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ABSTRACT 
 

Building models are conventionally reconstructed by measuring their vertices point-by-point in a digital 
photogrammetric workstation (DPW), which is time and labor consuming process. Although aerial photos implicitly 
provide 3D information of buildings, LiDAR systems directly provide high density and accurate point cloud 
coordinates. However, LiDAR data cannot accurately represent the building boundaries. To take advantage of both 
systems, we propose Floating Model and a tailored least-squares model-data fitting (LSMDF) algorithm in this 
paper. The floating model is a pre-defined primitive model, which is described by a set of parameters, floating in the 
space. A building is reconstructed by adjusting these model parameters so the wire-frame model adequately fits the 
building’s boundary in all overlapping photos and LiDAR data. The semi-automated modeling procedure consists of 
3 steps. First, the operator chooses an appropriate model and approximately fit it to the building’s outlines on the 
aerial photos. Then, an automated procedure computes the optimal fit between the models and both of aerial photos 
and LiDAR data using an iterative LSMDF algorithm. Finally, the model parameters and standard deviations are 
provided, and the wire-frame model is superimposed on all overlapping aerial photos for the operator to check or 
modify the results. To test the proposed algorithm and approach, an image block of 4 panchromatic aerial photos 
and corresponding LiDAR data are selected for the experiments. The ground resolution of the image is 
approximately 5cm. The point density of LiDAR point cloud is about 4-5point/m2. The reconstructed models are 
manually evaluated and compared. Most of the buildings are accurately modeled, and the fitting result achieves the 
photogrammetric accuracy. In addition, the implicit constraints within the model, such as the parallel edges or 
rectangle corners, will keep the building shape without distortion. 

 
 

INTRODUCTION 
 

Digital Building Models (DBM) are the most essential information for many modern applications, such as urban 
planning and management (Steinicke et al., 2006), mobile navigation (Rakkolainen and Vainio, 2001), wireless 
telecommunication (Wahl et al., 2005), tourism promotion (Berlin, 2010), and true orthophoto generation (Habib et 
al., 2007) etc. Efficient acquisition of 3D city objects has become a more and more popular topic (Braun et al., 
1995; Brenner, 2005; Englert and Gülch, 1996; Grün, 2000; Kim and Habib, 2009; Lang and Förstner, 1996). 
Conventional photogrammetry concentrates on the accurate reconstruction of 3D coordinates of points. Current 
automated systems set up by image matching algorithms are mainly based on the point-to-point correspondence. 
However, higher-order features such as linear, planar or volumetric primitives contain more geometric and semantic 
information than a single point. That draws the research community’s intention to use 3D model as a modeling tool 
for extracting objects from source data. 

Although the CAD system is not initially developed for photogrammetric purpose, its powerful functions of 
drawing, manipulating, and visualizing 2D objects have made it widely used in photogrammetric systems. The 
increasing demands of object’s 3D models inspires many research toward using 3D CAD models as a modeling tool 
to reconstruct objects from image data ( Bhanu et al., 1997; Böhm et al., 2000; Brenner, 2000; Das et al., 1996, 
Ermes et al., 1999, Tseng and Wang, 2003, van den Heuvel, 2000, Vosselman, 1999). This trend towards integration 
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of photogrammetry and CAD system in the algorithmic aspect creates a new term: “CAD-based Photogrammetry”. 
Previous research has shown that using CAD models does increase the efficiency of photogrammetric modeling both 
by the advanced object modeling techniques, such as Constructive Solid Geometry (CSG), and the incorporation of 
geometric object constraints. 

Building modeling usually involves high-level information (model knowledge) and low-level data (images or 
LiDAR point cloud). Processing low-level data to obtain higher-level information is a bottom-up or data-driven 
procedure, and reversely a top-down or model-driven procedure derives features from high-level information and 
verifies the correspondence between the derived features and low-level data. Both bottom-up and top-down 
procedures are more or less applied in a building modeling approach. Information and data meet in a certain level 
for the verification of correspondence. In general, a fully-automated building modeling approach tends to verify the 
correspondence in the higher level than a semi-automated approach. A hypothesis test or engineering knowledge 
procedure is required for full-automated methods to determine the most appropriate model with respect to the scene 
(Baillard and Zisserman, 1999; Henricsson et al., 1996; Kim and Habib, 2009; Lu et al., 2006; Suveg and 
Vosselman, 2004). Model-based building reconstruction (MBBR) is rather a top-down approach which starts with 
hypotheses of building model representing a specified target on the scene, and verifies the compatibility between the 
model and the available data sources, such as topographic maps, aerial photos, LiDAR data, and DEM (Ameri, 
2000; Brenner, 1999; Sester and Förstner, 1989; Wang and Tseng, 2004). Most of the MBBR approaches are 
implemented in a semi-automated manner, solving the model-data fitting problem based on some high-level 
information given by the operator, for examples, inJECT (Förstner 1999), CC-Modeler (Grün et al., 2002), ATOP 
(Brenner, 2005), and PhotoModeler (EOS Systems, 2010). Semi-automated approaches leave the high level tasks, 
such as model hypothesis, model selection, and model detection, to humans to ensure the quality of data 
interpretation, while performing model-image fitting automatically to improve the modeling efficiency. This 
cooperation would make semi-automated building reconstruction practically valuable. 

Inspired by CAD-based photogrammetry and MBBR, we propose a complete 3D building modeling approach – 
Floating Models – for reconstructing building models simultaneously from aerial photos (2D) and LiDAR point 
cloud (3D). The floating model represents a flexible entity floating in 3D space. It can be a point, a line segment, a 
surface plane, or a volumetric model. Each model is associated with a set of shape parameters and a set of pose 
parameters. The shape parameters describe the model’s volume in the designated dimension. The pose parameters 
define the datum point’s position and the orientation of the model. From the traditional photogrammetric point of 
view, the floating models are extensions of the floating mark. However, the floating model does not only float in the 
object space indicating a position, but also can be adjusted in terms of size and orientation to represent the 3D 
outlines of an object. 

MBBR relies on a model-data fitting algorithm to obtain the optimal fit between model and data sources. 
Attempts to solve the problem of model-image fitting date back to the work of Sester and Förstner (1989). By fitting 
the projected model onto the image, the transformation parameters of the building model are determined using a 
clustering algorithm followed by a robust estimation of model parameters. This budding research has marked an 
important step toward MBBR, although the algorithm is restricted to fit a model onto one single image rather than 
multiple images. Concurrently in the field of computer vision for model-based vision, Lowe (1987) proposed the 
least-squares model-image fitting (LSMIF) algorithm to determine the projection and model parameters that best fit 
a 3D-model to matching 2D-image features. Lowe’s study developed the fundamental theory of the LSMIF for 
generic applications. This rigorous fitting algorithm has been recognized as a key to dealing with MBBR (Veldhuis, 
1998; Vosselman and Veldhuis, 1999). 

The previous work (Tseng and Wang, 2003; Wang and Tseng, 2004; Wang and Tseng, 2009) has successfully 
applied the CSG principle and a tailored least-squares model-image fitting algorithm to modeling versatile buildings 
merely from aerial photos. Buildings are reconstructed semi-automatically by adjusting the model parameters to fit 
the model to all overlapped images. In this paper, we improve the LSMIF as least-squares model-data fitting 
(LSMDF) algorithm in order to incorporate other data sources. The model parameters are determined by fitting the 
model both to the aerial photos and to the LiDAR point cloud. To simplify the fitting problem, the model parameters 
are rearranged into two groups, horizontal and vertical parameters. The proposed semi-automated reconstruction 
procedures are also divided into three steps. First, the operator chooses an appropriate model according to the aerial 
photos and approximately fit it to the building’s outlines on the aerial photos. Second, the LSMDF algorithm 
iteratively computes the horizontal parameters by fitting the projected wireframe model to the extracted edge pixels 
on aerial photos, and computes the vertical parameters by fitting the model’s roof patches to the extracted LiDAR 
point cloud. The horizontal and vertical parameters are computed in sequence iteratively to approach the optimal fit. 
Finally, the wireframe model is re-projected onto aerial photos for verification. The operator can make further 
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modification according to the photos if necessary. Figure 1 uses a box model as an example to depict the proposed 
semi-automated modeling procedures. The hexagons depict the spatial information provided from the data sources. 

 

 
 
Figure 1. The proposed modeling procedures start from manually fitting model to image approximately. Then, the 

optimal fit among aerial photos and LiDAR point cloud is calculated by LSMDF algorithms. Finally, the 
model is re-projected onto aerial photos for verification. 

 
 

FLOATING MODELS 
 
Conventional photogrammetric mapping systems concentrate on the accurate reconstruction of 3D points. The 

floating mark is a simple way to represent the position of a point in the space, and thus, has been utilized as the only 
tool in the stereo plotters up to now. The idea behind the floating mark is to recover the intersection ground point V1 
of the bundles from the projection centers O1 and O2, through the image point v11 and v21, as figure 2(a) shows. If the 
conjugate point v11’ or v21’ moves along the conjugate epipolar lines, the intersection point V1 represented by 
floating mark will rise or sink along the epipolar plane, seems like “floating” in the object space. This simple 
representation of a 3D coordinates has been very useful for photogrammetric measurement and 2.5D mapping 
system. However, the floating mark reaches its limits when the conjugate points cannot be identified due to 
occlusions or interferences from other objects. With the increasing needs for 3D object models, point-by-point 
measurement has been become the bottleneck of the production.  
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Figure 2. The geometry of floating mark and floating model. 
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To deal with the modeling problem, we propose the floating model as the 3D measuring tool that complies with 
the constructive solid geometry (CSG). Each floating model is basically a primitive model, which determines the 
intrinsic geometric property of a part of the building. The primitive model could be any kind of practical models as 
long as it can be defined and represented by parameters. For example, it could be line segment, rectangle plane, 
circular plane, triangular plane, box, or gable-roof house etc. Take the box primitive in figure 2(b) as an example, 
the floating model does not only recover one intersection V1 from one set of bundles, but also many intersections (V1, 
V2, V3, …) distributed on every edge and every face of the model from multiple sets of bundles. These redundant 
bundles result in much better reliability. More importantly, the model’s inner geometric characteristics, such as 
parallel edges, are implicitly considered by recovering all intersections simultaneously. Therefore, it is capable to 
reconstruct a building which is partially occluded. 

Despite the variety in their shape, each primitive model commonly has a datum point, and is associated with a 
set of pose parameters and a set of shape parameters. The datum point and the pose parameters determine the 
position and pose of the floating model in object space. It is adequate to use 3 translation parameters (dX, dY, dZ) to 
represent the datum point’s position and 3 rotation parameters, swing (s) around X-axis, tilt (t) around Y-axis, and 
azimuth (α) around Z-axis to represent the rotation of a primitive model. The shape parameters describe the shape 
and size of the primitive model, e.g., a box has three shape parameters: width (w), length (l), and height (h). 
Changing the values of shape parameters changes the dimensions of the primitive in the three designated directions, 
but still keeps its shape as a rectangular box. Various primitive may be associated with different shape parameters, 
e.g., a gable-roof house primitive has an additional shape parameter – roof’s height (rh). 

Although models are described by parameters, they are also composed of vertices, edges, and faces. The vertex-
edge-face topology is used not only for displaying models but also model fitting.  Figure 3 shows the topology and 
the model parameters of (a) box model, (b) gable-roof model, and (c) ridge-roof model. The X’-Y’-Z’ coordinate 
system is defined in the model space while the X-Y-Z coordinate system is defined in the object space. The little pink 
sphere indicates the datum point of the model. The yellow primitive model is in the original position and pose, while 
the grey model depicts the position and pose after adjusting parameters. It is very clear that, the model is “floating” 
in the space by controlling these pose parameters, and the volume size is flexible along the designated dimensions 
by controlling the shape parameters. 
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(b) Gable-roof Model (c) Ridge-roof Model 

Figure 3. Topology and the model parameters of 3 floating models. 
 
The primitive model defined in the model space is a simple unit solid. For example, a box is a unit cube; its 

width, length, and height are all equal to 1. The shape parameters are used to adjust the box to the correct size, and 
the pose parameters are used to rotate and move the box to the correct pose and position in the object space. Since 
normal buildings rarely rotate around the X-axis or the Y-axis, the swing angle (s) and the tilt angle (t) are neglected 
for the building reconstruction purpose. Table 1 lists the coordinates of a box’s 8 vertices after going through the 
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transformation from model space to object space. Each vertex in the object space is then projected onto the aerial 
photos by the collinearity condition equations on the basis of the known interior and exterior orientation parameters. 

 
Table 1. Vertices coordinates from model space to object space 

 
 

LEAST-SQUARES MODEL-DATA FITTING 
 
Based on the previous research, buildings can be successfully modeled solely from aerial photos. However, the 

LiDAR point cloud directly provides 3D coordinates of massive ground points with better vertical accuracy. If the 
LiDAR point cloud can be registered to the same datum of aerial photos, these 3D points should be able to improve 
the accuracy and reliability while reconstructing the building’s roof and the ground height. Therefore, we expand the 
original LSMIF to LSMDF to incorporate LiDAR point cloud. The model parameters are rearranged into two groups: 
(1) horizontal parameters, such as width (w), length (l), planar position of datum point (dX, dY), azimuth (α); (2) 
vertical parameters, such as height (h), height of datum point (dZ), and roof height (rh) for a gable-roof model. 

Assume that the orientation of aerial photos has been determined by other means and the LiDAR point cloud 
has been registered to the same datum of aerial photos, the visible vertices and edges of a floating model can be 
projected onto all available photos. The visibility of each edge on the designated photo is determined by calculating 
the normal vector of the face encompassing that edge. The face is visible on the photo as long as its normal vector is 
positive. Giving a set of model parameters, all vertices’ object coordinates can be calculated and the wireframe 
model can be reconstructed in the LiDAR point cloud. Since the model has been approximately fit by human 
operator, the searching range can be defined and the initial model parameters are available for the iterative fitting. 
The wireframe model is first projected onto all photos to solve the horizontal parameters by fitting the projection of 
the wireframe model to the extracted edge pixels. Then the floating model is projected into the LiDAR point cloud 
to solve the vertical parameters by fitting roof patches to the point cloud. 
 
Aerial Photo Fitting 
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Figure 4. Setting up a buffer along every edge of the model to identify candidate edge pixels on all photos. 

 
Although all shape and pose parameters will affect the model projection on the aerial photo, we leave the 

vertical parameters to be determined by fitting the model to LiDAR point cloud. At this stage, the objective of the 
fitting is the building’s outlines appearing on the aerial photos. To obtain the first approximate model as close to the 
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v1 (0, 0, 0) (0, 0, 0) (0, 0, 0) (dX, dY, dZ) 
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optimal fitting as possible, we develop an interface program allowing the operator to resize, rotate, and move a 
model to approximately fit all corresponding photos (Wang and Tseng, 2009). Using the approximate fitting, the 
LSMDF iteratively pulls the model to the optimal fit instead of blindly searching whole photo for the solution. To 
avoid the disturbance of irrelevant edge pixels, only those edge pixels distributed within the specified buffer zones 
are used in the calculation of the fitting algorithm. Figure 4 depicts the extracted edge pixels Tijk and the buffer 
determined by a projected edge 

21 ijij vv  of the model. The suffix i represents the index of projected line segment from 1 
to I, j represents the index of overlapped images from 1 to J, and k represents the index of the edge pixels from 1 to 
K. Ignoring edge pixels outside the buffer is reasonable, since the discrepancies between the projected edges and the 
corresponding edge pixels should be small, as the model parameters are approximately known. However, the size of 
the buffer has to be carefully chosen because it will directly affect the convergence of the computation, i.e., the pull-
in range. We propose a decreasing buffer-size strategy to improve the pull-in range of LSMDF – “The initial buffer 
should be larger to include more edge pixels at earlier iterations, and reduced to ensure the convergence as the 
iteration proceeds.” According to the previous research, the initial buffer size is set to 0.5mm and is decreased 
0.5mm after each iteration until it reaches the final size of 0.05mm. 

Since the detected edge pixels are the target on photos of the LSMDF algorithm, the quality of detection is 
crucial to the result of the fitting. A distinct edge pixel usually has a higher gradient intensity, which can be detected 
by most of the edge detectors, such as the Canny edge detector. However, an indistinct edge pixel may not be 
detected or may be detected together with other non-edge pixels. If all extracted pixels within the buffer are equally 
treated as the fitting targets, the non-edge pixels could lead the fitting to a wrong position. Therefore, the detected 
edge pixels within the buffer should be filtered based on their gradient vector which refers to the direction of the 
maximum gray value difference. The ideal projection of the wire-frame model should exactly overlap on the 
detected edge pixels. The ideal angle between the projected line segment and the gradient vector should be 90° or 
270°. A threshold of ±15° for the angle difference to 90° or to 270° is selected for the filtering purpose. 

The optimal fitting condition we are looking for is that all projected edges coincide with the building boundaries 
shown on aerial photos. In Equation (1), the distance dijk represents a discrepancy between a sample point Tijk and its 
corresponding edge 

21 ijij vv , which is expected to be zero. Therefore, the objective of the fitting function is to 
minimize the squares sum of dijk. Suppose an edge is composed of the vertices vij1(xij1, yij1) and vij2(xij2, yij2), and there 
is an edge pixel Tijk(xijk, yijk) located inside the buffer. The distance dijk from the point Tijk to the edge 

21 ijij vv  can be 
formulated as the following equation: 

2
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The coordinates of vertices vij1(xij1, yij1) and vij2(xij2, yij2) are actually functions of the unknown parameters, as 
table 1 shows. Therefore, dijk will be a function of the shape and pose parameters of the selected model. Taking a 
box model for instance, dijk will be a function of w, l, h, α, dX, dY, and dZ, with the hypothesis that a normal building 
rarely has a tilt (t) or a swing (s) rotation. The least-squares solution for the unknown parameters can be expressed as: 

Σdijk
2 = Σ[Fijk  ( w, l, h, α, dX, dY, dZ)]2  → min.    (2) 

Equation (2) is a nonlinear function with regard to the unknowns, therefore the Newton’s progressive method 
and the 1st order Taylor’s series expansion are applied to solve for the unknowns. The nonlinear function is 
differentiated with respect to the unknowns and becomes a linear function by ignoring the second and higher order 
terms with regard to the increments of unknown parameters as the following equation demonstrates: 
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where Fijk0 is the approximation of the function Fijk calculated with the given approximations of the model 
parameters. 
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and are calculated with the approximated model parameters. Δw, Δl, Δh, Δα, ΔdX, ΔdY, ΔdZ are the unknowns in 
equation 3 referring to the increments of the model parameters. Since the focus of photo fitting is on solving the 
horizontal parameters, we suppose all increments of vertical parameters, such as Δh and ΔdZ, are zero. Thus, the 
practical observation function of photo fitting becomes: 

dY
dY
F

dX
dX
FF

l
l

F
w

w
F

Fd ijkijkijkijkijk
ijkijk Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=−
00000

0 α
α

                    (4) 



ASPRS 2010 Annual Conference 
San Diego, California > April 26-30, 2010 

Given a set of approximates for unknowns, the least-squares solution for the unknown increments can be 
calculated, and the approximations are updated by the increments. Each edge pixel within the buffer provides an 
observation function as equation 4. All observations are considered in the least-squares adjustment, which means 
there would be I*J*K observations. Although some edge pixels may be included twice by two adjacent projected 
line segments, the iteration will lead to the optimal solution for the whole model. 

After fitting to the LiDAR point cloud for solving the vertical parameters, repeating this calculation to update 
the unknown horizontal parameters. The horizontal and vertical parameters are updated in sequence iteratively. The 
linearized equations can also be expressed as a matrix form: V=AX-L, where A is the matrix of partial derivatives; X 
is the vector of the increments; L is the vector of approximations; and V is the vector of residuals. The objective 
function actually can be expressed as q=VTV→min. After each iteration, X can be solved by the matrix operation: 
X=(ATA)-1ATL. The standard deviation of each increment can also be calculated as an accuracy index of the LSMDF. 

 
LiDAR Point Cloud Fitting 

Most of the relevant research adopts 3D plane fitting algorithms to determine the roof patches of the model. In 
this paper, we propose a coordinate transformation approach to simplify the fitting problem from 3D to 2D. Since 
the horizontal parameters have been determined by fitting to aerial photos, the location of the datum point and the 
horizontal range of the building are determined. The height (dZ) of the datum point could be estimated by the lowest 
point around the building. Then, the building height (h) and the roof’s height (rh) are determined by fitting the 
model to LiDAR point cloud extracted for the building. 

For the flat roof model, such as the rectangular box model, the rooftop’s height (h + dZ) is estimated by 
calculating the mode among all of the extracted LiDAR point’s height, as Figure 5 shows. The dark green line shows 
the mode and the lime green line shows the average in the profile views. For the gable-roof model or the ridge-roof 
model, the extracted LiDAR point cloud is transformed to a local X’-Y’-Z’ coordinate system defined on the lateral 
side of the building. Under the ideal condition, the LiDAR points should fall on the roof and form two roof eaves in 
the X’-Z’ profile view, as Figure 6 depicts. With the coordinate transformation, the observation function of the 
vertical fitting is simplified as the distance from 2D point to edge, similar to the function of the horizontal fitting. 
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(a) 3D view (b) the mode and histogram of all points’ height 

  
(c) X’-Z’ profile view (d) Y’-Z’ profile view 

Figure 5. Fitting a box model’s rooftop in a local X’-Z’ or Y’-Z’ coordinate system by calculating the mode among 
LiDAR point cloud’s heights. 
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(a) Projected 

model on photo 
(b) 3D view of 

LiDAR point cloud 
(c) X’-Z’ profile view of 

LiDAR point cloud (d) Y’-Z’ profile view of LiDAR point cloud 

Figure 6. Fitting roof eaves to the LiDAR point cloud in a local X’-Z’ coordinate system. 
 
 

EXPERIMENTS 
 
To verify the capability of proposed LSMDF algorithm, several experiments have been implemented. A 

building is modeled by using solely aerial photos and by both aerial photos and LiDAR data. The progress of the 
iterations is provided to study the impact of several factors, such as buffer size, constrained a parameter, and 
complements from versatile data sources.  

 
Data Sources and Program Introduction 

The test data includes 4 panchromatic aerial photos and the overlapping airborne LiDAR point cloud, provided 
by the EuroSDR “Registration Quality – Towards Integration of Laser Scanning and Photogrammetry” project. 
Figure 7 shows the overview of LiDAR point cloud superimposed on the 4 aerial photos. The original photos were 
taken with a 120.00mm-focal-length DMC digital aerial camera in September 2005. The image format is 13824pixel 
* 7680pixel and the ground resolution is about 5cm. The original pixel depth is 16bit and has been down-resampling 
to 8bit before the experiments. The end-lap between photos is about 60%, and the side-lap is about 20%. The inner 
and exterior orientation information is provided from previous aerial triangulation results by the data provider. The 
LiDAR point cloud is collected by Leica ALS50-II airborne laser scanner in April 2007. The flying height is 
approximately 500m which results in the point density of 4-5point/m2. However, the original orientation was altered 
for the registration purpose. The point cloud used for this paper has been registered to the same datum of the aerial 
photos according to the proposed methodology by Habib et al. (2009). 

A PC program developed by C++ language is designed to implement the proposed least-squares building 
modeling procedures. It provides an interface to display aerial photos and to interact with the operator for all model 
operations, as illustrated by figure 8. A proposed modeling procedure is as follows: (1) the operator selects an 
appropriate model from the model base. (2) The program automatically projects the initial model onto all photos in 
the middle of the viewport. (3) The operator adjusts the model parameters to approximately fit model to all photos. 
(4) The operator clicks the “Optimal Fitting” button and the program calculates the optimal fit both to aerial photos 
and LiDAR point cloud iteratively. (5) The optimal fit wireframe model is projected on all photos and the final 
model parameters are shown on the panel and the relevant statistics data, such as iteration number and the variance 
of the parameter, is listed in the result window. So the operator can verify or modify the final results. In such a semi-
automated manner, a building model is usually reconstructed within a minute, but the time for the whole building 
depends on its complexity. 
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Modeling Solely by Aerial Photos 

Take the rectangular box-like building in figure 9 for example; this building is visible on 3 aerial photos – 01-
013, 01-014, 02-013. A box primitive model is selected and manually fit on photos approximately, as the 
superimposed red wire-frame model shown. The initial horizontal buffer on photos is set to 0.5mm and will decrease 
0.05mm after each iteration, until it reaches the minimum value of 0.05mm. The edge pixels are extracted by Sobel 
Operator with a filtering threshold of 30, and are depicted by green pixels on photos. 

 

  
Photo 01-0013 Photo 01-0014 Photo 02-0013 

l = 11.582 m 
w = 10.347m 
h = 8.179 m 
dX = 369354.285 m 
dY = 6669671.610 m 
dZ = 40.290 m 
α = 8.473848˚ 
 
Edge Pixel No. within Buffer: 
Photo 01-0013:  33256 
Photo 01-0014:  30254 
Photo 02-0013:  18918 

Figure 9. The approximate fit model and the extracted edge pixels superimposed on aerial photos. 
 
The convergence criteria for the horizontal parameters is their increment must be smaller than 0.1m, for the 

vertical parameters is their increment must be smaller than 0.2m, and for the rotation angle is its increment must be 
smaller than 0.0001˚. To prevent from divergent, we also set the maximum iteration number as 50. After 30 
iterations, the model achieves optimal fit. Figure 10 shows the optimal fit results. The number of extracted edge 
pixels within buffers decreases with the step-by-step decreasing horizontal buffer size. It does only prevent the 
model from pulling by non-edge pixels but also improve the convergence of the least-squares fitting. 

 

 

 
Figure 7. Test data: the airborne LiDAR point 

cloud superimposed on the 4 aerial photos. 
Figure 8. The program interface of the proposed least-

squares building modeling approach. 
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l = 11.807m   
w = 10.838m   
h = 10.017m   
dX = 369353.679m  
dY=6669671.715m  
dZ = 37.959m   
α = 8.519016˚   

σ2
Δl = 0.0245 

σ2
Δw = 0.0282 

σ2
Δh = 0.0001 

σ2
ΔdX = 0.0130 

σ2
ΔdY = 0.0161 

σ2
ΔdZ = 0.0001 

σ2
Δα = 0.0002 

 
Photo 01-0013 Photo 01-0014 Photo 02-0013 

Edge Pixel No. within Buffer: 
Photo 01-0013:  2332 
Photo 01-0014:  2093 
Photo 02-0013:  1417 

Figure 10. The box primitive model achieves optimal fit after 30 iterations. 
 

Constrained Parameters 
The rectangular box-like building in figure 9 is also an example showing the occlusion scenario. The bottom 

edges of the building, L1, L2, L3, and L4, are all occluded and cannot be extracted among three aerial photos. The 
occlusion of bottom edges makes LSMDF difficult to determine the ground height (dZ) of model’s datum point and 
building’s height (h). However, the rooftop’s height (dZ + h) can still be determined by the rooftop edges, L5, L6, L7, 
and L8. If either the building’s height (h) or the ground height (dZ) can be obtained by other data source, a constraint 
can be added on the parameter so the other parameters can be solved correctly. There are two options to add 
constrain on parameters, (1) taking the constrained parameter’s increment as a constant in the observation equations; 
or (2) adding a relatively large weight on the parameter’s increment. 

Take the regular box-like building in figure 9 as example. We set the ground height (dZ) as 40.287m and giving 
a large weight (9999.9) on the increment (ΔdZ), and manually fit the model approximately. The buffer size remains 
the same setting as the previous experiment. The model achieves optimal fitting after 26 iterations which is 4 
iterations less than fitting without constraint. The optimal fitting results are shown in figure 11. The optimal model 
parameters are very similar to previous results, except for the building’s height (h) or the ground height (dZ). 
There’s only 0.034m difference in rooftop’s height (h + dZ), which also proves the reliability of the least-squares 
fitting algorithm. 

 
l = 11.808m   
w = 10.807m   
h = 7.622m   
dX = 369353.695m  
dY=6669671.725m  
dZ = 40.320m   
α = 8.519016˚   

σ2
Δl = 0.0256 

σ2
Δw = 0.0295 

σ2
Δh = 0.0001 

σ2
ΔdX = 0.0139 

σ2
ΔdY = 0.0169 

σ2
ΔdZ = 0.0001 

σ2
Δα = 0.0003 

   
Photo 01-0013 Photo 01-0014 Photo 02-0013 

Edge Pixel No. within Buffer: 
Photo 01-0013:  2168 
Photo 01-0014:  2053 
Photo 02-0013:  1387 

Figure 11. The box primitive model achieves optimal fit after 26 iterations with constrained dZ. 
 
Buffer Size 

The horizontal buffer is defined along each visible edge segment projected on aerial photos. The size of the 
buffer will affect the pull-in range of the fitting. The wider buffer will bring more extracted edge pixels, which will 
not only increase the chances to include the edge pixels but also those non-edge pixels. The narrower buffer includes 
fewer pixels, which will decrease the chances affected by not-really-edge pixels but may fix on wrong position as 
well.  Therefore, it would be a better strategy to start with a wider buffer and decrease the buffer size step-by-step. If 
the manually adjustment has approximately fit the model on all aerial photos, the initial buffer size can be smaller to 
improve the convergence. 
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Take the rectangular box-like building in figure 9 for the control group. But the initial horizontal buffer on 
photos is set to 0.3mm and still decrease 0.05mm after each iteration, until it reaches the minimum value of 0.05mm. 
The model achieves optimal fit after 5 iterations, which is 25 iterations less than starting with a 0.5mm buffer. The 
optimal fitting results are shown in figure 12. The smaller variances of parameter’s increments are the proof that the 
narrower initial buffer size does improve the convergence. 

l = 11.694m   
w = 10.862m   
h = 10.007m   
dX = 369353.852m  
dY=6669671.618m  
dZ = 37.946m   
α = 8.197842˚   

σ2
Δl = 0.0250 

σ2
Δw = 0.0287 

σ2
Δh = 0.0001 

σ2
ΔdX = 0.0137 

σ2
ΔdY = 0.0161 

σ2
ΔdZ = 0.0001 

σ2
Δα = 0.0003 

   
Photo 01-0013 Photo 01-0014 Photo 02-0013 

Edge Pixel No. within Buffer: 
Photo 01-0013:  2256 
Photo 01-0014:  2005 
Photo 02-0013:  1441 

Figure 12. The box primitive model achieves optimal fit after 5 iterations with constrained dZ. 
 
Modeling by Using Both Aerial Photos and LiDAR Data 

Since LiDAR data provides directly massive and accurate 3D points coordinates, it can not only help 
determining the initial value of vertical parameters but also increase the reliability of the fitting. Since the 
approximate horizontal range of the building has been determined by manually fitting and horizontal fitting on aerial 
photos, the LiDAR points belong to the building can be extracted directly. For determining the initial ground height 
(dZ), the lowest point within the 5m horizontal buffer zone along the building boundary is selected. The points 
within the building’s horizontal boundary are classified by 0.5m-height intervals. The highest frequency class which 
is considered as the mode is taken as the initial value of rooftop’s height (h + dZ). The initial model is then fit to 
aerial photos for solving the horizontal parameters and then fit to LiDAR point cloud for vertical parameters. 

By setting the initial horizontal buffer as 0.5mm on photos and the initial vertical buffer as 1.5m in object space, 
the model achieve optimal fit after 20 iterations. It’s more efficient than setting constraint on parameter dZ. The 
fitting results are shown in figure 13. Apparently from the variances of increments, benefit from the LiDAR point 
cloud on the rooftop, the model is fit to a better position. If the initial horizontal buffer as 0.3mm on photos and the 
initial vertical buffer as 1.5m in object space, the model achieve optimal fit after 5 iterations. The fitting results are 
shown in figure 14. 

l = 11.865m   
w = 11.010m   
h = 8.175m   
dX = 369353.557m  
dY=6669671.659m  
dZ = 40.288m   
α = 8.738343˚   

σ2
Δl = 0.0221 

σ2
Δw = 0.0215 

σ2
Δh = 0.0001 

σ2
ΔdX = 0.0140 

σ2
ΔdY = 0.0150 

σ2
ΔdZ = 0.0001 

σ2
Δα = 0.0002 

  
Photo 01-0013 Photo 01-0014 Photo 02-0013 

Edge Pixel No. within Buffer: 
Photo 01-0013:  2499 
Photo 01-0014:  2147 
Photo 02-0013:  1961 

Figure 13. The box primitive model achieves optimal fit after 20 iterations by using both aerial photos and LiDAR 
data. (Initial horizontal buffer size: 0.5mm) 
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l = 11.696m   
w = 10.882m   
h = 7.713m   
dX = 369353.828m  
dY=6669671.625m  
dZ = 40.288m   
α = 8.3221452˚   

σ2
Δl = 0.0251 

σ2
Δw = 0.0282 

σ2
Δh = 0.0001 

σ2
ΔdX = 0.0142 

σ2
ΔdY = 0.0161 

σ2
ΔdZ = 0.0001 

σ2
Δα = 0.0003 

Photo 01-0013 Photo 01-0014 Photo 02-0013 

Edge Pixel No. within Buffer: 
Photo 01-0013:  2184 
Photo 01-0014:  2002 
Photo 02-0013:  1498 

Figure 14. The box primitive model achieves optimal fit after 5 iterations by using both aerial photos and LiDAR 
data. (Initial horizontal buffer size: 0.3mm) 

 
 

CONCLUSIONS & RECOMMENDATIONS FOR FUTURE WORK 
 
A flexible 3D modeling tool called floating models is proposed as a model-based building reconstruction. Along 

with the tailored least-squares model-data fitting algorithm, building models can be reconstructed semi-
automatically using aerial photos and LiDAR point cloud. Horizontal parameters are fit from aerial photos and 
vertical parameters are fit from LiDAR point cloud. According to the case study, the proposed modeling procedure 
goes smoother and faster with the increasing of operating experiences. Some characteristics of the proposed 
approach could be summarized: 

1. For most of the normal buildings, floating model does increase efficiency than the conventional point-by-
point stereo measurement. 

2. The labor-consuming measurement is carried out by computer while the operator only has to select model 
type and approximately fit it. 

3. The shape constraints implicitly consider the geometric nature, such as parallel edges and rectangle corners, 
unchanged after reconstruction. 

4. It is possible to reconstruct the whole building even if a part of it is occluded or invisible. 
5. Although we fit model to versatile data sources in this research, floating model is also applicable to single 

data source, such as only aerial photos or only LiDAR point cloud. 
However, the currently proposed model types are not sufficient for dealing with every kind of buildings. To 

improve the completeness rate of the proposed modeling approach, we recommend designing more model types, 
such as buildings with cylinder and dome structure. Furthermore, if some pattern recognition techniques can be 
applied to detect the building model type, the automation of the proposed approach may be greatly improved. 
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