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ABSTRACT 

 

A novel dense stereo image correspondence method using genetic algorithm with multi-objective fitness function is 

proposed and implemented in this paper. Stereo correspondence is a core research area for many 3D model 

generation applications. The proposed method improves the number of inliers despite of noise, occlusion, geometric 

and radiometric distortion present in remotely sensed images by analyzing the stereo image pair. Here, the 

correspondence problem is considered as an optimization problem and is solved using population based evolutionary 

multi-objective optimization (EMO) strategy. In the proposed method, the genetic algorithm steps such as 

initialization of the population, fitness function, crossover and mutation operation are customized and implemented 

to solve the stereo image correspondence problem. Each candidate in the population has a 2D structure representing 

the disparity map for the input stereo image pair. To solve this complex real-world optimization problem of stereo 

correspondence, improved initialization of population is used instead of randomly selected population, because it 

leads to more accurate and faster convergence. To initialize the populations, the SIFT feature descriptor for each 

pixel is computed and matching is performed using the similarity measures namely, Euclidean distance between the 

descriptors and Spectral Angle Mapper (SAM). The most suitable disparity maps are chosen based on the evaluated 

parameter values using the designed fitness functions considering the constraints related to stereo image pair such as 

epipolar constraint, which encodes the epipolar geometry, a similarity measure which is useful to decide accuracy of 

the corresponding points. Here, two objective functions used are: number of inliers computed using the fundamental 

matrix and an energy minimization function considering discontinuities and occlusions. To demonstrate the 

effectiveness of the proposed approach, the results are obtained by applying the proposed method on a remotely 

sensed stereo image pair. 

 

Keywords: Dense correspondence, multi-objective fitness function, genetic algorithm, stereo matching, 

evolutionary optimization. 

 

INTRODUCTION 

 
In computer vision and computer graphics, one of the necessary tasks is the process of capturing the shape and 

appearance of real objects. This process is known as 3D reconstruction. Classical approaches for 3D reconstruction 

are image-based i.e. estimating structure from stereo image pairs or from image sequences. If multiple images of a 

real object is captured from different viewpoints, the projected locations of the same physical point in space, will be 

different on the captured images. The difference in the projected locations is used to infer the depth information.  

For structure from stereo, a single pair of images of the same object or scene is used. In general, two cameras 

located at two different spatial locations with different orientations capture the stereo image pair simultaneously. 

Human being can perceive depth by comparing two slightly displaced images of the observed scene. But the 

imitation of this capability of perceiving depth by computational techniques remains to be a challenging and 

unsolved problem. 

The problem of 3D reconstruction from two or more images is divided into two sub-problems: feature 

correspondence and structure estimation. To explain the first sub-problem, considering, images A and B of the same 

physical 3D point X are captured from two different viewpoints. The projected location of point X on image A is 

point P and on image B is point P’. Point P and P’ are known as correspondence point to each other. The shifting of 

position of point P to P’ is known as disparity. Disparity is the prime input for depth calculation. Hence, feature 

correspondence problem is to find the exact location of point P’ on image B given the location of point P on image 

A. The issue with the structure estimation problem depends on the amount of a priori information available i.e. the 
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intrinsic and extrinsic parameters of the camera(s). However, even if these parameters are known, the accuracy of 

the reconstructed structure is affected by the accuracy achieved by the correspondence problem. As a consequence, 

the challenge remains for developing algorithms to solve the correspondence problem. Thus, the main task of stereo 

image analysis is to provide the dense disparity map i.e. disparity at each pixel with better accuracy, which is the 

basic requirement for 3D reconstruction. 

In this work, a novel dense stereo image correspondence method using genetic algorithm with multi-objective 

fitness function is proposed. Here, the correspondence problem is considered as an optimization problem and is 

solved using population based evolutionary multi-objective optimization (EMO) strategy. The block diagram of the 

proposed method in Figure 1 shows the genetic algorithm steps such as initialization of the population, fitness 

function, crossover and mutation operation. To solve the stereo image matching problem, operations of genetic 

algorithm are iteratively implemented till the termination condition satisfied.    

 
Fig. 1: Block diagram of the proposed method 

 

In the following subsections, genetic algorithm issues related to stereo matching is discussed which includes 

initialization of the disparity space, the encoding mechanism for the disparity maps, the formulation of the fitness 

function and the appropriate crossover and mutation operators. 

 

DENSE FEATURE DESCRIPTOR EXTRACTION 
 

Feature detectors and descriptors 
In our proposed method, the first step is to find the suitable features representing each pixel in the stereo image 

pair. In general, image feature points are referred as the keypoints with in the image with some specific properties 

such as textures, edges, corners, image gradients etc. Feature points are visually identifiable points. Feature 

extraction process is used for locating any specific element in many computer vision applications. While extracting 

features, some of the important factors to be considered are invariance, detectability, accuracy and interpretability.  
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Generally, feature points are sparse and represent the keypoints uniquely. These keypoints along with their unique 

features are used as the primary input for the further processing and analysis in many applications in the area of 

photogrammetry and computer vision. The invariance property of a feature ensures the detectability of the same 

keypoint in a stereo pair under different transformations like geometric and radiometric. Feature detectors locate the 

same interest point in 2D locations, in the different images uniquely. Feature descriptor is assigned to the location of 

that interest point after analyzing the neighborhood region of that location. Feature descriptors are used to 

characterize the interest point using intensity variation, change in gradient, histogram considering gradient direction 

and magnitude with respect to its neighboring points. 

For our proposed method, we are in a need of a feature descriptor which will assign descriptors to each pixel 

location. Image intensity value is not the good option because it is not invariant to illumination. 

 

Pixel wise SIFT feature descriptor 
Here, pixel wise SIFT descriptor is extracted to characterize local image structures and encode contextual 

information by analyzing each pixel with respect to the neighboring pixel in terms of intensity variation, gradient 

variation, histogram of magnitude, gradient, and direction. The use of SIFT features allows robust matching 

invariant to scale and illumination. In [lowe, 2004], SIFT descriptor is estimated through two components: feature 

extraction and detection, that results sparse feature representation of the keypoints. However, in this paper, SIFT 

descriptor is estimated for every pixel in an image using only feature extraction component [Liu, 2011]. For every 

pixel in the image, the 16 x 16 neighborhood is divided into 4 x 4 cell array. Gradient magnitude and orientation is 

computed for each pixel using pixel difference.  The orientation is quantized into 8 bins in each cell, and the SIFT 

representation of 4 x 4 x 8=128D vector is obtained. A Gaussian weighting function is used to assign a weight to the 

magnitude of each pixel. Here, the entire feature vector of 128D is used for dense matching. The effectiveness of the 

dense SIFT feature descriptor with respect to the image structure is demonstrated using one stereo image pair from  

Middlebury in Figure 2. For visualization purpose 128D SIFT feature vector is projected to 3D color space. Figure 

2a and 2b is showing the left image and right image of the stereo image pair whereas Figure 2c and 2d is showing 

the SIFT images for the same. The visualization of the SIFT images demonstrates that, the pixels with similar local 

structure share the similar color. However, for computation of disparity using our proposed approach, the entire 128 

dimensions are used.  

Now, we have SIFT descriptors for each pixel of the input stereo image pair. Our next task is to build the disparity 

space by finding the similarity of these descriptors. 

 

                

(a) Left Image                                   (b) Right Image 

 

                  

(c) Left SIFT Image                             (d) Right SIFT Image 

 

Figure 2: Visualization of SIFT images (c) and (d) of stereo image pair (a) and (b). 
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STEREO MATCHING USING MULTI-OBJECTIVE GENETIC ALGORITHM 
 

In general, the computation of genetic algorithm starts with randomly generated initial population which is 

composed of various chromosomes. The genetic algorithm recursively generates the next generation from previous 

generation using crossover and mutation operator. All the chromosomes are evaluated by a fitness function. The 

parent chromosomes for the next generation are then selected based on the fitness value of each chromosome. 

Thereafter, the recursive process is continued until the stop condition is satisfied. Here, genetic algorithm is 

discussed in the context of stereo matching.  

 

Disparity space generation using feature matching 
After the computation of SIFT feature vector for each pixel in stereo image pair, the next step is to estimate the 

three-dimensional disparity space based on the similarity values of the feature vector of these pixels. For each pixel 

in the left image, the corresponding pixel in the right image is found using equation 1.  

 
 �(�, �, �) = min{ 
 �(��(� + �, � + �), ��(� + �, � − � + �))}����,������ !"!"�#$

 

 

 

Where w is the window radius, FL(x,y) and FR(x,y) are 128D feature vectors at pixel (x,y) respectively, ψ is the 

similarity function, k is the index number for different window sizes. Here, as a similarity measure, we use Spectral 

Angle Mapper (SAM) which identifies similarity with respect to the angle and Euclidean Distance (ED) which 

identifies similarity with respect to the magnitude of the feature vector. SAM is a very widely used technique in the 

field of hyperspectral image classification. The lower the value of SAM and ED signifies the higher the similarity 

between the feature vectors under consideration. The disparity space is filled by the disparity value for which the 

matching likelihood is higher. The matching likelihood of x with different pixels in the right image is ranked 

according to the value of angle i.e. θ. Smaller value of θ defines the higher matching likelihood. The angle and 

euclidean distance between the template feature vector t in the right image and the reference feature vector r in the 

left image is given in equation (2) and (3) respectively. 

 

 % = &'(�) ∑ +�,�-�.)/∑ +�0-�.) /∑ ,�0-�.)
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To generate the disparity space, we have used eight different window sizes 3 x 3, 5 x 5, 7 x 7, 9 x 9, 11 x 11, 13 x 

13, 15 x 15, 17 x 17. Use of different window sizes in the matching process solves the problem of fixed window. 

Finally, eight disparity maps are estimated using each similarity measure SAM and Euclidean distance respectively. 

So, there will be in total sixteen different disparity maps in the disparity space. Use of two different similarity 

measure ensures enough diversity in the disparity space. 

Encoding scheme for Disparity Maps 

Encoding scheme for representing the solutions of the optimization problem is application dependent and 

fundamental to all genetic algorithms. In order to apply genetic algorithm in stereo matching, the type of 

(1) 

(2) 

(3) 
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chromosome structure should be defined as per two-dimensional image signals. Thus, 2D disparity map is simply 

encoded as a chromosome and disparity value for each pixel of the disparity map becomes a gene value of the 

chromosome. 

 

Multi-objective Fitness Function 
In order to identify the fittest individual during the evolutionary process, a function needs to assign a degree of 

fitness to each chromosome in every generation. This function, known as the fitness or evaluation function, controls 

the evaluation process. Here, the fitness of each disparity map is evaluated based on a multi-objective function. In 

the literature of stereo image analysis, in general, the optimal disparity map is evaluated by the compatibility 

between the corresponding points and continuity of the disparity map. This criteria can be employed by an energy 

function. However, the energy criteria does not accept outliers like occluded pixels and discontinuity at edge pixels 

because the energy is increased due to these outliers. Hence, we are allowing these outliers by adding one more 

evaluation criteria with the energy function. The second criteria considers the constraints related to stereo image pair 

such as epipolar constraint, which encodes the epipolar geometry. This criteria basically counts the number of inliers 

using the fundamental matrix.  We employ these two stereo matching criteria, which is the energy minimization 

criterion and maximizing the number of inliers, as objective functions to compute the fitness of each chromosome in 

the evolutionary optimization algorithm.  

Each chromosome is evaluated by determining the energy representing the compatibility between corresponding 

pixels in the stereo image pair and the continuity in the generated disparity map. The equation of the energy function 

is as follows: 

 

 3 = 
4(��(�, �) − (��5� + �6,7 , �8)4 + 
(45�6,7 − �6:),784 +  45�6,7 − �6,7:)846,76,7  

 

 

Where FL(x,y) and FR(x,y) are SIFT vector of left image and right image respectively in stereo image pair, d(x,y) is the 

disparity map, and λ is a weighting factor. The first term and second term represent the energy values of 

compatibility and continuity, respectively. The disparity map with smaller energy value having larger fitness value. 

The second fitness value is defined by maximizing the number of matching points, which is known as inliers. For 

the disparity map under consideration, number of inliers are computed using the fundamental matrix, respecting the 

epipolar constraint of stereo matching. The fundamental matrix is computed using RanSAC algorithm [Fischler et 

al., 1981]. 

 

Generation of Initial Population 
To start with, genetic algorithm needs the initial population consists of various initial disparity maps. Here, two 

very important factors which control the convergence of the algorithm is the population size and how to generate the 

initial population. Population size specifies the number of individuals in each generation. With a large population 

size, the genetic algorithm searches the solution space more thoroughly, thereby reducing the chance that the 

algorithm returns a local minimum. However, a large population size also causes the longer computation time. On 

the other hand, too small population size may result premature convergence without finding an appropriate solution. 

In this paper, to avoid the problem, empirically the population size is set to be 90.  

Most genetic algorithms use a random function to generate the initial population, accordingly, the convergence 

speed is too slow. To improve the convergence, it is better to start with an informed population, in which a higher 

selected possibility of disparity is assigned to the chromosomes. Using the disparity space, the solutions are seeded 

in the areas where optimal solutions are likely to be found. The initial disparity maps are generated by selecting the 

disparity value for each pixel from the disparity space on random basis. The method of generating the initial 

population is known to affect the convergence of the problem. 

 

Crossover Operator 
Genetic operators such as crossover and mutation provide the basic search mechanism in GA and serve as a 

method to continually improve the fitness and converge to an optimal solution. In our scenario, the crossover 

operation creates one child chromosome by taking a weighted average of two parent chromosomes using equation 

(5). The weight is specified by a randomly generated parameter, Scale, within the range [0,1].  

 

(4) 
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An example crossover operation is shown in Figure 3 with parent 1 and parent2 of size 7 x 7. Figure (3a)  shows the 

parent chromosomes before the crossover operation and Figure (3b) shows the child chromosome computed after 

crossover operation. After crossover, the newly generated disparity map may have a lower energy and better number 

of inliers than either of its parents. 

 

 
 Fig 3: Crossover operation in the proposed method 

Mutation Operator 
Mutation operator is the process of changing the genes randomly by supplying new genetic material. The 

crossover operator generates one or more new child of the modified population by considering the location of the 

parent chromosomes. Mutation operator, a unary operator, allows an EO to search locally around a solution 

independent of the location of other solutions in the population. In our proposed method for stereo matching, 

disparity smoothness constraint is considered through mutation operator. This is done by considering the disparity 

value of the pixel under consideration and the two neighboring disparity values using equation (6).  

 <1C+��CC = �(�, � � 1� � ���, ��; 
,�E;+��CC � ���, � � 1� � ���, ��; 

���, �� � �0.5 �	
<1C+��CC

<1C+��CC � ,�E;+��CC
; 				�C	<1C+��CC I ,�E;+��CC 

���, �� � �0.5 �	
,�E;+��CC

<1C+��CC � ,�E;+��CC
; 				1<(1 

Minimization Process 
The genetic algorithm is implemented as an iterative procedure after addressing the above issues. The population 

is evolved from one generation to next generation through each iteration. In each generation, crossover and mutation 

operations are processed on two randomly picked chromosomes. While selecting chromosomes for the next 

generation, the elitist strategy [Goldberg, 1989] is applied. This strategy ensures the fitness of the worst 

chromosome, in each generation, will not decrease. The above process is repeated until the termination condition is 

satisfied. In our approach, the iteration will be terminated if the relative change of the best chromosome over the 

generations is less than the tolerance threshold. 

 

RESULTS AND ANALYSIS 
 

To demonstrate the effectiveness of the proposed approach, the results are obtained by applying the proposed 

method on a remotely sensed stereo image pair. The stereo image pair is a subsection of the remote sensed image of 

Nahan village on top of hill near Simla, India. The stereo image pair is taken by IRS 1C having spatial resolution of 

(5) 

(6) 
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5.8 m in Panchromatic. Its size is 254 X 254 pixels. Substantial illumination difference and geometric distortion 

among the image pair is present. The left image and right image of the dataset is shown in Figure 4. 

After computing the SIFT image of the input stereo image pair, the disparity space is generated using two 

similarity measures namely spectral angle mapper and euclidean distance with eight different window sizes. The 

disparity spaces are shown in Figure 5. There are eight different disparity maps within each disparity space. The size 

of each disparity space is 254 X 254 X 8 for the given input stereo image pair. Though the disparity maps, in the 

disparity spaces, are looking very similar, they are different with each other at the non-textured areas where 

prominent features are not there and the distorted area due to noise, occlusion, geometric and radiometric distortion.   

Two example chromosomes of initial population, generated from two disparity maps, are shown in Figure 6. 

Starting with the initial population, genetic algorithm iteratively evolves the disparity maps by each generation. 

Here, the evolutionary process is guided by the two objective functions which checks the energy and number of 

inliers of each disparity map. After termination of the genetic algorithm, the disparity map with minimum energy 

and maximum inliers among the population, is termed as the final output of our proposed algorithm. Figure 7 is 

showing the 3D surface plot of the disparity map, computed using our proposed method. The proportion of inliers in 

the computed disparity map using our proposed method is 76.68% whereas in the initial population the range for the 

same was 66% to 71%.  

                             
 

Figure 4: Remotely sensed stereo image pair (Nahan village): Left Image and Right Image 

 

 

                 
 

Figure 5: Disparity space using (a) Spectral Angle Mapper (SAM) (b) Euclidean Distance (ED) 

                       

 Figure 6: Example chromosomes from Disparity spaces using (a) SAM and (b) ED  
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Figure 7: 3D surface plot for satellite image of Nahan village (near Simla, India) by IRC 1C 

 

CONCLUSION 
 

The dense disparity map obtained by our proposed novel stereo image correspondence method using genetic 

algorithm with multi-objective fitness function is useful for accurate 3D reconstruction. 3D reconstruction using 

remotely sensed stereo image pair remains a challenging task due to noise, occlusion, geometric and radiometric 

distortion. Our proposed method improves the number of inliers despite of the above-mentioned problems. The stereo 

correspondence problem is solved by genetic algorithm using multi-objective fitness function by considering the 

problem as optimization problem. Various operations of genetic algorithm are designed in such a way that it can solve 

the complex real-world optimization problem of stereo correspondence. Our genetic algorithm achieves faster 

convergence due to the improved initialization of population.  Various constraints related to stereo image pair is 

encoded in the multi-objective fitness functions which guided the genetic algorithm towards the optimum disparity 

map. The effectiveness of the proposed method is demonstrated using a remotely sensed stereo image pair with 

various challenging characteristics. 
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