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ABSTRACT 
 

The objective of segmentation on point clouds is to spatially group points with similar properties into homogeneous 
regions. Segmentation is a fundamental issue in processing point clouds data acquired by LiDAR and the quality of 
segmentation largely determines the success of information retrieval. Unlike the image or TIN model, the point 
clouds do not explicitly represent topology information. As a result, most existing segmentation methods for image 
and TIN have encountered two difficulties. First, converting data from irregular 3-D point clouds to other models 
usually leads to information loss; this is particularly a serious drawback for range image based algorithms. Second, 
the high computation cost of converting a large volume of point data is a considerable problem for any large scale 
LiDAR applications In this paper, we investigate the strategy to develop LiDAR segmentation methods directly 
based on point clouds data model. We first discuss several potential local similarity measures based on discrete 
computation geometry and machine learning. A prototype algorithm based on advanced similarity measures and 
supported by fast nearest neighborhood search is proposed and implemented. Our experiments show that the 
proposed method is efficient and robust comparing with the algorithms based on image and TIN. The paper will 
review popular segmentation methods in related disciplines and present the segmentation results of the proposed 
method for diverse buildings with different levels of difficulty. 

 
 

INTRODUCTION 
 
LiDAR (Light Detection And Ranging) collects high resolution Earth surface information as the scattered and 

unorganized dense point clouds. Airborne laser scanning (ALS) systems are well suited for the building detection and 
reconstruction in large urban scenes, whereas terrestrial LiDAR systems are able to capture building facade details in 
close range. Building detection is essentially a segmentation process, which separates points on buildings from the 
points on the surfaces of other landscape contents, such as ground, trees and roads. We adopt the formal definition of 
range image segmentation as given in Hoover et al. (1996). The segmentation of point clouds can be defined as the 
following:   

Let R represent the spatial region of the entire point clouds P. The goal of the segmentation is to partition R into 
sub-regions Ri, such that:  

 

1. RRn
i =U  

2.  φ≠)( ii PR for any i, U PPR ii
n
i =)(   

3. Ri is a connected region, i = 1, 2, … n 
4. φ=∩ ji RR  for all i and j, i ≠ j  
5. L(Ri) = True for i = 1, 2, .., n and 
6. L( ji RR ∩ ) = False for i ≠ j  
 

where L(Ri) is a logical predicate over the points Pi in the region Ri, which defines the measure of similarity that groups 
the points in one region and separates them from the points in other regions. 

Segmentation is one of the most active LiDAR research areas. There are many research activities and real-world 
applications dealing with segmentation. Without loss of generality, we summarize the existing schemes in the 
following ways. 

Based on the different outputs of the algorithms, segmentation methods can be classified in two types: part-type 
segmentation and patch-type segmentation. Part-type methods try to segment LiDAR data into visually meaningful 
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simple objects by directly extracting primitive geometric features such as planes, cylinders and spheres. All these 
simple objects can be described with a few mathematical parameters. Hough transform (Vosselman et al., 2004), 
RANSAC (RANdom SAmple Consensus) (Schnabel et al., 2004) and least square fitting (Ahn, 2004) are some 
common techniques used in part-type segmentation algorithms. Part-type algorithm mainly works better with 
applications using terrestrial LiDAR data, such as extracting building parts and reverse engineering of industrial site. 
Patch-type methods segment point clouds to homogeneous regions based on proximity of points or similarity of locally 
estimated parameters. Later on, these surface patches are further classified and organized into more meaningful 
structures. Most algorithms dealing with airborne LiDAR fall into this category.   

Based on the ways to represent homogeneous regions, segmentation methods generally fall into two classes: 
edge/boundary based and surface based. Edge based methods use a variety of methods to outline boundaries or detect 
edges of different regions with respect to local geometry properties, then group the points inside the boundaries to give 
final segmentations.  As for the surface based methods, local geometry properties are used as a similarity measure for 
segmentation. The points that are spatially close and have similar surface properties are merged together to form 
different regions, from which boundaries are then deduced. 

Based on mathematical techniques used, the published segmentation algorithms can be briefly roughly categorized 
into five groups: 

1. Edge-detection method: Heath et al. (1998), Jiang and Bunke (1999), Sappa and Devy (2001). A large variety 
of edge-detection algorithms have been developed for image segmentation in computer vision area (Shapiro 
and Stockman 2001). LiDAR data are converted into range image, e.g. DSM (Digital Surface Model) to make 
it suitable to image edge-detection methods. The performance of segmentation is largely dependent on the 
edge detector. However, the operation of converting 3D point clouds to 2.5D range images inevitably causes 
information loss. For airborne LiDAR data, the overlapping surface such as multi-layer building roofs, 
bridges, and tree branches on top of roofs cause buildings and bridges either under segmented or wrongly 
classified. The point clouds obtained by terrestrial LiDAR are usually combined from the scans in several 
different positions, converting such kind of true 3D data into 2.5D would cause great loss of information. 

2. Surface-growing method: Gorte (2002), Lee and Schenk (2002), Rottensteiner (2003), Pu and Vosselman 
(2006), Rabbani et al. (2006). Surface growing in point clouds is comparable to region growing in images. 
First, seeds, which can be planar or non-planar surface patches, are indentified. Least squares adjustment and 
Hough transform are robust methods to detect planar seeds. The seeds are then extended gradually to larger 
surface patches by grouping points around them based on similarity measures, such as proximity, slope, 
curvature and surface normal. Surface-growing algorithms are widely used in LiDAR segmentation, since 
they are easy to implement and computational cost is relatively low for large point clouds. However, seeds 
selection can be a problem for region-growing methods. It is difficult to judge if the selection on one set of 
seeds is better than the other. Also different set of seeds can lead to different segmentation results. Surface-
growing methods are efficient in their own ways, however, generally not regarded as robust methods.   

3. Scan-line methods: Jiang and Bunke (1994), Sithole and Vosselman (2003), Khalifa et al. (2003). Scan-line 
methods adopt a split-and-merge strategy. Range image splits into scan lines along a given direction, for 
example, each row can be considered as a scan line. For a planar surface, a scan line on any 3D plane makes a 
3D straight line. Each scan line is segmented independently into line segments until the perpendicular distance 
of points to their corresponding line segment is below certain threshold. Then segments from scan lines are 
merged together based on some similarity measures in a region-growing fashion. The scan line method is 
based on 2.5D grid model and mainly designed to extract planar surfaces. Scan lines do not exist in 
unstructured point clouds. Extension of scan-line methods into point clouds requires deciding the preferred 
directions and constructing scan lines by slicing point clouds, this makes segmentation results depend on 
orientation.  

4. Clustering methods: Roggero (2001), Filin (2002), Biosca and Lerma (2008), Chehata et al. (2008), Sampath 
and Shan (2006, 2008), Shan and Sampath (2008). In these algorithms, each point is associated with a feature 
vector which consists of several geometric and/or radiometric measures. LiDAR points are then segmented in 
feature space by clustering technique, such as k-means, maximum likelihood and fuzzy-clustering, Unlike 
other methods, clustering is carried out in the feature space and it can work on point clouds, grid and TIN. 
Clustering methods have shown their ability to perform robust segmentation on both airborne and terrestrial 
laser scanner point clouds. The performance of the clustering algorithms depends on the selection of feature 
vectors and the clustering technique.  

5. Graph partitioning methods: Kim and Muller (1999), Fuchs (2001), Wang and Chu (2008). Points in the same 
segment are much more closely connected to each other than they are to points in other segments. So the 
boundary between two segments must lie on the place that has the weakest connection. This simple idea is 
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captured by constructing proximity graphs or neighborhood graphs. A proximity graph is an attribute graph 
G(V, E) on the point clouds. Each LiDAR point  or group of LiDAR points in a small neighborhood  is a node 
in the set V and the set E consists of the connections/edges between a pair of points. Each edge has a weight to 
measure the similarity of the pair of points. The segmentations is achieved by graph partitioning algorithms to 
find the optimized cuts that minimize the similarity between segments while maximizing the similarity within 
segments at the same time. Segmentation can be performed as recursive partitioning or direct multi-way 
partitioning. Normalized cut (Shi and Malik, 2000), minimum spanning tree (MST, Haxhimusa and 
Kropatsch, 2003) and spectral graph partitioning (Chung, 1997) are widely used graph decimation algorithms.  

The results of segmentation process are homogeneous regions with respect to some similarity measures. 
However, it doesn’t always lead to a final meaningful segmentation in term of semantics. Evaluation of the 
segmentation algorithms depends on many factors: the properties of algorithms, such as complexity, efficiency and 
memory requirements; the parameters of the algorithm; the type of data: real world data or synthetic data; the type of 
LiDAR: airborne or terrestrial; the landscape setting of LiDAR data: urban or rural, steep or flat area; the method 
used for evaluation. It is very difficult to develop an evaluation method to find the optimal segmentation algorithm, 
since segmentation is often application specific. A meaningful segmentation can be quite different in different 
applications and landscape settings. The user intervention shall play an important role to evaluate the segmentation 
algorithms. 

It is noticeable that most of the existing segmentation methods are based on 2.5D range image or TIN model.  
There are many limitations on their ability to extend algorithms to 3D unstructured point clouds. On the other hand, 
converting data from one model to another model usually leads to information loss; this is particularly a serious 
drawback for range image based algorithms. Also, the high computing cost of model converting is a considerable 
problem for any large-scale LiDAR applications. Therefore, it is preferred that LiDAR data segmentation be 
performed on point clouds directly. 

In point clouds generated by airborne LiDAR system, the structure of a building generally can be described by two 
types of edges: jump edge and crease edge. Jump edge is defined as discontinuities in depth or height values. Such 
edges separate one building from the other building or ground. Crease edge is formed where two surfaces meet. Such 
edges are characterized by discontinuities in surface normals, and the surface normals at the intersection line make an 
angle greater than the given threshold. These two types of edges serve different purposes in segmentation. Generally 
speaking, jump edges aim for object extraction or detection, and crease edges are used more often in object 
reconstruction. Jump edges are used to segment point clouds into the surface patches from different objects. In post-
processing stage, the surface patches are grouped into identifiable objects, such as ground, buildings and trees. Crease 
edges are used to further segment points into adjacent planar regions, which are inside the surface patch defined by the 
jump edges. The roof structure of a building is a good example of crease edges. 

In this research, we present an approach to extract buildings from airborne LiDAR data by directly discovering 3D 
jump edges in point clouds.  

   
 

BUILDING EXRACTRATION ALGORITHM 
 
The process of building extraction is separated into three steps: first, discovering points at jump edges by the 

nearest neighborhood based computation which minimizes the memory requirement for large points set. Second, 
connecting points to form jump edges to approximate the building outlines. In the third step, buildings and trees are 
separated.   

 
Step 1: Labeling Jump Edges Points 

Jump edges define the building outlines in airborne LiDAR point clouds. They reflect the shape of points on top 
of the building. The convex hull can quickly capture a rough idea of the shape or extent of a point data set with 
relatively low computing cost. Figure 1 shows an example to capture the shape of the random generated point set. 
The global convex hull fails to capture the concave part both in 2D and 3D convex hulls. However, it doesn’t mean 
convex hull is not suitable for our purpose. In fact, it has interesting properties for further development.  
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Figure 1. Random generated point set and its global convex hulls. 

 
Convex hull can capture the rough shape of the point set and classify the points into two groups: boundary 

points and non-boundary/inside points. Non-boundary points can be indentified without constructing convex hull.  
Theorem 1.  A point p fails to be an extreme point (boundary point) of a plane convex set S only if it lies in 

some triangle whose vertices are in S but is not itself a vertex of the triangle (see Figure 2). (Preparata and Shamos 
1985). In 3D space, the tetrahedron replaces the triangle. And in n-dimensional space, n-simplex is an n-dimensional 
analogue of a triangle in 2-dimensional space.  

 

 
Figure 2. Example of Theorem 1. 

 
Theorem 2. For a convex set S, pick up any subset of points that contain point p, if p is inside the convex hull of 

the subset , then p is not on the boundary of the convex hull of points S. 
The above theorems provide a simple way to test if a point is non-boundary point based on the convex hull 

constructed by the point and its nearest neighbors. The complex boundary of the points set can be approximated by 
removing non-boundary points by local convex hull testing. This process can be viewed as using much smaller size 
local convex hulls sculpture out the shape of the entire point set. Algorithm 1 ( 

Figure 3) is designed based on this simple idea.    
 

Algorithm 1. Basic boundary labeling algorithm  
Input (points, n) 
Output: { boundary points} 
1. For all the points: 
2.     If point p is not labeled as “non-boundary point” 
3.         Pick up n nearest neighbors of point p 
4.         Construct convex hull of (p, {pi}) 
5.         Label all the points insides the convex hull as “non-boundary” points 
6. Label all the non-labeled points as “boundary point” 

 
Figure 3. Basic boundary labeling algorithm. 
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Figure 4. Examples of Algorithm 1: boundary points labeling . 

 
The only parameter is n, the number of nearest neighbors. Figure 4 shows the results with different values of 

parameter n. When n is increased to 9, all the inside points have been eliminated, the result correctly capture the 
non-convex part of the boundary. The higher n goes, the less points picked up as boundary points, the general range 
of n (9 to 15) is recommended from the balance of effectiveness and efficiency. 

Algorithm 1 is enhanced by adding another parameter. In Algorithm 2 ( 
Figure 5), the distance parameter ε is added to pick up the points which are close enough to the local convex 

boundary and can be treated as “boundary points”. The higher ε goes, the more points picked up on boundary. 
However, when ε is above a certain value, the non-boundary points are also marked as “boundary point” (Figure 6). 
The general guideline is that ε shall be less than the average distance between any two nearest pair. A more realistic 
example is shown in Figure 7. The boundary points on jump edges are identified and also the points on the 
corresponding boundary on the grounds.  

 
Algorithm 2. Enhanced boundary labeling algorithm  
Input (points, n, ε) 
Output: { boundary points} 
1. For all the points: 
2.     Pick up n nearest neighbors of point p 
3.     Construct convex hull of (p, {pi}) 
4.     Calculate the minimum distance from point p to the convex hull boundary 
5.     If dist > ε, label point p as “non-boundary point”  
6. Label all the non-labeled points as “boundary point” 

 
Figure 5. Enhanced boundary labeling algorithm. 

 
 

 
Figure 6. Examples of Algorithm 2: boundary points labeling. 

 
 



ASPRS 2009 Annual Conference 
Baltimore, Maryland  March 9-13, 2009 

 

 
Figure 7. A more realistic example: boundary points labeling.  

 
Step 2: Connecting Points to Form Jump Edges 

In this step, boundary points need to be grouped and connected to lines which represent the jump edges. We 
present an algorithm based on the k-nearest-neighbor network and minimum spanning trees (MST). The k-nearest-
neighbor network is a weighted  graph G(V, E), where the vertices of graph (V) are the boundaries points, and edges 
(E) are the connections between the point and its k nearest neighbors, the weight is the distance between two 
connected points. For each edge, if its weight is larger than the certain value ε, this edge is discarded. This is used to 
get rid of isolated points. For each sub-graphs, the jump boundaries is formed by MST. MST is a tree that passes 
through all the vertices of a given graph with minimum total weight. 

     
Algorithm 3. Points connecting algorithms  
Input (boundary points, k, ε) 
Output: { jump edges} 
1. For all the points: 
2.     Pick up k nearest neighbors of point p 
3.     Construct graph edges from point p to its nearest neighbors, distance as the weight  
4. Discard edges whose weight is larger than ε    
5. Partition knn-graph into disconnected sub-graphs if necessary    
6. Calculate MST for each sub graph 
7.            Return MSTs as jump edges  

 
Figure 8. Points connecting algorithm. 

 
Step 3: Separate Building and Trees 

Separating points situated on buildings from those on trees can be a difficult task when trees are close to 
buildings and have branches cover part of the buildings. Here we discuss the simpler situation from only building 
extraction purpose. We assume buildings and trees are separately enclosed by the different jump edges from step 2 
described the different jump edges from step 2. Then we need to indentify which jump edges represent buildings.  In 
other words, the buildings and trees are separated by theirs outlines. Generally, this goal can be achieved by 
knowledge-based analysis. In term of size, shape and linearity, the outlines of buildings are quite different from ones 
of trees.  

In this research, we use the dimensionality learning method to separate the buildings and trees. The inner 
complexity of a point cloud can be captured by its intrinsic dimension. Here the intrinsic dimension is defined as the 
correlation dimension.  For a finite set Sn = {p1…pn} in a metric space, let 

 
 

(1)  

   
where, r is the search radius. If the limit exists, , the correlation dimension of S is defined 
as: 
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(2)  

 
For a finite sample, the zero limits can’t be achieved. By plotting logCn(r) against logr, the correlation 

dimension is estimated by measuring the slope of the linear part. Figure 10 shows the examples of three random 
generated point clouds. The first one is the points randomly picked on a circle; it has the same neighborhood 
structure as a straight line, so its correlation dimension is equal to 1.0. The second is the points picked from the 
surface of a sphere, and its correlation dimension is equal to 2.0. The third one consists of the points randomly 
distributed inside the sphere, its correlation dimension is 2.62, and it indicates this point cloud is closer to 3-
dimensional volume than 2-dimensional surface structure.  

 

 
Figure 9. Example of algorithm 3: jump-edge detection.  
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Figure 10. Examples of the correlation dimension: x: log(r); y: logC(r).  C(r) is the number of pairs whose 

distance is less than r, r is usually the fraction of unit length.   
 

 
Figure 11. Correlation dimensions of two LiDAR point clouds. 

 
The intrinsic dimension of an object is independent from its embedding space. A curve in 3D space can be very 

complex in appearance compared to a straight line, even though both of them have the same intrinsic dimension. 
Figure 11shows two LiDAR point clouds examples, one is a simple building, and the other is a small tree nearby. 
Laser beams penetrate the top surface of the small tree, the point clouds includes both points from the surface of the 
tree and under the canopy. The intrinsic dimension of the tree point clouds is 2.55. On the contrary, the building one 
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is 2.08, since laser beams only collect information on top of the building. These two point clouds are distinguishable 
by measuring their intrinsic dimensions. 

 
 

TESTING ON AIRBRONE LIDAR DATA 
 
The building algorithm is tested on two sets of airborne data. The first one demonstrates the ability to extract 

multi-layer roof structures in one complex building. The second one aims to test the performance to extract multi-
buildings in a wide area.  

Figure 12 shows the point clouds of a multi-layer building. The result (the bottom graph of Figure 12) shows the 
algorithm correctly detects jump edges around the different building parts. In the example, the size of several trees 
around the building is quite large, and trees and building parts are separated by the testing correlation dimensions 
with both first return and second return points. In the second example (Figure 13), the point clouds only contain first 
return points. Tree is detected by its geometric feature: the area of ground covering, which in our test case is much 
smaller than the building. The buildings in the second example are single-family house with relatively simpler 
structures. The algorithm captures the basic shape of the roofs. 
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Figure 12. Multi-layer building testing: building point clouds colored by height (top), discovered  boundary 

points (middle), jump edges and multi-layer structures(bottom). 
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Figure 13. building detection example: point clouds colored by height (top), discovered  boundary points 

(middle), jump edges and detected buildings (bottom). 
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