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ABSTRACT 
 
Knowledge of land cover spatial distribution is important for many activities, including environmental monitoring, 
land planning, and resource management. Land cover information at the appropriate time and over large 
geographical regions can only be derived from satellite images. With the recent launch of MERIS, a wide range of 
new possibilities for the periodic land cover characterization at regional scale is available. This sensor offers a 
combination of innovative features, such as high spectral and temporal resolutions, wide geographical coverage and 
improved atmospheric correction. We believe that the exploitation of data obtained by this new sensor fills previous 
technological gaps, improving automatic land cover classes’ discrimination. At the same time, the extra spectral 
information provided by MERIS can introduce some difficulties on land cover characterization, since the 
dimensionality of feature space can be overloaded. In this paper we report the comparison of Support Vector 
Machine (SVM), a new supervised classification system that is independent of feature space dimensionality, with 
most frequently used supervised classifiers for the land cover classification of high dimensional MERIS imagery. 
To reduce feature space dimensionality and filter out redundant information a Fisher’s Discriminant Analysis (FDA) 
was performed for spectral data rearrangement. The original and rearranged/reduced data sets were then used as 
inputs for the several classifiers. The results of the classification allow identifying the efficiency of SVM and FDA 
to improve land cover classification of high dimensional imagery data. The study was carried out with MERIS Full 
Resolution data from 2004 for the continental Portuguese territory.  
 
 

INTRODUCTION 
 
Land cover cartography production is an essential task for scientific research and earth science applications, such 

as landscape management and biodiversity assessment, as well as, in general, to support environmental, social, and 
economic policies. Therefore, mapping landscape regimes that are persistently changing under the influence of several 
factors (e.g., forest fires, clear cuts, and urban fabric growth) must be a regular process. Land cover maps become 
rapidly out of date, while the need for updated intermediate-scale cartography is constantly increasing to help near real-
time spatial decision-making. Remote sensing data are attractive for deriving land cover cartography by means of 
digital image classification, because updated information for continuous time periods and over extensive geographical 
regions can only be derived from satellite systems. 

Visual interpretation and manual classification of remote sensing data is reliable and accurate, but cannot assure 
any longer the production in time of land cover knowledge that is required within many applications, given that is time 
consuming and economically expensive. To cope with this situation, several supervised and unsupervised algorithms 
have been developed and successively implemented for land cover classification of multi-spectral satellite imagery 
(Shah et al., 2003). Even though the automatic exploitation of satellite data for land cover cartography production has 
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proved to be cost-effective, some difficulties associated with imagery characteristics and classification specificities 
still hamper their effective employment (Gonçalves et al., 2005): (1) different land covers share similar spectral 
signatures and cannot always be automatically separated using classical remote sensing data; (2) conventional image 
classification techniques fail at separating a large number of land cover classes with acceptable misclassification 
rates. 

Recently launched Earth Observation (EO) sensors, such as the MEdium Resolution Imaging Spectrometer 
(MERIS) and the Moderate Resolution Imaging Spectroradiometer (MODIS), exhibit enhanced spectral and temporal 
resolutions and offer new potentials and challenges to data analysis. Jackson and Landgrebe (2001) affirm that the 
availability of a large number of spectral bands makes it possible to identify more detailed land cover classes with 
higher accuracy than would be possible with the data from earlier sensors. Quite as well, several studies have proved 
the advantages of performing a land cover classification based on multi-temporal satellite imagery data (e.g., Gonçalves 
et al., 2005; Price et al., 2002; Maxwell et al., 2002; Vieira et al., 2001). However, the exploitation of spectral and 
temporal characteristics of MERIS imagery data, for the improvement of land cover spatial and thematic 
characterization, is still of confidential use in remote sensing community. Presently, few research studies and 
operational programs are focused on the analysis of MERIS data for land cover cartography production (e.g., Clevers et 
al., 2004; Gessner et al., 2004; Santos et al., 2005). 

The introduction of these new generation sensors resulted in a large increase of remote sensing data volumes 
available for land cover classification purposes. Still, high dimensional remote sensing imagery provides a challenge 
to the current classification techniques. Existing algorithms often fail to deliver high classification accuracies and 
tend to suffer from the problem of the “curse of dimensionality”, many times referred to as the Hughes phenomenon 
(Hughes, 1968). Although it is intuitive to think that increasing the dimension of the features should never reduce 
the classification performance, since we are providing a larger amount of information, the performance can in fact 
decrease while we feed more data to the system (Guyon and Elissee, 2003). A large number of land cover classes of 
interest and a large number of spectral bands available require numerous training samples for classification task that 
not always are available, because are expensive and tedious to acquire (Jackson and Landgrebe, 2001). Thus, the 
development of new methods to analyze high dimensional satellite imagery data became extremely necessary 
(Haertel and Landgrebe, 1999; Landgrebe, 2002; Shah et al., 2003). As a result, the dimension reduction of  satellite 
imagery data, via a pre-processing transformation technique that maps data from a high order dimension to a low 
order dimension, is required. The goal of dimension reduction, by feature extraction or selection, is to obtain a few 
features that discriminate the necessary classes with a high degree of accuracy (Guyon and Elissee, 2003). Principal 
Component Analysis (PCA) and Fisher’s Discriminant Analysis (FDA) are dimension reduction techniques that 
could substantially increase classifiers performance by filtering out redundant information. This pre-classification 
procedure must improve classification accuracy of high dimensional imagery by means of frequently used 
classifiers. 

A new supervised classification system based on the statistical learning theory (Vapnik, 1998), defined as Support 
Vector Machine (SVM), has recently been applied to the problem of high dimensional remote sensing data 
classification (Marçal et al., 2005; Mercier and Lennon, 2003; Huang et al., 2002; Zhu and Blumberg, 2002). This 
technique is said to be independent of the dimensionality of feature space as the main idea behind this classification 
technique is to separate the classes with a surface that maximizes the margin between them (Pal and Mather, 2005). 
SVM can obtain a better classification performance and have a more generalization capacity than classifiers that aim to 
minimize the training error rate alone, such as neural network classifiers (Shah et al., 2003). Besides, a small number of 
training samples is enough to train the algorithm, which reveals interesting properties for high dimensional image 
processing (Mercier and Lennon, 2003). 

In this paper we exploit several supervised pixel based techniques for the land cover classification of MERIS high 
dimensional imagery data. This is a preliminary study in the framework of an on going research work that aims at 
developing a systematic classification methodology for the regular production of land cover cartography from medium 
spatial resolution satellite imagery. Specifically, the main goal of this study is to assess the utility of SVM for the land 
cover classification of MERIS high dimensional imagery data in comparison with most frequently used kNN, K-means 
and LDA classifiers. Since these current classifiers are not well adapted to the classification of high dimensional data, 
we perform a dimension reduction of the original spectral information with Fisher’s Discriminant Analysis and in 
addition appraise the accuracy of the several classification methods with the compressed information. To completely 
evaluate the ability of the high spectral resolution MERIS data for land cover characterization, we seek for the 
separation between 19 land cover classes by means of the several classifiers. We experimentally evaluate the 
performance of each classifier on a MERIS image of Portugal Continental for the date of August 14th, 2004.  
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STUDY AREA AND DATA SET 
 

The study area is the entire Portuguese mainland territory. Portugal is in a transition zone featuring diverse 
landscapes representing both Mediterranean and Atlantic climate environments. This landscape heterogeneity 
allows for the extrapolation of the developed methodologies and of the obtained results to many other regions of the 
world.  

 
MERIS data 

The satellite imagery used in this study was acquired by the MEdium Resolution Imaging Spectrometer 
(MERIS). This sensor is on board of ENVISAT, an advanced polar-orbiting Earth Observation (EO) satellite 
launched by the European Space Agency (ESA) in 2002. MERIS is a 68.5° field-of-view push-broom imaging 
spectrometer that covers a swath width of 1,150km and allows a global coverage of the Earth in 3 days. This sensor 
measures the solar radiation reflected by the Earth at a maximum ground spatial resolution of 300m, in 15 spectral 
bands or groups of wavelengths, ranging from the visible to the near infrared (390 nm to 1040 nm) radiance, and 
provides the most radiometrically accurate data on Earth surface that is currently acquired from space (Curran and 
Steele, 2005). One of the most outstanding features of MERIS is the programmability of its spectral bands in their 
width and position. 

MERIS data can be provided at 3 different levels of processing - Level 0, Level 1b, and Level 2 - and at 3 
different spatial resolutions – Full (FR), Reduced (RR) and Low (LR). FR products have a spatial resolution of 
300m, RR of 1200m and LR of 4800m. The Level 0 product corresponds to the data in its most raw format and will 
not generally be available to the end users. Level 1b is annotated engineering data that has been calibrated 
radiometrically and geolocated – this is the Top-Of-the-Atmosphere (TOA) calibrated radiance measured in mWm-
2sr-1nm-1. Level 2 products contain both geolocated geophysical parameters and surface radiance/reflectance 
depending on the surface type. In addition to the core geophysical data, MERIS Level 2 products contain geometric 
information, data describing the sun and viewing geometry, terrain height, some meteorological data and several 
flags that address the quality and the validity of the image.  

In this study we exploit the Level 2 Full Resolution MERIS imagery. These data consists of calibrated surface 
reflectances in 13 groups of wavelengths (original bands 11 and 15 were removed from this product since they 
address O2 content and water vapor) that are atmospherically corrected for Rayleigh scattering, ozone, water vapor 
absorption and aerosol content. We make use of a single image that was acquired by 14 August of 2004. This date 
was chosen due to several criteria. First, and according to Gonçalves et al. (2005), this is the period of the year that 
allows for a better separation among general land cover classes in this region of transitional climate; secondly, this 
image is the one that presents the minor cloud coverage among a set of 12 MERIS images acquired for Portugal for 
the year of 2004.   

The MERIS original data was exported from raw format and converted to GeoTIFF using the BEAM VISAT 
3.4 ® software application. Also, in order to combine these data with already existing auxiliary information it was 
necessary to project the image into a proper map projection (Hayford-Gauss, Datum Lisboa). This was easily 
accomplished since MERIS Level 2 imagery are already geolocated. 
 
Ancillary Data 

To help the selection of samples for algorithm training and testing we made use of existent land cover databases 
and high spatial resolution earth observation data, namely: 

 CORINE Land Cover map for 2000 (CLC2000) (Painho and Caetano, 2005) – land cover map with 44 
classes derived from visual interpretation of Landsat-7 ETM+ images acquired in the summer of 2000; 

 National cover of SPOT High Resolution Geometric (HRG) images acquired in 2003, owned by the 
Portuguese Geographic Institute (IGP); 

 National cover of orthorectified colour infrared aerial photography for 1995; 
 National Forest Inventory for 1995. 
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METHODOLOGY 
 

Land Cover Nomenclature 
In this study we used the land cover nomenclature developed by the Remote Sensing Unit of the Geographic 

Portuguese Institute (IGP) (Table 1). The nomenclature classes were defined through the Land Cover Classification 
System (LCCS) from Food and Agriculture Organization (FAO) (Di Gregorio, 2000). The description of land cover 
classes is based on LCCS classes definition. The rationale behind the development of the nomenclature was two-
fold: (1) a nomenclature that is well adapted to the type of landscapes existent in regions with characteristics similar 
to the Portuguese mainland, and (2) a nomenclature that is compatible with established ones (e.g., CORINE Land 
cover, Global Land cover and the International Geosphere-Biosphere Programme nomenclatures) in order to make 
possible the comparison of our maps with the ones that used other nomenclatures.  

 
Table 1.  Land Cover nomenclature and classes description 

 
Land Cover Class Acronym Description 
Continuous Artificial 
Areas 11 The land cover consists of non-linear built up areas which can be further specified into industrial 

area(s) or urban area(s). The density of the impermeable surface(s) is high. 
Discontinuous Artificial 
Areas 12 The land cover consists of non-linear built up areas which can be further specified into industrial 

area(s) or urban area(s). The density of the impermeable surface(s) is medium or low. 
Rain fed Herbaceous 
Crops                             21 Field(s) are covered by rain fed herbaceous crops. The crop covers the land during the cultivation 

period of a shifting system 

Irrigated Herbaceous 
Crops 22 

Field(s) are covered by irrigated herbaceous crops. The irrigation systems commonly used are 
surface, sprinkler and drip irrigation. The crop covers the land during the cropping period of a 
fallow system. 

Rice Crops 23 Field(s) are covered by herbaceous crops. The crop uses infiltrated water as reserve for 
establishment. The crop covers the land during the cropping of a fallow system. 

Permanent Evergreen 
Crops (Trees or Shrubs) 241 Evergreen tree crops cover a defined area. // Evergreen shrub crops cover a defined area.  

Permanent Deciduous 
Crops (Trees or Shrubs) 242 Deciduous tree crops cover a defined area. // Deciduous shrub crops cover a defined area.  

Broadleaved Closed 
Trees 311 The main layer consists of broadleaved closed trees. The crown cover is more than (70-60)%. The 

height is in the range 30-3 m. 
Broadleaved Open 
Trees 312 The main layer consists of broadleaved woodland. The crown cover is between (70-60) and (20-

10)%. The height is in the range 30-3 m. 
Needleleaved Closed 
Trees 321 The main layer consists of needleleaved closed trees. The crown cover is more than (70-60)%. The 

height is in the range 30-3 m. 
Needleleaved Open 
Trees 322 The main layer consists of needleleaved woodland. The crown cover is between (70-60) and (20-

10)%. The height is in the range 30-3 m. 

Mixed Closed Trees 331 
The main layer consists of broadleaved closed trees. The crown cover is more than (70-60)%. The 
height is in the range 30-3 m. / The main layer consists of needleleaved closed trees. The crown 
cover is more than (70-60)%. The height is in the range of 30-3 m. 

Shrubland 35 The main layer consists of closed to open shrubland. The crown cover is between 100 and 15% The 
height is in the range of 5-0.3 m. 

Natural grassland 37 The main layer consists of closed to open herbaceous vegetation. The crown cover is between 100 
and 15%. The height is in the range of 5-0.3 m. 

Sparse Vegetation 38 

The main layer consists of sparse herbaceous vegetation. The crown cover is between (20-10) and 
1%. // The main layer consists of sparse shrub vegetation. The crown cover is between (20-10) and 
4%. // The main layer consists of sparse tree vegetation. The crown cover is between (20-10) and 
4%.  

Recently Burnt (Trees 
or Shrubs) 310 

The main layer consists of closed to open trees affected by forest fires. The crown cover is between 
100 and 15%. The height is in the range of 30-3m. // The main layer consists of closed to open 
shrubland affected by forest fires. The crown cover is between 100 and 15%. The height is in the 
range of 5 - 0.3m. 

Permanent Wetlands 5 

Primarily vegetated areas containing more than 4 percent vegetation during at least two months a 
year. The environment is influenced by the presence of water over extensive periods of time, i.e. 
water is present for more than three months a year and when water is present less than three months 
a year, it is present 75 percent of the flooding time. The vegetative cover is characterized by the 
presence of (semi)natural vegetation which species composition, its environmental and ecological 
processes are indistinguishable from, or in a process of achieving, its undisturbed state. The 
vegetative cover is not artificial and does not need to be managed nor maintained. This class 
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includes floating vegetation but excludes areas with only occasional flooding. 

Barren 6 
Primarily non-vegetated areas containing less than four percent vegetation during at least 10 months 
a year. The environment is influenced by the edaphic substratum. The cover is natural. Included are 
areas like bare rock and sands. 

Water Bodies 7 
The land cover consists of natural waterbodies. A further specification can be made in flowing or 
standing water. // The land cover consists of artificial water bodies. A further specification can be 
made in flowing or standing water. 

 
Land Cover Sampling 

In order to test the several classification approaches using the defined nomenclature, we carry out a collection 
of samples for the 19 nomenclature classes for the year of 2004. The sampling process was performed by visual 
interpretation of high spatial resolution Earth Observation data, namely SPOT5-XS images acquired during the year 
of 2003 and orthorectified colour infrared aerial photography of 1995. To help sampling collection we also made 
use of the land cover databases described in the Study Area and Dataset section. 

Each sample represents a specific land cover class covering at least 90% of the area covered by a MERIS 300-
by-300 m pixel (same as the nominal resolution of used satellite images). The goal was to have, for each land cover 
class, the samples distributed all over the mainland territory in order to obtain a high-quality representation of 
possible regional within class differences. For each class we collected 40 samples and its spatial distribution is 
shown in Figure 1.  

 
Figure 1. Spatial distribution of collected samples. 

 
Dimension Reduction 

When data to be classified lie in multi-dimensional vector spaces, it is often the case that not all dimensions 
show the same discrepant power. Ever because components are highly correlated, or simply because all classes 
merge in a unique cluster when looking at marginalized data in some particular direction, redundant or information 
less coordinates can be discarded from a classification viewpoint. As computational cost of classifiers increases 
rapidly with the feature space dimension, it is in general profitable to keep the dimensionality of the problem as 
small as possible, as long as it does not degrade the classification accuracy. The dimensionality issue can turn even 
worse in the supervised case: if the feature space dimension is excessive compared to the size of the available 
training set, the classifier can fail at finding a simple decision rule. All this makes data dimension reduction an 
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important step in classification task. 
Feature selection and feature extraction are the two common ways to perform dimensionality reduction (Guyon 

and Elissee, 2003). Feature selection refers to techniques that identify the best subspace within the input features 
space, whereas extraction methods aim at finding the best transformation (by means of coordinate’s combinations) 
of the input feature space. The choice between those two approaches depends on the physical meaning of the 
coordinates dimension. 

Principal Component Analysis (PCA) (Thomaz et al., 1999; Jain et al., 2000) is a widely used feature 
extraction that relies on the eigenvectors decomposition of the data covariance matrix. The corresponding linear 
transformation is an axis rotation that yields a system of systematically uncorrelated vectors (and statistically 
independent if data are normally distributed), aligned with the directions of maximum overall data variance. 
Mapped in this new coordinate system, data are compactly represented and it is likely that retaining only the few 
first components associated to the largest eigenvalues, suffices to explain most of the overall data variability. 
Clearly though, this is an unsupervised method that does not take into account any prior information about classes, 
and therefore nothing guarantees that the directions of maximum variance are also the directions of maximum 
classes discrepancy. 

Fisher’s Discriminant Analysis (FDA) is a supervised extension of PCA, which identifies a reduced dimension 
system that enhance inter-classes separability (Mousavi et al., 2003; Jain et al., 2000). Inter-classes separation is 
here measured by the Fisher criterion, calculated as the eigenvalues of the between-class scatter matrix (B) divided 
by the within-class scatter matrix (W). The within-class scatter matrix is defined by: 
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where qj is the number of samples in class j, and x is the mean of the overall data distribution. 
The representation maximizing classes discrepancy was proposed by Fisher as the projection onto the 

eigenvectors associated to the largest eigenvalues of the matrix BW 1− . 
 
 
 

Classification 
k-Nearest Neighbor. kNN is an instance-based learning algorithm (Cover and Hart, 1967) based on a distance 

function (e.g. Euclidian distance) between pairs of observations. The algorithm is quite simple: given a feature test 
vector, the system finds the k-nearest neighbors among the training vectors, and uses the labels of these k neighbors 
to determine the class of the unknown sample. 

K-means. The decision rule adopted in K-means classifiers is to attribute a sample to-be-classified to the class 
which centre of gravity is closest. 

Linear Discriminant Analysis. This classifier combines a Fisher Discriminant Analysis with a linear (or 
quadratic) separator function. Moreover, LDA implicitly assumes that data are normally distributed within each 
class (Johnson and Wichern, 1998). 

Support Vector Machines. Support Vector Machines (SVM) are a new generation of supervised learning 
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systems based on recent advances in statistical learning theory (Cristianini and Shawe-Taylor, 2000). Pioneered by 
the work on learning strategy by Vapnik and collaborators (Boser et al., 1992; Vapnik, 1998), they have rapidly and 
successfully been applied to numerous real-world classification problems. 

Conceptually, SVM rationale is that a classification problem that does not have a satisfying solution in its own 
observation space may have one simple and efficient in a more complicated representative system. As so, SVM use 
a hypothesis space of linear indicator functions to draw classification in a high dimensional (possibly infinite) 
feature space, image of the observation space by a non-linear mapping  . 

Consider a binary classification-learning task(*)and the following data training set: 
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with samples ),( ii yx  drawn i.i.d. according to some unknown but fixed probability distribution ),( yP x . The 

non-linear mapping   transforms the xn -dimensional input space X  into the feature space F , and let the set of 
hypotheses be linear hypothesis functions of the type: 
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One remarkable fact about this hypothesis function (written here in its dual form) is that it implies the data only 
through their inner products in the feature space. Therefore, if    is properly chosen so that it obeys the so-called 
kernel condition,  
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we do not even need to know the underlying feature map   to be able to learn in the feature space.  
Assuming so, the problem is then to determine the coefficients },...,1,{ Nii =α that minimize the 

classification error on unseen samples. Ideally, the best classifier should minimize the expected value of the loss or 
risk: 
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where the loss function 0))(,( ≥xhyL , penalizes the deviations. In practice however, the joint probability 
function ),( yP x is unknown, and the expected loss (also called generalization loss) is approximated by the 
empirical classification error based on the available information (i.e. the training set). Then, the empirical risk 
functional reads: 
 
  

                                                 
(*)

For the sake of simplicity we restrict this introductory study to the case of a two-classes classification. Generalization to multiple classes 
problems is straightforward using a one-versus-the-rest strategy. 
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Often though, finding the hypothesis *h that minimizes this empirical risk leads to an ill-posed problem that 
results in the well-known phenomenon described as over-fitting in the literature (i.e. the selected hypothesis is too 
complex). One way to avoid over-fitting tolerating noise and outliers, is to restrict the complexity of the hypothesis 
function, by introducing a regularization term (Vapnik, 1982). This regularization term is closely related to the 
notion of margin, another important concept for SVM that reflects the sensitivity and tolerance of the classifier to 
the samples },...,1,{ Nii =x  that stand “close” to the (non-linear) separator. Those points are called support 
vectors, and the solution that minimizes the regularized empirical risk function is referred to as a soft margin SVM 
(in contrast to a hard margin SVM that systematically zeroes the empirical loss). Solution to this quadratic 
optimization problem is classically obtained by Lagrangian theory and comes out to find the Lagrangian multipliers 
 * that maximize the following quantity: 
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C is the regularization parameter that bounds the Lagrangian multipliers (i.e. the weights associated to the support 
vectors) controlling this way the capacity of the hypothesis function class(*). 

Finally, a Radially Basis Function (RBF) kernel, 
2

2

),( σ

zx
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−
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= eK , with user pre-defined sample variance  2, 

is chosen because it maps the input space into an infinite dimensional feature space and often yields good results for 
nonlinear regression (Suykens et al., 2002; Seeger, 2004). 
 
 

RESULTS AND DISCUSSION 
 

All classification results we report in this section were obtained using a cross validation technique that permits 
evaluating classifiers’ efficiency (in terms of generalized bias) using only the collected sample set. We fixed to five 
the number of cross validation folds. Thus, the initial set of 40 samples per class was divided randomly into five 
subsets: each time four subsets are used for training purpose, while the remaining fifth is used for classification test.  

Figure 2 presents the mean spectral signatures of land cover classes derived from the MERIS Level 2 image of 
August 14th, 2004. All curves, except those for impervious land covers like urban or barren, display a minimum and 
very similar reflectance value along the visible wavelength range that is comprised between 400 and 700nm. This is 
mainly because these reflectance wavelengths are scattered by the atmosphere and at the same time largely absorbed 
by chlorophyll – land cover pixels with vegetation do not show up very brightly in this fraction of the spectrum. 
Although spectral similarities exist among vegetated land cover classes, these bands can be useful for 
soil/vegetation discrimination and mapping of man-made features. On the other hand, near infra-red wavelengths 
are good for mapping vegetation biomass content, providing an evident contrast between different types of 
vegetation. Vegetation classes show a steep slope between the red and the near infra-red reflectance that is 

                                                 
(*)

There exists an alternative way for controlling the hypothesis function capacity, which amounts to fix the proportion of training samples that 
will lie between the boundary and the margin hyperplane. In SVM literature, this regularization strategy is often referred to as the  -
parameterization, and we will use this in our study. 
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characterized by a peak around 700nm. This portion of the spectrum appears as disjunction point amongst vegetated 
land cover classes that maximizes their separation. This suggests that the combination and exploitation of land cover 
spectral profiles along visible and near-infrared wavelengths is important for the separation of different land cover 
classes and should significantly improve classification scores obtained with a lower dimensional representation of 
the available spectral data. 
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Figure 2. Mean spectral signatures for land cover classes derived from the MERIS image of August 14th, 2004. 
 

We first performed an empirical estimation of the MERIS spectral bands correlations, which unquestionably 
evidenced the need of dimension reduction to remove redundant information. The averaged correlation coefficient 
between bands of the visible interval is about 95%, and it goes up to 99% for infra-red bands. In contrast, this same 
averaged coefficient falls down to 33% when measuring the correlation between visible and infra-red wavelengths. 
Then, it is not surprising that a Principal Component Analysis applied to the samples set reveals that more than 99% 
of the overall data variance summarizes in the first three principal components. As a result, on can expect that 
feature extraction, using for instance Fisher’s Discriminant Analysis, will dramatically improve classification 
performances. 

In Table 2, we present the overall classification scores obtained when applying the different classifiers 
described in the Methodology section, with and without prior dimension reduction. 
 

Table 2.  Overall classification accuracies achieved with different classifiers and feature data sets 
 

Overall accuracy (%) 
Classifier 

Reflectance data FDA output data 
kNN 64 76 

K-means 31 67 
SVM 73 78 
LDA - 77 

 
As expected, dimension reduction through FDA considerably improves the overall classification performances 

obtained with both kNN and K-means classifiers. This suggests that Land Cover classes are better separated (w.r.t 
Euclidean distance, at the core of theses two classifiers) in the reduced eigenvectors hyper plane than in the original 
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highly dimensional feature space. Moreover, results obtained with LDA not only indicate that data are reasonably 
linearly separable in the transformed space, but also that multivariate canonical distribution law is in good 
agreement with the normal hypothesis. Yet, it is worth noticing that to ensure linear separability of data with a 99% 
confidence interval, 11 eigenvectors were still needed (recall that initially we are dealing with reflectance vectors of 
dimension 13).  

Regarding SVM results, the influence of dimension reduction is not so drastic, in accordance with the well 
known fact that SVM is quite insensitive to the curse of dimensionality.  

Now, in terms of performances and computational costs, SVM clearly leaders when no dimension reduction is 
possible. Whenever FDA is affordable, then k-NN and LDA attain results very comparable to the ones achieved 
with SVM. However, the latter classifier is computationally more expensive, and LDA might be in that case a better 
choice. 

Let us now split the global classification accuracy into generalization losses per land cover class (Table 3), 
considering the SVM classification of reflectance data linearly mapped by FDA. A closer view at the producer’s and 
user’s accuracy shows that “Broadleaved Closed Trees” (311) is definitely the less distinctive land cover class, 
frequently confounded with “Broadleaved Open Trees” (312) and “Mixed Closed Trees” (331). On the contrary, 
pixels of “Irrigated Herbaceous Crops” (22) and “Rice Crops” (23), two land cover classes that were very close 
according to mean spectral profiles of Figure 1, surprisingly almost never mix up. These results suggest that main 
classification puzzlement occurs among pixels of classes that contain the same land cover features but in different 
proportion arrangements. Land cover classes that consist of absolutely different surface elements, even with 
vegetation within their composition, are well separated. This demonstrates that the visual spectral similarity amongst 
different land cover classes does not imply their mixing, as attested by the overall accuracy results obtained with the 
exploited classifiers. 
 

Table 3. User’s and producer’s per class. This repartition corresponds to a SVM classification of FDA 
transformed data based on reflectances measured at a single date (August 14, 2004). 

 

Land cover 
class 5 6 7 11 12 21 22 23 38 241 242 310 311 312 321 322 331 351 371 

User's 
Accuracy 

(%) 

5 39               1    98 
6  25  1 3    7   1       3 63 
7   40                 100 
11  1 1 24 11  1    1  1       60 
12  1  7 31    1           78 
21      36    2         2 90 
22       31 1  1 3   1   1 2  78 
23       5 35            88 
38  1   1    34   1    1  1 1 85 

241      3  1  26 8   1     1 65 
242          6 28  1 3    1 1 70 
310            39 1       98 
311         1 1  1 18 9  3 7   45 
312             2 36  1 1   90 
321               31 7 2   78 
322         4   1 1  5 26  1 2 65 
331       1      4 1 5  29   73 
351         2      3   35  88 
371      1   2  1 1   2  2  31 78 

Producer's 
Accuracy 

(%) 
100 89 98 75 67 90 82 95 67 72 68 89 64 70 67 66 6 88 76  
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CONCLUSION 
 

The main goal of the current study was to evaluate the usefulness of using SVM for the characterization of 
numerous land cover classes with high spectral dimensional MERIS imagery data of Portugal continental. The 
achieved results suggest that SVM classifier outperforms kNN, K-means and LDA classifiers in term of overall 
classification accuracy with both data sets – the full MERIS Level 2spectral imagery and the low-dimensional 
representation of such data derived through Fisher’s discriminants. The level of classification accuracy achieved 
with SVM classifier is better than with the other classifiers when the whole spectral information is used. On the 
other hand, the kNN and LDA performed a land cover classification with similar accuracy to SVM when a low-
dimensional and rearranged representation of spectral data is used as input for classification task. However, unlike 
kNN and LDA classifiers, SVM does not require a pre-processing technique to reduce data dimensionality in order 
to improve its classification accuracies, since they remained stable with full and low dimensional imagery data. The 
preliminary tests with the full spectral data and compressed information with FDA showed that common classifiers 
had to face the problem of insufficient training data, which logically degraded the classification scores. In contrast, 
SVM proved to be insensitive to the dimensionality of input data, since classification results with MERIS data are 
improved, more stable and reliable than with other classifiers. From a methodological viewpoint, SVM are powerful 
and easy to tune learning systems that should rapidly enter the standard classifiers’ toolbox used in remote sensing 
applications. 

Regarding the particular land cover classes discrimination we think that MERIS imagery have an enormous 
capability to distinguish between them. The results proved that large mixing occurs only between land cover classes 
that contain the same land cover features but in different proportion arrangements. Classes with completely different 
configuration characteristics present a classification accuracy obtained with SVM classifier that is over 80%. 

Future work will rely on the multi-temporal analysis of MERIS data, land cover classes redefinition, and data 
fusion appliance, since we consider that is possible to increase the overall classification accuracy obtained with 
MERIS images. We will also compare the classification accuracy obtained with MODIS data, a sensor with similar 
spatial and temporal resolutions to MERIS, but that acquires spectral information within short wavelength infrared. 
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