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ABSTRACT 
 
Sigma-Trees associated with residual vector quantization (RVQ) has been used for image-driven data mining to 
detect features and objects in a digital image with a degree of success. RVQ methods based on σ-tree structures have 
been designed to implement successive refinement of information for image segmentation. In such implementations, 
RVQ based novel methods are devised for pixel-block mining, pattern similarity scoring, class label assignments 
and attribute mining (Barnes, 2007a).  Direct sum σ-tree structures are used for near-neighbor similarity scoring. 
The variable bit-plane data representations produced by σ-tree structures not only provides an approach for image 
content segmentation and a structure for formulation of Bayesian classification, but also offers a solution to the 
challenge of high computational costs involved in pixel-block similarity searching. Such σ-tree based multi-stage 
RVQ classifiers have yielded promising image-content segmentation/classification yielding fine-grained features 
extraction. This ability to produce fine-grained features has been exploited in object detection applications. 
However, in the context of object identification the methods have been applied heuristically on single stages of the 
multi-stage σ-tree based direct sum successive refinement data representation. As a result, object detection with 
optimal rejection of false alarm is not guaranteed.  Gibbs random field (GRF), also known as Markov random field 
(MRF), provides a joint probabilistic framework to model the object identification task in digital images. As a result, 
the image segmentation task can be solved optimally in the maximum aposteriori probabilistic (MAP) sense. Thus, 
the advantages of the σ-tree based RVQ classifier to provide fine-grained feature extractions for object of interest 
can be exploited with an MRF-based model of the object. This paper demonstrates the use of MRF on a 0th order 
output of the σ-tree based RVQ for the purpose of object detection.  
 
 

INTRODUCTION 
 
Multistage RVQs with optimal direct sum decoder codebooks have been successfully designed and 

implemented for data compression. The same design concept has yielded good results in the application of image-
content classification and has also provided an effective platform to perform image driven data mining (IDDM) 
(Barnes, 2007a), (Barnes, C. F.,  Fritz, H., and Jeseon Yoo, 2007b). However, in the context of object identification 
the methods have been applied heuristically on single stages (0th order segmentation maps) of the multi-stage σ-tree 
based direct sum successive refinement data representation. As a result, object detection with optimal rejection of 
false alarm is not guaranteed. GRF provides a practical framework for object detection in images. However, solving 
the joint probabilistic image model proves to be intractable.  The Hammersley-Clifford theorem establishes the 
Markov-Gibbs equivalence whereby the GRF can be equivalently represented by a Markov random field (MRF). 
This theorem allows the global property of the GRF to be broken down to an MRF with local property and thus 
provides an optimal solution in the maximum aposteriori probabilistic (MAP) sense.  

The paper is organized in sections. In the following sections the RVQ and MRF models are briefly explained. A 
section is dedicated to the results of the experiment in which the use of the MRF model on a 0th order segmentation 
map of the RVQ is demonstrated.  The conclusion is drawn in the last section. 
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RESIDUAL VECTOR QUANTIZATION 
 
Residual vector quantization or quantizer (RVQ), also known as multistage vector quantization or quantizer 

(MSVQ), have been designed with direct sum codebooks (Barnes, 1993), (Juang and Gray, 1982), (Makhoul, 
Roucos and Gish, 1985) and (Arnold, 1987). Direct sum codebooks are memory efficient. For example, for an RVQ 

with P stages and N code-vectors per stage wise codebook, the resultant direct sum codebook contains  

code-vectors, but requires memory storage of only  constituent code-vectors, where Np is the number of 
code-vectors in the pth stage codebook.  
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‘x’ - Stage no. 
‘y’ - Codevector  
        index/stage 

1 , 1 1 , 2

2 , 1 2 , 2

n , 1 n , 2

(a) 

(b) 

x , y

1 , 1 1 , 2

2 , 22 , 1

N , 1 N , 2N , 1 N , 2 

2 , 22 , 1

N , 1 N , 2N , 1 N , 2

 
Figure 1. (a) 2-code-vector/stage RVQ with n=N stages or codebooks. (b) Direct sum codebook for N-stage RVQ 

with 2-code-vectors/stage. 
 

Figure 1 illustrates the construction of an RVQ with N stages and two code-vectors per stage wise codebook. 
The stages are numbered in the top-down manner, where the first stage is the top-most layer and the last stage is the 
bottom-most layer of the RVQ. Further works focused at improving the direct sum codebook design are 
(Chan,Gupta and Gresho, 1992), (Barnes,Rizvi and Nasrabadi, 1996). Common to all these design strategies is sub-
optimal sequential search encoding, done so to make the RVQ implementation computationally feasible. 

After each stage of the RVQ, a segmentation map of the input image can be generated based on the mapping of 
the input on the respective codevectors at that stage (Barnes, 2007a). Such a segmentation map is termed as 0th order 
segmentation map. In this paper, object-specific features extraction is performed by imposing MRF framework on 
the 0th order segmentation map generated from a single stage of the RVQ developed by C. F. Barnes (Barnes, 1993). 
Figure 2 shows an example of such a segmentation map generated from the second stage of an eight-stage, three-
codevector per stage RVQ. 

 
 

MRF MODEL 
 
Bayesian Labeling Based on MRF 

The MRF model used in this paper is based on S. Z. Li (Li, 1995). Let s = {1,2,…,m} be a set of discrete sites 
and L+ = be a set of labels which include M physical labels (1,2,….,M) and a virtual NULL label (0). 
The aim is to assign a label from L+ to each of the sites in s subject to some contextual constraints. Let 
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Figure 2. Segmentation map generated from the 2nd stage of 8-stage RVQ with 3-code-vectors/stage.  
 

be a configuration of an MRF with  L+ assuming a mapping or a labeling of l. Let 
 (m-time) be the set of all possible configurations. 

Given the likelihood function p(r | f) and a priori probability P(f), the posterior probability can be computed by 
using the Bayesian rule  The Bayesian labeling problem is the following: given the 
observation r, find the MAP configuration f* from an admissible space W, that is, 

 
                                                                                              (1) 
 
According to the Hammersley-Clifford theorem of Markov-Gibbs equivalence (Geman and Geman, 1984), the prior 
probability P(f) obeys a gibbs distribution  

                                                                                                         (2) 
 
Where Z is a normalizing constant, ‘T’ is a global control parameter called the temperature and U(f) is the prior 
energy. The prior energy has the form  

                                (3) 
 

Where C is the set of cliques in a neighborhood system  for l in  is the collection of sites 
neighboring to i. 

The likelihood p(r|f) depends how r is observed. It can usually be represented in an exponential form 
p where is the likelihood energy. Hence the posterior probability is Gibbs 
distribution P  with posterior energy 

 

                            (4) 
Therefore, given an observation r, a labeling f of sites in l is also an MRF on l with respect to . The MAP solution 
is equivalently found by  
                           (5) 
 
Posterior Distribution 

Neighborhood System and Cliques. In all cases,   can be the set of all the other sites . This is a trivial 
case for MRF. In contextual matching, it can consist of all other sites which are related to i by the observed realtions 
in r. When the scene is very large,  needs to include only those of the other sites which are within a spatial 
distance from i i.e., . The threshold  can be reasonable 
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related to the size of the model object. The set of first order cliques is . The set of second order 
cliques is . In this paper, only cliques of up to order two are considered. 

Prior energy. The single site potential is defined as 
 

 
 
where  is a constant. This definition implies that a penalty  is incurred, if  is the NULL label; or otherwise 
no penalty. The two sites potential is defined as  
 

 
 
where  is a constant. Similarly, a penalty  is incurred if either  is the NULL; or otherwise no penalty. 
The above clique potentials specify the prior energy. 

Likelihood Energy. The joint likelihood function p(r | f) has the following characteristics: (1) it is conditioned 
on pure non-NULL matches  , (2) It is independent of the neigborhood system , and (3) It depends on 
how the model object is observed in the scene which in turn depends on the underlying tranformations and noise. 
Assume r = (r1, r2) where  and each r1(i) is a vector of K1 unary properties; 

 and each  is a vector of K2 binary relations. The same assumptions are also 
made for R = (R1, R2). The properties and relaitons are assumed to be invariant under the call of underlying 
transformations for R to r. Assuming an observation model to be r = R + n where n is the independent Gaussian 
noise, then the likelihood energy is 
 

            
                  (6) 

  
because the noise white, we have  and  
The likelihood potentials are  

  
and                         (7) 

                                                    
 
where  are the standard deviations of the noise components. The vectors  
and  are the “mean vector” for the random vectors  and , respectively. When the noise is 
correlated, there are correlatin terms in the likelihood potentials. The assumption of the independent Gaussian noise 
made may not be accurate but is usually a practical approximation. 

Posterior Energy. The posterior energy in (4) can then be derived as  
 

    
  

                  (8) 
 
It can be written into a compact form 
 

                                                                            (9) 
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where  

 
and 

 
 
are local posterior energy of order one and two, respectively. 
    The involved parameters are the noise variances  and the prior penalties , with T = 1 fixed. Only the 
relative, not absolute, values of  and  are important because the solution f* remains the same after the 
energy E is multiplied by a factor. The  in MRF prior potential functions controls the behaviour of the system 
and can be set as desired. The higher the prior penalties , the fewer features in the scene will be matched to the 
NULL for the minimal energy solution. For the purpose of this particular RVQ framework, the parameters  can 
be ignored and  is chosen arbitrarily. 
 
 

EXPERIMENT RESULTS 
 
 Here the results are presented for an object specific-feature 

extraction application. In the experiment the 0th order segmentation map 
is generated at the second stage of the RVQ. The aim of this object 
detection experiment is to detect vehicles in the input image shown in 
Figure 3(a). The RVQ has eight stages with four codevectors per stage. 
The segmentation map is shown in Figure 3(b).  The color regions 
associated with the features to be detected are given as follows:- 

- Red :  Edges 
- Green: Top/roof of a vehicle 
- Yellow: Other flat objects (like road, pavement, building 

rooftops etc.) 
The MRF model is first order i.e., only pairwise cliques are considered. 
‘Edges’, ‘Car-top’ and ‘Other flat surfaces’ are the three features used in 
the input image. The complete detail of the MRF model is given as follows :- 

- Order: 1st order 
- Features and their properties 

 Edge: Properties –    Length and area of the ‘Edge’. 
Pairwise relation – Distance and angle between two ‘Edges’. 
   

 Car-top: Properties – Area as the indicator of its size. 
Pairwise relation – Enclosed by ‘Edges’. 

  Adjacent to an ‘Edge’. 
The vehicle-specific features are ‘Edge’ (Red region) and ‘Car-top’ (Green region). The pre-specified values of the 
properties and the pairwise relations between ‘Edge’ and ‘Car-top’ are tabulated in Table 1. The principle for 
detecting a vehicle using the two features is that these two features in the image must have the properties and 
relations somewhat similar to the pre-specified properties and relations corresponding to the vehicle object.  

It can be observed in the 0th order segmentation 
map, figure 3(b), there are considerable false positives 
for ‘Edge’ and ‘Car-top’. Moreover, in many of the 
false positives, the two features are also adjacent to 
each other, thus partially satisfying the pairwise 
relations of ‘Edge’ and ‘Car-top’. The object detection 
results of the MRF model is illustrated in figure 2(a). 
It can be seen that almost all the false positives are 
rejected. The true-positive detected objects are marked with the green box. The false-positive detections are marked 
with the red box. The results of the vehicle-detection are tabulated in Table 2. 

Table 1. Vehicle-Specific Feature 
Values 

Edge Car-top 

Length 
(pixels) 60 

Area 
(pixels) 300 

Distance b/w 2 
Edges (pixels) 20 

  Angle between 
2 adjacent 

Edges (degrees) 
90 

Area 
(pixels) 1200 

Table 2. Vehicle Detection Performance 

True Positive  False 
Negative False Positive 

10/15 5/15 1 
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(a) 

 

 
 

(b) 
Figure 3. (a) The input image. The true-positive detected vehicles are marked by green box and false-positive by 

red box (b) Segmentation map generated from the 2nd stage of 8-stage RVQ with 3-code-vectors/stage.  
 

 
 

CONCLUSION 
 
Markov random field (MRF) provides a suitable framework to model objects based on the object specific 

features. RVQ, developed by C. F. Barnes (Barnes, 1993), has the capability to generate fine grained features 
(Barnes, 2007a). The advantages of the σ-tree based RVQ classifier to provide fine-grained feature extractions for 
object of interest can be exploited with an MRF-based model of the object. With the help of an experiment with 
simplistic settings, this paper has demonstrated that MRF can be successfully used to correlate object-of-interest 
specific RVQ features and perform effective detection of the object-of-interest. The MRF-based object detection on 
a 0th order output of the σ-tree based RVQ is optimal in the MAP sense. However, the efficacy of MRF with the 
RVQ can only be fully realized when more complicated and comprehensive clique structures, properties and 
relations are incorporated in the MRF model. Research in this direction is a work in progress.   
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