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ABSTRACT 

 
Understanding that various tree species have characteristics similar to each other, it follows that some type of 
hierarchical classification scheme could be used to identify species using LIDAR data. Cluster analysis, one of the 
unsupervised classification methods, was conducted for all individual trees using the k-medoid algorithm. Instead of 
using one-step cluster analysis, a stepwise cluster analysis was developed based on the statistical criteria to test 
hierarchical relationships between species. Two seasonal LIDAR datasets collected at the Washington Park 
Arboretum in Seattle, Washington were used for this study. Parameters derived from structure and intensity 
measurements using two LIDAR datasets were used for the stepwise clustering analysis. This paper shows that a 
variety of tree species can be naturally clustered with a hierarchy using LIDAR-derived structure and intensity 
measurements. Stepwise cluster analysis showed that the species with similar characteristics seem to be clustered 
into a single group while the species with different characteristics are likely to be clustered into different groups 
based on the reliable statistical criteria. The clustering results using different seasonal datasets revealed that using 
both seasonal datasets clustered species more reasonably than using either one of the datasets. When using only leaf-
on data, the structure of clusters was not reasonably formed even at the first step of cluster analysis. It should be 
noted that the clustering results would vary depending not only on the variables used but also on the selected species 
groups or the number of individual trees. 
 
 

INTRODUCTION 
 

Recently, forest stand types or tree species classification have been studied using laser scanner datasets 
(Brandtberg et al., 2003 and 2007; Brennan & Webster, 2006; Donoghue et al., 2007; Holmgren and Persson, 2004; 
Kim et al., 2009a and 2009b; Moffiet et al., 2005; Ørka et al., 2009).  

Most laser scanning data includes an intensity value which is  a relative measure of the return signal strength 
associated with each return;  a measure of the amount of energy reflected from a target. Several authors report 
efforts to distinguish tree species using positions of laser points within individual tree crowns as well as intensity 
data (Brandtberg et al., 2003 & 2007; Brennan & Webster, 2006; Holmgren and Persson, 2004; Ørka et al., 2009).  

Kim et al. (2009a) normalized intensity data from the leaf-on and leaf-off laser scanning datasets based on 
numerous man-made features collected from two LIDAR datasets. They found that normalized intensity data can be 
used for tree species classification. Kim et al. (2009b) found that using both intensity and height data derived from 
laser scanning data improved classification of deciduous and coniferous species groups compared with using either 
intensity or height data alone. These previous studies used, discriminant functions, one of the supervised 
classification methods, for classification.  

Understanding that some tree species have characteristics similar to each other, it follows that some type of 
hierarchical classification scheme can be used to identify species using LIDAR data. We report on the use  of cluster 
analysis, one of the unsupervised classification methods, to classify  individual trees using the k-medoid algorithm. 
Instead of using one-step cluster analysis, we used a stepwise cluster analysis, based on statistical criteria, to find 
hierarchical relationships between species. If the variables derived from the cluster analysis represent characteristics 
of individual tree species well, the resulting clusters would be reliable and one could reasonably assume that closely 
related species will be assigned to the same cluster while less closely related species will be assigned to other 
clusters. 

In this study, stepwise cluster analysis was used to test if the previously derived intensity and height metrics are 
reliable to classify various species and to test the potential of the laser scanning data for hierarchical cluster analysis 
using the given samples and datasets.  
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STUDY AREA 
 

     The study area is the Washington Park Arboretum located in Seattle, Washington (47° 37.723N 122° 17.732W, 
figure1). The area covers 93 hectares and a topographic range is 15 to 55 m above sea level with less than 30% of 
slope for the majority of the site. 
 
      

DATA 
 

     This study was based on laser scanning data and field data collected by Kim et al. (2009a). For thorough 
descriptions of the field data and the species selection and field measurement, the reader is referred to Kim et al. 
(2009a).  
 
Laser Data Acquisition 

Laser scanner data were acquired under leaf-on and leaf-off conditions. Leaf-on data were acquired on 30 
August, 2004 using the Optech ALTM 30/70 laser scanner system (Kim et al., 2009a). Average flying altitude was 
1200 m above the ground level (a.g.l) configured to acquire data using a narrow scan angle of < 11° either side of 
NADIR and with a point density up to 5/m2. Scan pulse frequency was 71 kHz and single flight line was used. Leaf-
off data were acquired on 15 March 2005 using an Optech ALTM 3100. Average flying altitude was 900 m a.g.l. 
configured to acquire data using a narrow scan angle of < 10° either side of NADIR and with a point density up to 
10/m2. Scan pulse frequency was 100 kHz and flight line was 50%. Both systems use a 1064 nm laser and beam 
divergence of 0.31mrad with footprint size of 0.372 m with leaf-on data and 0.279 with leaf-off data. The leaf-off  
dataset did not capture all trees in leaf-off conditions due to widely varying phenology across the wide range of 
species within the arboretum and unusually early bud break in 2005.  Table 1 lists the genera, individual species, 
classification as to deciduous or non-deciduous, number of trees, and notes as to whether or not deciduous 
individuals were past bud break and flowering or developing leaves when the leaf-off data were acquired. Flowering 
or partial leaf formation could influence classification of individuals that were in this state. 

Raw intensity data were used without additional radiometric calibration (Coren and Sterzai, 2006; Donoghue et 
al. 2007; Hasegawa, 2006; Kim et al., 2009a) because a topographic range of this study site is not significant and 
scan angles are narrow (<11 o off-nadir) for both datasets.      

Intensity data from the leaf-on laser scanning system multiplied by a scaling factor (16.43949) was used to 
directly compare with leaf-off intensity data (Kim et al., 2009a). The digital terrain model (DTM) described by Kim 
et al. (2009a) was used in this study with 1- by 1- m resolution using FUSION/LDV software (McGaughey and 
Carson, 2003; McGaughey et al., 2004).   
 
Field Measurement  

The purpose of the field work was to select and georeference various tree species that could be used as ground 
data for the analysis. The field work was carried out in the period of April to July 2005.  

Seven coniferous and eight broadleaved species were used for the analysis. Seven coniferous species are 
western red cedar (Thuja plicata), Douglas-fir (Pseudotsuga mensiesii), larch (Larix), pine (Pinus), western hemlock 
(Tsuga heterophylla), redwood (Sequoia sempervirens. Eight broadleaved species are bigleaf maple (Acer 
macrophyllum), birch (Betula), elm (Ulmus), oak (Quercus), Prunus, Magnolia, Malus, Sorbus. The locations of 
selected individual trees are overlaid over the orthophoto of the Arboretum.  

Tree heights, crown base heights and average crown diameters computing the mean value of the two 
perpendicular directions (N-S and E-W) measured in Kim et al. (2009a) were used for the analysis in this study. In 
total, 345 trees were collected. The post-processing of collected GPS points for individual tree locations are also 
described in Kim et al. (2009a). After post-processing to eliminate where with severely overlapped crowns or trees 
that could not be clearly identified in the office, 223 individual trees were selected for the analysis.  
 
Variables 

Intensity metrics derived from leaf-on and leaf-off laser scanning datasets using isolated individual tree crowns 
by Kim et al.( 2009a) were used for the analysis in this study. Using laser points within each crown, variables were 
computed to analyze intensity data for each tree. All variables were derived using laser returns that were located 
above the crown base height. Mean intensity values were computed using returns representing the entire crown, 
upper crown and crown surface within each tree crown using isolated laser returns. The following nine variables 
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were computed from each of the leaf-on and leaf-off laser scanning data: (1) mean intensity values for the entire 
crown using all returns (entire_all), (2) mean intensity values for the entire crown using first returns (entire_1), 
(3)mean intensity values for the upper crown using all returns (upper_all), (4) mean intensity values for the upper 
crown using first returns (upper_1), (5) mean intensity values for the crown surface using all returns (surface_all), 
(6) mean intensity values for the crown surface using first returns (surface_1), (7) coefficient of variation of all 
return intensity for the entire crown (cv_all), (8) coefficient of variation of first return intensity for the entire crown 
(cv_1), and (9) proportion of first returns (prop_1).  

Height metrics composed of vertical distributions of laser returns and upper crown shapes computed by Kim et 
al. (2009b) were used in this study. Four vertical distributions of laser returns using isolated individual tree crowns 
are the relative 90th height percentile, relative median height percentile, relative 10th height percentile and relative 
standard deviation of height. Three variables regarding upper crown shapes are upper 10%, upper quarter (25 %) and 
upper one-third (33.3%) of the crown length. 

 
 

COMPUTATION AND ANALYSIS 
 
Cluster Analysis  
     In the method used in the program PAM (Partitioning Around Medoids) in the R statistical package, the 
representative object of a cluster is its medoid, which we defined as that object of the cluster for which the average 
dissimilarity (typically Manhattan distance which is defined as the distance between two points measured along axes 
at right angles) to all the objects of the cluster is minimal. As the objective is to find k such objects, we call this the 
k-medoid method. After finding a set of k representative objects, the k clusters are constructed by assigning each 
object of the data set to the nearest representative object (Kaufman and Rousseeuw, 1990).                                               
     One of the simplest unsupervised learning algorithms that solve the well known clustering problem is k-means 
(MacQueen, 1967) which defines k centroids, one for each cluster by computing Euclidean distances. Advantages of 
k-medoid method are that it minimizes a sum of dissimilarities instead of a sum of squared Euclidean distances 
employed in k-mean method and that it is more robust with respect to outliers. By construction, the k-medoid 
method tries to find “spherical” clusters, that is, clusters that are roughly ball-shaped. It is therefore not suited to 
discover drawn-out clusters. The k representative objects should minimize the sum of the dissimilarities (distance  ) 
of all objects to their nearest medoid. Basically, dissimilarities are nonnegative numbers d (i , j) that are small (close 
to zero) when i and j are “near” to each other and are large when i and j are far apart. PAM operates using the 
dissimilarity matrix of the given dataset. When it is presented with an n x p data matrix where n indicates the 

number of samples and p indicates the number of variables, PAM first computes a dissimilarity matrix. The 
algorithm computes k representative objects, called medoids, which together determine a clustering. The number of 
clusters, k, is an argument of the function. Each object is then assigned to the cluster corresponding to the nearest 
medoid. That is object i, is put into cluster vi when medoid m vi  is nearer to that object than any other medoid mw : 
 

d( i, m vi) ≤ d(i , m w) for all w = 1,…, k 
 

The k representative objects should minimize the sum of the dissimilarities of all objects to their nearest medoid: 

Objective function = ∑
=

n

i
vimid

1
),(  

The algorithm proceeds in two steps: 
a. Build-step 

This step sequentially selects k centrally located objects to be used as initial medoids. 
b. Swap-step 

If the objective function can be reduced by interchanging (swapping) a selected object with an unselected object, 
then the swap is carried out. This is continued until the objective function no longer decreases.  

Validation of cluster analysis (Silhouettes). There are questions about the validity of cluster analysis. For 
example, how many clusters best represent the given datasets and if the quality of clusters is high, i.e. the ‘within’ 
dissimilarities are small when compared to the ‘between’ dissimilarities. To solve these problems, Rousseeuw 
(1987) proposed a new graphical display for partitioning techniques. Each cluster is represented by a so-called, 
silhouette, which is based on the comparison of its tightness and separation. This silhouette shows which objects lie 
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well within their cluster, and which ones are merely somewhere in between clusters. The entire clustering is 
displayed by combining the silhouettes into a single plot, allowing an appreciation of the relative quality of the 
clusters and an overview of the data configuration. The average silhouette width provides an evaluation of clustering 
validity and might be used to select an ‘appropriate’ number of clusters. In order to construct silhouettes, we need 
the partition we have obtained and the collection of all proximities between objects. Take any object i in the data set, 
and denote by A the cluster to which it has been assigned. When cluster A contains other objects apart from i, then 
we can compute  

a (i) = average dissimilarity of i to all other objects of A. 
 

This is the average length of all lines within cluster A. Next, consider any cluster C which is different from A, 
and compute, d (i, C) = average dissimilarity of i to all objects of C. 

This is the average length of all lines going from i to C. After computing d (i, C) for all clusters C  ≠ A, select 
the smallest of those numbers and denote it by, b (i) = 

AC≠
minimumd (i, C)  

The cluster B for which this minimum is attained (that is, d (i, B ) = b (i)) we call the neighbor of the object. Cluster 
B is the closest (on average) to object i, when A itself is discarded. The number s (i) is obtained by combining a (i) 

and b (i) as follows: -1 ≤  s (i) = 
)}(),(max{

)()(
ibia

iaib −
 ≤  1 

When s (i) is at its largest (that is, s (i) close to 1) this implies that the ‘within’ dissimilarity, a (i), is much smaller 
than the smallest ‘between’ dissimilarity, b (i). In this case, i is considered to be ‘well-clustered’. When s (i) is close 
to -1, then a (i) is much larger than b (i), which implies that i lies on average much closer to B than to A. In this case, 
this object, i, is considered to have been misclassified. The average silhouette width defined as the average of the s 
(i) for all objects, i, belonging to that cluster can distinguish ‘good clusters’ with large silhouette width from ‘weak 
clusters’ with small silhouette width.  Rousseeuw (1987) pointed out that the silhouettes should look best for a 
‘natural’ value of k, the number of clusters. He suggested that the appropriate k can be determined by selecting that 

value of k for which the overall average silhouette width for the entire plot, s (k), with k = 2, … , n where n denotes 
the number of objects (for further details  see Rousseeuw 1987). In our study , k = 2, … , m, where m denotes the 
number of species, since the objective is to cluster species groups.  
 
Stepwise Cluster Analysis 

Some tree species are more closely related than other species in terms of genetics or structural characteristics 
and so it is likely that there are natural groupings of species. Also, it is possible that tree species have different 
relationships depending on the criteria being evaluated. Generally, trees are classified as either broadleaved and 
coniferous for many forestry applications because this division is critical in a variety of ecosystem management 
plans. Both the broadleaved and coniferous groups contain evergreen and deciduous species; many temperate 
broadleaved species are deciduous but some are not and most coniferous species are evergreen  but larix is a notable 
deciduous conifer.  However, classification as to evergreen or deciduous is common practice and it is possible that 
tree species can also be classified  based on leaf structures (Petrides and Petrides, 1992).  

As one of the clustering methods, hierarchical clustering techniques proceed using either a series of successive 
merges or a series of successive divisions. Hierarchical methods result in a nested sequence of clusters which can be 
graphically represented with a tree, called a dendrogram (Kaufman and Rousseeuw, 1990). Agglomerative 
hierarchical clustering techniques produce partitions by a series of successive fusions of the individual objects. With 
such methods, fusions, once made, are irreversible, so that when an agglomerative algorithm has placed two 
individuals in the same groups they cannot subsequently appear in different groups. Since all agglomerative 
hierarchical techniques ultimately reduce the data to a single cluster containing all the individuals, which division to 
choose should be decided for the purpose of getting the best fitting number of clusters (Everitt and Dunn, 2001). 
They also pointed out that determining the appropriate number of groups, that is, the appropriate partition, is not 
straightforward. When hierarchical clustering techniques are used in practice, the investigator is often interested in 
only one or two partitions rather than the complete hierarchy. In this research, we are more interested in clustering 
species groups than clustering individual trees. Therefore, for the purpose of seeking hierarchy among tree species, 
instead of using hierarchical clustering techniques, a modified approach was developed.  As a first step to conduct 
stepwise cluster analysis, variables need to be reduced to simplify later analysis while retaining as much information 
as possible (Everitt and Dunn, 2001). For this purpose, principal component analysis (PCA) was conducted using the 
R package.  
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Process of stepwise cluster analysis. Starting with conducting principal component analysis using all datasets, 
stepwise cluster analysis iterates the following three steps.  

Step 1: Conduct principal component analysis. Determine the number of components to be used and derive the 
corresponding variables. 

Step 2: Conduct cluster analysis using PAM. Determine the most appropriate number of clusters by means of 
maximal average silhouette width.  

Step 3: Either redistribute individual trees within one species into one cluster or delete the species.  
After the number of clusters is decided at step 2, examine the individual trees of each species for assignment to 

a cluster. In this study, clustering species is considered to be a important objective than clustering individual trees. 
Ideally, individual trees of the same species will group into a single cluster. However, it is possible that some 
individuals of the same species may have different characteristics depending on age, growth conditions, and 
competition with neighborhood trees and become members of different clusters. Conversely, trees of closely related 
species within the same genus may be so similar that they cannot be separated and all become members of the same 
cluster. However, species within the same genus, especially those that are deciduous, may have differences in 
phenology such that variation in the timing of flowering and leafing out may produce confusing classifications that 
would not occur at times while truly deciduous before bud break/flowering  or after foliage has matured. See Table 1 
for cases where this occurred in this study. Therefore, we need a rule to determine if a certain species can be 
considered to be clustered. One approach would be to require that a certain minimum percentage of individual trees 
within one species must be in one cluster, in order for that species to be considered as clustered. If the minimum 
required percentage is not achieved the species is considered to be  not clustered. After testing different percentages 
to construct good clusters, a range of 70 - 90 % was selected as the criterion for a species to be considered to be 
clustered. If a species meets this criterion  and is clustered, all individual trees within that species are redistributed 
into the cluster where the majority of individual trees of the species were assigned. If a certain species failed 
criterion, that is, less than 70 – 90 % of the individuals for that species were assigned to a single cluster, that species 
was excluded from the next step.  

The next step is to repeat three cluster analysis steps described above   with the newly assigned clusters. This 
stepwise cluster analysis is continued with the reconstructed clusters until the maximal overall average silhouette 
width is under 0.5,  This value isthe threshold suggested by Kaufman and Rousseeuw (1990)for deciding that a 
reasonable structure has been achieved  who suggest a subjective interpretation of the Silhouette Coefficient (SC) as 
the maximal average silhouette width for the entire data set.  

 
 

RESULTS 
 
Stepwise Cluster Analysis using all datasets 

The analysis used 223 individual sample trees. As a result of Principal Component Analysis, eleven variables 
were derived, including three intensity variables and eight height variables. The first two components account for 
56.0 % of the variance of the combined leaf-on and leaf-off datasets. Two variables, coefficient of variation using all 
returns (cv_all) and mean intensity values for an upper portion of a crown using all returns (upper_all) in leaf-off 
data were selected based on the greatest absolute coefficient value on each component. After  testing various 
numbers of clusters, two clusters were suggested based on the maximal average silhouette width. The average 
silhouette width using two clusters had the highest value, 0.615, compared to that using other numbers of clusters, 
considered to be a reasonable structure by Kaufman and Rousseeuw(1990). Table 1 shows the result of using two 
clusters indicated by the number of individual trees and the percentage assigned to each group as well as the total 
number of individuals and the percentage for each species. All individual bigleaf maple, elm and oak trees were 
assigned to Group 2 while all individual Douglas-fir, pine, spruce and western hemlock trees were assigned to 
Group 1. Although all individual trees were not assigned to a single group, birch and Sorbus were redistributed to 
Group 1 while cedar and redwood were redistributed to Group 2 according to the clustering criterion described in 
section 4.2. Individual trees of Magnolia, Malus, Prunus and larch were assigned to both groups, and therefore, 
these species were defined not to be clustered into any groups according to the clustering criterion and consequently 
were not used at the next step.   

The result of redistributing individual trees within the same species into a single cluster by deleting species 
which failed criterion is shown in Table 2. Cluster 1 was composed of broadleaved species which had no foliage at 
the time of leaf-off data acquisition in March. Cluster 2 was composed of evergreen coniferous species.  
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For Cluster 1 and Cluster 2, cluster analysis was repeated using the derived variables from the first step of the 
cluster analysis above.  
  

Table 1. The result of cluster analysis using all datasets indicated by the number of trees and the percentage 
assigned to each group as well as the total number of trees and the percentage for each species 

 
Group1 Group 2 Total  

Species Number  
of trees 

Percentage 
(%) 

Number  
of trees 

Percentage 
(%) 

Number of trees (%) 

Birch 18 90 2 10 20 (100) 
Bigleaf maple 11 100 0 0 11 (100) 

Elm 10 100 0 0 10 (100) 
Magnolia 11 58 8 42 19 (100) 

Malus 2 20 8 80 10 (100) 
Prunus 5 45 6 55 11(100) 

Oak 19 100 0 0 19 (100) 
Sorbus 10 91 1 9 11 (100) 
Cedar 2 11 17 89 19 (100) 

Douglas-fir 0 0 12 100 12 (100) 
Larch 10 48 11 52 21 (100) 
Pine 0 0 21 100 21 (100) 

Redwood 2 20 8 80 10 (100) 
Spruce 0 0 15 100 15 (100) 

Western Hemlock 0 0 14 100 14 (100) 
 

Table 2. The result of redistributing individual trees within the same species into a single cluster (Cluster 1 or 
Cluster 2) after deleting the species which failed to the clustering criterion 

 
 Cluster 1 Cluster 2 
Species Birch Cedar 
 Bigleaf maple Douglas-fir 
 Elm Pine 
 Oak Redwood 
 Sorbus Spruce 
  Western Hemlock 

 
Clustering result for Cluster 1. As a result of PCA, eight variables were selected, including two intensity 

variables and six height variables. The first four components accounted for 53.2% variability of the given datasets 
and the variables selected from the components were all leaf-off variables. The maximal average silhouette width 
was 0.45 indicating that cluster analysis did not produce a good structure.  

Clustering result for Cluster 2. As a result of PCA, eight variables were selected, including three intensity 
variables and five height variables. The first four components account for 53.0 % variability of the given datasets 
and they were composed of intensity and height variables in both leaf-on and leaf-off datasets: (1) relative 10th 
height percentile in leaf-off data, (2) length to width ratio within the upper 10 % of a crown in leaf-on data, and 
coefficient of variation of intensity using all returns in (3) leaf-off data and (4) leaf-on data.  The average silhouette 
width was largest, 0.56, with four clusters and the second largest was 0.55 with two clusters. Since the difference 
between silhouette widths was not large enough, individual objects assigned to clusters were examined. With two 
clusters, all individuals have silhouette width, (s (i)), greater than zero while three objects had s (i) less than zero 
with four clusters. Therefore, two clusters are suggested to be the most natural number of clusters. Table 3 presents 
the result of using two clusters indicated by the number of individual trees and the percentage assigned to each 
group as well as the total number of individuals and the percentage for each. All individuals within western hemlock 
were assigned to Group 1. The majority of cedar and pine were assigned to Group 2 while the majority of redwood 
and spruce were assigned to Group 1. Douglas-fir was evenly assigned to the both groups. The result of 
redistributing individual trees within the same species into a single cluster without Douglas-fir is shown in Table 4.  
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For the cluster analysis with Cluster 2-1, six variables were selected, including intensity and height variables in 
both datasets. The first five principal components account for 57.7% variability of the given datasets. Three clusters 
were suggested with the maximal average silhouette width, 0.61.  Table 5 presents the result of cluster analysis using 
three clusters indicated by the number of individual trees and the percentage assigned to each group as well as the 
total number of individuals and the percentage for each species. Most of the individuals within western hemlock 
were assigned into Group 1. However, the majority of redwood and spruce were also assigned to Group 1. Therefore, 
it is hard to say that these three species were clustered into separate groups at this step. 

For the cluster analysis using Cluster 2-2, six variables were derived, including intensity and height variables in 
both datasets. The first five principal components account for 57.7% variability of the given datasets. Two clusters 
were suggested with the maximal average silhouette width, 0.57.  Table 6 presents the result of cluster analysis using 
two clusters indicated by the number of individual trees and the percentage assigned to each group with the total 
number of individuals and the percentage for each species. Individuals within cedar and pine were assigned to the 
both groups and therefore, they were not clustered into any groups.  

The diagram of stepwise cluster analysis. The overall stepwise cluster analysis using both leaf-on and leaf-off 
datasets was summarized with diagrams and is shown in Figure 1. At the first step of cluster analysis, deciduous 
broadleaved species and evergreen coniferous species were well divided into separate groups. The left side bubble 
diagram within Cluster 1 was composed of deciduous broadleaf species while the right side bubble diagram within 
Cluster 2 was composed of evergreen coniferous species. Four species, Magnolia, Malus, Prunus and larch were not 
clustered into any group. Evergreen coniferous species in Cluster 1 were divided into two separate groups again at 
the next step of cluster analysis. Cedar and pine were clustered into one group while redwood, spruce and western 
hemlock were clustered into the other group. The overall silhouette widths were larger than 0.50 at every step which 
suggests that the separations between clusters are acceptable 
 

Table 3. The result of cluster analysis using Cluster 2 indicated by the number of individuals and the percentage 
assigned to each group as well as the total number of individuals and the percentage for each species 

 
 Group 1 Group 2 Total 

Cluster 2 
 

Number 
of trees 

Percentage 
(%) 

Number of 
trees 

Percentage 
(%) 

Number of trees 
(%) 

Cedar 3 16 16 84 19 (100) 
Douglas-fir 6 50 6 50 12 (100) 

Pine 4 19 17 81 21 (100) 
Redwood 8 80 2 20 10 (100) 

Spruce 12 80 3 20 15 (100) 
Western Hemlock 14 100 0 0 14 (100) 

 
 

Table 4. The result of redistributing individuals within the same species into a single cluster (Cluster 2-1 or Cluster 
2-2) without Douglas-fir 

 
 Cluster 2-1 Cluster 2-2 
Species Redwood Cedar 
 Spruce Pine 
 Western Hemlock  
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Table 5. The result of cluster analysis with Cluster 2-1 using three groups indicated by the number of individuals 
and the percentage assigned to each group as well as the total number of individuals and the percentage for each 

species 
 

Group 1 Group 2 Group3 Total  
Cluster 

2-1 
Number  
of trees 

Percent 
(%) 

Number  
of trees 

Percent 
(%) 

Number  
of trees 

Percent 
(%) 

Number of 
 trees (%) 

Redwood 5 50 3 30 2 20 10 (100) 
Spruce 8 53 6 40 1 7 15 (100) 

Western Hemlock 11 79 3 21 0 0 14 (100) 
 

Table 6. The result of cluster analysis with Cluster 2-2 using two clusters indicated by the number of individuals 
and the percentage assigned to each group with the total number of individuals and the percentage for each species 

 
Group 1 Group 2 Total  

Cluster 2-2 Number of 
trees 

Percentage 
(%) 

Number of 
trees 

Percentage 
(%) 

Number of 
trees (%) 

Cedar 12 63 7 37 19 (100) 
Pine 15 71 6 29 21 (100) 

 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Stepwise Cluster Analysis using Leaf-on Data  

Cluster 1 Cluster 2 

 Cedar 
Douglas-fir 
Larch 
Pine 
Spruce 
Redwood 
Western 
hemlock 

Birch 
Bigleaf maple 
Elm 
Malus 
Magnolia 
Prunus 
Oak 

Silhouette width : 0.55 

(Evergreen)  
Coniferous  

species 

 
 

 
(Deciduous) 
Broadleaved  

species 

Birch 
Bigleaf maple 

Elm 
Oak 

Sorbus 

Cedar 
Douglas-fir 

Pine 
Redwood 

Spruce 
Western hemlock 

Magnolia 
Malus 
Prunus 
Larch 

Cedar 
Pine 

Silhouette width : 0.62 

Cluster 2-1 
Cluster 2-2 

Redwood 
Spruce 

Western 
hemlock

Figure 1. The diagram of the stepwise 
cluster analysis using all datasets. 
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As a result of PCA, seven variables were selected, including two intensity variables and five height variables. 
As a result of PAM, the maximal average silhouette width was less than 0.5. Therefore, natural clustering was not 
found with only leaf-on variables.  
 
Stepwise Cluster Analysis using Leaf-off Data 

The variables based on leaf-off data were used and PCA was conducted.  ass Two clusters were suggested as the 
most natural clustering with an average silhouette width, 0.62. The result of cluster analysis using two clusters with 
the number of individual trees is shown in Table 7. The clustering result looks similar to the result in Table 2 using 
both leaf-on and leaf-off datasets. Except Magnolia and Prunus, all species were more clearly clustered into either 
Group 1 or Group 2 than the clustering result using both datasets. All individuals within birch and redwood were 
assigned to Group 1 and Group 2, respectively while clustering result using both datasets showed there were outliers 
within these species (see Table 2). All individuals within Malus and the majority of Sorbus were assigned to Group 
2, which is different from the clustering result using both datasets where Sorbus was clustered into Group 1 and 
Malus was not clustered into any groups (see Table 2). The majority of individuals within larch were assigned to 
Group 1 which is also different from the clustering result using both datasets where larches failed to the clustering 
criterion (see Table 2).  

The result of redistributing individual trees within the same species into a single cluster after deleting species 
which failed to the clustering criterion is shown in Table 8. Group 1-1 was composed of species which had no or 
little foliage at the time of March data acquisition. Group 1-2 was composed of evergreen coniferous species and 
one broadleaved species, Malus.  
 

Table 7. The result of cluster analysis using leaf-off data indicated by the number of trees and the percentage 
assigned to each group with the total number of trees and the percentage for each species 

 
Group1 Group 2 Total  

Species Number  
of trees  

Percent 
(%) 

Number  
of trees 

Percent (%) Number of trees 
(%) 

Birch 20 100 0 0 20 (100) 
Bigleaf maple 11 100 0 0 11 (100) 

Elm 10 100 0 0 10 (100) 
Magnolia 11 58 8 42 19 (100) 

Malus 0 0 10 100 10 (100) 
Prunus 4 36 7 64 11(100) 

Oak 19 100 0 0 19 (100) 
Sorbus 10 91 1 9 11 (100) 
Cedar 3 16 16 84 19 (100) 

Douglas-fir 0 0 12 100 12 (100) 
Larch 18 86 3 14 21 (100) 
Pine 0 58 21 42 21 (100) 

Redwood 0 0 10 100 10 (100) 
Spruce 0 36 15 64 15 (100) 

Western Hemlcok 0 0 14 100 14 (100) 
 
Table 8. The result of redistributing individuals within the same species into a single cluster (Cluster 1 or Cluster 2) 

after deleting species which failed the clustering criterion in leaf-off data 
 

 Cluster 1 Cluster 2 
Species Birch Malus 
 Bigleaf maple Cedar 
 Elm Douglas-fir 
 Oak Pine 
 Sorbus Redwood 
 Larch Spruce 
  Western Hemlcok 
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Clustering result for Cluster 1. As a result of PCA, four variables were selected, including only height 
variables. The maximal average silhouette width was 0.36 (< 0.5), so natural clustering was not found at this level. 

Clustering result for Cluster 2. As a result of PCA, four variables were selected, including only height 
variables. The maximal average silhouette width was 0.31 (< 0.5), so natural clustering was not found at this level. 

The diagram of the stepwise cluster analysis. The overall stepwise cluster analysis using leaf-off data was 
summarized with diagrams and is shown in Figure 2. The cluster analysis was performed using only one step. 
Except Magnolia and Prunus, all species were well divided into two groups. The left side bubble diagram within 
Cluster 1 was composed of deciduous species including one deciduous coniferous species, larch, and deciduous 
broadleaved species while the right side bubble diagram within Cluster 2 was composed of evergreen coniferous 
species with one broadleaved species, Malus which had foliage at the time of leaf-off data acquisition.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 

DISCUSSIONS  
 

This study showed that a variety of tree species could be clustered naturally with a hierarchy using height and 
intensity measurements derived from laser scanning data. Stepwise cluster analysis showed that species with similar 
characteristics would be clustered into the same group while species with different characteristics would be clustered 
into different groups based on reliable statistical criteria. 

The three stepwise cluster analyses conducted using different seasonal laser scanning datasets showed different 
results. This implies that tree species might be grouped differently depending on the timing of the data collection. 
The diagrams generated by the stepwise cluster analysis using all variables based on both leaf-on and leaf-off 
datasets showed reasonable relationships between species groups at each step, implying that the derived variables 
described the characteristics of species appropriately. For example, at the first step of stepwise cluster analysis, 
broadleaved species were mostly separated from coniferous species. This result implies that two clusters are 
probably the most natural number of clusters when dealing with both broadleaved species and coniferous species. At 
the next step of the stepwise cluster analysis using coniferous species, a leaf structure was probably the critical 
factor to divide these species. For example, cedar and pine which have scale-like needles and clustered needles, 
respectively, were separated from the species with single needles such as spruce, redwood and western hemlock. 

Cluster 2 

 

Cedar 
Douglas-fir 
Larch 
Pine 
Spruce 
Redwood 
Western 
hemlock 

Birch 
Bigleaf maple 
Elm 
Malus 
Magnolia 
Oak  
Prunus 
Sorbus 

Cluster 1 

 

 

Silhouette width : 0.62 
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This finding is supported by the result that pine and cedar showed lower intensity values than the latter three species 
in Kim et al. (2009a).  

Because the difference between mean intensity values between species was very significant in leaf-off data 
compared with other variables (Kim et al, 2009a and Kim et al., 2009b), clustering results were probably mostly 
affected by intensity variables. This finding was also consistent with the result of the principal component analysis. 
That is, these variables were always selected as the first few principal components which would be critical for the 
continued cluster analyses. Therefore, the stepwise cluster analysis using only leaf-off variables was similar to the 
result using both leaf-on and leaf-off variables. However, with leaf-off data, looking at the species assigned to the 
two separate groups, Malus was assigned to Cluster 2 which was composed of evergreen coniferous species while 
larch was assigned to Cluster 1 which was composed of deciduous broadleaved species. This implies that the 
clustering analysis using only leaf-off data resulted in less natural clustering results than using both datasets where 
these two species, Malus and larch, failed criterion. Also, cluster analysis was conducted using more than one step 
using both datasets while a single step cluster analysis was conducted using leaf-off data. Therefore, leaf-on data 
seems to be also useful to do clustering analysis between species groups although the clustering result using only 
leaf-on data implies that even two species groups, broadleaved species and coniferous species, were not separated 
naturally. A part of the reasons why cluster analysis using only leaf-on data is not successful is not only due to a 
seasonal issue but also due to other factors. Because both datasets were acquired from different laser scanner 
systems with different flight parameters, for example, leaf-on laser scanning data were acquired by smaller numbers 
of point density, smaller numbers of returns per pulse, and lower scan pulse repetition frequency than leaf-off laser 
scanning data, characteristics of species are probably better described using leaf-off data than using leaf-on data. 

At each step of the cluster analysis, the criterion using a certain percentage of individual trees within species 
was applied because individual trees within the same species are not always in the same conditions. Age and 
competition with neighboring trees probably affect the shape of a tree. Non-native species within genus may affect 
different characteristics of these species. For example, pine included three individual trees within one native species, 
western white pine, while the rest individuals were not native species which have different needle and crown shapes. 
Oak included one native species, Oregon white oak, while the rest individual trees were not native species. If the 
number of sample trees per each species increased, the accuracy of clustering results could be improved. Especially, 
Magnolia and Prunus were composed of a variety of species within genus from worldwide collections and so, 
foliage conditions also varied, for example, some individual trees had foliage with only leaves, others had foliage 
with leaves and flowers and the rest had no foliage at the time of data collection in March. This is probably one 
reason why they failed criterion in leaf-off data.  

The result of cluster analysis using PAM varies depending on the species and the variables used. Depending on 
the determined number of clusters, species would be clustered differently, too. Therefore, the clustering results 
shown in this study don’t suggest any absolute separation between species. Instead, the stepwise cluster analysis 
introduced in this study suggests the possibility of natural clustering for various tree species based on their structural 
and spectral characteristics.  
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