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ABSTRACT 
 
LIDAR is an active remote sensing technology which performs range measurements from the sensor and converts them into 
3D coordinates of the Earth's surface. Recent advances in LIDAR hardware make it possible to digitize full waveforms of 
the returned energy. LIDAR waveform decomposition involves separating the return waveform into a mixture of Gaussians 
which is then used to characterize the original data. It plays an important role in LIDAR data processing because the 
resulting components are expected to represent reflection surfaces within waveform footprints and ultimately affect the 
interpretation of the data. Computational requirements in the waveform decomposition process result from two factors; (1) 
estimation of the number of components in a mixture and the resulting parameter estimates are inter-related and cannot be 
solved separately, (2) parameter optimization does not have a closed form solution, and thus needs to be solved iteratively. A 
current state-of-the-art airborne LIDAR system acquires more than 50,000 waveforms per second, and the number of 
waveforms easily exceeds tens of millions even for small area. Therefore, decomposing the enormous number of waveforms 
is challenging using traditional single processor architecture. Four work load balancing approaches – (1) a no weighting 
(NW), (2) a linear weighting based on the decomposition results (DRLW), (3) a squared weighting based on the 
decomposition results (DRSW), and (4) a linear weighting based on the decomposition time (DTLW) of sampled 
waveforms - for a parallel LIDAR waveform decomposition were assessed in terms of the scalability and stability. The 
DTLW approach yielded the best efficiency when the number of processors is small, and the NW approach showed the most 
scalable and stable results as the number of processors gets larger. 
 
 

INTRODUCTION 
 

LIDAR (LIght Detection And Ranging) is an active remote sensing technique which provides 3D coordinates of the 
Earth's surface by performing range measurements from the sensor. Hardware limitation prohibited early LIDAR systems 
from recording the continuous back-scattered energy, and resulted in recording only multiple discrete returns by filtering the 
return signal. These discrete returns are combined with the location and the attitude of the sensor to generate 3D coordinates 
of the Earth's surface by simple vector calculations. However, recent advances in hardware design now make it possible to 
record high volume of data in short period of time, and enable a full waveform LIDAR system which digitizes the 
continuous return signal, which is called a waveform. The full waveform LIDAR system has recently attracted attention of 
researchers because it contains more information than traditional discrete returns LIDAR system. Most discrete return 
LIDAR systems not only use proprietary algorithm to detect peaks so the end-user has no way to assess the quality of the 
results, but also limits number of returns (usually from 2 to 5) from a waveform. However, full waveform LIDAR data 
provide the end-user raw data to extract more accurate and meaningful information. Researchers (Reitberger et al., 2008) 
reported that a much higher point density was achieved by decomposing waveforms than conventional discrete return 
LIDAR system and higher classification accuracy was achieved. Other researchers (Duong et al., 2008) reported better 
extraction of canopy and ground elevations using the ICESat waveforms even in heavily forested areas. 

A LIDAR waveform can be modeled as the convolution of the outgoing signal and the vertical structure within the 
waveform footprints. LIDAR waveform decomposition refers to the process of decomposing a return waveform into a 
mixture of components which are then used to characterize the original waveform data. It plays an important role in LIDAR 
waveform processing because the resulting decomposed components are assumed to represent reflection surfaces within 
waveform footprints. Hence the decomposition results ultimately affect the interpretation of LIDAR waveform data. The 
most common statistical mixture model used for the process is the Gaussian mixture, whose parameters include mixing 
coefficients and the mean and standard deviation of each component. Various researchers utilized a Gaussian mixture model 
to decompose LIDAR waveform into components by utilizing various optimization techniques such as a Gauss-Newton, a 
Levenberg-Marquardt, and the EM (Expectation-Maximization) algorithms (Chauve et al., 2007; Hofton et al., 2000; Jung 
and Crawford, 2008; Persson et al., 2005). Waveform decomposition is an unsupervised machine learning problem, and a 
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computationally intensive process. Computational requirements in the waveform decomposition process result from two 
factors; (1) estimation of the number of components in a mixture and the resulting parameter estimates are inter-related and 
cannot be solved separately, and (2) the parameter optimization problem does not have a closed form solution, and thus 
needs to be solved iteratively. The current state-of-the-art airborne LIDAR system acquires more than 50,000 waveforms 
per second (Mallet et al, 2009), so decomposing the enormous number of waveforms is challenging using traditional single 
processor architecture. Furthermore, there may be a situation in which LIDAR waveform data need to be processed near 
real-time. A parallel LIDAR waveform decomposition algorithm with four different work load balancing approaches - (1) 
no weighting (NW), (2) a decomposition results based linear weighting (DRLW), (3) a decomposition results based squared 
weighting (DRSW), and (4) a decomposition time based linear weighting (DTLW) – were developed and tested using 
various number of processors (from 8 to 256) in the previous study (Jung et al., 2009). However, the scalability and stability 
of each work load balancing approach have not been studied yet. The goal of this study is to assess the scalability and 
stability of those approaches using larger number of processors (up to 1,024) with different processor selection scheme from 
each node such as 1 processor per node, 4 processors per node, and 8 processors per node. 
 
 

DATA AND COMPUTATIONAL PLATFORM 
 
Full Waveform Data 

The Freeman Ranch is a research site located near San Marcos, TX (USA) and managed by Texas State University. It 
contains a mixture of rangeland and woodlands. Topography is primarily low hills divided by small creeks, except with 
steep slopes along drainage channels. An Optech ALTM (Airborne Laser Terrain Mapper) 1225 small footprint LIDAR 
system with a full waveform digitizer, which is owned and managed by the University of Texas at Austin (UT), was flown 
over Freeman Ranch on 12 August 2005.  The UT LIDAR laser system operates at 1064 nm with a pulse rate of 25 kHz. Its 
waveform sampling rate is 1 ns, which corresponds roughly to 15 cm in the vertical dimension.  Five flight lines were 
acquired at an altitude of 650 - 720 m above ground level with a resulting footprint diameter of approximately 13 - 14 cm 
(Neuenschwander et al., 2008). About 21 million waveforms were acquired in five strips, but only data from 4th strip, which 
contains 2,867,200 waveforms, were used in this study. 
 
Computational Platform 

The Steele community cluster, which is managed by RCAC (Rosen Center for Advanced Computing) at Purdue 
University, was used for the study. It consists of 893 nodes and 7,144 processors. Each node has two quad-core processors 
and either 16 GB or 32 GB of memory. They are inter-connected by either Gigabit Ethernet or Infiniband. All nodes run Red 
Hat Enterprise Linux 4 and use PBSPro 9 for job management. The parallel LIDAR waveform decomposition algorithm 
was implemented in the C programming language using GSL (GNU Scientific Library) for the implementation of the 
nonlinear least squares algorithm and MPI (Message Passing Interface) library for communication among processors. 
 
 

EXPERIMENTS 
 

The proposed work load balancing approaches for a parallel waveform decomposition algorithm in the previous study 
are composed of two main steps; (1) complexity estimation, and (2) mapping waveforms onto multiple processors (Jung et 
al., 2009). The NW approach does not perform complexity estimation and groups waveforms into subsets so that each 
subset contains the same number of waveforms. The other three approaches (DRLW, DRSW, DTLW) perform complexity 
estimation and assign waveforms to subsets based on the estimated complexity so that each subset contains the same 
amount of complexity. Here, complexity is estimated from the sampled waveforms. The DRLW and the DRSW approaches 
perform complexity estimation using the estimated number of components of the sampled waveforms, while the DTLW 
approach estimates complexity from the decomposition run time of the sampled waveforms. The DRLW approach estimates 
the complexity of the subset as the estimated number of components of the sampled waveform, and the DRSW approach 
estimates the complexity of the subset as the square of the estimated number of components of the sampled waveform. The 
DTLW approach estimates the complexity of the subset as the decomposition run time of the sampled waveform. Once 
waveforms are divided into subsets based on the their own criteria, the subsets are mapped onto processors for parallel 
execution. 

Resources of the Steele cluster community cluster are shared by lots of researchers, and the performance of the parallel 
algorithms is affected seriously especially when multiple computationally extensive processes are running in the same node 
at the same time. The main goal of this study is to assess the stability and scalability of four work load balancing 
approaches. For the assessment of the scalability and stability, three processor selection schemes - (1) selecting 1 processor 
per node, (2) selecting 4 processors per node, and (3) selecting 8 processors per node - were designed and tested with a 
various number of processors (from 8 to 1,024 processors). Since each node in the Steele cluster has 8 processors, selecting 
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8 processors per node would be the case in which all nodes participating in the computation are not interrupted by other 
users during the decomposition process except the hardware failure, and selecting 1 processor per node would be the case in 
which nodes participating the computation are highly likely to be affected by other computationally intensive processes. 

These processor selection schemes were applied to each work load balancing approach with different number of 
processors from 8 to 1,024. In order to better assess the stability of each experiment, each experiment was repeated 40 
times, and participating nodes and processors are randomly selected for every experiments. 
 
 

RESULTS AND DISCUSSION 
 

The efficiency of parallel algorithm is defined as the ratio between run time of the serial execution and the effective run 
time of the parallel execution (Eq. 1).  
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Among 40 experiments for each work load balancing approach with different processor selection scheme, the best and 

the worst efficiency were calculated and plotted (Fig. 1, Fig. 2). The best efficiency is computed using the minimum parallel 
run time, and the worst efficiency is computed using the maximum parallel run time of the 40 experiments. 

In general, the efficiency of parallel algorithm goes down as the number of processors increases especially when a 
parallel algorithm depends heavily on communication among processors. However, a parallel LIDAR waveform 
decomposition algorithm developed in the previous study has very little communication overhead. The only communication 
occurring during the parallel execution is the gathering operation after the sampled waveforms are decomposed. Therefore, 
the only factor which affects the efficiency of the parallel algorithm is the work load balancing among processors.  

In general, the work load balancing approaches based on the complexity estimation showed significant efficiency drop 
as the number of processor gets large (Fig. 1, Fig. 2). The reason for this significant efficiency drop is because the 
complexity is estimated from the sampled waveforms and accuracy of the estimated complexity is severely affected when 
the number of the sampled waveforms decreases to estimate complexity of the subsets. 2,867,200 waveforms were utilized 
in this study, and the average number of waveforms assigned to each processor is approximately 2,800 when 1,024 
processors are utilized for the parallel execution. 1% sampling rate is used in this study, and approximately only 28 
waveforms were used to estimate the complexity in this case. Using smaller number of sampled waveforms can be 
problematic especially when the complexity varies significantly along scan lines. 
 

 
 

(a)                                                                 (b)                                                                 (c) 
 
Figure 1. Best efficiency of four (NW, DRLW, DRSW, DTLW) work load balancing approaches among 40 experiments 

when (a) 1 processor per node, (b) 4 processors per node, and (c) 8 processors per node selection scheme is used. 
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(a)                                                                 (b)                                                                 (c) 
 
Figure 2. Worst efficiency of four work load balancing approaches (NW, DRLW, DRSW, DTLW) among 40 experiments 

when (a) 1 processor per node, (b) 4 processors per node, and (c) 8 processors per node selection scheme is used. 
 

Fig. 1 showed that the DTLW and the DRSW approach generally performed the best among the four work load 
balancing approaches, and the NW approach yielded the worst performance. Fig. 1 also indicated that the efficiencies of the 
work load balancing approaches based on the complexity estimation (DRLW, DRSW, DTLW) were severely affected as the 
number of processors increases, while the NW approach yielded the most scalable and stable results as it maintains its 
efficiency stable as the number of processors increases. It is also noted that the NW approach even performed the best when 
1,204 processors are utilized in the parallel execution and 8 processors were selected from each node. 

Fig. 2 indicated that the efficiency of work load balancing approaches based on the complexity estimation (DRLW, 
DRSW,  DTLW) showed bigger variation of the efficiencies, while the NW approach showed smaller variation. When 1 
processor is selected from each node, the efficiencies of all approaches yielded similar performance if the number of 
processors is larger than 64. When 4 processors are selected from each node, the DRLW, DRSW, DTLW approaches yielded 
better performance than the NW approach in general, even though there are some cases where the efficiencies were lower 
than that of the NW such as DRSW with 32 processors and DTLW with 256 processors. When 8 processors are selected 
from each node, the efficiency showed similar pattern as Fig. 1, that is the DTLW and DRSW approaches yielded the best 
efficiency in general and the NW yielded the worst efficiency while the most stable and scalable efficiency. 
 
 

CONCLUSION 
 

LIDAR waveform decomposition plays an important role in LIDAR data processing because the resulting decomposed 
components are assumed to represent reflection surfaces within waveform footprints. Hence the decomposition results 
ultimately affect the interpretation of LIDAR waveform data. LIDAR waveform decomposition is also computationally 
intensive process, so decomposing the enormous number of waveforms is challenging using traditional single processor 
architecture. Furthermore, there may be a situation in which LIDAR waveform data need to be processed near real-time. 
Four work load balancing approaches (NW, DRLW, DRSW, and DTLW) were tested with different number of processors 
and with different processor selection schemes from each node. The NW approach yielded the worst efficiency when the 
number of processors is small, but it maintains the efficiency stable well as the number of processors increases. The other 
three work load balancing approaches which are based on the complexity estimation yielded better efficiency than the NW 
approach, but their efficiencies were significantly affected as the number of processors increases. In sum, the NW approach 
is the most scalable and stable work load balancing approach, and the DRSW and DTLW approaches are the most efficient 
work load balancing approach when the number of processors is small and computation is not affected by other users’ 
processes. 
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