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ABSTRACT 
 
Airborne lidar scanning systems are becoming effective tools for tree crown identification and canopy mapping. 
Canopy height models and their relationship to other forest parameters may be inferred from processed lidar 
elevation data. This study involved examination of tree canopies depicted by lidar surface models on a tree-by-tree 
basis, in order to geolocate individual stems and estimate crown extent and density without incorporating a reliable 
bare-earth model to initially estimate canopy heights. A multi-step approach used local gradient analysis and pulse 
differencing techniques to first determine reasonable boundaries and extent of the canopy. This overlay served as a 
template for application of a local maximum algorithm to calculate the image location of a singular apex for each 
crown. Finally, these apex locations were processed by a crown edge-finding algorithm that averaged results from 
multiple azimuths to adjust crown centers while estimating their diameters. Results show that small-footprint lidar 
data on a regular grid with a nominal post spacing of one meter may contain enough information for rapid mapping 
of individual trees and crown parameters in a discontinuous forest canopy. 
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INTRODUCTION 
 

The application of laser ranging techniques using both large- and small-footprint lidar systems has become 
increasingly relevant to forestry applications (Dubayah and Drake, 2000; Andersen, et al., 2006). The use of 
airborne lidar scanning systems allows the extraction of tree heights for canopy height models and other elements of 
forest structure (Popescu and Wynne, 2004). If the scanning system is on the ground, accurate measurements of 
stem diameters may be derived (Watt and Donoghue, 2005). Under certain conditions, analysis of the portion of 
laser pulse energy that penetrates through the canopy may provide insight into understory characteristics (Maltamo, 
et al., 2005) and reasonably accurate under-canopy terrain models (Reutebuch, et al., 2003). Lidar remote sensing 
now plays a role in mapping and modeling forest vegetation from the top of the canopy to the ground surface. 

Closely spaced range measurements are provided by rapid laser pulsing from the survey aircraft. Lidar energy is 
highly reflective and is normally returned from the first surface encountered. Return times are converted to distance 
from the scanning aircraft platform to any surfaces struck by the pulse energy along the path of the beam. These 
distances are transformed to geographic elevation and position from the GPS-derived absolute position of the 
airborne platform. In a forest, the first return should represent the top of the canopy at each pulse location. The last 
return may represent the ground under the canopy or some intermediate vegetative surface. Significant differences 
between elevation values for corresponding first and last returns indicate the presence of canopy. Systems with more 
than two returns may provide details of vertical forest structure. 

Lidar systems with a small footprint (on the order of a few centimeters) are common in topographic 
applications, but may undersample areas of level ground and the tops of tree crowns because the pulses are non-
contiguous. Large-footprint, or waveform, lidar systems (pulses 10-25 meters in diameter) emit a greater amount of 
laser energy and allow the reconstruction of a vertical distribution of vegetation surfaces with finer detail that can be 
related to above-ground biomass (Drake, et al., 2002). The large footprint also ensures that the apexes of individual 
tree crowns reflect some of the pulse energy. 

Still, high-resolution, small-footprint lidar systems have proven their value in mapping continuous canopy and 
creating canopy height models. Identification of individual crowns in continuous cover is more challenging. In this 
work, data from a small-footprint lidar system is used to map a coniferous forest canopy, identify and locate 
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individual tree crowns, and estimate crown diameters. Given a lidar digital surface model, the forest canopy is 
mapped by taking advantage of the high-resolution elevation variation of the canopy surface in computing a 
numerical solution for the directed second derivative, or Laplacian, for each lidar pixel in the data grid. After 
thresholding these values, a representative digital image overlay is produced over the digital surface model display. 
A thresholded pulse difference overlay is also created using first and last return data, and is combined with the 
Laplacian overlay to produce a final canopy overlay. This served as a filter for processing the entire digital surface 
model with a local surface maximum algorithm in order to identify potential tree crown apexes. Finally, a multi-
directional gradient analysis algorithm is applied to each identified crown apex to estimate the crown diameter. 
 
 

DATASET 
 

The lidar data used in this study was collected in the vicinity of Cooke City, Montana in the southwestern 
portion of the state, a mountainous area of discontinuous conifer forest. At about 2300 meters above sea level, 
Cooke City lies in the Soda Butte Creek valley, whose tributaries to the north drain rugged highlands reaching 
altitudes of 3000 meters. To the south and west lies the high plateau region of Yellowstone National Park. 

Lidar data collected in 2003 over this region was provided by the U.S. Army Topographic Engineering Center. 
The scanning system used was the Optech Airborne Laser Terrain Mapper (ALTM) mounted on a DeHavilland 
DHC-7 aircraft. Its position was continuously updated during flight with Global Positioning System (GPS) and 
inertial system data feeds, resulting in absolute positional accuracies of each lidar pulse of ground reflection of 
approximately 0.5 m in the horizontal and 0.3 m in the vertical. The size of this dataset was 5276 columns by 6601 
rows. The final Digital Surface Model (DSM) data, depicting the height of the reflective surface, was provided in 
32-bit floating point GeoTIFF format on a regular grid with a one meter sampling interval. The DSM was registered 
to the WGS-84 ellipsoid. 

Several co-registered image products are provided in the ALTM dataset. These include first and last return 
DSM data, lidar intensity data, a color-coded shaded relief image and a merged intensity and color-coded shaded 

relief image. Figure 1 shows the study area, a 1500 x 1000 pixel subset of the Cooke City first return DSM data 
centered on the town itself, after application of a hillshade algorithm. North is up in the figure, which covers an area 
of 1.5 by 1.0 kilometers. Aside from town structures, the extent and discontinuous nature of the forest canopy in this 

Figure 1.  Study Area Lidar First Return Shaded Relief. 
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area can be seen by its fine-grained texture in this shaded relief elevation image. The elevations in the study area 
average about 2350 meters above sea level. At these altitudes, five species dominate the forest cover: subalpine fir, 
lodgepole pine, whitebark pine, Engelmann spruce, and Douglas fir (DeBlander, 2001). The red box in Figure 1 
represents a subset of the study area, 321 x 214 pixels in size, selected for closer analysis and individual crown 
identification. A shaded relief representation of this subset is depicted in Figure 2, showing variability in the size of 
individual crowns. 

Figure 2.  Study Site Subset Shaded Relief. 

 
METHODS 

 
The goal of this work was to take advantage of previous efforts in canopy mapping from small-footprint lidar 

DSM data in order to detect and map individual tree crowns and estimate their sizes in deriving simple statistics for 
crown diameter and stem density. Algorithms developed to perform this kind of analysis often depend on a canopy 
height model (CHM) that provides above-ground crown heights, derived by subtracting the bare-earth or terrain 
surface from the DSM. The terrain surface may be derived from the last-return lidar pulse data using some form of 
slope-based algorithm, though it can be difficult to determine which pulses have penetrated the canopy all the way to 
the ground surface (Cobby, et al., 2001). This may cause underestimation of above-ground canopy heights. The 
extraction of the terrain surface and estimation of the CHM may be supplemented by ground-based control 
coordinate elevation and vegetation height measurements (Reutebuch, et al., 2003). Even so, the CHM elevations 
may be underestimated from another source, the fact that small-footprint lidar pulses often miss treetops and 
oversample crown shoulders, depending on crown geometry (Nelson, 1997). This can also be a problem with large-
footprint, complete-waveform data (Nilsson, 1996). In addition to the undersampling of crown apexes, the 
resampling of raw lidar pulse data to a regular grid, and the interpolation of gridded first-return values to create a 
DSM, can add to the underestimation of tree heights (Popescu and Wynne, 2004). 

For the general problem of extracting crown apexes from lidar data using a filtering window technique with a 
local maximum algorithm, choosing the right filter size can avoid errors of commission when the filter size is too 
small and errors of omission when the filter size is too large. Such errors result in false alarms in the former case and 
missed truth in the latter. A reliable canopy height model may allow the selection of an appropriate filtering window 
size when coupled with empirically-derived regression relationships between tree height and crown width (Popescu 
and Wynne, 2004; Chen, et al., 2006). These relationships are dependent on crown structure. In this work, a CHM is 
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not employed for filter size estimation. Crown apex false alarms may occur when the filter size is too small for a 
crown with sub-apex critical points, or false apexes, in its complex structure. Individual trees in this particular 
dataset, however, have simple crown structures that present a conical canopy form to the lidar scanner. An attempt 
was made to obviate missed truth errors by using an appropriately small kernel for the ground resolution of this 
dataset, and comparing its center-weighted mean to the elevation values in a subset of border pixels surrounding the 
central kernel. 

The ENVI image processing and display software environment was used in this work, and all algorithms were 
developed in ENVI’s Interactive Data Language (IDL) programming environment. This allowed rapid testing, 
thresholding and convenient display of the effect of threshold changes on canopy overlay results. The overall 
processing scheme from creation of canopy overlays through crown apex extraction and calculation of crown 
diameters is shown in Figure 3. Each step in this process is discussed below. 
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Figure 3. Overall Processing Scheme.  

 
The first part of the process was to generate a canopy overlay co-registered to the lidar DSM within which 

individual tree locations would be extracted. This was done by combining a pulse-differencing algorithm with a 
Laplacian-finding technique to create a more complete canopy overlay than that obtained by pulse-differencing 
methods alone. These methods were used in previous work to create canopy overlays using the same Cooke City 
dataset described here (Blundell, 2006). 

In the pulse-differencing algorithm, elevations from the first-return DSM were subtracted from those of the last 
return on a pixel-by-pixel basis within the study area. For return differences greater than zero, the overlays created 
included many obvious non-canopy pixels. After trial-and-error experimentation and examination of a pulse return 
difference histogram, an optimum lower positive threshold was chosen to exclude very low positive difference 
pixels that did not spatially correlate with canopy.  

Another canopy overlay was then created by mapping small-scale changes in slope in the DSM. In this process, 
data from only one return is needed. This was done by calculating a numerical solution for the Laplacian of each 
pixel for a short sequence of DSM elevation values centered on the pixel. Sudden changes in slope were detected 
using a numerical expression for the second-order, centered finite-divided-difference Taylor series estimation of the 
Laplacian of the elevation function. This expression, not shown here, solved for the second derivative in a particular 
direction, and is based on direction-dependent pixel positions as well as the sensor ground sample distance. 

Using a 5x5 moving kernel window, a sampling scheme was devised to allow the calculation each pixel’s 
Laplacian values for the progressive set of directions every 45 degrees starting from 0 (straight up or north in the 
DSM image). For any pixel position in the matrix S = S(i,j) for which the Laplacian E"S,θ is required in direction θ 
from position S, elevation values ES+1,θ, ES+2,θ, ES-1,θ, and ES-2,θ are required in addition to ES,θ (see Figure 4). In this 

ASPRS 2008 Annual Conference 
Portland, Oregon ♦ April 28 – May 2, 2008 



way the maximum second derivative and associated direction could be found for each pixel and saved by its matrix 
position. It was found that these values could then be selectively thresholded to represent canopy pixel locations, and 
image overlays could be produced depicting canopy extent. The union of the pixel subsets identified by both the 
Laplacian Taylor series estimation and pulse differencing techniques was then used to create a “best canopy” 
overlay for further processing. A detailed discussion of the numerical calculations, sampling scheme, developed 
algorithms, and canopy overlay creation process is provided in a previous work (Blundell, 2006). 

After the union of the Laplacian and difference overlays, the “best canopy” overlay still showed occasional 
untagged pixels in the vicinity of crown centers that might reduce the efficiency of the apex-finding process. These 
small “holes” were filled in by employing the IDL “MORPH_CLOSE” function that applies a dilation operation 
followed by a closing operation to a binary image. This has the effect of filling small holes and gaps in the image 
without affecting primary features. This improved “best canopy” overlay was then used as a template to select DSM 
pixel elevation values for processing by a local maximum (LM) algorithm. Rather than simply finding the maximum 
elevation value within the 3x3 LM kernel, the algorithm compared the center-weighted mean of the kernel with the 
elevation values of a set of pixels bordering the kernel. If the center-weighted mean of the kernel was greater than a 
specified threshold related to the range of border pixel elevation values, the center pixel of the kernel was tagged as 
a possible crown apex. 

Before application of the LM algorithm, the DSM elevation matrix was subjected to a 3x3 median filter in order 
to diminish noise in the representation of the canopy surface. While noise is reduced, original elevation values 
depicting canopy surface complexity and edge information are preserved (Popescu and Kini, 2004). 

After applying the median filter and LM process to the study site lidar DSM, it became evident that multiple 
pixels were often tagged as possible apexes for the same tree crown. A local thinning algorithm was devised to 
reduce the density of tagged apexes and alleviate this source of errors of commission, given the ground resolution of 
the dataset. A 3x3 moving kernel was employed to find the mean apex location if more than one candidate apex 
appeared in the kernel. The mean location was then assigned to the nearest pixel. An overlay was created to display 
the locations of the final set of tagged apexes over the shaded relief image. 

A trial-and-error process was conducted to determine a reasonable kernel center weight factor based on the 
number of flagged apex pixels. Experiments were performed with two octagonal-shaped border pixel configurations: 
one based on a 5x5 window enclosing the kernel but with its corners removed, and the other based on a 7x7 
enclosing window (Figure 5). 

Figure 4. Matrix Positions S±1 and S±2 for 
Laplacian Estimation at Position S in Orthogonal 

(blue) and Diagonal (red) Directions. 

Figure 5. Border Pixel Configurations for 
Local Surface Maximum Calculations Based 

on 5x5 and 7x7 Windows. 

 
The final phase of computations involved the estimation of crown diameters for each location in the final set of 

tagged tree apexes. A multi-directional gradient analysis approach was used, similar to the Laplacian-finding 
technique for the creation of canopy overlays. The final thinned or final apex overlay was used as a template for 
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computations centered on each apex for each of eight radial directions in 45 degree increments. For each of the first 
four radials from 0 to 135 degrees, the Laplacian was calculated for five successive DSM pixels away from the apex, 
starting from the second pixel for the cases of 0 and 90 degrees. These pixel positions corresponded to distances of 
2, 3, 4, 5, and 6 meters. The same process was repeated for each radial in the reverse direction, resulting in 10 
Laplacian values along each straight line centered on the apex location, or 40 values in all. The lowest radius value 
of two meters was limited by the ground sample distance of one meter for this dataset. 

For each radial in both forward and reverse directions away from the apex, the maximum Laplacian value was 
determined and its corresponding radius in meters was saved. Each DSM pixel location was considered to be the 
center of a 1-meter square cell. For orthogonal directions, the saved radius in meters was simply the pixel distance 
from the apex to the maximum Laplacian value. For each diagonal direction, the pixel associated with the maximum 
Laplacian was assigned a radius equal to the integral distance between 2 and 6 that fell within its boundary. This is 
shown graphically in Figure 6. A column of vertical pixels is identified by their radial distances from the apex. The 
maximum Laplacian diagonal pixels associated with each integral radius are also identified by the integers 2-6, 
along with their corresponding orthogonal distances from the center that determine each diagonal pixel’s radius 
assignment.  From the figure, it can be seen that the same diagonal pixel is selected to calculate the Laplacian for 
radius values 5 and 6, since both diagonal radii fall within the pixel’s boundary. 

Computed crown diameters corresponding to each apex location were then used to create a crown edge overlay 
in which each crown is represented by an octagonal approximation to a circle whose diameter is given by twice the 
crown radius saved for the apex in the previous step. These crown edge configurations are shown in Figure 6 in 
alternating blue and yellow colors. The possible crown diameters are limited to 4, 6, 8, 10 and 12 meters, 
representing the expected range of diameters encountered for mature trees shown in this dataset. The lower limit is 
determined by the 3x3 ground resolution of the kernel as depicted in Figure 4. After calculation of the final crown 
diameter set, crown edge overlays showing octagonal representations of crown extent for each detected apex could 
then be generated over shaded relief images of the DSM. 
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 Figure 6. Crown Edge Radii and Pixel Configurations. 
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RESULTS AND DISCUSSION 
 

In this effort, previous techniques developed for canopy extraction from lidar data served as a basis for 
algorithm development to identify individual crown apexes and estimate crown diameters for each apex in a 
coniferous forest. This resulted in a series of overlays displayed over shaded relief images of the lidar DSM showing 
canopy extent, the final crown apex set, and representative crown edges for a range of diameters. 

A lidar return difference overlay was produced by adjustment of a lower difference threshold applied to the 
difference image to exclude non-canopy pixels, in concert with examination of a histogram of return difference 
values. First return, last return, and difference image statistics for the study area are provided in Table 1. The return 
difference histogram is shown in Figure 7, in which a break point is seen separating a central spike containing 
heavily populated pixel bins and a positive difference ‘tail’ of bins that extends away from the central spike to the 
maximum elevation difference. The histogram shows that there were a substantial number of negative difference 
pixels; these have no physical meaning and appeared randomly distributed throughout the study area when displayed 
as an overlay (not shown here). For this dataset, it was also evident that the central spike contained spurious non-
canopy difference pixels, while the positive tail in the histogram primarily represents the canopy. The break point 
value of 0.25 meters was therefore used as the lower difference threshold for the overlay. The upper threshold was 
the maximum elevation difference. Figure 8 shows the final return difference overlay data in red superimposed on 
the first return shaded relief image of the study area. 
 

Table 1. Study Area Return Elevation Difference Statistics 
 

Image Type min max mean std. dev. 
First return elevation, m 2280.85 2526.02 2346.54 53.11 
Last return elevation, m 2280.85 2521.90 2346.09 53.06 
Elevation difference, m -23.43 27.96 0.45 1.91 

 

 

 

Figure 8. Final Difference Image Overlay. Figure 7. Study Area Difference Image Histogram. 

A Laplacian image was created for the first and last returns and their statistics are provided in Table 2, in which 
the minimums and maximums are based on absolute values. In this work, only the first return data was used to 
create the Laplacian overlay used for the “best canopy” overlay. A lower Laplacian threshold for the overlay was 
chosen in the same manner as for the return difference overlay. The upper threshold used was the maximum 
Laplacian value. A histogram of Laplacian values for all pixels in the first return DSM is shown in Figure 9. A lower 
Laplacian threshold of 1.25 was chosen to create a realistic overlay in excluding non-canopy pixels associated with 
low values clustered around zero. 
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Table 2. Study Area Laplacian Image Statistics 
 

Image Type ׀min׀ ׀max׀ mean std. dev. 
First return Laplacian 0 75.44 3.82 5.83 
Last return Laplacian 0 72.08 3.74 5.92 

 
A summary of pixel counts for the study area in comparing canopy overlays is provided in Table 3. It is evident 

that the Laplacian method identifies over four times as many canopy pixels as the pulse differencing method (45.0 to 
10.4 percent of study area pixels). The number of canopy pixels tagged by differencing but not by the Laplacian 
method is very low (0.55 %). The Laplacian method thus captured almost all the canopy pixels identified by 
differencing. The “best canopy” overlay, after application of the MORPH_CLOSE gap-filling or closing function as 
described above, contains only 4.4% more of the study area pixels than the final Laplacian overlay (not shown). The 
“best canopy” overlay is shown in Figure 10. While there appears to be excellent agreement with the canopy areas 
visible in the study area shaded relief image (Figure 1), there may be some confusion with the edges of structures in 
the town of Cooke City in the central portion of the area. However, many of these buildings appear to be partially 
surrounded by trees in the full resolution image. An inspection of the full resolution version of Figure 8 reveals that 
many of these apparent trees are identified on the final difference overlay.  
 

Table 3. Canopy Overlay Statistics 
 

Parameter # pixels % study area 

Study area pixels 1500000 100 
Pixels above difference threshold 156558 10.44 
Pixels above Laplacian threshold 675645 45.04 

Pixels above difference and below Laplacian threshold 8270 0.55 
Pixels above Laplacian and below difference threshold 508577 33.91 

Best canopy after gap-filling closing operation 741117 49.41 
 

 
  
 

Figure 10.  Final Best Canopy Overlay. Figure 9. Study Area Laplacian Image Histogram.

The tagged pixels in the “best canopy” overlay were then input into the LM algorithm to calculate candidate 
apex locations. The effect of border pixel configuration size for the LM algorithm (based on 5x5 and 7x7 windows) 
was investigated with respect to the set of locations tagged as candidate apexes resulting from comparing the border 
pixels to the weighted kernel (Figure 5). Table 4 shows candidate and final apex set sizes for both border pixel 
configurations. The 7x7 window configuration produced a 6% larger initial apex set, but a 15% smaller final set 
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after thinning. This suggests that the larger configuration produced more clumping of candidate apexes about 
canopy centers, which are then winnowed by the thinning algorithm. 

Experiments were conducted with various center weight values for the 3x3 kernel to determine its effect on the 
final apex location set after application of the apex thinning algorithm. The sizes of both the initial apex candidate 
set and the final thinned apex set increased slightly with the center weight value. These figures (not shown) revealed 
a minimum in the rate of increase at a center weight value of 90, and this figure was used to create the final apex 
sets. 
  

Table 4. Study Site Apex and Crown Statistics 
 

LM border pixel 
configuration 

Best 
canopy 
pixels      

Apex 
candidate

set size 

Final 
apex set 

size 

Mean 
crown 
dia., m 

variance m2/crown Stems/ha.

5x5 741117 132706 15350 6.93 1.27 48.28 207.1 
7x7 741117 140708 12997 6.93 1.29 57.02 175.4 

 
The final apex sets were used to create crown edge overlays by multi-directional gradient analysis. Results are 

given in Table 4, showing consistent mean crown diameters and variances across both LM border pixel 
configurations. Crown densities represented as m2/crown and stems/hectare were calculated using the ground area 
represented by the “best canopy” overlay after the gap-filling function was applied, and not the entire area of the 
study site. The distribution of calculated integral crown diameters for both LM border pixel configurations is shown 
in Table 5. Figure 11 is a graphic depiction of the distribution using the 7x7 configuration. Figure 12 shows the 
crown edge overlay against a black background for better visibility. Due to image compression for publication, the 
edge configurations do not always appear to be closed features.  
 

Table 5. Study Site Crown Diameter Distributions 
 

LM border pixel 
configuration 

Total 
crowns 

4 meter 
crown bin 

6 meter 
crown bin 

8 meter 
crown bin 

10 meter 
crown bin 

12 meter 
crown bin 

5x5 15350 240 7990 6838 282 0 
7x7 12997 233 6708 5813 243 0 

 
In order to qualitatively assess the performance of the apex-finding algorithms and crown diameter calculations 

on an individual tree basis, the entire processing scheme in Figure 3 was applied to the 321x214 pixel subset shown 
in Figure 2, using the same canopy overlay and apex calculation parameter choices discussed above for the entire 
study site. Since the site subset essentially consists of only trees in the above-ground elevation model, potential 
difficulties with edges of structures tagged by the Laplacian algorithm as canopy are avoided. Final apex and crown 
statistics for the study site subset are provided in Table 6, while Table 7 provides the site subset crown distributions. 
These distributions are very similar in form to those for the entire site.  

Figure 13 shows the site subset “best canopy” overlay after gap-filling. The overlay pixels have been rendered 
partially transparent so that the canopy shaded relief model is visible through the overlay. The derived final apex 
overlay, with each apex location indicated by a small cross on a black background, is provided in Figure 14 for the 
7x7 LM border pixel configuration. Figure 15 shows the crown edge overlay in red with calculated crown diameters 
from the 7x7 distribution given in Table 7. 
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Figure 11. Study Site Crown Diameter Distribution. 

 Figure 12. Study Site Crown Edge Overlay.  
 

Table 6. Site Subset Apex and Crown Statistics 

LM border 
pixel 

configuration 

Best 
canopy 
pixels      

Apex 
candidate

set size 

Final 
apex set 

size 

Mean 
crown 
dia., m 

variance m2/crown Stems/ha.

5x5 45715 7875 993 7.01 1.28 46.04 217.2 
7x7 45151 8146 813 7.04 1.35 55.54 180.1 
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Table 7. Site Subset Crown Diameter Distributions 

LM border pixel 
configuration 

Total 
crowns 

4 meter 
crown bin 

6 meter 
crown bin 

8 meter 
crown bin 

10 meter 
crown bin 

12 meter 
crown bin 

5x5 993 8 504 454 27 0 
7x7 813 12 392 385 24 0 

 
 
 
 

 
 
 
 
 
 
 
 
 Figure 13. Site Subset "Best Canopy" Overlay. Figure 14. Site Subset Final Apex Overlay. 

 
 

SUMMARY AND CONCLUSIONS 
 

Along with canopy mapping, small-footprint multiple-return lidar scanners can be effective in estimating the 
locations of individual trees and some of their structural characteristics. This information is important for models of 
forest change and structure. This effort was aimed at generating coniferous canopy overlays with pulse differencing 
and Laplacian-finding techniques, and identifying stem locations and associated crown diameters from these 
overlays with a combination of a local maximum algorithm and a variation of the Laplacian technique. 

Figure 15. Site Subset Crown Edge Overlay. 
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While results are encouraging, errors of omission and commission were not estimated with ground survey data. 
The average number of elevation model cells over each crown was limited by the ground resolution of the dataset. 
Future work may extend to more complex deciduous canopies allowing realistic attempts at canopy segmentation 
and error reduction. 

These results suggest that for canopies with simple structure, individual crowns may be identified, and their 
diameters estimated, with lidar elevation models of limited ground resolution without a dependence on canopy 
height models. An under-canopy terrain elevation model would further allow estimation of additional forest 
structure parameters. 
 
 

ACKNOWLEDGEMENTS 
 

The author wishes to thank the U.S. Army Engineer Research and Development Center, Topographic 
Engineering Center (ERDC-TEC) Imagery Office for providing the lidar data for this effort. Rebecca Ragon 
(ERDC-TEC) and Melody Clanton (ERDC-TEC) kindly provided graphic support. 
 
 

REFERENCES 
 
Andersen, H.-E., R.J. McGaughey, and S.E. Reutebuch, 2005. Forest measurement and monitoring using high-

resolution airborne lidar, USDA Forest Service – General Technical Report PNW, no. 642, pp. 109-120. 
Blundell, S.B., 2006. Laplacian analysis and return differencing of lidar data for improved canopy extraction, 

Proceedings of the American Society for Photogrammetry and Remote Sensing (ASPRS) Fall Conference, 
San Antonio, Texas, November 2006. 

Chen, Q., D. Baldocchi, P. Gong, and M. Kelly, 2006. Isolating individual trees in a savanna woodland using small 
footprint lidar data, Photogrammetric Engineering and Remote Sensing, 72(8):923-932. 

Cobby, D.M., D.C. Mason, and I.J. Davenport, 2001. Image processing of airborne scanning laser altimetry data for 
improved river flood modeling, ISPRS Journal of Photogrammetry and Remote Sensing, 56:121-138. 

DeBlander, L.T., 2001. Forest Resources of the Gallatin National Forest, U.S. Department of Agriculture, Forest 
Service, Rocky Mountain Research Station, June 2001. 

Drake, J.B., D.B. Clark, J.B. Blair, R.O. Dubayah, and R.G. Knox, 2002. Sensitivity of large-footprint lidar to 
canopy structure and biomass in a neotropical forest, Remote Sensing of Environment, 81(2-3):378-392. 

Dubayah, R.O., and J.B. Drake, 2000. Lidar remote sensing for forestry applications, Journal of Forestry, 98(6):44-
46. 

Maltamo, M., K. Eerikainen, J. Hyyppa, J. Pitkanen, P. Packalen, and X. Yu, 2005. Identifying and quantifying 
structural characteristics of heterogeneous boreal forests using laser scanning data, Forest Ecology and 
Management, 216(1-3):41-50. 

Nelson, R., 1997. Modeling forest canopy heights: The effects of canopy shape, Remote Sensing of Environment, 
60:327-334. 

Nilsson, M., 1996. Estimation of tree heights and stand volume using an airborne lidar system, Remote Sensing of 
Environment, 56:1-7. 

Popescu, S.C., and A.U. Kini, 2004. Treevaw: A versatile tool for analyzing forest canopy lidar data – A preview 
with an eye towards the future, Proceedings of the American Society for Photogrammetry and Remote 
Sensing (ASPRS) Fall Conference, Kansas City, Missouri, September 2004. 

Popescu, S.C., and R.H. Wynne, 2004. Seeing the trees in the forest: Using lidar and multispectral data fusion with 
local filtering and variable window size for estimating tree height, Photogrammetric Engineering and 
Remote Sensing, 70(5):589-604. 

Reutebuch, S.E., R.J. McGaughey, H. Andersen, and W.W. Carson, 2003. Accuracy of a high-resolution lidar 
terrain model under a conifer forest canopy, Canadian Journal of Remote Sensing, 29(5):527-535. 

Watt, P.J., and D.N.M. Donoghue, 2005. Measuring forest structure with terrestrial laser scanning, International 
Journal of Remote Sensing, 26(7):1437-1446. 

ASPRS 2008 Annual Conference 
Portland, Oregon ♦ April 28 – May 2, 2008 


	Next Page
	Previous Page
	========================
	Table of Contents
	Author Index
	Exhibitors
	Copyright
	============================
	Print

