE&RS is available as an e-Subscription (single-site and 
multi-site licenses) and an e-Subscription with print add-on (single-site 
license only). PE&RS subscriptions are on a calendar-year, beginning in 
January and ending in December. 

The rate for a single-site e-Subscription for the USA/Non-USA is $1040 
USD, for Canadian* is $1092 USD.
The rate for a multi-site e-Subscription for the USA/Non-USA is $1040 
USD plus $250 USD for each additional license, for Canadian* is $1092 
USD plus $263 for each additional license.
The rate for e-Subscription with print add-on for the USA is $1546 
USD, for Canadian* is $1637 USD, and for Non-USA is $1596 USD. 
*Note: Subscription prices for Canada includes 5% of the total amount 
for Canada’s Goods and Services Tax (GST #135123065). PLEASE 
NOTE: All Subscription Agencies receive a 20.00 USD discount.

POSTMASTER. Send address changes to PE&RS, ASPRS, PO Box 14713, Baton 
Rouge, LA 70898. CDN CPM #(40020812).

MEMBERSHIP. Membership is open to any person actively engaged in the prac-
tice of photogrammetry, photointerpretation, remote sensing and geographic 
information systems; or who by means of education or profession is interested 
in the application or development of these arts and sciences. Membership 
is for one year, with renewal based on the anniversary date of the month 
joined. Membership Dues include a 12-month electronic subscription to 
PE&RS. Annual Individual Membership dues are $175.00 USD and Student 
Membership dues are $50.00 USD. A tax of 5% for Canada’s Goods and 
Service Tax (GST #135123065) is applied to all members residing in Canada.

COPYRIGHT 2025. Copyright by the American Society for Photogrammetry 
and Remote Sensing. Reproduction of this issue or any part thereof (except 
short quotations for use in preparing technical and scientific papers) may 
be made only after obtaining specific approval from ASPRS. The Society is 
not responsible for any statements made or opinions expressed in technical 
papers, advertisements, or other portions of this publication. Printed in the 
United States of America.

PERMISSION TO PHOTOCOPY. The copyright owner’s consent that copies of 
the article may be made for personal or internal use or for the personal 
or internal use of specific clients. This consent is given on the condition, 
however, that the copier pay the stated per copy fee through the Copyright 
Clearance Center, Inc., 222 Rosewood Drive, Danvers, Massachusetts 
01923, for copying beyond that permitted by Sections 107 or 108 of the U.S. 
Copyright Law. This consent does not extend to other kinds of copying, such 
as copying for general distribution, for advertising or promotional purposes, 
for creating new collective works, or for resale.

Like other parts of the Canadian Shield, water is omnipresent in the Mauricie region 
of Quebec. Numerous lakes, large and small, dot the surface—a byproduct of the 
glaciers that carved depressions into the region’s igneous bedrock during the most 
recent ice age.

However, people also played a role in shaping the region&rquo;s waterways when 
they created Réservoir Gouin, the sprawling many-armed lake shown in this satellite 
image. The scene was acquired by the OLI (Operational Land Imager) on Landsat 8 on 
October 17, 2023. Dark patches northwest of the reservoir are recent burned areas; 
brown and yellow areas to the east have been logged.

Construction of the Gouin dam began in 1916 to regulate the flow of the Saint-
Maurice River and make it easier to float wood to pulp and paper mills downstream. 
After the concrete structure—measuring 26 meters (85 feet) high and 502 meters 
(1,647 feet) long—was finished, it transformed the network of lakes and river 
valleys upstream into what was then the world’s largest reservoir. It also meant that 
Obedjiwan (also spelled Opitciwan), an Atikamekw village on the north shore of the 
new reservoir, had to move to higher ground.

Before the dam’s construction, the flow of the Saint-Maurice River varied sharply 
from one season to the next. In 1913, for instance, it fluctuated between 170 cubic 
meters per second in the summer and 5,700 cubic meters per second during the 
spring flood, according to Hydro Québec.

The dam ultimately curtailed such swings, but the reservoir still sees seasonal 
variations. In winter, managers lower water levels to make room for spring snowmelt 
and summer rains, and they allow water levels to peak in the late summer or fall.

Such seasonal variations in the water level are observable from space. Gouin is 
among more than 300 lakes and reservoirs that NASA scientists monitor using data 
collected by radar altimeters on several satellites, including Jason-2, Jason-3, and 
Sentinel-6 Michael Freilich.

The project, based at NASA’s Goddard Space Flight Center, posts new water height 
measurements of the reservoir every two weeks. The reservoir’s water levels 
typically drop a few meters in the winter and have trended upward by a few meters 
overall since the 1990s, the satellite observations show.

References
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Hydro Québec (2024) The Guardian of the Rivière Saint-Maurice. Accessed December 
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This image record originally appeared on the Earth Observatory. Visit https://
earthobservatory.nasa.gov/images/153683/the-many-arms-of-reservoir-gouin to view 
the full, original record.
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INDUSTRYNEWSTo have your press release published in PE&RS, 
contact Rae Kelley, rkelley@asprs.org.

ANNOUNCEMENTS
GeoCue (www.geocue.com), is pleased to announce the addi-
tion of Epotronic as its latest distributor in Germany. Based 
in Düsseldorf, Epotronic specializes in the commercial distri-
bution and use of surveying drones, industrial drones, sensors, 
and laser scanners for surveying and inspection purposes.

Samuel Flick and the Epotronic team at Intergeo 2024  
(image courtesy GeoCue)

“We are excited to welcome Epotronic to our network of 
distributors,” said Samuel Flick, European Sales Manager 
at GeoCue. “Their expertise in drone technology and 
commitment to providing tailored solutions sync with our 
goal to deliver best-in-class hardware and software to our 
customers.”

Epotronic is well known for offering drone and sensor 
solutions that are tailored to meet the individual require-
ments of their clients. With an extensive network and 
years of experience, they now bring GeoCue’s TrueView 3D 
Imaging Systems (https://geocue.com/sensors/drone-lidar/) 
and LP360 (https://www.lp360.com/) software into its exten-
sive catalog of equipment, surveying supplies, and software 
solutions. This partnership aims to empower Epotronic’s 
customers with efficient and accurate surveying tools that 
seamlessly integrate into their workflow, enhancing their 
overall productivity.

“Partnering with GeoCue allows us to fulfill our custom-
ers’ needs with precise, reliable, and consistent surveying 
results at fair pricing for years to come,” said Tobias 
Wentzler, CEO of Epotronic GmbH. “GeoCue’s TrueView 
LiDAR products and LP360 software are best-in-class, and 
we’re confident that this collaboration will bring significant 
value to surveying and construction companies, government 
entities, and universities across Germany.”

Epotronic’s decision to become a TrueView and LP360 
provider was driven by GeoCue’s reputation for delivering 
high-performance products backed by a trusted and expe-
rienced team. This partnership is expected to enhance the 
capabilities of professionals in the surveying and inspection 
industries by providing access to cutting-edge technology 
and comprehensive support services.

Epotronic’s expertise goes beyond technology. The com-
pany provides comprehensive training and customer project 

support, ensuring businesses can seamlessly integrate 
advanced drone and sensor technology into their operations 
with minimal investment risk.

Epotronic’s addition to GeoCue’s global distribution 
network marks another step in expanding access to transfor-
mative lidar and geospatial solutions worldwide.

¼½¼½

After a competitive bid process, the Indiana Geographic 
Information Office (IGIO) has tasked Woolpert (www.
woolpert.com), with acquiring aerial orthoimagery and lidar 
data for the state of Indiana. Collected as a part of the IGIO’s 
Imagery (https://imagery.gio.in.gov/) and Elevation Programs 
(https://elevation.gio.in.gov/), these data will support 
economic development, infrastructure, conservation, and 
emergency response planning needs throughout the state.

Courtesy IGIO’s Imagery Program

Under the contract, Woolpert will simultaneously acquire 
over 37,000 square miles of four-band, 6-inch resolution digi-
tal orthoimagery and Quality Level 1 lidar over a three-year 
period from 2025-2027. Woolpert also will acquire approxi-
mately 120 square miles of 3-inch resolution digital orthoim-
agery and QL1 lidar along the coast of Lake Michigan each 
year through 2028 in support of the Indiana Department of 
Natural Resources’ Lake Michigan Coastal Program (https://
www.in.gov/dnr/lake-michigan-coastal-program/). QL1 data 
are delivered at 25 points per square meter.

The data will be available at no cost for the public to 
download or stream through the IGIO website (https://www.
in.gov/gis/) and IndianaMap (https://www.indianamap.org/). 
State and local government agencies can obtain additional 
services and products, including enhanced digital orthoim-
agery, lidar, and derivative datasets, through the state’s 
collective buy-up program.

Woolpert Project Manager Matt Worthy said that local 
governments rely on geospatial data for countless processes. 
The data serves as a base map for a range of applications, 
including planning, assessment, modelling, and research.

“The usefulness of the state’s orthoimagery and lidar data 
is virtually endless,” Worthy said. “In addition to the classic 
use cases of the base imagery and elevation data, we’ve 
already begun receiving requests for derivative products 
such as building footprints, impervious surfaces, eleva-
tion-derived hydrography, the list goes on. The excitement 
surrounding the program is palpable from the metropolitan 

mailto:rkelley@asprs.org
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INDUSTRYNEWS
government coalitions, down to the smallest rural counties 
and municipalities. It’s rewarding to explain Woolpert’s 
solution to others and watch their wheels start turning as 
they connect our data to projects that they’ve wanted to 
undertake but maybe haven’t due to previous technological 
or cost considerations.”

Woolpert Program Director Brian Stevens noted the 
growth and sophistication of Indiana’s statewide imagery 
and lidar programs.

“When I first started my career at Woolpert and working 
with several Indiana counties, we primarily collected and 
processed black-and-white aerial imagery to produce ortho-
imagery and manually derived derivative products,” Stevens 
said. “Now, with the technology being implemented today by 
the state, including high point density lidar and co-collected 
aerial imagery, Indiana is leading the way and serves as a 
model for the rest of the country.”

The contract is underway. Data acquisition is expected to 
begin this spring.

¼½¼½

L3Harris Technologies (www.l3harris.com), has received 
a contract from the U.S. Space Force’s Space Systems 
Command to design concepts for Phase 0 of the Resilient 
Global Positioning System (R-GPS) program. 

The R-GPS program is a procurement of cost-effective 
small satellites that will augment the existing 31-satellite 
GPS constellation providing resilience to military and civil 
GPS users. Space Force plans to produce and launch up 
to eight satellites to address jamming, spoofing and more 
permanent disruptions.

“We are answering the call to protect and defend national 
security interests by developing and deploying reliable 
and robust GPS technologies crucial to the warfighter and 
the global populace,” said Ed Zoiss, President, Space and 
Airborne Systems, L3Harris. “We will leverage our five 
decades of experience as a key mission partner providing 
GPS to deliver a more resilient Positioning, Navigation and 
Timing (PNT) infrastructure.”

L3Harris is the only company to provide navigation 
technology for every U.S. GPS satellite ever launched, in 
addition to designing and building critical elements of the 
control segment, monitor station receivers and user equip-
ment. This mature technology provides the foundation of the 
L3Harris R-GPS solution.

L3Harris’ investment in transformational PNT technology 
uses commercial form factors and interfaces for a modular, 
scalable solution supporting Space Force needs. L3Harris 
is also collaborating with the Space Force as the prime 
contractor on the experimental Navigation Technology 
Satellite-3 program to develop cutting-edge technology and 
deliver on accelerated development timelines.

¼½¼½

The U.S. Geological Survey (www.usgs.gov), has tasked 
Woolpert (www.woolpert.com), with collecting 28,043 
square miles of topographic Quality Level 1 lidar data and 
providing ground control survey across western Arkansas 
in support of the 3D Elevation Program (3DEP) and The 
National Map.

The data will be merged with 24,533 square miles of QL1 
lidar data currently being collected across eastern Arkansas 
under a separate contract awarded to Woolpert last year.

3DEP, led by the USGS National Geospatial Program, 
offers the nation’s first baseline of seamless, high-resolution 
topographic elevation data, which is then incorporated into 
The National Map. The data is free and publicly available 
to local, state, and national agencies. It is used to inform 
decisions that impact the immediate safety of life, property, 
and the environment, and is critical to effective, long-term 
infrastructure planning.

Under this second task order, Woolpert will fly 1,048 flight 
lines and collect approximately 450 ground control survey 
points. The aerial lidar data will be collected this winter and 
is expected to be delivered in summer 2026.

“This new lidar will have a higher level of point density, 
allowing for preliminary designs and providing topographic 
survey that engineers can use for a variety of projects, 
including levelling farm fields, building and improving 
levees, construction of roadways, and stormwater engineer-
ing,” Woolpert Program Director Sam Moffat said. “This data 
will also enable the state to assist in managing its natural 
resources and will be particularly useful for applications 
like forest inventory, biodiversity assessment, watershed 
analysis, geological mapping, and monitoring environmental 
changes, providing crucial data for informed decision-making 
in conservation and resource management strategies.”

The contract is underway.

CALENDAR
•	3-8 August, IEEE International Geoscience and Remote Sensing Symposium, Brisbane, Australia; https://2025.ieeeigarss.org.
•	16-22 August, 32nd International Cartographic Conference, Vancouver, Canada; https://cartogis.org/usnc-ica.
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GIS &Tips     Tricks By

Picking a GIS file format 

By Al Karlin, Ph.D., CSM-L, GISP

INTRODUCTION
In 2025, Esri’s Arc/Info™ is so far in the rearview mirror, 
that ArcGIS Pro 3.X does not provide support or a conversion 
tool for, what was called, “a coverage”; the Esri proprietary 
GIS standard file format that incorporated the geometry 
(arcs), the feature attributes (info), the “tics”, and several 
other supporting feature-related indexing files into a single 
file folder. To say that this format was cumbersome would be 
an understatement. 

So, in the early 1990s, Esri introduced the “shapefile” for-
mat, actually three files, a .SHP file containing the geometry, 
a .DBF, DBase 4™, file containing the feature attributes, 
and a .SHX file, an index file, as the native digital vector 
data format for their new ArcView software product. The 
shapefile became so popular among GIS practitioners, that in 
1998, Esri released the format. Today, the shapefile remains 
proprietary, but the technical specifications are open and can 
be used freely. Most, if not all, GIS software can import and 
display the Esri shapefile.

The Esri shapefile, however, has several limitations. As 
a collection of 8-bit files, shapefiles cannot exceed 2 giga-
bytes in size. The file size limits the file to approximately 70 
million point features; certainly not sufficient for lidar data 
storage, and the number of lines and/or polygons that can be 
stored is dependent on the number of vertices. Field names 
for attributes, cannot exceed 10 characters and can contain 
only letters, numbers and underscores. Precision issues 
arise when importing/exporting 8-bit shapefiles into/out of 
16-bit geodatabases. Shapefiles 
also cannot store Time and Data 
in the same files and NULL 
values are stored as zero. The 
list of limitations goes on and 
on. Finally, as shapefiles require 
large amounts of storage, other 
GIS formats and in particular 
interchange formats become 
important. This month, I’ll focus 
on three GIS data formats that 
are commonly encountered in the 
GIS world.

TIP 1: Using AutoCAD™ and 
MicroStation™ files in the Esri ArcGIS Pro 
environment
Computer-aided Design (CAD) files are vector representa-
tions of design plans and specifications usually intended to 
be printed on 24” x 36” sheets of paper. CAD files typically 
contain lines, points, and annotation, but as the file was 
intended to be printed, there would be no need for georef-
erencing and CAD drafters generally place the origin (i.e. 
start their drawing) at an arbitrary coordinate in the CAD 
coordinate space, usually at 0,0 (or sometimes at 5000,5000). 
In the real world, that would place the origin somewhere on 
the equator in the Atlantic Ocean! In last month’s PE&RS 
GIS Tips & Tricks column (PE&RS, October 2024), Delaney 
Resweber and I discussed some tips for georeferencing CAD 
files. So, the first thing that a GIS analyst needs to do is to 
confirm the coordinate reference system of the CAD file and 
“georeference” the file as needed. 

Among the most commonly used CAD programs are Au-
toDesk AutoCAD™ and Bentley Microstation™. It is fairly 
common for a GIS analyst to be asked to incorporate either 
one of these CAD files into a GIS project. AutoCAD™ files 
will be either (1) drawing files (.DWG) or (2) ASCII files spe-
cifically designed for interchange among software programs 
(.DXF), while Microstation™ files will generally be design 
files (.DGN). In either case, ArcGIS Pro will open the CAD 
file’s database, and show groups of points, lines, polygons, 
and the annotation as in Figure 1 below.

Figure 1.  A MicroStation™ design file in ArcGIS Pro 3.3.
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Selecting any individual feature, as in the Point feature se-
lected in Figure 1, and clicking on the Layer Feature on the 
ribbon will start the CAD Data options as in Figure 2. Using 
the tools on this ribbon, you can control the Alignment (= 
georeferencing) of the feature, as well as perform several GIS 
functions (Export, Copy, etc.).

In this case (Figure 1), I am showing a MicroStation™ 
.DGN file, but AutoCAD™ files behave in a similar manner. 
For more information, here is a link to the Esri help (https://

pro.arcgis.com/en/pro-app/latest/help/data/cad/cad-data-in-
arcgis-pro.htm) and there are several YouTube tutorials 
available (https://www.youtube.com/watch?v=QTW3_k7jiok) 
for viewing. 

Figure 2.  The CAD Data option ribbon in ArcGIS Pro.

TIP #2: Using Keyhole Markup Language (KML) in ArcGIS Pro

Another common file format is Keyhole Markup Language 
(KML) made popular by Google Earth™. KML originated in 
the early 2000s by Keyhole, Inc. Google™ acquired Keyhole in 
2004 and incorporated KML into Google Earth™. This Exten-
sible Markup (XML)-based language is very compact and can 
represent points, lines, polygons and annotation in a georef-
erenced framework. KML and the compressed form, Keyhole 
Markup Language Zipped (KMZ) is easily transported on USB 
drives or sent over e-mail, as most files are under 1 megabyte.

ArcGIS Pro cannot ingest or display KML files directly, 
however, there are tools in the Data Conversion | KML tool-
set to convert KML to Layers (and Layers to KML) for using 
in ArcGIS Pro (Figure 3). 

Double-click to 
open the KML to 
Layer dialog box 
(Figure 4), and fill-
in the parameters 
with (1) the KML (or 
KMZ) file to convert, 
(2) a folder to hold 
the layer(s), and 
(3) a name for the 
layer(s), and “Run” 
the tool.

In this case, I 
imported a KMZ 
file that contained 
4 polygons representing areas around 4 rivers in Florida for 
hydrographic survey. Once the KMZ file was converted to a 
layer file, I changed the symbology to blue outlined polygons 
and display the attribute table in Figure 5.

For more information on creating KML/KMZ files on Goo-
gle Earth, see: https://apollomapping.com/how-to/creating-
kmz-file-google-earth, and for more information on importing 
KML/KMZ files into ArcGIS Pro, see: https://pro.arcgis.com/
en/pro-app/latest/tool-reference/conversion/kml-to-layer.htm.

Figure 5. ArcGIS Pro displaying the layer resulting from converting the KML/KMZ 
file. Note that the file is georeferenced and complete with non-spatial attributes.  

Figure 4. The KML (KMZ) to layer 
dialog box.

Figure 3.  The Data Conversion 
Toolbox showing the KML Toolset 
in ArcGIS Pro.



TIP #3: Using JSON (GeoJSON) files in ArcGIS Pro

The GeoJSON file format is an open format designed for rep-
resenting simple (point, line, polygon) geographic features, 
as well as, multiparts of these features along with non-spa-
tial attributes. The file format is maintained by an Internet 
Engineering Task Force of developers who released the for-
mat in August 2016. Since then, the format has been widely 
accepted as an open, interchange GIS format. Unfortunately, 
as an open format, several “flavors” have evolved and not all 
are immediately convertible for viewing in ArcGIS Pro (see 
GIS Tips & Tricks, November 2024). 

With that, ArcGIS Pro provides conversion tools in the 
Data Conversion | JSON toolset for conversion to and from 
the JSON file format (Figure 6). For this example, I am using 
a GeoJSON file containing the point locations of Agricultural 
Inspection Stations in Florida. The GeoJSON file is 7KB in 
size and contains 23 point features. The converted shapefile, 
seen in Figure 8, is 23 KB, requiring three times the storage!

Figure 6. The JSON conversion 
tools in the ArcGIS Pro Conver-
sion Tools Toolbox.

Use the Data Conversion | JSON | JSON to Feature tool 
(Figure 6) to open the dialog box (Figure 7), specify the Input 
JSON or GeoJSON file (in this case a GeoJSON), and the 
Output Feature Class (the default is a shapefile, but you can 
put the feature class into a Geodatabase), specify the Geom-
etry Type (in this case as a Point) and run the tool. NOTE: 
There are no Environmental Parameters to set.

Figure 7. The JSON to Feature 
dialog box.  Be careful to set the 
proper Geometry Type for the 
output as the default is “Polygon”.

For more information on converting JSON/GeoJSON files 
visit the GeoJSON homepage at: https://geojson.org/ or the 
Esri Help at: JSON To Features (Conversion)—ArcGIS Pro 
| Documentation (https://pro.arcgis.com/en/pro-app/3.1/
tool-reference/conversion/json-to-features.htm)

Figure 8.  ArcGIS Pro displaying the shapefile resulting from the conversion of the 
GeoJSON file.  Note the file is georeferenced and complete with non-spatial attributes.
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TIP #4: For QGIS users – Importing multiple 
GIS formats into QGIS is generally easier 
than importing files into ArcGIS, but not 
always
1.	For CAD files, the file needs to be converted to a vector for-

mat that QGIS recognizes, and unfortunately, QGIS does 
not recognize MicroStation™ .DGN files or AutoCAD™ 
.DWG files. However, the GRASS plug-in does provide a 
tool in the Vector folder, the v.in.dxf to import an ASCII 
CAD Exchange file (.DXF), 

2.	For KML/KMZ files, just drag and drop the file onto the 
canvas, QGIS will respond with a message (Figure 9) ask-
ing which features in the KML/KMZ file to import, select 
the features and press “add layers” to add the data top 
your canvas, and

Figure 9.  QGIS KML/
KMZ import dialog box.

4.	For JSON/GeoJSON files, just drag and drop the file onto 
the canvas and QGIS does the rest!

Send your questions, comments, and tips to  
GISTT@ASPRS.org.

Al Karlin, Ph.D., CMS-L, GISP is with Dewberry’s Geospatial 
and Technology Services group in Tampa, FL. As a senior 
geospatial scientist, Al works with all aspects of lidar, remote 
sensing, photogrammetry, and GIS-related projects.

Be a part of ASPRS Social Media:

facebook.com/ASPRS.org

https://www.linkedin.com/company/asprs/about/

twitter.com/ASPRSorg

youtube.com/user/ASPRS
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BOOKREVIEW

Among other things, Mr. Dangermond’s excellent book reads 
part atlas, part textbook on modern geography, part primer on 
Geographic Information Systems (GIS), part autobiography, 
and part collection of multidisciplinary lesson plans. Primarily, 
it cements the author’s legacy as co-founder and rightful 
leader of a movement which has geography and attendant 
sciences as its engine and GIS as its vehicle. In essence, this 
transformative work also constitutes the author’s loudest 
call of duty yet to each and every one of us who is willing to 
answer his exhortation: observe our world - our planet and the 
issues it faces, from an endless number of points of view and 
perspectives, brought about by the power of GIS and geospatial 
sciences and technologies.  

The book’s subject matter is solidly encapsulated in its subtitle: 
“A Geographic Approach to the World’s Greatest Challenges.” 
Thus, the book design revolves around a comprehensive 
distillation of virtually every aspect of human activity, viewed 
against a backdrop of human- and nature-driven changes to 
the planet’s systems. By no means a catalogue of present-
day tribulations and ills, the book offers hope, and a bright 
outlook, supported by a wealth of effective tools, exploring and 
exemplifying possible avenues for collaborative amelioration 
and remediation going forward. Paradigmatically, Mr. 
Dangermond’s life history deeply embodies the evolution of the 
“power of where” as he puts it, emphasizing the necessary and 
constant presence of human dimensions, both person-centered 
and community-centered — in every aspect of geographic 
knowledge, and by extension of GIS. 

This highly dynamic, versatile and thoughtfully constructed 
book constitutes yet another step in the author’s multi-faceted 
journey as founder of a movement, mentor of countless 
generations of professionals, and in his role as tireless and 
perennial tour guide of GIS to a world audience. 

The chapters in this book are sandwiched between an 
impressive Foreword (pp. vii) and no less impressive 
acknowledgements and credits. As a hats-off  to map-making, 
there is a Beginnings section (pp. xii-xvi) in which a very brief 
history of cartography is presented. Three sections, About the 
Author (pp. ix), the Preface (pp. x-xi),  and A (Very) Brief History 
of GIS (pp. xvii-xxv) take the reader on an account of the 
author’s unique professional life history. A detailed narrative 
informs us on the origins of the Environmental Systems 
Research Institute Inc. company, which we all know now as 
Esri, and Mr. Dangermond’s role in the co-development of 
geographic information science and technology, let alone one of 
the most widely used software suites. 

Even though the reader would have liked it, not surprisingly 
there is no table of contents, likely because given the depth and 
breadth of this work it would be extremely voluminous. A Table 
of Questions (pp. iv-v) is offered instead. Throughout its 274 
pages, this book is laid out as a series of chapters, formulated 
as basic “What is…” geo-questions, of which there are eight: 
1- What is the Geographic Approach (pp. 1-37); 2- What is 

Geodata, (pp. 38-89); 3- What is Geovisualization, (pp. 90-129); 
4- What is Geommmunication, (pp. 130-161); 5- What is 
Geoanalysis, (pp. 162-193); 6- What is Geocollaboration, (pp. 
194-221); 7- What is Geoaccounting and (pp. 222-237); and 8- 
What is Geodesign. (pp. 238-261). 

Geography, or the “science of where” as Esri’s tagline brands it, 
is the author’s constant assistant helping him paint the canvas 
anew as every new geo-question is answered not only with 
compelling and beautifully designed graphics, but with tangible 
and real-world examples of state-of-the-science-and-technology 
applications. The book contains connections between geography 
and other geospatial sciences, such as geodesy, surveying, and 
remote sensing for example, laying out rich expositions of their 
fundamental principles in conjunction with ample graphic, 
textual and numerical examples of their relationships with 
GIS and other scientific domains. Chock-full of testimonials 
and vignettes, this book displays throughout its pages what 
constitutes a veritable procession of luminaries in geography, 

The Power of Where: A Geographic 
Approach to the World’s Greatest 
Challenges
Jack Dangermond. xxv+274 pages; full color throughout; 
approximately 600 maps, photos and illustrations. 2024. Esri 
Press. Print ISBN10: 1589486064; Print ISBN13: 9781589486065; 
eBook ISBN13: 9781589486072..

Reviewed by Demetrio P. Zourarakis, PhD, 
GISP, CMS (GIS/LIS, RS, Lidar); Adjunct 
Assistant Professor, University of Kentucky, 
Martin-Gatton CAFE; Visiting Lecturer, 
Kentucky State University, CAHNR
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ASPRS WORKSHOP SERIES
It’s not too late to earn  

Professional Development Hours
Miss an ASPRS Workshop or GeoByte? Don’t worry!  

Many ASPRS events are available through our  
online learning catalog.

https://asprs.prolearn.io/catalog

GIS and allied disciplines. Richly illustrated, this work offers 
a commanding and panoramic view of topics relevant to 
today’s challenges faced by our world, as it spares no effort in 
providing a plethora of visual aids, properly attributed in the 
Image Credits section (pp. 269-273). Understandably, there 
are virtually no pages of the book that don’t show at least one 
figure. At a glance it seems that over half of the printed matter 
is covered by graphics or images, with text sometimes taking 
an obvious secondary role. Each geo-question deep-dives into 
a single case study numbered in accordance with the chapter 
it appears in: Case Stude 01: “Integrative Wildfire Data 
Reporting” (pp.33- 37); Case Study 02: “Human Population, 
Social Justice, and Demographics” (pp. 83-89);  Case Study 
03: “Visualizing Geologic and Seismic Data” (pp. 125-129); 
Case Study 04: “Telling the Story of the Anthropocene” (pp. 
155- 161); Case Study 05: “Mapping and Biodiversity” (pp. 
191-193); Case Study 06: “Search and Rescue Operations” 
(pp. 217-221); Case Study 07: “Transit Access and Jobs in Los 
Angeles” (pp. 235-237); and Case Study 08: “Blending Old City 
Concepts with Smart City Ideals” (pp. 259-261).

When the subject matter warrants it, the author offers detailed 
timelines that help the reader track the complex lineage and 
temporal evolution of the ideas and collaborations leading to 
the creation of disciplines or subdisciplines such as: Geodata 
Timeline (pp. 56-59), Geocollaboration Timeline (pp. 206-209) 
and Geodesign Timeline (pp. 248-251). Special interest topics 
are also addressed, such as Geospatial Artificial Intelligence 
(pp. 183-185), Knowledge Graphs (pp. 176-177) and the United 
Nations Sustainable Development Goals (SDGs) from the 2030 

Agenda for Sustainable Development (pp. 230-231). It is the 
reader’s hope that perhaps some other topics, such as Planetary 
Mapping (pp. 122-123) will be expanded in a new edition of the 
book. The closing sections are also insightful and also essential 
reading. In the Postscript section (pp. 262-263) for example, 
the author tells the reader that this book represents the result 
of half a century of collaborative effort, a life-long legacy to 
posterity from him and his wife Laura. A heartwarming 
testimonial from the team that helped the author make the 
book possible appears on the How the Book Came About section 
(p. 264). An army of collaborators helped bring this book to life 
and they are properly credited in the Acknowledgments section 
(pp. 266-268). By using a refreshing storytelling modality, this 
book will undoubtedly assist both professionals and laypersons 
alike in their efforts to further popularize the fundamentals 
and applications of GIS and geospatial thinking. Born with 
a didactic and pedagogic nature, it is our hope that this book 
will be used as a teaching aid in a number of activities as 
it connects the main subject matter to a panoply of other 
scientific domains. As stated on the final See the Book Come 
Alive section (p. 265), book materials can be found at https://
powerofwhere.com/ which can be used to develop curriculum, 
module lessons, special projects and other resources throughout 
the educational spectrum.  Even though it is never referred to 
as such, the “Power of Where” in essence constitutes a valuable, 
indispensable handbook for every geospatial professional, and 
as such – and until the next edition appears! it deserves to be 
her/his constant companion.
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ASPRS has changed the subscription model of our monthly 
journal, PE&RS. ASPRS is waiving open-access fees for primary 
authors from subscribing institutions. Additionally, primary authors 
who are Individual Members of ASPRS will be able to publish one 
open-access article per year at no cost and will receive a 50% 
discount on open-access fees for additional articles. 

• Open Access matters! By providing
unrestricted access to research
we can advance the geospatial
industry and provide research
that is available to everyone.

• Institutions and authors receive more
recognition! Giving permission to
everyone to read, share, reuse the
research without asking for permission,
as long as the author is credited.

• Reputation matters! Known for its
high standards, PE&RS is the industry
leading peer-review journal. Adding
open access increases authors' visibility
and reputation for quality research.

• Fostering the geospatial industry!
Open access allows for sharing without
restriction.  Research is freely available
to everyone without an embargo period.

Under the previous subscription model, authors and institutions paid $1500 
or more in open-access fees per article. This will represent a significant cost 
savings. Open-access publications benefit authors through greater visibility of 
their work and conformance with open science mandates of funding agencies.

Subscriptions asprs.org/subscribe
Membership asprs.org/membership
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DR. JIE SHAN RETIRES AS  
HIGHLIGHT ARTICLE EDITOR  
FOR PE&RS

Jie Shan has been with ASPRS 
recruiting and editing highlight 
articles for over 15 years. During 
this time, he has worked with 
many authors in government, 
academia, and industry. Providing 
valuable insight to PE&RS and the 
geospatial community. 

Dr. Shan was recently ratified 
as a Reilly Professor of Civil 
Engineering, a named professorship 
at Purdue University.  Jie will work 
closely with the U.S. Geological 
Survey/EROS on Landsat in the 
next few years.

ASPRS would like to congratulate 
Jie on his future collaborations and 
thank him for his service to ASPRS 
and the geospatial community.
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This is the third special issue in the last 7 months on hyperspectral re-
mote sensing in the Photogrammetric Engineering and Remote Sensing 
(PE&RS) journal under the special issue topic entitled “Ushering a 
New Era of Hyperspectral Remote Sensing to Advance Remote Sensing 
Science in the Twenty-first Century.” The first was the August 2024 
special issue of PE&RS (Thenkabail et al., 2024a), followed by the 
November 2024 special issue of PE&RS (Thenkabail et al., 2024b). 
Great advances are taking place in remote sensing science (Thenkabail, 
2024 a,b,c,d,e,f) with a series of new generation spaceborne hyperspec-
tral sensors, cloud computing, and artificial intelligence (Thenkabail et 
al., 20024 a, b) being at the forefront enabling such advances. 

A total of 13 hyperspectral, high spatial resolution, machine learn-
ing, deep learning, and closely related papers are published in the three 
PE&RS special issues: five in August 2024, four in November 2024, 
and four in the February 2025 issue (this issue). Overviews of these pa-
pers are provided for the August 2024 issue (Thenkabail et al., 2024a), 
the November 2024 issue (Thenkabail et al., 2024b), and the February 
2025 issue (this introduction). 

Why do we need special issues? First, hyperspectral remote sensing 
science is still in its nascent stages with requirements for understand-
ing and characterization of data, exploring applications to myriad 
sciences, establishing clarity on where new applications and advances 
in existing applications can be made, and a host of other research and 
development areas utilizing hyperspectral data. Second, numerous new 
generation hyperspectral remote sensing sensors have been launched. 
However, the community of practice (CoP) and expertise are limited. 
Special issue articles will bring focus to addressing key issues pertain-
ing to hyperspectral remote sensing science and help understand and 
solve them with new technologies, hence expanding the knowledge 
base and CoP. We encourage everyone interested in hyperspectral 
remote sensing science to read our two introductory editorials of the 
August PE&RS special issue (Thenkabail et al., 2024a) and November 
PE&RS special issue (Thenkabail et al. 2024b) where we lay out the 
characteristics of some of the new generation hyperspectral sensors, 
outline the needs for hyperspectral remote sensing science research, 
and highlight the key goals and objectives that are critical to be ad-
dressed to advance the hyperspectral remote sensing science. Further, 
in those two introductory articles as well as this introductory article, 
and others highlighted in Thenkabail et al., 2021. we provide an over-
view of the papers published in the three special issues. 

The advent of artificial intelligence (AI) is revolutionizing all fields 
(Zhang and Zhang, 2022). In remote sensing, it is revolutionizing 
every step of remote sensing science from data collection, process-
ing, and analysis. Many foundation models are built for geospatial AI 
(GAI) (Hong et al., 2024, Liu et al., 2024, Agapiou and Lysandrou, 
2023, Mai et al., 2022) including cloud-based AI on Google Earth 
Engine (Yang et al., 2022). In this special issue, McCormick et al. 
developed an artificial neural network (ANN) multilayer perceptron 
(MLP) model to classify irrigated agricultural crops in a study area of 
California’s Central Valley (CCV). The ANN MLP model is trained 
using the United States Department of Agriculture’s (USDA) Cropland 
Data Layer (CDL) reference data on crop types. The goal of the ANN 
MLP model is to train itself using the USDA CDL reference data as 
knowledge on crop types utilizing Harmonized Landsat-8 Sentinel-2 
(HLS) Landsat 30m (L30) data (HLSL30). The advantage of using 
HLSL30 alongside HLSS30 is its global coverage every 2-3 days 
(from two satellites: Landsat 8 and Landsat 9 and the Sentinel-2A and 
2B) in 11 spectral bands that includes visible and near infrared (VNIR) 
and thermal infrared (TIR) bands. Once the ANN MLP is well-trained 
for identifying crops, it is applied to Landsat data for independent 
years to automatically use its trained intelligence to identify crop types. 
The paper by McCormick et al. developed the crop type identification 
ANN MLP model based on year 2021 HLSL30 data and applied it to 
identify crop types using its developed intelligence to identify crop 
types for independent year 2022 using HLSL30 data and achieving 
high overall, producer’s and user’s accuracies.

The paper on monitoring forest fires with MODIS time-series by 
Azimuddin and Dwivedi is timely. With the recent devastating fires of 
California of January 2025, the need for appropriate remote sensing 
data to monitor active fires for swift action as well as post-fire assess-
ment of damage is critical. Although Azimuddin and Dwivedi did not 
use hyperspectral data, their study on detecting and reporting fires in 
Uttarakhand, India is universally relevant. They use MODIS C6 active 
fire point products to study fires in Uttarakhand over 15 years. Their 
study highlights the usefulness as well as limitations of coarse-resolu-
tion MODIS data in detecting fires. Fire studies require remote sensing 
images acquired at very high spatial, spectral, temporal, and radio-
metric resolution: either near-continuous observations over fire-prone 
areas or at least every 10-15 minutes as the authors point out. Thermal 
data to study fires is also a must to gather the temperature intensity of 
fires. However, one of the least explored remote sensing data in fire 
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studies is hyperspectral data. The hyperspectral signature banks of fires 
of various intensities as well as spectral signature banks of fires before, 
during, and after fire are of great importance to advance fire science. 
It must be noted that the time-series remote sensing data such as the 
HLSL30 will have hundreds or thousands of bands of data stacked as 
analysis-ready data-cubes (ARDs) when seasonal, yearly, or multi-year 
data streams are used for analysis. This is akin to hyperspectral da-
ta-cubes with hundreds and thousands of bands of data. This is where 
the hyperspectral and multispectral data analysis techniques, methods, 
and approaches can have a lot in common. 

The paper by Ma et al., develops advanced deep learning and climb-
ing methods and techniques for individual tree segmentation in complex 
forest structures using unmanned aircraft system (UAS) point cloud 
airborne lidar scanning (ALS) data. The authors establish impressive 
accuracies. However, such studies lack spectral profiles of trees that will 
help identify tree types, tree species, and their biophysical and biochem-
ical characteristics. Forest studies are ideally advanced by a combina-
tion of remote sensing data such as hyperspectral and LiDAR data.

Further, the paper by Sun et al. explores the methods and tech-
niques for detecting ships (small and big) accurately using multi-sensor 
remote sensing data. As expected, high spatial resolution imagery is 
the best to detect small ships in particular. However, analysis requires 
Feature Enhancements in the images, utilization of other ancillary data 
in the image to detect the ships, and smart algorithms like Multi-scale 
Perception that the authors propose. Yet, these methods and techniques 
can be very tedious and computationally intensive. Uncertainties in 

ship detection are still significant. Hyperspectral data when acquired in 
sufficient high spatial resolution (e.g., 1-5 m) and in sufficient temporal 
frequency (e.g., every few minutes) should help acquire very high 
levels of accuracy in ship detection.

Finally, we want to highlight the latest new generation spaceborne 
imaging spectroscopy data from German Space Agency’s EnMAP 
(Environmental Mapping and Analysis Program) imaging spectrosco-
py in characterizing agricultural crops (Figure 1). We illustrate this in 
Figure 1 taking almond and grape crops in California’s Central Valley. 
The hyperspectral signatures derived from EnMAP tell many subtle 
stories that will help classify crops and quantify them to study many 
plant quantitative parameters such as their biophysical properties (e.g., 
biomass, leaf area index, plant height), biochemical properties (e.g., 
nitrogen, lignin, chlorophyll, pigments like carotenoids and antho-
cyanins), plant moisture and water, plant health and stress, and plant 
structural properties (e.g, planophile, eroctophile). These parameters 
of plants can be studied using full spectrum and\or specific bands for 
specific quantities (e.g., 970 nm for water absorption or 680 nm for 
chlorophyll; Figure 1). 

Acknowledgements
Any use of trade, firm, or product names is for descriptive purposes 
only and does not imply endorsement by the U.S. Government.

Figure 1. EnMAP imaging spectroscopy data to characterize agricultural crops. Figure shows hyperspectral signatures of two crops: Almonds 
and Grapes derived from German Space Agency’s EnMAP (Environmental Mapping and Analysis Program) data acquired on May 25, 2024, 
over a study area in California’s Central Valley. The EnMAP data are depicted in RGB hyperspectral narrowband (HNB) centers @662 nm, 530 
nm, and 450 nm [each band with 10 nm bandwidth]. EnMAP acquires data in 244 HNBs over the 420-2440 nm spectral range and in 10 nm 
bandwidths. The hyperspectral signatures show grape with high absorption in the red band ranges (600-700 nm) and high reflectivity in near 
infrared (NIR) (740-900 nm). In contrast the Almond has significantly higher reflectivity in the red and and lower reflectivity in NIR. This is 
because of less background soil reflectivity in grapes having higher canopy cover in 30m pixel of EnMAP as well as greater vigor and nitrogen 
content of the grape plant. Also observe plant water absorption in 960 nm and 1240 nm. These bands depict plant water content. Indeed, the 
entire spectral signature as well as specific portions of the hyperspectral narrowbands have a story to tell about the biophysical, biochemical, 
plant health, plant stress, and plant structural properties. 
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Spatiotemporal Behavior of Active Forest Fires 
Using Time-Series MODIS C6 Data

Syed Azimuddin and R.S. Dwivedi

Abstract
Forest fires have a profound influence on the economy, ecology, 
and environment. Realizing the potential of remote sensing in for-
est fire management, a study was taken up to investigate the spatio-
temporal behavior of active forest fires in a mountainous terrain of 
Uttarakhand State, north India, using 15 years’ time-series historical 
MODIS (C6) active fire point products. Results indicate an over-
all fire incidence detection accuracy of 62.3% with a KHAT value 
of 0.59. Moreover, a regular trend in intra-annual behavior in fire 
incidences with peaks during the hot and dry period of the year was 
observed and a large year-to-year variability in fire regimes with 
no significant trends over time could be noticed. The approach and 
results are discussed in detail along with the future perspective.

Introduction
Forest fires play a pivotal role in modulating ecological processes and 
ecosystem services in terms of changes in terrestrial carbon stocks; 
structure and spatial distribution of vegetation; and variations in water 
and energy fluxes, apart from influencing human health and socioeco-
nomic conditions. Real-time information on incidents of active fires 
and their drivers is a prerequisite for planning strategies and formulat-
ing policies for their management. Traditionally, fire towers in forested 
areas have been used for detection of forest fires; these do not meet the 
requirements of forest fire management, apart from being unreliable 
and time and cost prohibitive.

Spaceborne remote sensing data have been used globally for over 
four and a half decades for biomass burning–related fires (Hitchcock 
and Hoffer 1974; Dozier 1981; Wolfe et al. 1998; Lentile et al. 2006; 
Giglio et al. 2009; Kumar and Roy 2018; Briones-Herrera et al. 2020). 
Forest fires exhibit higher emittance in the middle and thermal regions 
of electromagnetic radiation as compared with other terrestrial features 
(López García and Caselles 1991). Thermal infrared (TIR) channel 
data (3.6–12 μm) from coarse-spatial-resolution orbital sensors such as 
the Advanced Very High Resolution Radiometer (Cahoon et al. 1994), 
the Along Track Scanning Radiometer, or the Moderate Resolution 
Imaging Spectroradiometer (MODIS) have been used for detection of 
active forest fires. Moreover, higher thermal contrast of active fires in 
comparison with the surrounding background permits reliable detec-
tion of active fires of even as small as less than 0.01% of a 1-km2 pixel 
(Robinson 1991).

The launch of the Terra satellite in 1999 with MODIS capable of 
imaging the Earth in the near-infrared, short-wave infrared, and TIR 
channels with a repeat cycle of 16 days heralded a new era in detec-
tion of active forest fires and wildfires (Wolfe et al. 1998). The launch 
of the Aqua satellite with MODIS aboard, with the same payload as 
that of Terra, in 2002, further augmented this capability. In fact, the 
twin sensors, the Aqua MODIS and the Terra MODIS, acquire data 

twice daily, i.e., at 1:30 pm and 1:30 am and at 10:30 am and 10:30 
pm, respectively, providing four near-global coverages daily (Wolfe et 
al. 2002). With a 110° field of view, a MODIS swath covers a width 
of 2340 km (Wolfe et al. 2002) with spatial resolutions of 250 m, 500 
m, and 1 km in visible-near-infrared, short-wave infrared, and TIR, 
respectively, which are very useful for regional-level detection of ac-
tive forest fires.

Material and Methods
Test Site
Covering a geographical area of 53 483 km2, Uttarakhand State, the 
study area, is bordered to the northwest by Himachal Pradesh, to the 
northeast by Tibet, to the southeast by Nepal, and to the south and south-
west by Uttar Pradesh (Figure 1). Most of the terrain of Uttarakhand is 
mountainous. Physiographically, the state consists of (1) the northern 
zone, commonly known as the Himadri (snow-covered area), with ele-
vations ranging roughly from 3000 to 7600 m; (2) the Lesser Himalayas, 
with elevations ranging between about 2000 to 3000 m; (3) the Siwalik 
range; (4) a narrow bed of gravel and alluvium known as the Bhabar 
(piedmont zone), which interfaces to the southeast with the marshy ter-
rain known as the Tarai (marshy land); and (5) flat-floored depressions 
in the south of the Siwaliks known locally as duns. The elevation in the 
Siwalik-Bhabar-Tarai area ranges from 300 to 3000 m.

Figure 1. Location map of the test site.

The climate of Uttarakhand is highly variable. It varies from 
subtropical at the lower elevation to alpine at higher elevations above 
timberline. The area experiences a mean summer temperature of 30°C 
and a mean winter temperature of 18°C. The hilly regions receive 
precipitation in the range of 600 to 1000 mm. Of this, around 30% is 
received as snow during the winter and the balance is received as rain 
during the middle of June to September. May and June experience very 
high temperatures that are accompanied by low humidity. This period 
coincides with incidences of forest fire expansion. Overcast conditions 
in Uttarakhand State range from 1 day in November to 13 days in July, 
with an annual cloud cover of 66 days at 5:30 pm and 62 days at 7:30 Syed Azimuddin is with Cognizant Technology Solutions India 
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Abstract
Advances in remote sensing and machine learning are enhancing 
cropland classification, vital for global food and water security. We 
used multispectral Harmonized Landsat 8 Sentinel-2 (HLS) 30-m 
data in an artificial neural network (ANN) multi-layer perceptron 
(MLP) model to classify five crop classes (cotton, alfalfa, tree crops, 
grapes, and others) in California’s Central Valley. The ANN MLP 
model, trained on 2021 data from the United States Department of 
Agriculture’s Cropland Data Layer, was validated by classifying 
crops for an independent year, 2022. Across the five crop classes, 
the overall accuracy was 74%. Producer’s and user’s accuracies 
ranged from 65% to 87%, with cotton achieving the highest ac-
curacies. The study highlights the potential of using deep learning 
with HLS time series data for accurate global crop classification.

Introduction
Agricultural research is critical to managing and maintaining finite 
food and water resources around the world. The ability to accurately 
map croplands is essential to prospective scientific endeavors such as 
mapping and monitoring global crop water productivity (Foley et al. 
2023), ensuring global food security (Gumma et al. 2022), and pro-
moting general welfare through informed policymaking (Bégué et al. 
2020). Remote sensing has played a long and important role in expand-
ing the opportunities available in the scientific exploration of agricul-
ture (Ozdogan et al. 2010; Karthikeyan et al. 2020; Khanal et al. 2020; 
Martos et al. 2021), such as regional and global cropland classification 
products to support food and water security (Thenkabail, Teluguntla, et 
al. 2021; Valero et al. 2016; Xiong et al. 2017; Teluguntla et al. 2018, 
2023;  Parreiras et al. 2022). Expanding these efforts offers unprec-
edented new opportunities to classify and map croplands throughout 
the world in the service of global resource security. 

Although hyperspectral data have been successfully used for crop 
type classification and have shown significant advances in mapping, 
modeling, and monitoring various crop characteristics (Thenkabail, 
Aneece, et al. 2021; Aneece and Thenkabail 2022; Khan et al. 2022; 
Yu et al. 2022), they are acquired only through tasking, limiting their 
availability (Lu et al. 2019). On the other hand, multispectral platforms 
collect data regularly (Miller et al. 2019). The Landsat series of sen-
sors provides a substantial archive of imagery time series since 1972 
throughout the world (Wulder et al. 2022). Sentinel-2A and Sentinel-
2B, designed to be compatible with the Landsat sensors, further 

contribute to data availability (Falanga Bolognesi et al. 2020). The 
recently available Harmonized Landsat 8 Sentinel-2 (HLS) product 
was made to remove discrepancies across the US Geological Survey’s 
(USGS’s) and National Aeronautics and Space Administration’s 
Landsat 8 sensor and the European Space Agency’s Sentinel-2 sensor 
due to slight differences in spatial alignments, spectral band ranges, 
and view geometries (Claverie et al. 2018; Masek et al. 2018, 2021; 
Falanga Bolognesi et al. 2020; Parreiras et al. 2022). Harmonization 
was done so the two datasets could be combined more easily for 
analyses (Falanga Bolognesi et al. 2020; Parreiras et al. 2022). With 
data from both sensors combined, the HLSL30 (HLS Landsat 8 data 
at 30 m) and HLSS30 (HLS Sentinel-2 data at 30 m) products provide 
a global 30-m product with revisit times of one to four days (Falanga 
Bolognesi et al. 2020; Hong et al. 2023; Parreiras et al. 2022). HLS 
has provided breakthroughs in time series remote sensing analyses 
for various applications, including land cover classification (Falanga 
Bolognesi et al. 2020), crop classification (Parreiras et al. 2022; Teke 
2022; Chen et al. 2024), estimation of crop green-up and emergence 
dates (Gao et al. 2021), cropping intensity classification (Hu et al. 
2023), and detection of cropland abandonment (Hong et al. 2023). In 
this study, we used the HLSL30 product, which is now available in the 
Google Earth Engine (GEE; Gorelick et al. 2017) data catalog. 

Within the realm of remote sensing, many machine learning (ML) 
algorithms have been used to classify croplands, including random 
forest (RF) (Xiong et al. 2017; Teluguntla et al. 2018; Oliphant et al. 
2019) and support vector machines (SVM) (Xiong et al. 2017; Kang 
et al. 2018; Aneece and Thenkabail 2022). These ML algorithms, 
although useful and productive in their own right, suffer from the need 
for extensive and accurate reference training, testing, and validation 
data, which are resource intensive and costly to acquire; high com-
putational cost during training; and difficulty in selecting for optimal 
parameters (Cervantes et al. 2020), and can struggle to perform when 
data suffer from the effects of time-specific external factors such 
as seasonal patterns of precipitation, temperature, etc. (Zhu 2020). 
Deep learning (DL) models can outperform these ML algorithms 
(Teke 2022). Although not entirely free of similar shortcomings to 
ML models, DL models are able to predict classifications faster than 
other models once they are trained, and have been successfully used to 
classify land use via remote sensing data (Cai et al. 2018). Multi-layer 
perceptron (MLP) models are a type of artificial neural network (ANN) 
DL model (Maleki et al. 2023) usually consisting of an input layer, 
one or more hidden layers, and an output layer (Karasu and Altan 
2022; Ahmed 2023), although deep MLP models also exist (Tripathi 
et al. 2022). MLPs have been used for several applications, including 
gap filling for missing data (Moon et al. 2019) and classification of 
land use and land use change over time (Costa et al. 2015; Shen et al. 
2020). Specific agricultural applications include crop yield prediction 
(Nosratabadi et al. 2021; Bazrafshan et al. 2022; Tripathi et al. 2022; 
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Ahmed 2023), weed detection (Karasu and Altan 2022), crop residue 
cover detection (Wang et al. 2023), crop type classification (He and 
Chen 2021; Wu et al. 2022; Maleki et al. 2023), and crop genotype 
classification (Inocente et al. 2022). MLP models have outperformed 
traditional ML models such as SVM and RF (He and Chen 2021; Wu 
et al. 2022; Yang et al. 2023) and other, more complex, DL models (He 
and Chen 2021; Wu et al. 2022). 

Given the above, the overarching goal of this paper was to clas-
sify and map five agricultural crop classes (cotton, alfalfa, tree crops, 
grapes, and other) in a study area located within California’s Central 
Valley (CCV) near Fresno, California, United States, using an ANN 
MLP model and HLSL30 data. These crop classes are dominant 
throughout the globe (and hence called world crops), and/or have high 
water demands that are directly influenced by national and regional 
policies (Foley et al. 2023). Thus, it is crucial to develop the capacity 
to map these crops using remote sensing platforms reliably and ac-
curately. Specific objectives for this study were to: 
1.	 Develop and implement an ANN MLP model to classify five ir-

rigated crops in CCV; 

2.	 Implement the model on an independent year; 
3.	 Assess accuracies, errors, and uncertainties of the model in clas-

sifying crops using HLSL30 data.

Data and Methods
Study Area
We conducted this research in a 553.86-km2 study area near Fresno, 
California (Figure 1). The area was selected because of high preva-
lence of water-intensive crops, and because it was representative of 
CCV (Foley et al. 2023). The CCV is a north-south-trending elongated 
valley bordered by the Coast Range to the west and the Sierra Nevada 
to the east. Our study area lies in the southern half of the CCV within 
the San Joaquin basin (Figure 1). The area contains a large diversity of 
row, paddy, orchard, and vineyard crops, making it ideal for assess-
ing the growth of various crops over multiple years. The study area 
has higher than US average sunshine hours per year (Visher, 1954), 
predictably warm temperatures (DelSole et al. 2017), and lower than 

Figure 1. Study area near Fresno, California, United States. Crop type data from the US Department of Agriculture (USDA) National 
Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) 2021 (USDA NASS 2022b).
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average precipitation days (Bartels et al. 2020). These conditions are 
ideal for creating annual composites of satellite imagery, as there is 
reduced cloud cover and minimal overcast throughout the year. 

Reference Data
The Cropland Data Layer (CDL) is provided by the US Department of 
Agriculture (USDA) National Agricultural Statistics Service (NASS) 
(USDA NASS 2022b). The dataset, produced every year since 1997 
for parts of the US and since 2008 for all of the conterminous US 
(CONUS), maps crop types using remote sensing data and the USDA’s 
Farm Services Agency Common Land Unit data (Teke 2022). The 
USDA CDL was selected for use as reference data because of high 
classification accuracies for the study crops (Table 1), wall-to-wall 
coverage of CONUS, and use by many other researchers (Konduri et 
al. 2020; Li, Chen, et al. 2020; Li, Zhang, et al. 2020; Zhang et al. 
2022). Table 1 shows the crop distribution within the study area as 
represented by the CDL for the year 2021, and crop-specific classifica-
tion accuracies for the same year. 

For the purposes of our study, pistachios and almonds were com-
bined into a single tree crop class. Within the study area, the only pis-
tachio tree plantations were relatively young (five years old or less). It 
was observed during ground validation that the majority of the ground 
area within pistachio fields was bare earth (Figure 2), with the young 
trees not grown enough to comprise a large portion of a pixel footprint. 
This resulted in the spectral profiles of these crops being highly af-
fected by bare ground. This necessitated the combination of tree crops 
into a single category for classification. 

Remote Sensing Data
Time series imagery facilitates crop mapping by capturing differ-
ent phenological stages throughout the year and the growing season 
(Yang et al. 2023). HLSL30 surface reflectance data for the study area 
were accessed and processed through GEE. The HLSL30 product 
provides 30-m nadir bidirectional reflectance distribution function–ad-
justed reflectance and is derived from Landsat 8/9 Operational Land 
Imager (OLI)  data products (Masek et al. 2021). The HLSS30 and 
HLSL30 products are gridded to the same resolution and Military Grid 
Reference System tiling system, and thus are stackable for time series 
analysis (Masek et al. 2021). 

Table 1. Crop cover by type within study area ordered by dominance, 
US Department of Agriculture National Agricultural Statistics 
Service Cropland Data Layer for California, 2021. [Source: USDA 
NASS 2022a]
Crop Area (%) Producer’s Accuracy (%) User’s Accuracy (%)

Almonds 35 90.1 87.5 

Pistachios 11 89.1 89.7

Cotton 11 85.6 84.9 

Alfalfa 10 86.5 81.7 

Grapes 5 82.5 74.2 

Other Crops 28 — — 

Figure 2. Crop classes. Crop fields from the study area: (a) cotton, (b) alfalfa, (c) tree crop (almonds), (d) tree crop (pistachios), (e) grapes, and 
(f) other (corn). [Photo credit: Adam Oliphant]
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Training data for the model were selected for January–December 
2021 with crop type labels provided from the USDA CDL 2021 
reference training data. All cloud-free pixels were sampled to build 
the training dataset. A randomly selected 10% of training data was 
withheld for model validation. The reference testing data were selected 
for January–December 2022 using USDA CDL 2022 labels. As with 
the training data, all cloud-free pixels were sampled to build the test-
ing dataset. The annual period (January–December 2021 for training; 
January–December 2022 for testing) were appended with a preceding 
month (December) at the beginning of the annual time series and with 
a subsequent month (January) at the end of the annual time series to 
ensure the entire cropping calendar was fully captured in the temporal 
linear interpolation process (detailed in “Data Preprocessing” below). 
Six HLSL30 bands were selected: blue, green, red, near-infrared (NIR) 
narrow, shortwave infrared 1, and shortwave infrared 2 (Table 2). All 
spectral bands have a 30 m spatial resolution, with a temporal resolu-
tion of two to three days. 

Data Preprocessing
Extensive preprocessing was performed on the data to increase image 
clarity and classification performance. Overall, every month, there were 
approximately 10 HLSL30 images, leading to an average of 60 bands 
of data (6 bands × 10 images). Each band was processed for surface 
reflectance (%) maximum value composite (MVC), reducing the 10 
bands (1 band × 10 images per month) to a single MVC surface reflec-
tance band. The process was repeated for each of the six bands, leading 
to six MVC surface reflectance bands for a total of 72 surface reflec-
tance MVC bands in a calendar year (6 MVC bands × 12 months). 
Monthly median Normalized Difference Vegetation Index (NDVI) 
bands added another 12 bands. Further, NDVI was summed across ev-
ery three months for an additional four seasonal NDVI bands. Finally, 
one cumulative NDVI band was generated for an entire year, leading 
to an overall total of 89 bands (72 + 12 + 4 + 1) over one calendar year 
(Figure 3). The preprocessing steps are further 
described below. 

HLSL30 Imagery Acquisition and Filtering
Within GEE, the HLSL30 data were imported 
and filtered to the bounds of the study area and 
years of interest. To facilitate temporal-gap 
filling, a nominal year of interest was consid-
ered to be 14 months, from December of the 
previous year to January of the following year. 

Cloud and Cloud-Aerosol Masking
Using the Cloud Probability bitmask of 
HLSL30, clouds (bit 1) and cloud shadows 
(bit 3) were selected and removed from each 
image in the image collection. The result-
ing image collection contained images with 
all clouds and cloud shadows masked out, 
leaving only clear images remaining. When 
images were composited, this step ensured 
that composites contained only unobscured 
ground-level imagery, and would not be dis-
torted or otherwise affected by cloud cover. 

Masking Out Noncropland Areas
Using the Landsat-derived global rainfed 
and irrigated-cropland product (Thenkabail, 
Teluguntla, et al. 2021; Teluguntla et al. 
2023), noncropland areas were masked from 
the image collection. This ensured only 
croplands were trained on and classified in the 
model. As the model is only to classify crop-
lands into specific categories, there is no need 
to include areas that do not contain croplands. 

Compositing the Images into Monthly Composites
The masked image collection was composited into a collection of 12 
images, with one image for each month of the year of interest. For each 
month, the image collection so far was filtered to contain only images 
from that month. For each band in the image, each pixel in the area of 
interest was filled with the median value from the filtered collection. 
This process was repeated for each month in the year. The resulting 
image collection contained 12 images, each with the clearest possible 
band values for their respective months. 

Calculating and Adding NDVI Bands
In addition to the six HLSL30 bands, the NDVI was used as a spectral 
indicator of plant greenness (Tucker 1979). NDVI was calculated for 
each month, season, and year, and added as new bands for each image 
collection. It was calculated from the HLSL30 data using NIR and red 
(RED) bands, and added as a separate band for each month (Equation 
1). The median NDVI value was calculated when multiple cloud-free 
images were available for one month. For every three months (one 

Table 2. Harmonized Landsat Sentinel-2 L-30 (HLSL30) spectral 
bands used for this study and their wavelengths.
Band Name Wavelength (μm)

2 Blue 0.45–0.51 

3 Green 0.53–0.59

4 Red 0.64–0.67 

5 NIR 0.85–0.88 

6 SWIR1 1.57–1.65 

7 SWIR2 2.11–2.29 

NIR = near-infrared; SWIR1 = shortwave infrared 1; SWIR2 = shortwave 
infrared 2.

Figure 3. Illustration of Harmonized Landsat Sentinel-2 L30 (HLSL30) 1-year data cube after 
processing. The 89-band data cube consisted of 72 median value composite (MVC) bands (6 
bands per month × 12 months); 12 monthly median Normalized Difference Vegetation Index 
(NDVI) bands; four cumulative seasonal NDVI bands; and one cumulative annual NDVI 
band. 
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season), NDVI was summed into a separate band (Equation 2). An an-
nual NDVI sum band was also calculated (Equation 3). 

	  	
(1) 

 	 	
(2) 

 	 	
(3) 

Gap Filling with Linear Interpolation
The final step of preprocessing involved filling in temporal gaps in 
the data for each pixel. This was done by using a linear interpolation 
method to fill in gaps with the average of the images before and after 
a gap. The precedent December month and antecedent January month 
were removed from the final image collection after gap filling (Falanga 
Bolognesi et al. 2020; Gandhi 2021).

MLP Model
MLP models are a form of neural networks that use DL. They have 
shown promise in the field of remote sensing classification, specifically 
for classifying crop cover (Kussul et al. 2017). They perform well for 
nonlinear problems like forecasting nonlinear time series data (Tealab 
et al. 2017; Nosratabadi et al. 2021; Ahmed 2023). 

The specific model used in this paper (Figure 4) is an open source 
MLP model made freely available through SciKit Learn (Pedregosa et 
al. 2011). SciKit Learn was selected as the primary framework for this 
classification model, although other frameworks such as PyTorch (Wu 
2023) and TensorFlow (Yao et al. 2017) have also shown promise in 
remote sensing applications. The primary motivation for the selection 

of SciKit Learn as a framework lies in its ease of use, relative simplic-
ity, and ease of propagation across a diverse selection of environments 
and hardware. 

In this study, the ANN MLP model had one input layer, one hidden 
layer, and one output layer. This architecture was found to be optimal 
for extrapolating the model to an independent validation year. The 
input layer was sized in correspondence with the number of bands of 
the input image. For an input image containing 12 months of data, with 
each month containing six spectral bands along with a computed NDVI 
band, this was 84 (7 × 12 = 84) input bands, in addition to four season-
al NDVI sums and one annual NDVI sum, for a grand total of 89 input 
bands. The hidden layer size was selected via a grid-search hyperpa-
rameter optimization (detailed in “Architecture and Optimization”). 
The output layer was sized in accordance with the number of crop 
classes to be predicted, which in this study was five. 

The model was developed using HLSL30 data for the year 2021 
(January–December 2021) and validated based on HLSL30 data for the 
year 2022 (January–December 2022). Testing the model on a differ-
ent year allowed us to assess its interannual transferability, as done by 
Maleki et al. (2023) and Teke (2022). 

Architecture and Optimization
Parameter optimization for the MLP model used in this study was per-
formed via grid search. This process involves dividing the parameter 
space into intervals and testing each combination of parameter values. 
The specific parameters optimized included the number of hidden lay-
ers, size of hidden layers, median number of training iterations, activa-
tion function, solver function, alpha value, and learning rate (constant, 
adaptive, or inverse scaling). The parameter options and ranges used in 
the grid search are detailed in Table 3. 

The grid search evaluated a total of 11,340 models, the product of 
the number of options for each parameter. For each combination of 
parameters, the model was trained and evaluated based on accuracy. 
The optimal parameters, which resulted in the highest accuracy, are 

Figure 4. Multi-layer perceptron (MLP) architecture. The number of nodes in the input layer corresponds to the Harmonized Landsat 8 
Sentinel-2 (HLS) Landsat 30-m (L30) 89-band data cube for the year 2021. The reference data on crop type classes (cotton, alfalfa, tree crops, 
grapes, and other) were obtained from the US Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) Cropland 
Data Layer (CDL) for the year 2021 (USDA NASS 2022b). The hidden layer was approximately half the size of the input layer. The output 
layer corresponds to the number of crop classes being predicted using the Artificial Neural Network MLP model.
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displayed in Table 4. Parameter optimization was performed on the 
USGS supercomputer Tallgrass (Falgout et al. 2024). 

Accuracy varied from 51% to 74% across different runs, and 
processing time ranged from less than one minute to approximately 45 
minutes for each run, depending on specific parameter values. 

Model performance was evaluated via error matrices and the tabu-
lation of Type 1 and Type 2 errors (errors of commission and omission 
respectively) (Teke 2022). User’s accuracy was calculated as 100% 
− commission error, where commission error represents false-positive 
rates in classifying a certain class (e.g., a class other than cotton being 
classified as cotton). Producer’s accuracy was similarly calculated as 
100% − omission error, where omission error represents false-negative 
rates in classifying a certain class (e.g., cotton being misclassified as 
another class). 

Results
Before applying the ANN MLP model, it was important to develop 
the knowledge base to understand class separability. To achieve this, 
we plotted the monthly average NDVI profiles of the five crop classes 
(cotton, alfalfa, tree crops, grapes, and other) that showed distinct 
separability of crop classes (Figure 5). Cotton had the most distinct 
NDVI profile, peaking in the summer months at nearly 0.8. Tree crops 
such as almonds and pistachios remained relatively constant through-
out the year, with pistachios tending to have lower NDVI because of 
their young age and lack of ground cover. Grapes cyclically increased 
their NDVI in the warmer months and decreased in the cooler months. 
Alfalfa remained relatively constant throughout the year. 

When a large number of bands like 89 are fed into ANN MLP 
(Figure 1) and trained with reference USDA CDL data to separate 
classes, the process goes through the generation of hidden layers, out-
put layers, and finally a crop type classification map (Figure 1). First, 
we used the year 2021 HLSL30 data of 89 bands, trained them using 
USDA CDL, and ran the ANN MLP model to obtain the year 2021 
crop type classification map. Initially, more than five crops were run, 
but the best accuracies were achieved when five classes were used that 
we could accurately replicate in other independent years. 

Once a robust model was achieved, it was applied for the inde-
pendent year 2022 to generate a crop type map for that year (Figure 
6, right), to be compared with reference data 
from USDA CDL of the same year (Figure 6, 
left). As the results show, there is an excellent 
match between the ANN MLP–produced crop 
type map and its reference map. The error ma-
trix (Table 5) shows producer’s accuracies of 
the five classes varied between 69% and 87% 
(errors of omission: 13% and 31%). Cotton 
was captured the best, with 87% (miss-
ing 13%). The user’s accuracies of the five 
classes varied between 65% and 86% (errors 
of commission: 14%–35%). Again, cotton 
was captured the best, with 86% (errors of 
commission: 14%). The overall classification 
accuracy was 74%. The greatest uncertainties 
were for the “other” class, which represents 
many land use/land cover classes. 

The cotton class had the highest producer’s 
and user’s accuracies of all classes. This is 
because cotton, as an annual crop, has a clear 
phenological growth cycle so key in develop-
ing a temporal data–based model as seen in 
Figure 5. Its high canopy cover in the growing 
season also resulted in low variability across 
the cotton samples because of little noise from 
the soil background. In contrast, alfalfa had 
fields in various cutting and growth stages at any given time because of 
differences in farmers’ management practices. The tree crops were in 
various years of development with soil background signatures contrib-
uting to the spectral profiles. The grape biomass also varied depending 
upon how old the grape vineyard was. 

Discussion
In this study, we applied an ANN MLP DL model to HLSL30 89-band 
data cube to classify five crop classes within a discrete study area in the 
CCV for the year 2022. We achieved an overall accuracy of 74%, pro-
ducer’s accuracies of 69%–87%, and user’s accuracies of 65%–86%. 

Table 3. Parameter space for grid search optimization.
Parameter Name Options 
Number of hidden layers 1, 2, 3

Hidden layer size 1
2

#InputBands , #InputBands, #InputBands*2

Maximum number 
of iterations 5, 10, 25, 50, 100, 150, 250 

Activation function tanh, relu, identity, logistic
Solver function sgd, adam, lbfgs 
Alpha value 0.00001, 0.0001, 0.001, 0.01, 0.1
Learning rate constant, adaptive, invscaling

Table 4. Optimized parameters for final MLP model.
Parameter Name Optimized Value 
Number of hidden layers 1 

Hidden layer size 1
2

#InputBands 

Maximum number of iterations 100 
Activation function Rectified linear activation (relu) 
Solver function Adaptive moment estimation (adam) 
Alpha value 0.0001 
Learning rate Constant 

Table 5. Classification error matrix. The counts for each category 
represent the number of 30×30-m pixel samples in the classified image. 

Cotton Alfalfa Grapes
Tree 
Crops Other Total UA 

Cotton 75 168 692 44 1545 9853 87 302 86%
Alfalfa 642 43 446 475 7192 12 080 63 835 68%
Grapes 111 3154 26 737 3393 2448 35 843 75%
Tree Crops 3339 2742 3886 248 388 55 325 313 680 79%
Other 6830 6060 897 82 766 176 157 272 710 65%
Total 86 090 56 094 32 039 343 284 255 863 773 370  
PA 87% 77% 83% 72% 69% OA = 74%
OA = overall accuracy; PA = producer’s accuracy; UA = user’s accuracy.

Figure 5. Average monthly Normalized Difference Vegetation Index (NDVI) time series by 
crop class for the year 2021.
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Several other studies have found MLP advantageous for crop type 
and land cover classification. He and Chen (2021) found several varia-
tions of MLP outperformed traditional ML and other DL classification 
algorithms in three case studies using hyperspectral remote sensing 
data to classify crop types and land cover classes, with overall accura-
cies of 87% to 94%. Wu et al. (2022) found similar results across four 
case studies, with overall accuracies of 92% to 99%. Karasu and Altan 
(2022) separated sesame crops from weeds with 98% overall accuracy 
using a combination of a convolutional neural network (CNN) model 
and MLP. Konduri et al. (2020) found accuracies as high as 90% when 
classifying crops within growing seasons in the United States, with 
higher accuracies coming from regions of lower crop type diversity. 
There are also many variations of MLP (Wu et al. 2022), including 
deep MLPs (Tripathi et al. 2022) and those using spectral and spatial 
information (He and Chen 2021), that may achieve higher classifica-
tion accuracies. MLP Markov chains were successfully used to classify 
urban land use change over time with accuracies as high as 90% 
(Bendechou et al. 2024). 

Although MLP models offer advantages in efficiency and predic-
tive capability, they can have limitations, including overfitting and 
generalization challenges, the need for large volumes of training data 
(Moon et al. 2019), and long computation times for training with back-
propagation (Bazrafshan et al. 2022). Maleki et al. (2023) found that 
although different years had similar climatic conditions, the timing of 
the crop phenological cycles varied by year, influencing model trans-
ferability and decreasing overall accuracy in the test years when using 
MLP as opposed to other DL models. Maleki et al. (2023) also found 
MLP was less robust to small sample sizes than some other models 
tested. For example, alfalfa is grown continuously within the CCV 
and is harvested as many as 10 times per year using staggered cutting 
cycles of 24–34 days (Orloff and Putnam 2006). This cycle introduces 
difficulty in time series analysis, as fields with the same crop will show 
drastically different spectral signatures if they are fully vegetated or 
recently harvested (Orloff and Putnam 2006). 

Several studies have also used HLS data for crop type and land 
cover classification. For example, land cover and irrigated cropland 
classification analyses with HLS data resulted in overall accuracies of 
90% (Falanga Bolognesi et al. 2020). Soybeans were classified using 
HLS data with overall accuracies of 91%. Hong et al. (2023) used 
HLS to classify land cover classes with an overall accuracy of 95%, 
with producer’s and user’s accuracy of 78% and 81% respectively for 
abandoned croplands. The 30-m spatial resolution of HLSL30 and 

HLSS30 data was successful for classifying rice cropping intensities 
in fragmented croplands in China (Hu et al. 2023). At the time of this 
study, the HLSS30 product was not available on GEE. However, the 
workflows developed in this study can easily be expanded to incorpo-
rate the HLSS30 product in GEE for future studies. 

Apart from the spectral bands, we used NDVI because it is one 
of the most well-known and commonly used vegetation indices for 
phenological studies (Teke 2022; Hu et al. 2023). The Enhanced 
Vegetation Index is also common and avoids the issue of saturation 
at high levels of biomass, and may improve classification accuracies 
(Teke 2022; Hu et al. 2023). However, NDVI has been found to be 
robust to cross-year differences (Teke 2022) and can be more con-
sistent across sensors and atmospheric correction methods (Hu et al. 
2023). Li, Chen, et al. (2020) also used time series NDVI values for 
crop type classification in CCV. The consistently high NDVI values of 
alfalfa throughout the year were also found in Li, Chen, et al. (2020). 
As found in Li, Chen, et al. (2020), the NDVI for almonds and grapes 
in this study started off low in the winter and increased in the summer. 
The winter NDVI for both crop types was higher in our study area 
near Fresno compared with the northern Sacramento Valley in CCV, 
perhaps because of colder winters (Li, Chen, et al. 2020). Seasonal 
changes in pistachio NDVI values in this study are low, probably 
because the trees are still young with small canopies. Using several 
indices may further improve classification accuracies (Parreiras et al. 
2022; Hong et al. 2023). 

Other studies classifying crop types in CCV obtained varying 
levels of accuracy depending on the datasets and methods used. For 
example, Zhang et al. (2022) used Sentinel-2 and RF in GEE to map 
similar crops in CCV with high in-season classification accuracies. On 
the other hand, Konduri et al. (2020) found crop type classification in 
CCV challenging because of small fields, high crop type diversity, and 
the presence of many specialty crops, with an overall classification 
accuracy of 50%. This may be because the authors used coarser spatial 
resolution Moderate Resolution Imaging Spectroradiometer images and 
a cluster-then-label classification model (Konduri et al. 2020). Using 
RF and Synthetic Aperture Radar (SAR) data, Li, Zhang, et al. (2020) 
obtained overall classification accuracies of 85%–91% in their study 
area in CCV. Using CNN with Landsat 8 and Sentinel-2 data, Li, Chen, 
et al. (2020) obtained overall accuracies of 97%–99% in the CCV. 

Although our study demonstrates the efficacy of MLP models, 
HLSL30 data, and NDVI time series in classifying crops in CCV, there 
are several avenues for further improving classification accuracies and 

Figure 6. Final classification results, 2022. Using a multi-layer perceptron model trained on 2021 Harmonized Landsat 8 Sentinel-2 (HLS) 
Landsat 30-m (L30) data, five crop classes were classified with 74% accuracy. Non-Cropland area was masked prior to classification. The US 
Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) Cropland Data Layer for 2022 (USDA NASS 2022b) is 
provided for comparison.
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advancing the field of remote sensing in agriculture. Incorporating 
additional spectral bands, such as those from hyperspectral sensors (He 
and Chen 2021; Wu et al. 2022; Wang et al. 2023), synthetic aperture 
radar sensors (Li, Zhang, et al. 2020; Maleki et al. 2023), or other phe-
nological variables and vegetation indices (Teke 2022) could enhance 
discrimination between crop types. Moreover, integrating ancillary 
data sources, such as weather data or soil properties, may provide valu-
able context for classification models (Falanga Bolognesi et al. 2020; 
Yang et al. 2023). We used HLSL30 data and USDA NASS CDL data 
from 2021 and 2022 because they were the most recent years avail-
able at the time of analysis. Future work may expand to other years 
and areas of interest. Additionally, ongoing research into advanced ML 
techniques, including DL architectures and ensemble methods, holds 
promise for refining classification algorithms and achieving higher 
accuracies (Karasu and Altan 2022; Li, Chen, et al. 2020). The upcom-
ing Landsat Next, with superspectral resolution along with Landsat’s 
temporal and spatial resolutions, will further advance agricultural 
studies like this one. 

Conclusion
This paper demonstrated the ability of the artificial neural network 
multi-layer perceptron (ANN MLP) deep learning (DL) model to clas-
sify agricultural crops using Harmonized Landsat 8 Sentinel-2 L-30 
(HLSL30) time series data over a calendar year. A robust model devel-
oped in the study was applied to automatically classify five crop class-
es (cotton, alfalfa, tree crops, grapes, and other) in California’s Central 
Valley (CCV) for an independent year with producer’s accuracies of 
69%–87% (errors of omission: 13%–31%) and user’s accuracies of 
65%–86% (errors of commission: 14%–35%). Cotton was captured the 
best with a producer’s accuracy of 87% and user’s accuracy of 86%. 
ANN MLP models are powerful tools for analyzing big data such as 
HLSL30 and HLS Sentinel 30m (HLSS30) data combined that are 
available every two to three days for the entire world to classify crops 
and support global food and water security studies and applications. 
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Individual Tree Segmentation Using Deep 
Learning and Climbing Algorithm: A Method 

for Achieving High-precision Single-tree 
Segmentation in High-density Forests under 

Complex Environments
He Ma, Fangmin Zhang, Simin Chen, and Jinge Yu

Abstract
Accurate individual tree segmentation, which is important for forestry 
investigation, is still a difficult and challenging task. In this study, we 
developed a climbing algorithm and combined it with a deep learn-
ing model to extract forests and achieve individual tree segmentation 
using lidar point clouds. We tested the algorithm on mixed forests 
within complex environments scanned by unmanned aircraft system 
lidar in ecological restoration mining areas along the Yangtze River 
of China. Quantitative assessments of the segmentation results showed 
that the forest extraction achieved a kappa coefficient of 0.88, and 
the individual tree segmentation results achieved F-scores ranging 
from 0.86 to 1. The climbing algorithm successfully reduced false 
positives and false negatives with the increased crown overlapping 
and outperformed the widely used top-down region-growing point 
cloud segmentation method. The results indicate that the climb-
ing algorithm proposed in this study will help solve the overlapped 
crown problem of tree segmentation under complex environments.

Introduction
Forest ecosystems are complex functional systems, occupying one-
third of the Earth’s land area (Schiefer et al. 2020). As the largest 
carbon reservoir in terrestrial ecosystems, forests play a crucial role 
in maintaining the global carbon balance, significantly affecting 
future global climate stability and the development of human society 
(Torabzadeh et al. 2019). To accurately analyze the detailed conditions 
of global forests, efficient and accurate methods for forest inventory 
are urgently needed to effectively depict the detailed structure and 
current status of forests. Individual tree–based surveys, compared 
to regional statistical surveys, can more precisely obtain important 
parameters such as timber volume, biomass, and carbon storage, aiding 
in the accurate quantitative analysis of forests.

The key prerequisite for individual tree–based forest surveys is 
the high-precision extraction of individual trees. Only by accurately 
determining the information of individual trees in a forest can subse-
quent forest parameter extraction be performed. Therefore, the precise 
extraction of individual trees using remote sensing methods is essential 

for large-scale, detailed forest surveys, aiding in forest management 
and optimization. Lidar, as an emerging remote sensing technology, 
provides data with higher resolution and three-dimensional point cloud 
data, which can depict more detailed characteristics of individual trees 
and forest biomass (Li et al. 2015; Zhao et al. 2009). With technologi-
cal advancements, airborne lidar scanning (ALS) increasingly provides 
extensive information on forest stands or tree characteristics (average 
tree height, tree count, and individual tree height) (Lovell et al. 2011), 
but it often lacks detailed information about the branch layer (Dassot 
et al. 2011). Additionally, compared to terrestrial lidar scanning (TLS), 
ALS typically has a lower point density, often limited to 10 points/m² 
(Lu et al. 2014). However, with the miniaturization of sensors and the 
rapid development of technologies related to unmanned aircraft systems 
(UAS), UAS lidar scanning (ULS) has achieved a point density that is 
2 orders of magnitude higher than ALS (Kellner et al. 2019), making it 
feasible to extract individual tree information over large forest areas.

In the past two decades, individual tree segmentation algorithms 
have undergone rapid development. These methods can be roughly 
divided into two major categories (Zhen et al. 2016). The traditional 
category includes raster-based methods that use the canopy height 
model (CHM) as foundational data. In most case, CHM is selected to 
identify local maxima at tree-canopy tops and then delineate crown ar-
eas around the maxima by using methods such as variant of watershed 
segmentation (Wang et al. 2004), valley following (Gougeon 1995), 
edge detection (Koch et al. 2006), morphological reconstruction (Liu 
et al. 2016), or template matching (Pirotti 2010). However, existing 
studies have shown that CHM-based methods struggle to detect trees 
in the lower forest layers (Eysn et al. 2015). Moreover, broadleaf trees 
are predominantly asymmetrical in canopy form. The CHM approach 
produces poorer results when compared to methods that work directly 
from point clouds (Jaskierniak et al. 2015). 

With technological innovation, more advanced tree detection tech-
niques that operate directly on point clouds have been developed. One 
of the most well-known and commonly used methods is the top-down 
region-growing point cloud segmentation (PCS) method developed by 
Li et al. (2012). PCS achieved an overall accuracy of 94% in the Sierra 
National Forest, significantly surpassing traditional marker-controlled 
watershed segmentation (Tao et al. 2014). PCS has gradually become 
the mainstream individual tree segmentation method for ALS and ULS 
point cloud data. Despite this, PCS and other top-down segmentation 
methods have seen slow progress in improving accuracy. 
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Lightweight Ship Object Detection Algorithm for 
Remote Sensing Images Based on Multi-scale 

Perception and Feature Enhancement
Wei Sun, Xinyi Shen, Xiaorui Zhang, and Fei Guan

Abstract
As global trade and maritime traffic develop, exploring ship de-
tection in remote sensing images has become a research hotspot. 
However, ships in remote sensing images are so small that it leads 
to a high detection leakage rate and excessive model parameters, 
making them difficult to apply on remote sensing equipment with 
limited resources. To address the challenge, we propose a light-
weight ship object detection algorithm, adaptive layered multi-scale 
You Only Look Once version 8 (ALM-YOLOv8), based on multi-
scale perception and feature enhancement. To enhance the model’s 
perception of contextual information in complex backgrounds, a 
multi-scale channel fusion module is constructed to extract features 
of various scales. To enhance the extracted features, a small-object 
detection layer and a dynamic channel attention convolution that 
assigns dynamic weights are proposed. Additionally, this study 
embeds the large separable kernel attention mechanism into the 
original network, which lightens the model. Experiments on the 
HRSC2016 dataset demonstrate the effectiveness of ALM-YOLOv8.

Introduction
Ships play a crucial role in global trade and transportation, as they un-
dertake the majority of the tasks of transporting goods for international 
trade (Zhang et al. 2021; Kong et al. 2022). Over the past few years, 
with the development of satellite and drone technology, and the launch 
of a large number of remote sensing satellites, more and more studies 
have carried out relevant research on the detection of objects captured 
by remote sensing images (Wang, Li, et al. 2018; Chen et al. 2020). 
Especially when there are oil slicks and other marine pollution leaks, 
real-time monitoring of maritime ships through remote sensing images 
obtained from satellites or drones facilitates the rational planning of 
maritime resource development and use and the improvement of man-
agement efficiency of maritime shipping safety (Chen, Cui, et al. 2021).

Currently, detection of maritime ships quickly and accurately in re-
mote sensing images has become a research hotspot (Sun et al. 2022). 
Initially, researchers used artificial features to detect ships (Huang et 
al. 2015; Leng et al. 2019; Chen, Xu, et al. 2021; Wang et al. 2021); 
preprocessing methods such as land and sea segmentation are often 
required to extract features with strong discriminatory power, but these 

methods have difficulties coping with the noise interference caused by 
complex background.

With the development of deep learning in the field of computer 
vision, object detection methods based on deep convolutional neural 
networks have demonstrated outstanding performance (Abbas et 
al. 2022). Some researchers have applied classical detection frame-
works, such as Single Shot MultiBox Detector (SSD), Region-based 
Convolutional Neural Networks (R-CNN), and Faster Region-based 
Convolutional Neural Network (Faster R-CNN), to detect ship targets 
in real scenarios (Liu et al. 2016), and have proposed a series of 
improved models based on these detection frameworks (Wang, Wang, 
et al. 2018; Zhang et al. 2019). In order to improve the detection 
accuracy, these methods use different region proposal networks on 
feature maps of different resolution sizes, thereby improving detec-
tion accuracy and overall performance to some extent (Li et al. 2020). 
However, remote sensing images are acquired from a long distance and 
wide viewing angle, so they contains a large amount of background in-
formation, especially contextual information related to the detection of 
the ship target; for example, the ship is generally docked on the water 
at the shore of the harbor, as shown in Figure 1a. Traditional methods 
have limited receptive fields with respect to convolutional kernels, 
which makes it difficult to sense and fully use the contextual infor-
mation in the background, such as water, shore, and harbor, thereby 
resulting in unsatisfactory detection effects. In addition, we can see 
in Figure 1b that ships occupy few pixels in remote sensing images, 
especially small ships that occupy even fewer pixels, which have fewer 
available features because of lacking sufficient appearance informa-
tion. Traditional methods that use common standard convolution and a 
single extraction network not only fail to dynamically focus on target 
ships of different scales but also may lose some of the detailed features 
of ships in the downsampling process of multi-layer convolutions, 
especially for small target ships, with only a few features left. This 
leads to higher missed detection and false alarm rates. If one model 
can adaptively pay more attention to these small objects like human 
eyes during object detection, and fully excavate and exploit the most 
useful detail features, the accuracy and reliability of the model will be 
significantly improved in the detection of small ships.

To enhance the accuracy of ship detection in remote sensing im-
ages, most methods attempt to increase the number of branches of their 
networks. However, this inevitably entails complex network structures 
and numerous network parameters, which makes it difficult to transfer 
them to mobile devices such as satellites and drones. Additionally, the 
limited computing resources on satellites and drones make it difficult 
to achieve fast detection speed (Cheng et al. 2023). Although research-
ers have proposed many effective methods and techniques in decreas-
ing model weight, including parameter pruning (Luo et al. 2017) and 
knowledge distillation (Hinton et al. 2015), these lightweight meth-
ods either directly eliminate the weights or channels of the network, 
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Honesty, justice, and courtesy form a moral 
philosophy which associated with mutual interest 
among people should be the principles on which 
ethics are founded.

Each person who is engaged in the use 
development and improvement of the mapping 
sciences (Photogrammetry Remote Sensing 
Geographic Information Systems and related 
disciplines) should accept those principles as a 
set of dynamic guides for conduct and a way of 
life rather than merely for passive observance. It 
is an inherent obligation to apply oneself to one’s 
profession with all diligence and in so doing to be 
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responsibilities and work for an employer all 
clients colleagues and associates and society at 
large and shall…
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2. At all times, function in such a manner as will bring credit 
and dignity to the mapping sciences profession.
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mapping sciences profession by:
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c. Publicly criticizing other persons working in or having 

an interest in the mapping sciences;
d. Exercising undue influence or pressure or soliciting 
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4. Work to strengthen the profession of mapping sciences by:
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skills and knowledge;
b. Interchange of information and experience with other 

persons interested in and using a mapping science 
with other professions and with students and the 
public;

c. Seeking to provide opportunities for professional 
development and advancement of persons working 
under his or her supervision;

d. Promoting the principle of appropriate compensation 
for work done by person in their employ..

5. Undertake only such assignments in the use of mapping 
sciences for which one is qualified by education training 
and experience and employ or advise the employment 
of experts and specialists when and whenever clients’ or 
employers’ interests will be best served thereby.

6. Give appropriate credit to other persons and/or firms for 
their professional contributions.

7. Recognize the proprietary privacy legal and ethical 
interests and rights of others. This not only refers to the 
adoption of these principles in the general conduct of 
business and professional activities but also as they relate 
specifically to the appropriate and honest application of 
photogrammetry remote sensing geographic information 
systems and related spatial technologies. Subscribers 
to this code shall not condone promote advocate or 
tolerate any organization’s or individual’s use of these 
technologies in a manner that knowingly contributes to:
a. deception through data alteration;
b. circumvention of the law;
c. transgression of reasonable and legitimate expectation 

of privacy.

8. Promote equity, inclusion and intellectual diversity in 
the mapping sciences. Encourage participation without 
regard to race, religion, gender, disability, age, national 
origin, political affiliation, sexual orientation, gender 
identity, or gender expression.
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of the ASPRS Annual Conference 

as well as:
Geo Week, Esri, URISA,  

SPAR/AEC, GEOINT,  
Commercial UAV Expo, AUVSI

% Composition

Read regularly (at least 3 out 
of 4 monthly issues) 54%

Products and services used or 
purchased in past 12 months

GPS 92%

Computer Workstations 52%

Lidar 50%

Unmanned Aerial Systems 45%

GIS 45%

Data Storage Devices 42%

Aerial Photography 35%

Cameras 35%

Terrain Modeling 30%

30% 
of PE&RS readers have a 

geospatial information technology 
budget of 

$1 million or greater 
for the current fiscal year.



128	 Februar y  2025	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

For more information, contact Bill Spilman at bill@innovativemediasolutions.com │ (877) 878-3260 toll-free │ (309) 483-6467 direct │ (309) 483-2371 fax

For more information, contact Bill Spilman at bill@innovativemediasolutions.com │ (877) 878-3260 toll-free │ (309) 483-6467 direct │ (309) 483-2371 fax

PE&RS 2025 Advertising Rates & Specs
THE MORE YOU ADVERTISE THE MORE YOU SAVE! PE&RS offers frequency discounts. Invest in a three-times per year advertising package and 
receive a 5% discount, six-times per year and receive a 10% discount, 12-times per year and receive a 15% discount off the cost of the package.

Ad Size Width Height
Cover 8.625” 11.25”
Full Page 8.375” 10.875”
2/3 Page Horizontal 7.125” 6.25”
2/3 Page Vertical 4.58” 9.625”
1/2 Page Horizontal 7.125” 4.6875”
1/2 Page Vertical 3.4375” 9.625”
1/3 Page Horizontal 7.125” 3.125”
1/3 Page Vertical 2.29” 9.625”
1/4 Page Horizontal 7.125” 2.34”
1/4 Page Vertical 3.4375” 4.6875”
1/8 Page Horizontal 7.125” 1.17”
1/8 Page Vertical 1.71875” 4.6875”

• Publication Size: 8.375” × 10.875” (W x H)
• Live area: 1/2” from gutter  

and 3/8” from all other edges
• Software Used: PC InDesign 

• Supported formats:
TIFF, EPS, BMP,  
JPEG, PDF, PNG
PC InDesign, Illustrator,  
and Photoshop

Sustaining Member 
Exhibiting at a 2025 ASPRS  
Conference

Sustaining Member Exhibitor Non Member

All rates below are for four-color advertisments

Cover 1 $1,850 $2,000 $2,350 $2,500

In addition to the cover image, the cover sponsor receives a half-page area to include a description of the cover (maximum 500 words). The cover 
sponsor also has the opportunity to write a highlight article for the journal. Highlight articles are scientific articles designed to appeal to a broad audi-
ence and are subject to editorial review before publishing. 

Cover 2 $1,500 $1,850 $2,000 $2,350

Cover 3 $1,500 $1,850 $2,000 $2,350

Cover 4 $1,850 $2,000 $2,350 $2,500

Advertorial 1 Complimentary Per Year 1 Complimentary Per Year $2,150 $2,500

Full Page $1,000 $1,175 $2,000 $2,350

2 page spread $1,500 $1,800 $3,200 $3,600

2/3 Page $1,100 $1,160 $1,450 $1,450

1/2 Page $900 $960 $1,200 $1,200

1/3 Page $800 $800 $1,000 $1,000

1/4 Page $600 $600 $750 $750

1/6 Page $400 $400 $500 $500

1/8 Page $200 $200 $250 $250

Other Advertising Opportunities (see page 5 for full descriptions)

Employment Promotion $500 (30 day web + 1 email)
$300 (30 day web)

$500 (30 day web + 1 email)
$300 (30 day web)

$500 (30 day web + 1 email)
$300 (30 day web)

$500 (30 day web 
+ 1 email)
$300 (30 day 
web)

Dedicated Content Email 
blast $2,500 $2,500 $2,500 $2,500

Newsletter Display 
Advertising 1 Complimentary Per Year 1 Complimentary Per Year $500 $500

PE&RS Announcement E-Mail $1000 $1000 $1000 $1000

A 15% commission is allowed to recognized advertising agencies

Send ad materials to:
Rae Kelley (rkelley@asprs.org)



The ASPRS Foundation 
was established to advance 
the understanding and 
use of spatial data for the 
betterment of humankind. 

The Foundation provides grants, 
scholarships, loans and other forms of aid 
to individuals or organizations pursuing 
knowledge of imaging and geospatial 
information science and technology, and 
their applications across the scientific, 
governmental, and commercial sectors. 

Support the foundation, so when 
they are ready, we are too.

asprsfoundation.org/donate

Too young to drive 
the car? Perhaps! 
But not too young 
to be curious about 
geospatial sciences.



JOIN ASPRS 
TODAY!

LEARN
• Read our journal, PE&RS

• Attend professional development 
workshops, GeoBytes, and 
online courses through the 
ASPRS ProLearn platform

• Earn professional 
development hours (PDH)

• Attend our national & regional 
meetings and conferences

DO
• Write for PE&RS

• Innovate to create new 
geospatial technologies

• Present at our national & regional 
meetings and conferences

• Engage & network

GIVE
• Participate in the development 

of standards & best practices

• Influence state licensure 
through our NCEES affiliation

• Mentor colleagues  
& support students

• Educate others about  
geospatial science & technology

BELONG
• Establish yourself as a 

geospatial expert

• Grow business relationships

• Brand yourself and your 
company as geospatial leaders 

• Connect to the world via 
our affiliation with ISPRS

Don’t delay, join today at asprs.org

ACCELERATE YOUR CAREER!
PHOTOGRAMMETRY · REMOTE SENSING · GIS · LIDAR · UAS …and more!
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