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ABSTRACT:  

 

In UAV mapping using direct geo-referencing, the formation of stochastic model generally takes into the account the different types 

of measurements required to estimate the 3D coordinates of the feature points. Such measurements include image tie point 

coordinate measurements, camera position measurements and camera orientation measurements. In the commonly used stochastic 

model, it is commonly assumed that all tie point measurements have the same variance. In fact, these assumptions are not always 

realistic and thus, can lead to biased 3D feature coordinates.  Tie point measurements for different image feature objects may not 

have the same accuracy due to the facts that the geometric distribution of features, particularly their feature matching conditions are 

different. More importantly, the accuracies of the geo-referencing measurements should also be considered into the mapping process.   

In this paper, impacts of typical stochastic models on the UAV mapping are investigated.  It has been demonstrated that the quality 

of the geo-referencing measurements plays a critical role in real-time UAV mapping scenarios.  

 

 

1. INTRODUCTION 

Over the past decade, 3D mapping relying on the integration of 

Global Positioning System (GPS), Inertial Measurement Unit 

(IMU) and camera is commonly used. The integrated GPS/INS 

systems are used for direct geo-referencing purposes which 

allow the determination of the camera platform position and 

orientation with a high accuracy. The camera is utilised to 

provide the details of features for imaging. This basically 

reduces the need of ground control points (GCPs) by 

eliminating aerial-triangulation, except for mapping system 

calibrations (Grejner-Brzezinska and Toth, 2004). This in turn 

reduces the cost and the time for producing 3D digital maps. 

However, direct geo-referencing which obtains coordinates of 

ground objects directly using the known exterior orientation 

elements of photos is influenced by some error sources. These 

error sources such as interior and exterior orientation elements, 

errors of GPS, time synchronization and projection centre 

deviation between GPS and vision sensors and errors of IMU 

degrade the accuracy and hence the efficiency of  aerial 

photogrammetry (Zhang and Yuan, 2008).  

 

Several studies have adopted a mathematical model which 

describes the relationship between measurements and unknown 

estimates (e.g., Wang et al, 2005) to eliminate the errors in 

aerial photogrammetry. On the other hand, stochastic model 

represents the statistical characteristics of the measurements. 

Such a stochastic model is mainly provided by the variance-

covariance matrix for the measurements. If both models are 

defined correctly, optimal estimation can be achieved. The 

mathematical model has been addressed in different 

investigations in order to estimate the error sources in image 

matching, POS (Position and Orientation System) or exterior 

orientation elements of images (e.g., Zhang and Yuan, 2008). 

 

In 3D mapping using indirect geo-referencing, variance-

covariance matrices are often constructed by the error 

propagation to present the precisions for the position and 

orientation of the camera, as well as the ground control points 

coordinates, which are treated error-free in the least-squares 

adjustments for the tie point coordinates (Marshall, 2012). In 

the adjustment, it is usually assumed that all tie point 

coordinates have the same precision. However, these 

assumptions are not always true due to different conditions such 

as their geometric distribution, and thus their feature matching 

environments. Therefore, it is necessary to construct a realistic 

stochastic model in order to achieve satisfactory geo-referencing 

and 3D mapping results. In this situation, different weights are 

assigned for each covariance matrix component which is 

basically preferred based on the standard deviation (Beinat and 

Crosilla, 2002). Thus, the covariance matrix is scaled by 

standard deviation factor (Goodall, 1991).   

 

While stochastic modelling has its roots in statistics (e.g., Rao, 

1971; Grafarend et al, 1980), it remains a challenging issue in 

some real world applications. In the data processing for 

GPS/INS integration which is the foundation for direct geo-

referencing, stochastic model has already been investigated in 

either system level or multi- sensor integration systems level. 

Several studies (e.g., Wang et al, 1998, Wang et al, 2005) dealt 

with the construction of variance- covariance matrix under GPS, 

INS, and other applications. In the same way,  some efforts 

(e.g., Wang and Wang, 2007; Mohamed and Schwarz, 1999, 

Quinchia et al, 2013) have been directed to improve the 

stochastic model in GNSS/INS integration systems. Cothren 
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(2005) investigated the reliability in constrained Gauss-Markov 

model, which dealt with the measurements of the position and 

the orientation of the camera as uncorrelated measurements. In 

this study, it was also assumed that the horizontal positioning 

measurements of the camera have different precision from 

vertical positioning measurements. While more attention was 

more paid to investigating the precision of the exterior 

orientation elements of images, the precision of tie point 

measurements and the associated stochastic models have not 

been investigated in details yet.  

 

In this paper, the precision of tie point measurements in 

stochastic model and its impact on 3D mapping will be 

addressed. In addition, the properties of the covariance matrix 

will be examined in order to provide a weight for tie points 

according to their geometric distribution. The rest of this paper 

is organised as follows. Section 2 deals with least squares in 

terms of functional and stochastic models for the UAV 

mapping, together with a new stochastic model for tie point 

coordinates. Section 3 presents and discusses numerical results, 

which will be followed with Section 4 for the concluding 

remarks.  

 

 

 

2. LEAST SQUARES IN UAV MAPPING 

2.1 Functional and stochastic models   

The functional model, in general, describes the relation between 

the measured elements and the estimated elements. In 

photogrammetry, if the measured elements are image tie point 

coordinates with Cartesian coordinates, then the functional 

models could be (Cooper and Cross, 1988): 
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where jx , jy = image coordinates of object j  

             ox , oy  = coordinates differences between the actual                 

origin of the image coordinates and the true origin. 

            f = the focal length 

             jX , jY , jZ =  object coordinates of point j  

            
cX ,

cY ,
cZ = coordinates of projection centre 

             m = the elements of rotation matrix 

 

Equations 1 and 2 are known as collinearity equations which 

show the rigorous geometric relationships between the object 

coordinates, projection centre and image coordinates of the 

object. The functional model generally contains non-linear 

equations and the stochastic nature of the observations, which 

are considered as random variables, must be taken into account. 

The non-linear equations can be linearized by using Taylor 

series. The linearization form of functional model can be 

expressed as: 

 

xAvl ˆ                                    (3) 

 

where  l  = is the 1n  observation vector; 

            v  = represents the 1n  vector of residuals; 

           A = the  tn  design matrix indicating the geometric 

relationships between ground and image coordinates of the 

object and the projection centre ; 

           x  = the 1t  vector of unknown parameters. 

  

The functional model can be an inaccurate description of the 

relationship between ground and image coordinates of the 

object due to gross (outlier), systematic (bias), and random 

errors. The gross errors can be a result of malfunction of 

instrument or an error in the software. These errors must be 

detected and removed before the estimation process. The second 

type of error is systematic errors. Camera lens distortions, light 

intensity, lack of orthogonality of the comparator axes, and 

atmospheric refraction are some physical effects that can cause 

the systematic errors (Cooper and Cross, 1988). The systematic 

errors cannot be removed, but there are two different ways to 

reduce their effects. Firstly, they can be considered in the 

functional model. For example, coordinates differences between 

the actual origin of the image coordinates and the true 

coordinates was dealt with as systematic errors and represented 

in equations 1 and 2 as ox  and oy . Secondly, the biases are 

considered as stochastic effects which are accounted for by 

random parameters or by a priori correlation between the 

measurements. The third part of errors is the random errors 

which are usually unavoidable and bring small differences 

between the measurements and their expectations. Although 

they are uncertain, they follow statistical rules.  

 

The stochastic model of least squares can be defined as: 

 

   
12

0

2
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where )(lD  = the nn  covariance matrix for the 

measurements  

               Q  = the nn  co-factor matrix 

               
2

0  = a priori variance factor being assigned as one  

 

The symbol P  in equation (4) represents the weight matrix with 

n measurements.  

 

Generally, if the measured values have the same accuracy and 

are regarded as uncorrelated, then the diagonal elements in Q  

matrix should have the same values and the off-diagonal 

elements will be zeroes. However, in 3D mapping using direct 

geo-referencing, the observations are three types including tie 

point, camera position and camera orientation measurements 

which require three types of variance values. The typical form 

of  Q  will be as follows:  
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where 
2

A = variance of tie point measurements 

             
2

b = variance of camera position pseudo- 

measurements 

              
2

c = variance of camera orientation pseudo- 

measurements. 

 

As the number of measurements is usually larger than the 

number of the unknown parameters in Equation (3), the 

estimation of parameters and the residuals vector for the 

measurements can be obtained as (Gruen, 1985): 
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which are the optimal estimates of the unknown parameters and 

the residuals, respectively, if the measurements are unbiased 

and the stochastic model is realistic. 

 

The co-factor matrices for the estimated parameters and the 

residuals respectively, can be written as:  
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2.2 Factored stochastic model for tie point measurements 

 

In the commonly used stochastic model, the variances of tie 

point observations 2

A  are assumed to be the same. However, 

this assumption is not always true due to different conditions 

such as geometric distribution of the features and their matching 

environments. Based on this fact, the tie point measurements 

should be given different weights. In this paper, the tie point 

measurements in x-axis are assigned different weight based on 

its distance from the x values of the camera position and the 

measurements in y-axis based on its distance from the y values 

of the camera position. This will reduce the effect of biases 

which have not been considered in the functional model. In 

addition, the proposed method of weighting of the tie point 

measurements is based on the assumption that the tie point 

measurements do not have any faulty measurements (outliers). 

The faulty measurements or mismatches are not discussed here 

and are treated in separate studies.  

 

The investigation of the impact of the stochastic models on the 

accuracy of the object coordinates are carried with the 

commonly used model and the factored stochastic model as 

discussed below. 

 

The equations used for determining the factor of tie point 

variance can be obtained as follows: 
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where xF  and yF = factor for the variances of the tie points 

       

x and y  = the difference distance between object position 

and cameras position 

X  and Y  = the distance between the farthest object and the 

centre 

 

Thus, the variances of each tie point can be computed as: 

 

22 . Ai F                                     (12) 

  

3. TEST RESULTS AND ANALYSIS 

 

Most UAVs have digital cameras for image acquisition and 

mainly depends on GPS and other sensors such as INS for 

navigation and geo-referencing. The obtained images in digital 

form can provide the opportunity to process the data 

automatically. The GPS/INS systems can immediately deliver 

the geo-referencing information. The automatic process for 

obtaining geo-referencing information and for completing 

images matching gives the ability to generate 3D maps in real 

time to be used in military, scientific, and industrial 

applications. However, the quality of the real-time 3D mapping 

essentially relies on the accuracy of geo-referencing and 

matching results. So, the precision of the tie point, camera 

position and orientation measurements and their impacts on the 

3D mapping will be analysed in the following sections.  

 

3.1 Simulations 

Two UAV images were simulated. They have longitudinal 

overlap and 15, 23, and 23 objects in the overlapped area. The 

first and the second simulations were completed with assuming 

all objects have the same height (zero) and the third simulation 

each object have different height but in the range between zero 

and 20 meters. Camera position in a local coordinate system and 

orientation are also identified Table 1. Tie point values are 

calculated and defined for each image. In the simulation, the 

focal length is assumed to be 24.47 (mm), sensor size (14.83 × 

22.24), height flight 120 (meters), pixel size 6.44 μm, and the 

longitudinal overlap 70%.   

 

 X Y Z ω ψ κ 

Image 1 324.300 490 120 1.003 0 0 

Image 2 324.300 511.818 120 1.003 0 0 

 

Table 1. Camera positions and orientation used in the 

simulation 
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3.2 The precision of tie point measurements and the 

standard deviations 

 

 
 

Figure 1. Mapping Scenario 1: The horizontal positions of the 

tie-point objects 

 

In this section, the impact of the precision of tie point 

measurements on the standard deviations of the estimated object 

coordinates has been investigated for Mapping Scenario 1 

(Figure 1). The computation of the standard deviations for the 

object coordinates is completed with assuming that we have five 

levels of precision of the tie point measurements and the 

precision for the camera position and orientation pseudo-

measurements are 6 cm and 0.03 degree respectively. It can be 

seen in Tables 2, 3, and 4 that the standard deviations in X, Y, 

and Z axes of the estimated parameters increase with the 

increase of the tie point precision vales from 0.5 to 0.75 pixels, 

from 0.75 to 1 pixel, from 1 to 1.25 pixels, and from 1.25 to 1.5 

pixels.  

 

From Table 2, it can be noted that the increase in the tie point 

precision values does not have the same impact on all objects. 

For example, the standard deviations in X-axis for objects 1, 2, 

and 3 increase more than 1 cm, whereas the increase for objects 

7, 8, and 9 does not exceed 3 mm. Also, it can be seen that the 

standard deviations in X-axis of all objects in each level of the 

precision of tie point measurements are not the same. The 

standard deviations of objects 1, 2, and 3 can be categorised in 

one group in which the values of the standard deviations almost 

do not change (the maximum variation is 3 mm). The other 

objects can be in other groups as follows (4, 5, and 6), (7, 8, and 

9), (10, 11, and 12), and finally (13, 14, and 15). From Figure 1, 

it can be noted that each group lie in the same position in X-

axis. 

 

Table 3 shows the standard deviations of the estimated 

parameters in Y-axis with different precisions of tie points. 

Similar to the standard deviation in X-axis, the standard 

deviations in Y-axis increase with the increase in the precision 

values and the magnitude of the increase depends also on object 

positions. It can also be noted that the values of the standard 

deviation for the objects (2, 5, 8, 11 and 14) lie on the centre 

differ significantly from the values of the other objects. This 

indicates the standard deviations values are not only affected by 

the precision of tie point measurements. The geometry also has 

an impact on the standard deviations.  

 

 

Tie-point 

(pixel) 

object ID 

0.5 0.75 1 1.25 1.5 

1 0.253 0.266 0.277 0.288 0.299 

2 0.251 0.264 0.275 0.286 0.297 

3 0.253 0.267 0.277 0.288 0.300 

4 0.128 0.134 0.138 0.143 0.149 

5 0.127 0.133 0.137 0.142 0.148 

6 0.128 0.134 0.138 0.144 0.149 

7 0.066 0.067 0.069 0.072 0.074 

8 0.066 0.067 0.069 0.071 0.074 

9 0.066 0.067 0.069 0.072 0.074 

10 0.166 0.173 0.180 0.186 0.193 

11 0.165 0.172 0.178 0.185 0.192 

12 0.166 0.173 0.180 0.186 0.194 

13 0.291 0.306 0.318 0.330 0.343 

14 0.288 0.303 0.316 0.328 0.341 

15 0.291 0.306 0.318 0.331 0.344 

Note: camera position precision =0.06(m) ; camera 

orientation precision =0.03(degree) 

 

Table 2. Impacts of tie point precision on the standard deviation 

in X-axis for Mapping Scenario 1 

 

 

Tie-point 

(pixel) 

object ID 

0.5 0.75 1 1.25 1.5 

1 0.109 0.113 0.117 0.122 0.126 

2 0.064 0.066 0.067 0.069 0.072 

3 0.110 0.114 0.118 0.123 0.127 

4 0.107 0.112 0.115 0.119 0.124 

5 0.063 0.064 0.066 0.068 0.070 

6 0.108 0.112 0.116 0.120 0.125 

7 0.107 0.111 0.115 0.119 0.124 

8 0.062 0.064 0.065 0.067 0.070 

9 0.108 0.112 0.116 0.120 0.125 

10 0.108 0.112 0.116 0.120 0.125 

11 0.063 0.064 0.066 0.068 0.071 

12 0.109 0.113 0.117 0.121 0.126 

13 0.110 0.114 0.118 0.123 0.127 

14 0.065 0.066 0.068 0.070 0.072 

15 0.111 0.115 0.119 0.124 0.128 

Note: camera position precision =0.06(m) ; camera 

orientation precision =0.03(degree) 

 

Table 3. Impacts of tie point precision on the standard deviation 

in Y-axis for Mapping Scenario 1 

 

Table 4 presents that the (1/4 pixel) increase in the precision 

values affect the standard deviation of all objects in Z-axis by 
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almost 3-3.5 cm. The geometry impact here is not clearly noted 

due to the fact that all objects in Mapping Scenario 1 have the 

same elevation. However, there are small differences because of 

the effect of the horizontal position. If we see the raise in the 

standard deviation of object 1 in the cases of 1.25 and 1.5 

pixels, it is 3 cm.  Similarly in object 8, the increase is 2.9 cm 

which does not differ significantly. 

 

Tie-point 

(pixel) 

object ID 

0.5 0.75 1 1.25 1.5 

1 0.668 0.703 0.732 0.760 0.790 

2 0.663 0.698 0.726 0.755 0.785 

3 0.668 0.704 0.733 0.762 0.792 

4 0.664 0.696 0.722 0.749 0.778 

5 0.659 0.690 0.716 0.743 0.773 

6 0.664 0.696 0.723 0.750 0.780 

7 0.664 0.695 0.720 0.746 0.775 

8 0.658 0.689 0.714 0.741 0.770 

9 0.664 0.695 0.721 0.748 0.777 

10 0.668 0.700 0.726 0.753 0.782 

11 0.662 0.694 0.720 0.747 0.776 

12 0.668 0.700 0.727 0.754 0.783 

13 0.675 0.711 0.739 0.767 0.797 

14 0.670 0.705 0.733 0.761 0.791 

15 0.675 0.711 0.740 0.768 0.799 

Note: camera position precision =0.06(m) ; camera 

orientation precision =0.03(degree) 

Table 4. Impacts of tie point precision on the standard deviation 

in Z-axis for Mapping Scenario 1 

 

3.3 The precision of camera position pseudo-

measurements and the standard deviations 

 

The impact of the precision of the camera position pseudo-

measurements in Mapping Scenario 1 on the standard 

deviations is presented in Tables 5, 6, and 7. The assumed 

precision of the tie point is 1 pixel and the precision of the 

camera orientation is 0.03 degree. The precisions of the camera 

position are 2, 4, 6, 8, and 10 cm. Tables 5, 6, and 7 shows that 

the increase in camera position precision increases the standard 

deviation values in X, Y, and Z axes. 

 

Table 5 illustrates the standard deviation values in X-axis under 

different cases of camera position precision. From Table 5, 

although the increase in the precision value in all cases is 2 cm, 

we can see that the increase in standard deviations is not the 

same. For example, the increase in the standard deviation of 

object 1 of the cases of 2 and 4 cm precision is 2.3 cm, whereas 

the increase of the cases of 8 and 10 cm is 4.6 cm. Similarly to 

what happened in the previous section, the geometry plays a 

role in the increase in the standard deviation values and in the 

standard deviation values themselves. For instance, the increase 

in the standard deviation of object 1 of the cases of 2 and 4 cm 

precision is 2.3 cm, while the increase in object 8 is 5 mm. 

 

Table 6 shows the standard deviation values in Y-axis under 

different cases of camera position precision. It is clearly seen 

that the increase in the precision value raises the standard 

deviation values. It can also be noted that the standard deviation 

values of the objects (2, 5, 8, 11, and 14) on the centre of Y-axis 

are about the half of the values for the other objects. 

 

position 

(m) 

object ID 

0.02 0.04 0.06 0.08 0.10 

1 0.221 0.244 0.277 0.318 0.364 

2 0.218 0.241 0.275 0.316 0.363 

3 0.221 0.244 0.277 0.319 0.365 

4 0.109 0.121 0.138 0.159 0.183 

5 0.108 0.120 0.137 0.158 0.182 

6 0.110 0.121 0.138 0.159 0.183 

7 0.055 0.061 0.069 0.080 0.092 

8 0.055 0.060 0.069 0.080 0.091 

9 0.055 0.061 0.069 0.080 0.092 

10 0.142 0.157 0.180 0.207 0.237 

11 0.141 0.156 0.178 0.205 0.236 

12 0.143 0.158 0.180 0.207 0.237 

13 0.255 0.280 0.318 0.364 0.417 

14 0.252 0.277 0.316 0.362 0.415 

15 0.255 0.281 0.318 0.365 0.417 

Note: Tie-point precision =1.00(pixel); camera 

orientation precision =0.03(degree) 

 

Table 5. Impacts of camera position precision on the standard 

deviation in X-axis for Mapping Scenario 1 

 

position 

(m) 

object ID 

0.02 0.04 0.06 0.08 0.10 

1 0.093 0.103 0.117 0.135 0.154 

2 0.054 0.059 0.067 0.077 0.088 

3 0.094 0.104 0.118 0.136 0.155 

4 0.091 0.101 0.115 0.133 0.153 

5 0.052 0.058 0.066 0.076 0.087 

6 0.092 0.102 0.116 0.134 0.154 

7 0.090 0.100 0.115 0.133 0.152 

8 0.051 0.057 0.065 0.075 0.086 

9 0.091 0.101 0.116 0.134 0.154 

10 0.092 0.101 0.116 0.134 0.153 

11 0.052 0.058 0.066 0.076 0.087 

12 0.092 0.102 0.117 0.135 0.154 

13 0.095 0.104 0.118 0.136 0.155 

14 0.055 0.060 0.068 0.078 0.088 

15 0.095 0.105 0.119 0.137 0.156 

Note: Tie-point precision =1.00(pixel); camera 

orientation precision =0.03(degree) 

Table 6. Impacts of camera position precision on the standard 

deviation in Y-axis for Mapping Scenario 1 
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Table 7 shows the standard deviations for Z coordinates with 

various precisions of the camera position. From Table 7, it can 

be seen that the vertical standard deviation of all objects does 

not considerably change, as they have the same elevation.  In 

addition, we can see that with the precision of camera position 

of 8 cm, the standard deviation in object 1 is decreased by more 

than 12 cm compared to the case with 10 cm precision. This is 

not the same when the precision is changed from 4 to 2 cm. the 

decrease in the standard deviation in object 1 is only 6 cm. 

However, the impact of the increase in the precision value (2 

cm) in the latter case which is 6 cm can be considered as big 

deviation that prevents from achieving more accurate results for 

real-time UAV 3D mapping.  

 

position 

(m) 

object ID 

0.02 0.04 0.06 0.08 0.10 

1 0.583 0.643 0.732 0.841 0.963 

2 0.576 0.637 0.726 0.835 0.958 

3 0.584 0.644 0.733 0.841 0.963 

4 0.571 0.632 0.722 0.832 0.955 

5 0.564 0.625 0.716 0.827 0.950 

6 0.572 0.633 0.723 0.833 0.956 

7 0.568 0.630 0.720 0.830 0.953 

8 0.561 0.623 0.714 0.825 0.949 

9 0.569 0.631 0.721 0.831 0.954 

10 0.576 0.636 0.726 0.835 0.958 

11 0.569 0.630 0.720 0.830 0.953 

12 0.577 0.637 0.727 0.836 0.959 

13 0.592 0.651 0.739 0.847 0.968 

14 0.585 0.645 0.733 0.842 0.963 

15 0.593 0.652 0.740 0.847 0.968 

Note: Tie-point precision =1.00(pixel); camera 

orientation precision =0.03(degree) 

 

Table 7. Impacts of camera position precision on the standard 

deviation in Z-axis for Mapping Scenario 1 

 

3.4 The precision of camera orientation pseudo- 

measurements and the standard deviations 

 

Tables 8, 9, and 10 illustrate the impact of the precision of the 

camera orientation pseudo-measurements on the standard 

deviations. The assumed precision of the tie point is 1 pixel and 

of the camera position is 6 cm. The standard deviations are 

computed under different scenarios of camera orientation 

precision (0.01, 0.02, 0.03, 0.04, and 0.05 degree). With the 

increase in the precision values, the standard deviation values 

increase. 

 

Table 8 shows the standard deviations in X- axis for various 

cases of the precision of the camera orientation. It can be noted 

that the standard deviations in X-axis is affected by the increase 

in the precision values of the camera orientation and the 

distance from the centre of the X-axis.  Furthermore, the objects 

on the same X-axis have almost the same standard deviation. 

The differences do not exceed few millimetres. 

 

Orientation          

 (deg) 

object ID 

0.01 0.02 0.03 0.04 0.05 

1 0.211 0.240 0.277 0.319 0.361 

2 0.211 0.238 0.275 0.316 0.357 

3 0.212 0.240 0.277 0.319 0.361 

4 0.106 0.120 0.138 0.160 0.182 

5 0.106 0.119 0.137 0.158 0.180 

6 0.106 0.120 0.138 0.160 0.182 

7 0.053 0.060 0.069 0.081 0.093 

8 0.053 0.060 0.069 0.080 0.093 

9 0.053 0.060 0.069 0.081 0.093 

10 0.137 0.155 0.180 0.207 0.236 

11 0.137 0.154 0.178 0.205 0.233 

12 0.138 0.155 0.180 0.207 0.236 

13 0.241 0.274 0.318 0.367 0.417 

14 0.240 0.272 0.316 0.363 0.412 

15 0.241 0.274 0.318 0.367 0.417 

Note: Tie-point precision =1.00(pixel); camera position 

precision =0.06(m)  

 

Table 8. Impacts of camera orientation precision on the standard 

deviation in X-axis for simulation 1 

 

Orientation          

 (deg) 

object ID 

0.01 0.02 0.03 0.04 0.05 

1 0.089 0.101 0.117 0.136 0.155 

2 0.051 0.057 0.067 0.079 0.092 

3 0.090 0.102 0.118 0.137 0.156 

4 0.089 0.100 0.115 0.133 0.152 

5 0.050 0.057 0.066 0.077 0.089 

6 0.090 0.101 0.116 0.134 0.153 

7 0.089 0.100 0.115 0.133 0.151 

8 0.050 0.056 0.065 0.076 0.088 

9 0.089 0.100 0.116 0.134 0.152 

10 0.089 0.100 0.116 0.134 0.153 

11 0.050 0.057 0.066 0.077 0.089 

12 0.090 0.101 0.117 0.135 0.154 

13 0.089 0.102 0.118 0.137 0.157 

14 0.051 0.058 0.068 0.080 0.093 

15 0.090 0.102 0.119 0.138 0.158 

Note: Tie-point precision =1.00(pixel); camera position 

precision =0.06(m)  Y-axis 

 

Table 9. Impacts of camera orientation precision on the standard 

deviation in Y-axis for Mapping Scenario 1 

 

Table 9 presents the standard deviation values in Y-axis under 

different cases of camera orientation precision. It is obviously 

realized that the increase in the precision value raises the 
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standard deviation values. It can also be observed that the 

standard deviation values of the objects  2, 5, 8, 11, and 14 

which are close to the centre of Y-axis are considerably smaller 

than the values for the other objects. 

 

Table 10 shows the vertical standard deviations for five cases of 

the precision of the camera orientation. We can see that the 

standard deviation of all objects does not significantly vary, as 

their elevation is the same.  In other words, the objects cannot 

be grouped as it can be done for the X-axis and Y-axis. The 

increase by 0.01 degree in the precision of the camera 

orientation can lead to an increase in standard deviation for 

some objects to more than 10 cm. 

 

Orientation          

 (deg) 

object ID 

0.01 0.02 0.03 0.04 0.05 

1 0.558 0.632 0.732 0.842 0.953 

2 0.557 0.629 0.726 0.833 0.942 

3 0.559 0.633 0.733 0.842 0.954 

4 0.555 0.625 0.722 0.831 0.942 

5 0.554 0.622 0.716 0.822 0.931 

6 0.556 0.626 0.723 0.832 0.943 

7 0.555 0.624 0.720 0.829 0.941 

8 0.554 0.621 0.714 0.820 0.930 

9 0.556 0.625 0.721 0.830 0.942 

10 0.556 0.628 0.726 0.837 0.950 

11 0.555 0.624 0.720 0.828 0.939 

12 0.557 0.628 0.727 0.837 0.951 

13 0.559 0.636 0.739 0.853 0.968 

14 0.558 0.633 0.733 0.844 0.956 

15 0.560 0.637 0.740 0.853 0.968 

Note: Tie-point precision =1.00(pixel); camera position 

precision =0.06(m)  

 

Table 10. Impacts of camera orientation precision on the 

standard deviation in Z-axis for Mapping Scenario 1 

 

3.5 Horizontal positions of objects and the standard 

deviations for the tie point coordinates 

 

 
 

Figure 2. Mapping Scenario 2: The horizontal positions of the 

tie-point objects 

In Mapping Scenario 2 there were 23 tie point objects (Figure 

2). These objects were utilised to generate tie point 

measurements. Knowing tie point measurements and camera 

parameters, 3D coordinates can be obtained through bundle 

block adjustment. The stochastic model was constructed with 

the assumptions that the tie point measurements assumed to 

have half pixel precision, camera positioning measurements 

have 5cm precision and camera orientation measurements are 

with 0.01 degree precision.   

 

In addition to the 3D coordinates, the standard deviations of the 

object coordinates in 3D in the Mapping Scenario 2 were 

computed and presented in Figures (3, 4, and 5). In Figure (3) it 

can be seen that the standard deviation is the minimum in the 

centre of X-axis which is camera position in X-axis and 

increases with the distance from the centre. They are 0.04 m in 

the middle and increases in the left part to 0.06m then to 0.11 

and finally to 0.16 m.  On the right, they increase until they 

reach 0.17m. It is worth to mention that the objects No. (21, 22, 

and 23) are far from the centre about 45 m and the objects No. 

(1, 2, and 3) are 42 m. The standard deviations in Y-axis are 

minimum in the middle which is the average of camera 

positions in Y-axis when image 1 and image 2 captured. The 

values in the middle are 0.04 m and 0.071m in the farthest 

objects (Figure 4). It should be noted here that the distance 

between the farthest objects in Y-axis and the average positions 

of the camera is about 16 m.  The standard deviations in Z-axis 

almost have the same values (Figure 5). This indicates that the 

variations in the standard deviations in Z-axis mainly depend on 

the vertical distance of the objects from the UAV height.  

 

 
 

Figure 3. Standard deviations in X-axis for Mapping Scenario 2 

 

 

 
 

Figure 4. Standard deviations in Y-axis for Mapping Scenario 2 
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Figure 5. Standard deviations in Z-axis for Mapping Scenario 2 

 

3.6 Objects heights and standard deviations 

 

Mapping Scenario 3 was prepared with the same parameters in 

the Mapping Scenario 2 discussed above, but the only change 

was objects hieghts which were assigned randomly for the 

objects. It is important to remberer that the hights lay between 0 

and 20 meters. This is because of the fact that the objects close 

to the boundaries of the images higher than 20 m may not be 

captured by the camera as shown in Figure 6.  

  

 
 

Figure 6. The distributions of the tie point objects for Mapping 

Scenario  3 

 

From Figures 7 and 8, it can be realised that the standard 

deviations in X-axis and Y-axis have the same situation 

obtained from the Mapping Scenario 2. However, the values are 

slightly affected by the hight variations of the objects. On the 

other hand, the standard deviations in Z-axis  signicantly differ 

from the values in the Scenario 2 as shown in Figure 9. 

 

 
 

Figure 7. Standard deviations in X-axis for Mapping Scenario 3 

 

 
 

Figure 8. Standard deviations in Y-axis for Mapping Scenario 3 

 

 
 

Figure 9. Standard deviations in Z-axis for Mapping Scenario 3 

 

Table 11 shows the standard deviations in X, Y, Z-axes by 

using the factored stochastic model. By comparing between the 

standard deviation results for the X-axis with commonly used 

stochastic model and factored stochastic model, it can be seen 

the biggest difference does not exceed 5 mm. For the Y-axis and 

Z- axis, the results are almost the same. 
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ID 

Standard 

deviation 

in X-axis 

Standard 

deviation 

in Y-axis 

Standard 

deviation 

in Z-axis 

1 0.160 0.071 0.431 

2 0.165 0.041 0.436 

3 0.161 0.072 0.445 

4 0.108 0.057 0.416 

5 0.109 0.041 0.416 

6 0.109 0.057 0.434 

7 0.060 0.045 0.397 

8 0.062 0.041 0.452 

9 0.062 0.047 0.451 

10 0.041 0.070 0.415 

11 0.040 0.051 0.399 

12 0.040 0.040 0.379 

13 0.041 0.048 0.441 

14 0.040 0.069 0.361 

15 0.066 0.045 0.362 

16 0.067 0.040 0.397 

17 0.066 0.045 0.371 

18 0.116 0.056 0.412 

19 0.118 0.041 0.412 

20 0.115 0.056 0.386 

21 0.166 0.069 0.380 

22 0.170 0.040 0.386 

23 0.169 0.071 0.428 

 

Table 11. Standard deviations for Mapping Scenario 3 using the 

factored stochastic model 

 

 

 

4. CONCLUSION 

 

In a real-time 3D UAV mapping scenario, the standard 

deviation of  the objects were computed using simulation data 

assuming different levels of precisions of tie point, camera 

position and orientation measurements.  The standard 

deviations of the estimated parameters also were computed and 

investigated using commonly used and factored stochastic 

model.  

 

This paper shows in details the impact of the precision of tie 

point, camera position and orientation measurements and the 

geometric distribution on 3D mapping results. It has been 

demonstrated that the tie-point objects which are closer to the 

centre between camera positions have smaller standard 

deviations than the objects that are farther. Also, this study has 

also presented the impact of commonly used and factored 

stochastic models on the standard deviation results. The initial 

results have shown that the factored stochastic model have a 

similar performance as the commonly used model, while the 

precisions of the geo-referencing measurements play a critical 

role in real-time 3D mapping scenarios. 

 

In this paper the factored stochastic model for the tie point 

measurements was based on the horizontal positions of the 

objects. However, more complex stochastic models may be 

further investigated  
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