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ABSTRACT 
 
This paper presents the methods for estimating river depths to evaluate the potential for characterizing river depth 
from the Surface Water and Ocean Topography (SWOT) satellite observations. The SWOT mission is a swath 
mapping radar altimeter that will measure inland water surface elevation (WSE). Since the SWOT satellite will be 
launched during the 2013-2016 time frame, we generated synthetic SWOT WSE measurements for the entire Ohio 
River Basin. To do this, we simulated the true hydraulics parameters using LISFLOOD-FP hydrodynamic model 
and corrupted the results by adding spatially-correlated height errors based on SWOT instrument design. The 
Ensemble Kalman filter (EnKF) with SWOT WSE measurements and LISFLOOD-FP model as its dynamic core 
was used to estimate the river depths. The experiments showed that the filter was able to recover the water depths 
from WSE measurements with 0.7m mean accuracy, which is 39.7% less than the prior RMSE. 
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INTRODUCTION 
 

The energy and water cycle play a critical role in climate variability and climate change. Climate has a strong 
influence on aspects of the global water cycle on which society and nature depend. Rivers, especially river discharge, 
which is part of the global water cycle, is crucial for understanding Earth system science process (Alsdorf et al., 
2007; Smith and Pavelsky, 2008). River discharge has traditionally been estimated by measurements of stream 
velocity and cross-sectional area. However, the observations of river discharge globally are generally sparse, except 
for a few developed countries. For instance, although the Amazon River is one of the largest rivers in the world, the 
few river gauging stations are located mainly along the mainstream (LeFavour and Alsdorf, 2005; Smith and 
Pavelsky, 2008). Furthermore, many countries do not share their hydrologic data, depending on the political and 
economic situation of a country. The global gauging networks are also in decline (Shiklomanov et al., 2002). Over 
the past decade, researchers have been trying to better extract river discharge using remote sensing techniques to 
complement the existing in situ gage networks (LeFavour and Alsdorf, 2005; Alsdorf et al., 2007; Smith and 
Pavelsky, 2008). 

The SWOT mission, which is wide-swath interferometric altimetry data, will provide mesoscale oceanography 
data and inland water surface elevation (WSE) data (i.e., river, lakes, wetland, and reservoirs). The SWOT mission 
will provide measurements of water storage changes in terrestrial surface water bodies globally. The SWOT WSE 
estimates will also provide a source of information for characterizing river discharge at the global scale. The SWOT 
mission was selected by the National Research Council decadal survey committee for launch during the 2013-2016 
time frame (NRC, 2007).  

However, because the SWOT satellite will measure changing elevations of the water surface, not true depth to 
river bottom, the “true” river discharge cannot be estimated without ancillary data, namely the river channel 
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bathymetry. We thus have measurements of water elevation and need to estimate water depths and discharge or 
bathymetry. This is the exact inverse of normal hydraulic modeling, where we use discharge and river bathymetry to 
calculate water elevation. Therefore, the SWOT WSE data will need to be processed using additional techniques 
(i.e., inverse problems) to retrieve river depths. Data assimilation schemes, which are essentially solutions to inverse 
problems, can be used to estimate variables that are not directly observed from space. Although the sophistication of 
data assimilation schemes varies, the methods have been used extensively in earth science areas, including 
atmospheric and ocean sciences (Swinbank et al., 2003; Reichle, 2008) and in hydrologic remote sensing (Andreadis 
et al., 2007; Durand et al., 2008).  

 In this paper, the methods for estimating river depths to evaluate the potential for characterizing river depth 
from the SWOT satellite observations. To do this, our methods proceed as follows: (1) simulate the mainstream of 
the Ohio River using the hydrodynamic model, LISFLOOD-FP, to produce hydraulic parameters, which used as a 
general input to river depth estimation method; (2) estimate river depths by solving the inverse problem; and (3) 
demonstrate the potential accuracy of depths estimates. 

 
 

BACKGROUND 
 

The SWOT Hydrology Virtual Mission 
The SWOT hydrology Virtual Mission (VM) has provided data to illustrate assimilation schemes for 

characterizing discharge using simulated SWOT measurements. For instance, several VM studies have been 
performed to estimate river depths and discharge using an ensemble-based data assimilation framework. Andreadis 
et al. (2007) and Clark et al. (2008) performed river depth and discharge estimation using the assimilation of the 
water surface elevation data, which is simulated by the Variable Infiltration Capacity (VIC, Liang et al., 1994) and 
LISFLOOD-FP models (Bates and De Roo, 2000). Durand et al. (2008) demonstrated an ensemble-based data 
assimilation method for estimating bathymetric depth from WSE measurements and LISFLOOD-FP. In this paper, 
we built on and enhanced this work to demonstrate estimation of river bathymetry within an assimilation scheme. 
 
Inverse Problems 

Traditional hydraulics models predict WSE and slope given discharge and channel bathymetry, whereas SWOT 
will measure WSE with the goal of estimating river discharge. Thus, estimation of river discharge from SWOT 
measurements is a classic inverse problem, which has been intensively studied in ground water modeling. Yeh 
(1986) reviewed the typical parameter identification models in the groundwater hydrology area, as well as the 
inverse problem method to determine the parameters. McLaughlin (1996) shows how the methods of function 
analysis are used to develop a general groundwater inverse problem. Carrera et al. (2005) reviewed the process steps 
of the current state of the inverse modeling methods to find a standard strategy for aquifer characterization. As stated 
earlier, various statistical methods for solving the inverse problem have been applied to Earth system science areas. 
For example, the Ensemble Kalman Filter (EnKF) is a variant of the traditional Kalman filter, and is flexible in its 
treatment of errors in model dynamics and parameters (Evensen, 2004; Evensen, 2009). The method has been 
implemented for hydrologic remote sensing observations (Andreadis et al., 2007; Durand et al., 2008). In this paper, 
we utilize a data assimilation based on the EnKF framework to provide a solution to the inverse problem to estimate 
discharge from SWOT measurements. 
 
 

DATA RESOURCES AND STUDY SITE 
 
Study Site  

Our study area is the Ohio River Basin; the Ohio River flows from Pittsburgh, PA, to the Mississippi River at 
Cairo, IL (Figure 1). The river is approximately 1,579 km long and drains an area of 528,357 km2. The annual 
average flow is 7,500 m3s-1 (Lee et al, 2003). For this study, we chose 11 major and 7 minor tributaries to include in 
the model; the 11 major and 7 minor tributaries represent a total of 474,211km2 (89.8%) of the Ohio River Basin 
drainage area (Table 1). The remaining 10.2% of the drainage area is drained by rivers that are not gaged. 
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Figure 1. A map of the Ohio River Basin, including 11 major tributaries and 7 minor tributaries, used in the model. 
Drainage area size of each tributary is shown by the relative thickness of the blue lines. The USGS gages 

used for boundary conditions are shown. 
 

Data 
To obtain realistic river depths and discharge from the model, accurate bathymetry data are needed. We utilized 

bathymetry from the U.S. Army Corps of Engineers (ACE) for this study. The USGS stream gage network data are 
used as boundary condition dataset.       
 
 

HYDRODYNAMICS MODEL 
      
We used the LISFLOOD-FP hydrodynamics model to simulate “true” hydraulic parameters such as, the river 

depths and discharge (Bates and De Roo, 2000). The model uses a two-dimensional diffusion wave representation of 
floodplain flow and a one-dimensional approach to simulate river channel flow. The LISFLOOD-FP model requires 
as its input estimates of the river centerlines, channel bed elevation along the centerline, and channel width are 
needed, as well as upstream boundary discharge data of tributaries and downstream water depths on the mainstream. 

The Ohio River points layer, which was obtained by ACE, and HydroSHEDS dataset were used to provide 
estimates of the river centerline. HydroSHEDS dataset was derived from the Shuttle Radar Topography Mission 
(SRTM) at 15 arc-second resolution. Stream centerlines was manually created from the dataset with approximately 
750m spatial resolution, and represented as a series of sequential location points. The channel bed elevation, width, 
and roughness were derived from ACE dataset.  

The diffusion wave model of LISFLOOD-FP requires upstream boundary discharge of each tributaries and 
downstream water depth on the mainstream for boundary condition. In this study, we used USGS gages network to 
provide the depth and discharge boundary conditions from January 1, 2005 to June 30, 2005. The location of each 
gage used as boundary condition is shown in Figure 1. From Table 1, the gages represent between 50% and 99% of 
the drainage area of each tributaries. As a whole, the gages represent a total of 392,717.3km2, which is 
approximately 74.3% of the Ohio River Basin drainage area. To account for the remaining 25.7% of the drainage 
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area, we increased the discharge based on the 30 years (from 1979 to 2008) average discharge and drainage area of 
each tributary by scaling the discharge based on a power law fit between the discharge and drainage area: 
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where Qgage and Qall are respectively discharge at drainage area from gage and entire region of each tributary;  Agage 
and Aall are respectively drainage area from gage and entire region of tributary; f is upscaling factor. 
 

Table 1. Drainage area of each 11 major (bold tributary name) and 7 minor tributaries included in the model. The 
information from USGS used as a boundary condition for each tributary. 

 

Tributary Name Drainage Area (km2) USGS 
Gauge ID 

Drainage Area 
(km2) from gage 

Percent covered 
by gauge 

Beaver River  8106.7 03107500 8044.5 99.2% 
Muskingum River  20823.5 03150000 19222.9 92.3% 
Little Kanawha River  6008.8 03155000 3926.4 65.3% 
Hocking River  3082.1 03159500 2442.4 79.2% 
Kanawha River  31597.9 03198000 27060.2 85.6% 
Guyandotte River  4325.3 03203600 2157.5 49.9% 
Big Sandy River  11085.1 03212500 5552.9 50.1% 
Little Sandy River  1875.2 03216500 1036.0 55.2% 
Scioto River  16860.8 03237020 15115.2 89.6% 
Little Miami River  4325.3 03245500 3115.8 72.0% 
Licking River  9505.3 03253500 8547.0 89.9% 
Great Miami River  13985.9 03274000 9401.7 67.2% 
Kentucky River  18052.2 03290500 16006.1 88.7% 
Salt River  7485.1 03298500 3100.2 41.4% 
Green River  23905.6 03320000 19595.9 82.0% 
Wabash River  85728.6 03377500 74164.3 86.5% 
Cumberland River  46412.6 034315005 33307.2 71.8% 
Tennessee River  105956.4 03593500 85832.2 81.0% 
Sum 474211.3*  392717.3* 82.8% 
Ohio River Basin 528202.18    
* The area includes at upstream drainage area on the mainstream. 
 
 

DATA ASSIMILATION 
 

To estimate the river depths, the combined parameter and state estimation problem with the EnKF will be 
applied Evensen, 2004; Evensen, 2009). For this approach, the river water height is treated as the model state 
variable, and channel bathymetry is treated as uncertain model parameters. The data assimilation scheme involves 
three steps: (1) characterize the “open-loop” or “prior” state, which is a first-guess of the true states from perturbed 
inputs, which is generated from appropriate error models; (2) calculate posterior estimates of dynamic river depths 
using the EnKF with prior state and synthetic SWOT WSE observations; and (3) evaluate the estimates of river 
depths against the “truth” data set, derived from the LISFLOOD-FP model, relative to the open-loop estimates.  
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Ensemble Generation 
The prior ensemble stochastically characterizes the relationship between WSE, channel bathymetry and other 

model inputs. In this study, only errors in bathymetry were represented. We modeled bathymetry errors as being 
spatially-correlated, following an exponential correlation function with a correlation length of 100 km. Errors were 
modeled as being additive, with zero mean, and a standard deviation of 2.5 m. This procedure resulted in an 
ensemble of 20 possible bathymetries for LISFLOOD-FP model.  
 
Synthetic SWOT Measurements 

As mentioned before, SWOT will launch during the 2013-2016 time frame. Therefore, we represent the SWOT 
measurement hSWOT as the true WSE plus measurement error v. The true WSE obtained from LISFLOOD-FP 
simulation results and v assumed a normal distribution with zero mean, and standard deviation σv. In this study, we 
make the very conservative assumption that SWOT spatial resolution in both along-track and cross-track will be 
approximately 50m. Height accuracies of SWOT measurement also assumed as 0.5m for individual pixel (Alsdorf et 
al., 2007). Thus, v can be modeled as 
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where nobs is the number of SWOT pixel that would be contained within a LISFLOOD-FP model pixel. 
 
EnKF 

To calculate posterior estimates of dynamic river depths, we used the EnKF update, which is given by: 
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where y and z are vectors of water depths and bathymetry, respectively, with length n, for each replicate k=1, 2,..nk, 
where nk is the ensemble size (nk is 20). The - and + superscripts denote the prior and posterior estimates, 
respectively; the vector hSWOT is the observed WSE with length n; wk is a randomly-generated mean zero normal 
variable with standard deviation σv; H is the forward operator; K is Kalman gain, which is calculated by localizing 
the sample covariance Cxx from ensemble with correlation matrix ρ [see Gaspari and Cohn 1999, their Eq. (4.10)]; 
and Cv is the assumed error covariance of the WSE measurement, which calculated as the product of the scalar σv

2 
and the n dimensional identity matrix; thus we assume that measurement error variance is constant in space and time, 
which is valid as first-order approximation. 
 
 

RESULTS 
 
LISFLOOD-FP Model Evaluation 

To verify that the LISFLOOD-FP model setup for estimating true river depths and discharge is producing 
reasonable results, we compared the discharge at the downstream model outlet with the discharge observed at the 
USGS gages. Figure 2 shows estimates of river discharge at the downstream model outlet. The model discharge 
clearly matches the observed discharge with an absolute relative mean error of 6.05% and a correlation coefficient 
of 0.93. Discharge for both the model and gage ranges from 2,000 m3sec-1 to 30,000 m3sec-1. From the agreement 
between the modeled and observed flow, we concluded that the model is adequate to investigate the proposed 
method to estimate river depths and discharge. 
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Figure 2. LISFOOD-FP modeled discharge at downstream model outlet is shown (blue) as well as the discharge 

from the USGS gage (green). 
 
Estimating Depth 

The LISFLOOD-FP model was integrated for each ensemble member and its output is shown in Figure 3. In 
Figure 3, we are showing ensemble outputs for 14 days, from February 22, 2005 to March 7, 2005. The discharge 
variations in 3(a) are due to variations in the routing of the flow due to the differences in the bathymetry across the 
ensemble. The water depth variations in 3(b) are due to the bathymetric differences at the model outlet. 
 

  
Figure 3. LISFLOOD-FP model is shown for 14 days for the 20 ensemble members of model runs: (a) discharge 

and (b) water depth at the downstream model outlet. 
 

To improve the accuracy of the method, we applied the update using three observations, which are February 25, 
2005 (peak flow), March 2, 2005 (medium flow) and March 7, 2005 (low flow) respectively. Figure 4 shows the 
prior and posterior water depth estimates on March 7, 2005, as well as truth. From the inspection, the posterior 
bathymetry was similar to the truth, while prior estimates do not correspond well with the true bathymetry. The 
reach-average RMSE for the prior and posterior estimate shown was 1.3 m and 0.68 m, respectively. Thus, the 
EnKF reduces the absolute value of the posterior mean error by 48.3%. The RMSE of prior and posterior water 
depth estimates on February 25, 2005 is 1.0 m and 0.73 m, respectively. The RMSE of prior and posterior water 
depth estimates on March 2, 2005 is 1.2 m and 0.70 m, respectively. Overall, the experiments showed that the filter 
was able to recover the water depths from assimilating SWOT WSE measurements with 0.7m mean accuracy, which 
is 39.7% less than the prior RMSE. 
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Figure 4. The prior (green) and posterior (blue) water depth estimates on March 7, 2005 were shown, as well as 

truth (red). 
 

 
CONCLUSIONS 

 
In this paper, we presented a method to evaluate the potential for characterizing river depths from the SWOT 

WSE measurements. Synthetic SWOT WSE measurements were generated using random height errors and true 
hydraulic parameters, which were simulated for the entire Ohio River Basin using the LISFLOOD-FP hydrodynamic 
model. The model accurately reproduced the true discharge with an absolute relative mean error of 6.05% and a 
correlation coefficient of 0.93, from which we conclude that the model is sufficiently accurate for the purpose of 
evaluating the assimilation scheme. The EnKF data assimilation technique was applied to estimate the river depths. 
The filter simulation showed that the true river depths were able to be recovered by assimilating synthetic SWOT 
WSE measurements; the posterior river depth was estimated with a 0.7m mean accuracy, which is 39.7% less than 
the prior RMSE.  

Although this study shows that 39.7% accuracy improvement in river depths using assimilation of the SWOT 
WSE measurements into the LISFLOOD-FP model, the accuracy can be improved by using several additional 
works: (1) Here we have only assimilated three observations. Presumably, as the number of observations assimilated 
increases, the error will be reduced. (2) Increasing the ensemble size has the potential to improve accuracy. (3) 
Perform the EnKF analysis separately for river segments in between tributaries. We will address these in future 
work. Furthermore, in this paper, we only assumed errors in bathymetry. In the future, we will need to investigate 
other characteristics (e.g., channel roughness) and evaluate their sensitivity. 
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