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ABSTRACT 
 
The objective of this work is to develop new methods for efficient automatic 3D modeling of existing industrial 
installations from point cloud data.  Traditionally, cylinder feature extraction algorithms utilize 5D Hough 
transforms, resulting in impractically high computational complexity.  A more efficient approach uses a 2D Hough 
transform to estimate orientation followed by a 3D Hough transform to detect position, but still has extensive 
runtimes and lacks robustness in dense point cloud data.  This work endeavors to (1) further decrease the runtime for 
cylinder feature extraction by implementing a coarse-to-fine approach, and (2) improve the robustness of the 
algorithm in detecting multiple cylinders by applying a clustering algorithm.  In the coarse-to-fine approach, an 
initial estimate of the cylinder feature is quickly generated by coarsely sampling the Hough space.  Subsequently, 
the search space is iteratively restricted based on the previous estimate while increasing sampling density to generate 
continually improving feature estimates until a stop criterion is reached.  Results show that the implemented coarse-
to-fine approach yielded an improvement in orientation estimate accuracy of 20% while reducing runtime by 74%. 
To improve the robustness of the Hough transform in the presence of multiple cylinders, a clustering technique is 
implemented on the accumulator.  First, cells in the accumulator with small number of accumulations are discarded 
to facilitate the computation of a hierarchical tree.  Clustering is then applied to group the remaining cells into 
clusters representing different cylinders.  This method improves robustness as well as accuracy of feature extraction 
in point cloud data with diverse cylinders.   
 
 

INTRODUCTION 
      
 

Technological advances in light detection and ranging (LIDAR) have enabled acquisition of dense and accurate 
point clouds at high speeds (Laser scanner survey, 2005).  The wealth of detailed point cloud data have necessitated 
and also facilitated the development of automated 3D reconstruction algorithms.  Since planes and cylinders 
compose up to 85% of all objects in industrial scenes (Petitjean, 2002), research in 3D reconstruction and modeling 
have largely focused on these two important primitives.  Cylinders are especially prevalent in settings such as 
petrochemical plants, refineries, and nuclear plants – robust automatic methods for the detection and fitting of 
cylinders in point cloud data are essential for 3D reconstruction of these sites. 

The objective of this work is to develop new methods and techniques for efficient semi-automatic or automatic 
3D modeling of existing industrial installations from point cloud data. The specific focus of this work is on 
automatic cylinder feature extraction using extensions of the Hough transform.  The tradition approach of cylinder 
feature extraction involves the direct application of the Hough transform in a 5D space (since cylinders are defined 
by five features), which becomes impractical due to the extremely high computational complexity in 5D space. To 
resolve this problem, a modified two-step approach (Rabbani, 2005) was implemented first utilizing 2D and then 3D 
Hough transforms to reduce computation complexity.  The first step estimates cylinder orientation while the second 
step estimates the remaining three parameters of the cylinder (radius and position) using the estimated orientation 
from the first step.  This document presents results of cylinder feature extraction using synthetically generated point 
cloud data where the true cylinder parameters are known. 
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BACKGROUND 
 

Laser scanning provides detailed 3D measurements.  In the last ten years, the speed and accuracy of laser 
scanners have improved dramatically (Laser scanner survey, 2005), providing vast quantities of detailed point cloud 
data.  Much research has been focused on the development of automated reconstruction procedures which can be 
classified into (1) algorithms requiring a prior segmentation (Lukacs et al., 1998; Marshall et al., 2001) and (2) 
methods that process raw point cloud data without initial segmentation (Bolles and Fischler, 1981; Fischler and 
Bolles, 1987).  Most of the algorithms requiring prior segmentation are based on non-linear least squares approaches 
to minimize the orthogonal distance of the points from the fitted cylinder, and consequently requires good initial 
segmentation as well as good initial parameters for the inherently iterative procedures.  The methods in the second 
processes raw point clouds using robust fitting methods like random sample consensus but are computationally 
intensive. 

Hough transform-based methods are also computationally intensive, but these methods are robust in the 
presence of outliers and multiple instances (Hough, 1962).  An effective way to reduce the complexity of the Hough 
transform is to use sequential processing by splitting the problem. The approach of Rabbani (2005) divides the 
problem of cylinder fitting into two separate steps. The first step uses the Gaussian sphere of the point cloud as its 
input and utilizes the 2D Hough transform to finds strong hypothesis for the direction of the cylinder axis, followed 
by a second step that computes a 3D Hough transform to estimate the position and radius of the cylinder.  This 
sequential processing reduces the complexity of the Hough transform-based algorithm. 

 
 

SEQUENTIAL HOUGH TRANSFORM APPROACH 
 

        An effective way to reduce the complexity of the Hough transform is to use sequential processing by splitting 
the problem into a set of manageable sub-problems. The approach of Rabbani (2005) divides the problem of 
cylinder fitting into two separate steps. The first step uses the Gaussian sphere of the point cloud as its input and 
utilizes the 2D Hough transform to finds estimate for the direction of the cylinder axis, followed by a second step 
that computes a 3D Hough transform to estimate the position and radius of the cylinder.  This sequential processing 
drastically reduces the complexity of the Hough transform-based algorithm. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Estimate the Orientation of the Cylinder 

The first step of the sequential Hough transform procedure (Rabbani, 2005) is to estimate the orientation of the 
cylinder axis given a set of point cloud data.  Carmo et al. (1976) observed that the normal of each point on the 
cylinder makes a great circle in the Gaussian sphere.  This great circle is a result of the intersection of the unit sphere 
with a plane passing through the origin that is perpendicular to the normal of a given point in the point cloud.  Each 
point of the cylinder point cloud therefore creates a separate great circle on the unit sphere.  The intersection of these 
great circles represents the orientation of the cylinder axis.   

Figure 1.  Five parameters of the cylinders.
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The Hough transform is essentially a voting procedure.  The previous paragraph was written in terms of 
continuous space, but to implement orientation estimation using Hough transforms on a computer, the algorithm 
must operate in discrete space.  Therefore instead of using the continuous space unit sphere, the unit sphere is 
sampled and represented as consisting of a finite number of adjoining cells in discrete space.  The ith cell is defined 
by its center position (θi,φi) in polar coordinates.  Similarly, instead of being continuous, each great circle is 
uniformly sampled to consist of a finite number of points.   

The voting procedure can consequently be visualized as an accumulation process.  Given a point on the cylinder 
point cloud data, a great circle with a finite number of samples is generated that is perpendicular to the normal of 
that point.  The discrete great circle passes through a finite number of cells on the discrete unit sphere.   Each point 
on the great circle votes (ex. increments the accumulator) for the cell it is located in.  This process is repeated for all 
the great circles, and the cell on the unit sphere with the highest accumulations is chosen as the estimate for cylinder 
orientation.  The details for the first sequential step (Rabbani, 2005) are summarized as follows: 

(1) Generate a discrete Hough space (i.e. discrete unit sphere). 
(2) Compute the normal of a point in the point cloud data using k-nearest neighbors and plane fitting, and then 

generate a discrete great circle with orientation perpendicular to computed normal. 
(3) Increment the accumulator of each cell that the discrete great circle passes through. 
(4) Repeat steps 2-3 for each point on the cylinder point clouds, revealing a region of intersection of the great 

circles. 
(5) Select the cell with the highest accumulator value as axis orientation (i.e. with greatest number of 

intersections) 
 
Estimate the Position and Radius of the Cylinder 

Following cylinder orientation estimation as in the first step, the next step is to estimate the position and radius 
of the cylinder (Rabbani, 2005).  For the second sequential step, all the points are first projected to the plane 
perpendicular to the cylinder axis estimated in first step. Then the position and radius of the cylinder are calculated 
using circle fitting on the projected points.  The details for this second sequential step are summarized below: 

(1) Apply single value decomposition to project each point in 3D dataset onto a 2D plane perpendicular to 
estimated orientation. 

(2) Form Cartesian voting grid  for range. 
(3) For each projected point , generate sampled circle with radius  centered at . 
(4) Sampled circle votes for cells it passes through. 
(5) Repeat steps 3-4 for each projected point. 
(6) Repeat steps 2-5 for a range of radius values. 
 

 
ACCURATE AND FAST DETERMINATION OF ORIENTAION 

         
In the original approach by Rabbani (2005), the unit sphere was sampled at a given number of points to generate 

the Hough space, in which voting subsequently occurs.  The number of cells on the unit sphere impacts the accuracy 
of the orientation estimate.  A larger number of cells would yield a more accurate estimate of the cylinder 
orientation, but comes at the cost of speed in terms of computational runtime.  A smaller number of cells, on the 
other hand, would result in a less accurate estimate, but would reduce the runtime.  An approach that would yield a 
better orientation estimate while reducing runtimes is the coarse-to-fine procedure. 
 
Coarse-to-fine Approach 

The idea of the coarse-to-fine approach is as follows.  Initially, the whole unit sphere is coarsely sampled and an 
initial estimate of orientation made.  The initial estimate gives an indication of the orientation, but due to the coarse 
sampling of the unit sphere, does not yield an accurate estimate.   But the information of the initial estimate can be 
used to restrict the search region of the unit sphere while increasing the sampling density of the unit sphere in that 
restricted region.  The second iteration uses the restricted region with the denser sampling to generate a more 
accurate estimate.  Subsequent iterations continue to restrict the search region while increasing the sampling density, 
improving the accuracy of the orientation estimate until the stop criterion is reached. 
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For performance assessment, the coarse-to-fine approach was implemented and illustrated as follows.  Initially, 
98 cells are used covering the whole unit sphere (90°) to generate the initial orientation estimation for a cylinder 
point cloud containing 588 points.  Once the estimate is made, subsequent iterations (Figure 2) reduce the search 
region by 32° each time around the orientation estimate of the previous iteration.  During each iteration, the number 
of cells in the restricted search region is continually increased for denser sampling of the unit sphere where the 
cylinder is likely to be orientated. 
 

 
 
 

The number of cells as well as the estimated orientation for each iteration are tabulated in Table 1.  The actual 
orientation of the cylinder is (0.7687,-0.1848,0.6124).  Note that the orientation estimate continually improves (in 
terms of mean absolute error) from the initial iteration to the third iteration.  The computational runtime for this 
course-to-fine approach is 3.2 seconds.  Using the original approach with 1366 cells covering the whole unit sphere, 
the orientation estimate is (0.7799,-0.1922,0.5957).   The corresponding mean absolute error and runtime are 0.1879 
and 12.1 seconds, respectively.  Therefore the coarse-to-fine approach yielded an improvement in orientation 
estimate accuracy of 20% while reducing runtime by 74%.  
 
 

Table 1. Results of coarse-to-fine iterative procedure 

 
 

 Number of Cells Orientation Estimate (x,y,z) Mean Absolute Error 

Iteration 1 98 (0.6124,-0.3536,0.7071) 0.6479 

Iteration 2 223 (0.7228,-0.2481,0.6450) 0.3767 

Iteration 3 398 (0.7784,-0.1845,0.6001) 0.1494 

Orientation estimate 

Search region Iteration 1 

Iteration 2 

Iteration 3 

Figure 2. Illustration of coarse-to-fine approach showing initial orientation estimate using a sparsely populated unit 
sphere.  Each subsequent iteration focuses on the previous estimate by restricting the search region as well as 

increasing the number of cells in the restricted region, improving accuracy as well as decreasing the overall runtime.
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ROBUST ESTIMATION OF ORIENTATIONS FOR MULTIPLE CYLINDERS 
 

The sequential Hough transform approach described above estimates the cylinder orientation in the case of a 
single cylinder.  If multiple cylinders are present in the point cloud data or region of interest within the data, the 
Hough space would exhibit multiple peaks in terms of number of accumulations.  Simply choosing the cells with the 
maximum number of accumulations would not yield accurate estimates of multiple orientations.  In the case of 
multiple cylinders, robust estimation of multiple orientations can be achieved using clustering, as detailed in the next 
section. 
 
Clustering 

Clustering is useful for detecting multiple peaks in Hough space, given an input dataset containing multiple 
cylinders. For example for a dataset containing two cylinders (Figure 3), if the two highest values of the accumulator 
are simply chosen, these may not correspond to the two separate cylinders, due to noise and differences in the size of 
the cylinders.  Clustering, on the other hand, is a more robust method that can be used to separate the two clusters 
that correspond to the two cylinders. 

The basic idea for getting a uniform sampling of the Hough Gaussian sphere is to sample Φ uniformly and 
change the sampling density along θ adaptively. Because of uniform sampling, there are points almost everywhere 
on the Hough sphere. Clustering cannot be performed in the situation where points are uniformly distributed on the 
Gaussian sphere.  But given the availability of the number of accumulations at each point, certain points can be 
discarded prior to clustering.   

Since there are a lot of points with small accumulations while very few of them have large accumilations, points 
with small accumulations could be discarded to facilitate clustering. First, we treat the accumulator as a random 
variable, using its histogram to estimate its cumulative distribution function. Let a be the value the accumulator can 
realize, and A be the accumulator as a random variable.  The objective is to determine a threshold a0 so that 
P(A<a0)=pthr, where pthr is user defined (typically 0.95 works well for this application).  All points in the 
accumulator with less than a0 accumulations are discarded.  

Then the remaining points are used to compute spherical distance from each point to every other point. Given 
points  and , the spherical distance is defined as follows: 
 

 
 

Following histogram-based thresholding of the accumulator cells, the next step is to create a hierarchical tree 
from computed distances followed by clustering to group the remaining data points into clusters. After finding the 
separate clusters, the cell within each cluster that has the highest number of accumulations is chosen as an estimate 
for cylinder orientation.  Figure 4 illustrated the detailed clustering steps. 
 
 

 

Figure 3. Example two cylinder point clouds dataset. 
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Figure 4. The steps involved in the clustering procedure are illustrated above.  First, cells with few accumulations  
are discarded using a histogram-based approach.  Spherical distance of each cell to every other cell is computed, and 

the results are used to produce a hierarchical tree and subsequently clustered to represent the different cylinders in 
the point cloud data.  

The results of the clustering method as applied to point cloud data with two cylinders are tabulated below in 
Table 2. As can be observed, the clustering method can be used to robustly estimate the orientation of multiple 
datasets within the cylinder. 
 

Table 2. Results of robust detection method for two cylinders in point cloud data 

 x orientation y orientation z orientation 

Actual Orientation 1 0.7687    -0.1848 0.6124 

Actual Orientation 2 0.0875 0.9706    -0.2241 

Estimated Orientation 1 0.7697 -0.1923 0.6088 

Estimated Orientation 2 0.0975 0.9690 -0.2271 

 
 

CONCLUSION 
 

This work extends upon the sequential Hough transform procedure of Rabbani (2005) for automatic cylinder 
extraction in point cloud data, decreasing runtimes as well as improving the robustness of orientation estimation.  
The implemented course-to-fine approach not only reduces runtime, but improves the accuracy of the orientation 
estimates; the clustering approach furthermore improves the robust of cylinder feature extraction in the presence of 
multiple cylinders within dense point cloud data.       
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