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ABSTRACT 
 
Video metadata are often of lower absolute accuracy than desired for exploitation and tracking, and are often 
recorded at a lower rate than the video frame rate.  In these circumstances it is beneficial to perform georegistration 
of the video to reference data in order to improve geopositioning accuracy or to assess the geopositioning accuracy.  
Manual georegistration is much slower than real-time, and previously existing automated techniques require 
specialized hardware.  The authors have developed a real-time georegistration technique that is demonstrated to run 
in real-time on a general-purpose workstation with no site model preprocessing.  The technique uses a Kalman filter 
to compute corrections to the interpolated metadata based on automatically measured tie points in every successive 
pair of video frames, and tie points to reference imagery and a digital elevation model (DEM) at the highest rate 
permitted by the workstation, currently about one frame in 45.  When used with stereo reference imagery the system 
is also capable of estimating and correcting for DEM vertical bias.  The georegistration approach is outlined and 
results are presented. 

 
 

INTRODUCTION 
 
The capability of precise geopositioning from video cameras on aerial platforms has long been limited by the 

accuracy of the metadata needed to support this capability:  the camera position and orientation along with any 
interior orientation parameters (such as zoom level) not available from advanced calibration.  Even in the best of 
circumstances, the jitter in the attitude due to air turbulence along the flight path makes it difficult to know the 
attitude to sufficient accuracy.  On top of this, metadata typically are reported asynchronously from the frames of the 
video camera, such that the metadata need to be aligned in time and interpolated. 

Because of these limitations, video image registration to reference data is an attractive means to achieve the 
goal of precise geopositioning where it would not otherwise be possible in the presence of low metadata accuracy.  
(Wang et. al. 2008).  BAE Systems has long been active in automated registration of still and video imagery, and 
has recently addressed the challenge of automated video registration in a real-time system. 

Automated registration systems that operate in real- or near-real time have been described (Cannata et. al., 
2000).  Typically these approaches require specialized hardware to achieve a real-time rate, and may also require 
advanced preparation such as reference image orthorectification and scene model generation.  Our approach is to use 
a general-purpose workstation without special hardware, and to use any available reference data with no special 
advanced preparation. 

Automated video registration is expected to be of continuing interest even as high-accuracy metadata become 
available for video cameras on aerial platforms.  One reason is that a system with the capability of performing 
automated video registration is also capable of automated quality monitoring of the subsystems that gather and 
transmit the metadata.  Another is that the automated registration capability can still be used in the event of the 
failure of any part of the metadata collection subsystem. 

In this work we will describe our approach to real-time automated video registration.  Following this 
introduction, the next section will touch on our modular design approach, based on frame-to-reference matchers and 
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frame-to-frame matchers supplying measurements to a Kalman filter which in turn supplies adjustments to a 
geopositioning sensor model.  The following section will examine a test case in detail, including ground truth test 
results for the adjusted sensor model, complete with error modeling diagnostics. 

 
 

DESIGN OF REAL-TIME PROTOTYPE 
 
The core of a system for real-time video registration can be built as shown in Figure 1.  The figure shows a 

registration manager module that combines a video Kalman filter (KF) with a frame-to-frame matcher and a frame-
to-reference matcher.  The registration manager is designed to work within a video screening and exploitation 
application. 
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Figure 1.  Video Registration Manager. 

The frame-to-frame matcher is a module that identifies matching image points between pairs of frames.  It is 
intended to be used for closely spaced video frames, such that perspective changes between frames are not 
important.  As such it requires access to the images only, and not the metadata for each frame, and it does not use a 
sensor model.  We have implemented our prototype in a modular way so that any available frame-to-frame matcher 
can send its matches to the video KF though a messaging interface.  All that is required from the frame-to-frame 
matcher is identification of the two video frames used, the matching image coordinates, and an estimate of the 
image-space uncertainty of the matches.  The frame-to-frame matcher used for the tests to be described in the 
following section uses a corner detection algorithm to perform the matching (Förstner and Gülch, 1986), but any fast 
and reliable frame-to-frame matcher should work equally well. 

The frame-to-reference matcher module identifies image points in the video frame that match reference data.  
As with the frame-to-frame matcher, this module interacts with the video KF through a messaging interface, so that 
any fast and reliable frame-to-reference matcher can be used.  The interface we developed for frame-to-reference 
matches allows the reference information to be expressed in two different ways.  The first is in the form of a ground 
control point position and error estimate.  The second is in the form of an image measurement (and error estimate) in 
a reference image.  In both cases the corresponding image measurement (and error estimate) in a specified video 
frame accompany the reference information.  These two mechanisms can be used in combination.  We have also 
provided the capability in the interface to specify the relationship of the video image measurement to a terrain 
surface, so that a single reference image and digital elevation model (DEM) are sufficient reference data, and so that 
DEM corrections can be estimated when there are multiple reference images or 3D control points.  The frame-to-
reference matcher used for the tests to be described in the following section uses an edge matching algorithm that 
accounts for changes in perspective and modality (Lofy, 2000). 

Since the frame-to-reference matcher must account for varying perspective and imaging modality, depending on 
the type of reference data, it is more complex than the frame-to-frame matcher.  The sensor model for the 
unregistered video frame is therefore made available to the matcher in the design.  The design shows it coupled with 
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the video KF, so that improvements of the video metadata propagated from prior registrations can be used in the 
frame-to-reference matcher if needed. 

Because of the complexity of the frame-to-reference matching task, it is typically not as fast as the frame-to-
frame matcher.  Our approach is to accept frame-to-reference matches in the video KF as often as we can get them, 
and maintain accuracy between frame-to-reference matches through the use of frame-to-frame matches for each 
successive pair of frames. 

A Kalman filter (Gelb, 1974) receives measurements from the frame-to-frame matcher and frame-to-reference 
matcher.  The Kalman filter has a state vector (and corresponding error covariance) that is updated for each video 
frame.  The state vector consists of several parts, to handle the video sensor and each source of reference 
information. 

The video sensor portion of the Kalman filter state consists of corrections to the video sensor operational 
parameters (position, attitude, and field of view) obtained from the metadata.  In our implementation the video 
sensor portion of the state is augmented to use rate corrections (as well as offset corrections) to the sensor position 
and attitude data.  While the metadata are usually asynchronous with the video frames, the measurements input to 
Kalman filter are synchronous with the frames, and thus the KF state is updated for the time of each frame.   An 
archive is maintained of the state vector and its error covariance so that it can be used by the screener to obtain the 
updated sensor model for any frame. 

The Kalman filter state vector also includes corrections to the reference data:  sensor model adjustments for 
reference images, position adjustments for control points, and DEM height corrections.  As the video registration 
takes place, the video sensor model errors become correlated with the reference data errors.  These correlations are 
captured in the Kalman filter state error covariance, so that they are rigorously handled when the same reference 
data are used repeatedly in the video sequence, and so that the full covariance is available for rigorous exploitation 
via the state archive.  Equally important, the Kalman filter implementation rigorously accounts for the correlation of 
video sensor model parameter errors between sequential frames when it applies the frame-to-frame measurements. 

The video KF has been implemented to allow out-of-sequence frame-to-reference measurements.  This is so that 
the updated state archive can be kept as accurate as possible by frame-to-frame registration while the frame-to-
reference manager is working on its task.  It maintains an internal archive of frame-to-frame matches.  When a 
frame-to-reference match is received by the video KF, it rolls back the state to the appropriate time before updating, 
and then reapplies any previously received frame-to-frame matches.  The video KF is a very fast module, so that 
with a short latency the video screener can always use the best updated state possible for any given frame:  updates 
that have been propagated to the current frame by frame-to-frame matches from a very recent frame that was 
registered to reference data. 

The video registration manager interacts with the video screener application by introducing a minimal latency 
from the live video stream, but still processes the video at a real-time rate.  For each frame, the screener constructs a 
sensor model from the metadata as corrected by the corresponding entry in the state archive.  Once the registration 
manager has begun its work there is always an updated state available, and even if there were not, the screener could 
use the uncorrected metadata for a sensor model.  When the latency is sufficient, the updated state accuracy can 
approach the limit imposed by the quality of the reference data. 

 
 

TEST RESULTS 
 
The design presented above for real-time video registration depends on an initial estimate of the geopositioning 

metadata, which is to be corrected by the video Kalman filter using matches to frames and to reference imagery.  
Current practice for video is to place it into an MPEG-2 transport stream, in which it is multiplexed with a metadata 
stream using one of the Motion Imagery Standards Board (MISB) key-length-value (KLV) metadata standards 
(MISB 2006, MISB 2009).  To date, our implementation of the design has been tested with unmanned aerial vehicle 
(UAV) systems that use the EG 0104.5 KLV standard.  Newer standards, such as EG 0601.3 and EG 0801.2, will 
only help to improve the effectiveness of the system.  In this section, we will describe one set of test data that has 
been registered with our system, and give the registration accuracy and timing results, and in particular we will 
describe a ground truth test of the registration results. 

 
Test Data 

The test results in this section were obtained with a video recorded with a video camera on a helicopter flight 
over Escondido, California.  The reference data consists of a set of four triangulated aerial frame images, and the 
DEM extracted from them.  The reference image ground sample distance (GSD) is about 0.33 m.  The absolute 



ASPRS 2010 Annual Conference 
San Diego, CA ♦ April 26 - 30, 2010 

horizontal accuracy is estimated to be 1.32 m CE90.  The DEM post spacing is 10 m, and the absolute vertical 
accuracy is estimated to be 1.64 m LE90.  Figure 2 is a screen capture of a portion of one of the reference images.  
The area on the right-hand side of the figure is covered in a part of the video sequence, and the features will be seen 
in the video frames to be shown. 

 

 
Figure 2.  Screen capture of reference image. 

 
The test results in this section were obtained with an MPEG-2 transport stream read from a file on disk.  The 

video was deinterlaced to a 320x240 pixel progressive scan.  The GSD ranges from 0.26 m to 0.45 m.  The KLV 
metadata in EG 104.5 format were generated offboard, beginning with a manual resection of one frame to the 
reference data, followed by a coarse registration of each frame, to which smoothing was applied before multiplexing 
with the video stream.  Note that for many UAV systems the metadata are recorded onboard the platform, so that the 
previous step is unnecessary.  The a priori sensor position error was estimated to be about 20 m (1-sigma) 
horizontally and 10 m vertically.  The a priori attitude angle uncertainties were set at 0.075 rad (1-sigma, 4.3 
degrees) on each of three axes.  These a priori error estimates are commensurate with what can readily be attained 
with UAV systems, and they give a predicted horizontal accuracy of about 125 m CE90 at the operating height for 
the video sensor in the test we present here.  A screen capture of a video frame and the corresponding metadata is 
provided in Figure 3. 

 
Accuracy Performance 

One part of the video Kalman Filter state consists of adjustments to the geopositioning sensor model parameters 
for the video sensor itself.  When the sensor model is used in a DEM intersection operation to compute the ground 
coordinates of a measured image point, the adjustments are expected to lead to more accurate coordinates than those 
obtained with the unadjusted sensor model.  Whether or not this has been achieved can be determined by a ground 
truth test. 
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A ground truth test was designed as follows.  First, a series of seven photoidentifiable check points was 
identified along the swath of the video sequence, such that a new point is acquired each time another point leaves the 
video frame.  The "true" coordinates of these check points were determined by DEM intersection with their 
measured image coordinates in reference imagery.  An error propagation calculation was also performed for each 
DEM intersection, taking into account the image measurement uncertainty, reference image sensor model parameter 
uncertainties, DEM vertical uncertainty, and an estimate of the uncertainty of each point's height relative to the 
terrain height.  The error propagation yields a 3x3 error covariance matrix for each check point. 

 

 
Figure 3.  Screen capture of video frame and metadata. 
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Next, every five frames, for a total of 162 measurements in 811 frames, a manual measurement is made of the 
image coordinates of the check point that is currently in view.  To the extent that the video sensor state is known, it 
should be possible to match these measurements with a prediction based on the check point ground coordinates and 
the sensor model for the video frame. 

The final step in the ground truth test is to project the check point ground coordinates into the video frame with 
either the unadjusted or the adjusted sensor model parameters, and compare with the image measurements.  Error 
propagation is also done in this step, taking into account the check point 3x3 ground space error covariance, the 
sensor model parameter uncertainties, and the uncertainties in the image measurements in the video frame.  When 
this is done with the adjusted sensor model it is particularly important to use the full error covariance from the video 
Kalman filter. 

For the ground truth test, the frame-to-reference match was configured to occur exactly every 30 frames.  In 
real-time operation, the interval between registrations to reference will be somewhat irregular depending on the time 
required for each registration.  We believe the rate of registrations to reference used in this study to be the likely rate 
that will attained in practice with the real-time configuration in the near future.  The frame-to-frame matcher was 
configured to find five matches between consecutive frames.  The frame-to-reference matcher was configured to 
find up to five matches to reference for each frame attempted, and the actual number was distributed fairly 
uniformly between zero and five, depending on the scene content of the frame in question. 

The differences of the predicted check point image positions from their measured positions are shown in Figure 
4 for this ground truth study.  The figure shows the results for both the unadjusted and the adjusted sensor model for 
the video frame.  In this figure and those that follow, the abscissa is divided by brown lines to show the portions of 
the clip in which each of the seven check points is used.  It is to be expected that there will be a common bias 
component in the errors for any one check point, so that only by looking at multiple check points will a more 
complete picture of the error statistics emerge.  This effect is clearly seen in the figure, where (for example) the 
errors after registration for the sixth check point all tend to be larger and the errors for the seventh check point tend 
to be smaller. 
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Figure 4.  RMS differences in image space between measured and predicted check points for unregistered and 

registered video frames. 
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As Figure 4 indicates, the RMS differences in image space have been reduced from a mean of about 41 pixels to 
about 6 pixels by the registration process.  This is a critically important result for an automated process.  Even 
though the reference imagery used to measure the check points manually is the same as was used for the automated 
registration, it shows that the automated process has not identified false correspondences.  This point is important 
enough that check points should be measured whenever possible when an automated registration process is invoked. 

Note that the image space residuals in Figure 4 are not the errors in the measurements made by the matchers, 
they are the differences between the check point image measurements and the predicted measurements, with errors 
from all sources.  In our testing, the image measurement error estimates for the frame-to-frame matcher are about 1 
pixel (1-sigma).  The image measurement error estimates for the frame-to reference matcher are about 3 pixels (1-
sigma). 

It is also possible to express the results of the ground truth test in ground space.  This is done by projecting the 
check point image measurements to the horizontal surface at the known height of the check point.  These results are 
shown in Figure 5, and they show that the RMS differences in horizontal ground space have been reduced from a 
mean of about 14 m to about 2 m. 
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Figure 5.  RMS differences in horizontal ground space between measured and predicted check points for 

unregistered and registered video frames. 

Besides showing that the registration process increases the geopositioning accuracy for the video sensor, the 
ground truth test has another equally important role.  That role is to provide confidence in the a posteriori error 
estimates from the video Kalman filter.  In Figure 6 the image space residuals for the check points are shown again 
for the case of the registered image.  In addition, the circular error metric (CE90) is shown in red on the same plot.  
The CE metric contains all of the sources of error in the difference between the measurements and the predicted 
measurements as described previously, including the ground space uncertainty of the check point, the sensor 
parameter error for the video sensor after registration, and the image measurement error for the manual 
measurements in the video frame.  This graph shows that the image space residuals are within the bounds of the 
CE90 metric for the great majority of the trials, as is to be expected when the registration process is working 
reliably. 

One other bit of information is displayed in Figure 6.  There is a fundamental limit to how much accuracy 
improvement is possible from the registration process, imposed by the accuracy of the reference data as seen at the 
imaging geometry of the video sensor.  This limit can be computed by projecting the accuracy of a point extracted 
from the reference data into the video frame.  In this study, and in all practical applications, the check points are of 
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equal accuracy to any other control point extracted from the reference data (otherwise, if more accurate data were 
available it would be used as reference data in registration).  Therefore, in this study we repeated the projection of 
the check points into the video frame, but omitted the video sensor model parameter uncertainty from the error 
propagation.  In the figure, it is seen (of course) that the limiting accuracy is always better than the actual predicted 
accuracy.  This is due to the contribution of errors (hopefully well-characterized) in the matchers used in the 
automatic registration, and because matches will not always be found in the number and spatial distribution required 
to obtain the ultimate accuracy.  We observe that the matches to reference bring the accuracy rather close to the 
ultimate achievable accuracy, and that the frame-to-frame matches keep the accuracy within about a factor of two of 
the limit when there is a match to reference about every thirty frames. 
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Figure 6.  RMS differences in image space between measured and predicted check points for registered video 
frames, with error estimate from all sources (red) and error estimate excluding video sensor model parameters 

(green).  Frame 2496 is indicated with a blue circle. 

The fine-scale "sawtooth" pattern in Figure 6 corresponds to the 30-frame cycle of matches to reference.  After 
each reference match the predicted CE90 falls abruptly, and then it rises slowly since the frame-to-frame matches 
keep its growth in check.  (The predicted CE90 would rise much faster without the frame-to-frame matches.)  The 
sawtooth pattern is interrupted in places where the frame-to-reference matcher fails due to ambiguities or sparseness 
of features, in which case the predicted CE90 continues to grow until the next successful match to reference. 

The blue circle in Figure 6 corresponds to video frame number 2496, which has been registered to the reference 
image.  That is why its CE90 estimate is lower than the preceding frames.  A screen capture of frame 2496 is shown 
in Figure 7.  On this screen, the 3D error ellipsoids are shown for geolocation using the registered video frame and 
reference DEM for 4 arbitrarily chosen points on the terrain.  A screen capture of the immediately preceding frame 
(2495) is shown in Figure 8.  This figure shows the 3D error ellipsoids for the same 4 ground points, which are 
larger because frame 2495 was not registered to reference (the most recent registration to reference having taken 
place in frame 2466).  When the video is viewed in the screener as the registration is being done, the error ellipsoids 
can be viewed in real time.  Their positions track with the real features in the image, and their sizes gradually grow 
and then snap back to a smaller size as Figure 6 indicates. 
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Figure 7.  Screen capture of frame 2496.  The screen shows the sizes and shapes of the 3D error ellipsoids for 

geolocation with the video frame and reference DEM for four arbitrary ground points on the terrain surface.  The 
screen also shows the check point "sidewalk_corner" that was used for this frame, at its predicted location in the 

frame (which corresponds very closely to its observed image location). 
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Figure 8.  Screen capture of frame 2495.  The screen shows the sizes and shapes of the 3D error ellipsoids for 
geolocation with the video frame and reference DEM for the same four arbitrary ground points as the previous 
figure.  Note that the estimated errors are somewhat larger for this frame, since the most recent registration to 

reference was 29 frames previously. 

A crucial test to build confidence in the error estimates is the chi squared test, which weights the differences 
between the measurements and predictions by the inverse of the combined error covariance for the difference.  With 
one check point measurement in a given frame, the error vector has two elements and the error covariance is a 2x2 
matrix, and the chi squared test has two degrees of freedom.  In a random sample, the value of chi squared above 
which 95 percent of the tests are expected to lie is 0.10 while the value above which 5 percent are expected to lie is 
5.99.  Ninety percent of trials are expected to lie within this range.  The experimental chi squared values are graphed 
in Figure 9. 
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Figure 9.  Chi squared metric for image-space residuals (2 degrees of freedom per frame) for 162 check points in 

811 video frames, with lower and upper bound of symmetric 90% confidence interval. 

Note that a semilog graph is used for Figure 9, because on a linear graph it is difficult to see which points are 
above and which are below the lower (green) threshold.  The results show a healthy registration, with most of the 
points in the expected range.  

 
Timing Performance 

The real-time registration implementation does not require specialized hardware, only a high-powered general 
purpose workstation.  The workstation used for this study is a Hewlett-Packard Z800 with dual Intel® Xeon®* 
W5580 Quad core processors running at 3.20 GHz.  It has 8MB L3 cache, a 1333 MHz DDR3 clock, and 12 Gbyte 
RAM. 

The timing performance is given in the context of all components running simultaneously on the system 
described above.  The time for frame-to-reference matching is about 1.5 s (one in every 45 frames).  This process 
uses up to 12 processing threads.  The frame-to-frame matching time is 0.055 s (one every 1.7 frames).  This is a bit 
slower than real time, but a real time rate was achieved by using 3 frame-to-frame matching threads, and it continues 
to work in real time when every pair of successive frames is processed by the frame-to-frame matcher.  The video 
KF rate is about twice real time, which enables the frame-to-frame matches already found to be reprocessed after 
every frame-to-reference match within the latency time of about 3 s.  The video screener is able to run in real time 
even with all of the other processes running, and with many wire frame error ellipsoids being computed and 
rendered for each frame. 

 
 

CONCLUSION 
 
An approach to real-time, rigorous, automated video registration has been demonstrated on a general purpose 

workstation with no specialized hardware and no advanced model generation.  This was done by integrating a video 
Kalman filter, frame-to-frame matcher, and frame-to-reference matcher in a modular system that can interact with a 
 
*Intel and Xeon are registered trademarks of Intel Corporation in the U.S. and other countries. 
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video screener with a short latency from the live stream.  Ground truth testing indicates the automated process gives 
valid sensor model updates and error estimates.  Currently available workstations allow the process to work with a 
latency as small as three seconds. 
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