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ABSTRACT 
 
Given the recent no-cost availability of Landsat imagery through the United States Geological Survey (USGS), a 
more detailed examination of the changes in habitat and reflectance from this imagery is now possible.  The Coastal 
Watershed in New Hampshire is an area covering 990 square miles of varied habitat, from areas that are well 
developed, to large tidal bays and managed forests.  The watershed is also home to around 155 species of rare plants, 
18 rare species of animals, and 35 different rare natural communities and ecosystems.  However, due to pressure 
from rapid development, fragmentation, invasive species, water quality degradation, and climate change, many of 
these habitats are disappearing faster than ever.  A detailed look at one complete year of Landsat imagery of this 
area can serve as a better indicator of land cover change in the Coastal Watershed, as well as a baseline for 
monitoring vegetation response to climate change.  For this study, a multi-temporal analysis of six usable dates of 
Landsat imagery for a single year was performed, including an examination of various derivative bands such as the 
normalized difference vegetation index (NDVI) and tasseled cap indices.  The analysis performed in this study will 
serve as a point of reference for future studies monitoring the Coastal Watershed, both for historical and future 
change analyses. 
 
 

INTRODUCTION 
 

The coastal region of New Hampshire contains some of the most valuable habitat in the state, however it is also 
one of the regions with the highest population growth rates and is identified by The Nature Conservancy as a ‘crisis 
ecoregion’ where habitat is at high risk of suffering irreversible losses.  The Coastal Watershed encompasses around 
9% of the total area of the state as well as to one of the more unique tidal bays, Great Bay.  The unique features of 
the watershed have also lead to the almost 40% growth in population from 1984 to 2008. Therefore, monitoring how 
the habitat of the Watershed has changed from the mid 1980’s to today can be an indicator for how vegetation is 
reacting to both human pressures through expansion, as well as to aspects of climate change. 

The recent policy change to free availability of the Landsat imagery by the United States Geological Survey 
(USGS) has allowed us to quantify habitat change in the Costal Watershed using land cover change over time.  
However, using those data reemphasizes the importance of preprocessing when completing multi-temporal analyses 
of Landsat TM images.  Each of the images was taken at a different time of year, which means that the atmospheric 
conditions in which the images were taken were very different.  The effects from the atmosphere can make it very 
difficult to do change detection between several dates, since some of the change could be attributed to changes in the 
atmosphere rather than land cover changes.  Several methods have been proposed to convert satellite digital number 
(DN) values to surface reflectance, including both image based correction techniques or models that need either in-
situ field measurements or modeled values of atmospheric parameters (Chavez, 1996, Song et al., 2001, Lu et al., 
2002, Paolini et al., 2006, Schroeder et al., 2006, Mahiny and Turner, 2007).  The methods that require atmospheric 
parameters generally are quite accurate, as long as the parameters are correct, which is often the limiting factor.  
However, many have found that some of the image-based models can do almost as well as the models using 
atmospheric inputs (Lu et al., 2002, Schroeder et al., 2006, Mahiny and Turner, 2007).   One of these models is the 
dark object subtraction (DOS) model, and modifications of DOS.   Although fairly simple, the DOS models produce 
good results with low root mean square error (RMSE) as an absolute atmospheric correction technique.  One of the 
modifications of the DOS atmospheric correction technique is the cosine of the solar zenith angle (COST) method 
presented by Chavez (1996). 
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Therefore, the objective of this study was to atmospherically correct one year of available Landsat imagery 
using the COST model.  The at-surface reflectance values for each of the dates could then be compared for the entire 
year, giving a good baseline model for how the Coastal Watershed changes throughout the growing season.  Future 
work can be done to compare these values with current reflectance changes and determine how the watershed is 
changing due to human and climate pressures. 

 
 

METHODS AND RESULTS 
 

For our study area, all of the Landsat TM5 images with 10% or less cloud cover were acquired for 1991 and 
then atmospherically corrected using the cosine of the solar zenith angle (COST) method (Chavez, 1996).  The 
COST model employs similar methods as the DOS method, but instead uses the cosine of the sun zenith angle 
(cos(θ)) to approximate effects of absorption and Rayleigh scattering of the reflectance signal in the atmosphere.  
The COST model first converts the minimum DN values, representing dark objects on the image, to at-satellite 
radiance using the Markham and Barker (1986) equation: 

 

             (1) 
 
where Lλmin is the minimum at-satellite spectral radiance values for the dark objects, LλMAX and LλMIN are constants 
given in table 2 of Markham and Barker (1986), DNλmin is the minimum DN values acquired for each band, and 
DNλrange is 255, the maximum DN value possible for the bands.  For this study, the lowest DN value in each band 
with at least 1000 pixels was taken to be the DNλmin for that band.  The theoretical radiance of a dark object is then 
computed, under the assumption that dark objects have 1% or smaller reflectance (Chavez, 1996, Song et al., 2001): 
 

          (2) 
 
where Lλ,1% is the dark object at-satellite radiance, d is the sun-earth distance for the acquisition location and time, θ 
is the solar zenith angle, and Esunλ is the mean solar exoatmospheric spectral irradiance given in table 4 of Markham 
and Barker (1986).  The haze correction value is then computed by taking the difference of the minimum at-satellite 
spectral radiance and the dark object at-satellite radiance: 
 

             (3) 
 

Through the computation of Lλhaze the COST method is mathematically the same as the DOS method, however, 
where the methods differ is in the conversion of the at-satellite radiance to surface reflectance (Lu et al., 2002): 

 

   (4) 
 

where ρ is the computed surface reflectance, TAUv and TAUz are atmospheric multiplicative transmittance 
components, and Lλsat is the at-satellite reflectance computed using equation (1) for each DN value on the image 
rather than the DNλmin.  While both TAU values approximate atmospheric transmittance, TAUv is a measure of 
transmittance along the path from the ground to the sensor, and TAUz is a measure of transmittance from the sun to 
the ground (Chavez, 1996). In the DOS model, TAUv and TAUz were approximated by 1, meaning the model 
ignores any atmospheric transmittance.  However, the COST model assumes that the sensor is taking vertical 
images, therefore TAUv should be 1, and TAUz can be approximated by cos(θ) (Chavez, 1996).  Therefore, the 
surface reflectance equation becomes: 
 

             (5) 
 
Using the COST method in ERDAS Imagine’s Model Maker, six dates of Landsat TM5 from 1991 were 

converted from DN values to surface reflectance.  The six dates used for this study include: April 4th, June 7th, July 
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9th, August 26th, September 27th, and October 29th, all collected in Landsat path 12, row 30.  Prior to any correction, 
each of the Landsat images was georeferenced and cut to the size of the Coastal Watershed using ERDAS Imagine.  
Once the correction was implemented, the images were visually inspected (Figure 1). 

 

 
 
Figure 1. The Landsat TM5 CIR images of the Costal Watershed before (a) and after (b) COST atmospheric 

correction was performed on the 06/07/1991 image. 
 

When looking at the average reflectance values for the first four bands of the corrected Landsat images, it is 
obvious that the reflectance values change throughout the growing season (Figure 2).  However, it is hard to make a 
conclusion whether these changes form a pattern over longer time periods, or if there is no predictable change in 
these values.  

(a)  (b) 
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Figure 2. The average reflectance of each of the first four Landsat TM5 bands for each date of imagery. 
 

Along with inspecting the average reflectance of each of the Landsat bands, several derivative bands were 
created in order to look at the trends in vegetation reflectance values throughout the growing season.  The first 
derivative band that was generated was the Normalized Difference Vegetation Index (NDVI) using: 

 

     (6) 
 

The other derivative bands were the brightness, greenness, and wetness bands using the Tasseled Cap 
Transformation in ERDAS Imagine (ERDAS, 2008).  The average values of each of the derivative bands for each of 
the images were compared and a polynomial trend was fitted to each of the bands (Figure 3). The polynomial trend 
line for the NDVI band had the best fit to the data (R2=0.8905). 
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(a) 

(b) 
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Figure 3. The average values for each of the derivative band: (a) NDVI, (b) Brighntess, (c) Greenness, and (d) 
Wetness.  The standard deviations of each of the averages and polynomial trend lines are also shown on these 

graphs. 
 
 
 

(c) 

(d) 
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CONCLUSIONS 
 
The COST method, introduced by Chavez (1996), was sufficient at atmospherically correcting images to 

surface reflectance for one year of Landsat TM5 imagery.  However, the absolute correction technique was 
relatively time consuming to do for each individual image.  For future studies, which will compare the trends seen in 
this year of data to trends in images from 1985 through 2008, a combination of absolute and relative atmospheric 
corrections may be used.  Some studies have indicated that correcting a “reference image” using an absolute 
atmospheric correction technique, such as COST, and then using a relative atmospheric correction technique to 
correct the other images to the reference image can cut down on the preprocessing time of the images and give just 
as good results as individually correcting each of the images (Schroeder et al., 2006). 

The observed changes in the NDVI derivative band matched the prediction that it should increase in the middle 
of the growing season and tend to decrease at the beginning and end of the summer months, which indicates that the 
COST method did not disproportionately correct any of the images.  However, one year of data on its own does not 
tell us very much about how vegetation may be responding to human and climate pressures, so these data will be 
useful in comparing to other growing season years.  Once other years’ NDVI values have been produced for the 
growing season, the polynomial trends of each of the years can be compared, and beginnings, ends, and intensities 
of the growing season can be approximated and compared. 

This study provided the groundwork for continued research on how the Costal Watershed of New Hampshire 
has responded to intense development and climate change factors over the past 25 years.  Future studies will reveal 
exactly how these changes can be detected using Landsat TM5 images and their derivative bands. 
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