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ABSTRACT 
 
The leaf area index (LAI) of plant canopies is an important structural parameter that controls energy, water, and gas 
exchanges of plant ecosystems. Remote sensing techniques may offer an alternative for measuring and mapping 
forest LAI at a landscape scale. Given the characteristics of high spatial / spectral resolution of the WorldView-2 
(WV2) sensor, it is of significance that the textural information extracted from WV2 multispectral (MS) bands will 
be first time used in estimating and mapping forest LAI.  In this case, LAI mapping accuracies would be compared 
from (a) spatial resolutions between 2-m WV2 MS data and 30-m Landsat TM imagery, (b) the nature of variables 
between spectrum-based features and texture-based features, and (c) sensors between TM and WV2.  In this study, 
spectral/spatial features (SFs) were selected and tested, including band reflectance, various vegetation indices and 
1st and 2nd-order statistical texture measures;  a canonical correlation analysis was performed with different data 
sets of SFs and LAI measurement; and finally linear regression models were used to predict and map forest LAI 
with canonical variables calculated from image data.  The experimental results demonstrate that for estimating and 
mapping forest LAI, (i) using high resolution data is better than using relatively low resolution data; (ii) extracted 
from the same WV2 data, texture-based features have higher capability than that of spectrum-based features; (iii) a 
combination of spectrum-based features with texture-based features could lead to even higher accuracy of mapping 
forest LAI than their either one separately; and (iv) WV2 sensor outperforms TM sensor significantly.  In addition, 
the experimental results also indicate that the Red-edge band in WV2 has performed the worst on estimating LAI, 
compared to other WV2 MS bands and the WV2 MS bands in the visible range have a much higher correlation with 
ground measured LAI than that of Red-edge and NIR bands.   
 
 

INTRODUCTION 
 

The leaf area index (LAI) of plant canopy is an important structural parameter that controls energy, water, and 
gas exchanges of plant ecosystems, such as photosynthesis, respiration, transpiration, carbon and nutrient cycle, and 
rainfall interception (e.g., Running et al., 1989; Gong et al., 1995; White et al., 1997; Chen et al., 2002; Schlerf et 
al., 2005). Therefore, accurate mapping of LAI spatial distribution is critical for better understanding of the 
structures and functions of plant ecosystems and for quantitative analysis of many physical and biological processes 
(Chen et al., 2002).   Nevertheless, ground-based measurement of canopy LAI is labor-intensive and, thus, is 
problematic over large areas (Gobron et al., 1997).  Remote sensing techniques, especially high resolution satellite 
remote sensing, may offer an alternative for measuring and mapping LAI at a landscape scale or even a regional 
scale.  

During the last two decades, many studies have demonstrated the potential of high resolution satellite remote 
sensing sensors (such as IKONOS, QuickBird and WorldView-2 (WV2)) for estimating and mapping forest LAI 
spatially and temporally (e.g., Colombo et al., 2003; Soudani et al., 2006; Song and Dickinson, 2008; Gray and 
Song, 2012; Gu et al., 2012; Zhou et al., 2014). Due to the high spatial resolution of these satellite sensors’ data, 
frequently used spatial information derived from these high resolution images, called texture-based features or 
texture measures, could be used to effectively predict and map plant LAI. For examples, Colombo et al. (2003) used 
both vegetation indices (VIs) and texture measures derived from IKONOS image data to retrieve the LAI of 
different vegetation types and concluded that the combination of the texture measures and VIs results in an 



IGTF 2015 - ASPRS 2015 Annual Conference 
Tampa, Florida  May 4 - 8, 2015 

 

improved fit in a regression equation for most vegetation types when compared with spectral VIs only.  In extracting 
conifer- and hardwood-dominated forest canopy structural parameters, including forest LAI from spatial information 
of high resolution IKONOS imagery, Song and Dickinson (2008) demonstrated that image spatial information is 
more useful in estimating LAI than two VIs (NDVI and simple ratio VI) and combining both spatial and spectral 
information provides some improvement in estimating LAI compared with using spectral information only.  With 
spatial information derived from QuickBird imagery, Zhou et al. (2014) evaluated three different image processing 
techniques: processing based on spectral vegetation indices (SVIs), texture measures, and combinations of SVIs 
with textural analyses.  They found that SVI-based approaches did not yield reliable LAI estimates, accounting for at 
best 68% of the observed variation in LAI; texture-based methods were somewhat better, explaining up to 72% of 
the observed variation; however, a combination of the two approaches yielded an even better adjusted R2 value of 
0.84. The authors demonstrated that the accuracy of estimated LAI values based on remote-sensing data could be 
significantly increased by considering textural information. Based on the relatively extensive literature review above 
regarding spatial information derived from high resolution satellite imagery, it has been shown that textural 
information is unique and can be very useful in estimating and mapping plant LAI. 

Developed in recent years, high resolution WorldView series sensors that can produce even higher spatial and 
spectral resolution satellite image data compared to IKONOS and QuickBird sensors, are expected to provide a 
greater potential for predicting and mapping forest structural parameters than other high resolution sensors (e.g., 
IKONOS and QuickBird).  However, although the WV2 data have been utilized for estimating and mapping many 
forest structure parameters including biomass, basal area (BA), number of trees (NT), stem volume (SV), mean 
diameter at breast height (MDBH), mean tree height (MTH), etc., based on our literature review, there were no 
studies on estimating and mapping forest LAI using the WV2 data. For example, in predicting forest structural 
parameters such as NT, BA, SV, Gini coefficient (GC), and standard deviation of DBH (SDDBH), etc. using the 
image textural information derived from WV2 multispectral (MS) bands in a dryland forest, Israel, cross-validated 
statistics confirmed that structural parameters including BA, SDDBH, and GC could be predicted and mapped with 
a reasonable accuracy (Ozdemir and Karnieli, 2011). In estimating and mapping pine plantation structure parameters 
(volume, BA, DBH and MTH) using WV2 MS images, Shamsoddini et al. (2013) also demonstrated that estimate 
models derived from textural attributes of eight spectral bands provided the best estimates of the four forest 
structural parameters, compared to those derived from four typical bands and the models derived from spectral 
derivatives. Based on the demonstrated power and potential of textural information derived from WV2 data for 
estimating and mapping forest structural parameters and considering even higher spatial /spectral resolution of WV2 
data, it is necessary to test and evaluate the power and potential of textural information extracted from the WV2 MS 
imagery for estimating and mapping a mixed natural forest LAI. 

Therefore, the overall focus of this study is on exploring the potential of the new high spatial/spectral resolution 
WV2 satellite imagery for estimating and mapping forest LAI in a mixed natural forest area in Florida, USA.  For 
this case, all possible spectral / spatial features (SFs) including spectrum-based features and texture-based features 
were first extracted from WV2 MS bands and Landsat TM imagery (spectrum-based SFs only), selected and tested; 
and then a canonical correlation analysis (CCA) with different sets of selected SFs was used to evaluate 
relationships between sets of SFs and LAI measurement to estimate and map forest LAI. The substantial objectives 
of this study include: (1) selecting and evaluating SFs extracted from WV2 MS bands and TM data for estimating 
and mapping forest LAI; and (2) comparing LAI mapping accuracies (a) from spatial resolutions between 2-m WV2 
MS data and 30-m TM imagery, (b) from the nature of SFs between spectrum-based features and texture-based 
features, and (c) from sensors between TM and WV2.  The expected novel significance of this study is first 
demonstrating the potential of the newly developed high spectral/spatial resolution WV2 sensor for improving the 
accuracy of estimating and mapping forest LAI using textural information derived from the WV2 MS bands 
compared with using spectrum-based features only.  Relevant issues associated with effects of window size and 
spectral bands for extracting textural information on estimating forest LAI will also be discussed. 
 
 

STUDY SITE AND DATA SETS 
 
Study Site 

The study area that includes the University of South Florida Ecological Research Area (USF Eco-Area) and its 
surrounding areas at approximately 28° N and 82° W is presented in Fig. 1.  It is within the City of Tampa, Florida, 
USA. Over half of the study area is composed of floodplain wetlands associated with Cypress Creek and the 
Hillsborough River.  The rest of it is composed of natural and developed uplands.  Based primarily upon the Florida 
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Natural Areas Inventory and Department of Natural Resources classification system (FNAI and DNR 1990) and 
Schimdt (2005) field observations, major natural plant community types consist of riverine communities, palustrine 
communities, terrestrial communities, and rural/developed plant communities.  For detailed descriptions of plant 
communities and climate and topographic conditions in the study area, see Pu (2012) and Schimdt (2005). 

 

 
 
Fig. 1. Location map of the study area, presented in a false color composite image made using TM bands 4, 3, and 2 
for RGB, acquired on April 30, 2011. The study area, masked in a transparent area, covers University of South 
Florida Ecological Research Area (USF Eco-Area) and its surrounding areas. 
 
Data Acquisition and Measurement 

WorldView-2 (WV2) imagery. The WV2 satellite imagery (DigitalGlobe, Inc., USA) was acquired on May 1, 
2011 at an average off nadir view angle of 29.4o.  WV2 is the first commercial eight MS band high resolution 
satellite (sensor) with a swath width of 16.4 km, a revisit time of 1.1 average days, and a spatial resolution of 2 m for 
eight MS bands: Coastal blue (Band1, 400 – 450 nm), Blue (Band2, 450 – 510 nm), Green (Band3, 510 – 580 nm), 
Yellow (Band4, 585 – 625 nm), Red (Band5, 630 – 690 nm), Red-edge (Band6, 705 – 745 nm), NIR1 (Band7, 770 – 
895 nm) and NIR2 (Band8, 860 – 1040 nm). The satellite also has a panchromatic sensor (Pan, 450 – 800 nm) with 
about 0.5 m spatial resolution that was not used in this study. According to DigitalGlobe (2009), the eight bands are 
uniquely chosen to meet the needs of a variety of applications, including resources management, coastal mapping, 
environmental monitoring, infrastructure mapping, and others. 

Landsat 5 TM data. One scene of Landsat TM imagery (path 17 / row 41) was acquired on April 30, 2011, 
covering the study area.  The TM imagery in GeoTIFF Level 1 format was directly downloaded from the USGS site: 
http://glovis.usgs.gov/.  TM bands 1-5 and 7 of the scene were used in this analysis. 

LAI collection.  An LAI-2000 Plant Canopy Analyzer (PCA) was used to measure LAIs in the field. A total of 
70 LAI measurements were taken on April 8, 2008.  At the same plot locations used for measuring LAIs on April 8, 
2008, another 70 LAI measurements were re-taken on April 20, 2010. The LAI measurement taken by the PCA has 
been termed, ‘effective’ LAI (White et al., 1997).  The LAI plots were separately deployed over lowland and upland 
subareas.  The number, mean, standard deviation and range of LAI measurements taken from 2008 and 2010 in the 
two subareas are summarized in Table 1 in association with a list of relevant plant community types.  Each LAI 
measurement represents an average of ten PCA readings which were taken in a plot area ranging from 1000 to 2000 
m2.  After taking an LAI measurement, the plot’s exact location was marked on an IKONOS color composite image 
that was acquired on April 6, 2006 based on surface features.   

 
Table 1. Summary of LAI measurements, taken on Apr. 8, 2008 (Apr08) 
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and Apr. 20, 2010 (Apr10) used in this analysis. 

 
    

Based on the existing available data sets (satellite imagery and in situ LAI measurements) described above for 
this analysis, WV2 and TM imagery were acquired one year later on approximately the same date as for collecting 
in situ LAI measurements (i.e., April 20, 2010). This time difference between field LAI measurement and 
acquisition of both WV2 and TM imagery did not affect our analyses below because the LAI in a study area with 
mixed natural forests does not change significantly in one year, within the same season. Since the in situ LAI 
measurements collected on April 8, 2008 were also taken at the same plots as for LAI measurements taken on April 
20, 2010, we can make a comparative analysis between the two sets of LAI measurements for the two year 
difference.  Fig. 2 clearly illustrates that no significant LAI change can be observed from the scatterplot.  Those 
scatter points off the 1:1 diagonal line could be caused by a field sampling error.  Given the only one year difference 
(within the same season) between 2010 and 2011, for this study, any change of LAI measurement for the one year 
might be ignored.   

 

 

Fig. 2. Scatter plot showing linear and nonlinear relationships between LAIs measured on April 8, 2008 and April 
20, 2010. 

 
 

Number Mean SD Range Number Mean SD Range

Lowland 21 3.16 0.67 2.57 21 3.12 0.64 2.55
Floodplain swamp, Floodplain marsh, partial 
Floodplain forest, and Black water community 
types

Upland 49 2.19 0.77 3.30 49 2.28 0.75 3.48

Mesic flatwoods,Floodplain forest, sandhill, 
Hydric hammock, Xeric hammock, Scrubby 
flatwoods, Wet flatwoods, seepage slope, and 
Ruderal/developed community types

Overall 70 2.48 0.86 3.81 70 2.53 0.81 3.62 All plant community types

* Referred to FNAI and DNR (1990) and Schmidt (2005). SD denotes standard deviation.

Relevant plant communities*Types
Apr08 LAI measurements Apr10 LAI measurements
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METHODOLOGY 
 

Fig. 3 presents a flowchart of analysis methods to estimate and map forest LAI by using band reflectance, VIs 
and spatial information derived from WV2 and TM imagery. The WV2 and TM imagery was first atmospherically 
corrected. All potential spectral/spatial features (SFs) were then extracted from WV2 and TM data and tested, and a 
CCA algorithm was performed with inputs of selected SFs and in situ LAI measurements to create one canonical 
variable. Finally linear regression models were simulated with canonical variable 1 against in situ LAI measurement 
and used to predict and map pixel-based forest LAI.  
 

 
 
Fig. 3. Flowchart of the analysis procedure of LAI mapping and assessment with spectrum/texture-based features 
(SFs) extracted from Landsat TM and high resolution WV2 imagery. CCA represents canonical correlation analysis. 
 
Image Preprocessing 

Per WV2 MS image data, based on the comparative result of three atmospheric correction methods applied to 
the WV2 MS data in Pu et al., (2015), the atmospheric correction result created with empirical line calibration 
(ELC) method was used in this analysis.  Per TM imagery, since the in situ spectral measurements from both bright 
and dark targets were not available, we utilized the FLASSH (Fast Line-of-sight Atmospheric Analysis of Spectral 
Hypercubes) method to correct atmospheric effects for the TM imagery (see Pu (2012) for the detailed FLASSH 
atmospheric correction procedure). As a result, all six TM bands (TM 1-5 and 7) in radiance were converted to 
surface reflectance in the study area. Neither WV2 image nor TM image was geometrically corrected because the 
study area is relatively level and small (approximately 13 km2) but registration was conducted between them. 

Collecting 2011 WorldView-2 (WV2) 
& Landsat TM imagery

Preprocessing WV2 & TM imagery 
with FLAASH, ELC into surface reflectance

Collecting in situ LAI 
measurements

Extracting spectrum-based 
features (SFs)

CCA analyses with four data sets:  (1) spectrum-based TM 
11 SFs, (2) spectrum-based WV2 10 SFs, (3) texture-based 

WV2 17 SFs, & (4) spectrum/texture-based WV2 27SFs

Choosing SFs from all statistically significant SFs 
with LAI based on a less redundant standard 

Selecting potential vegetation 
indices & textural measures

Extracting texture-based 
features (SFs)

Linear regression modeling with canonical 
variable 1 against in situ LAI

LAI mapping and assessments

Pearson’s 
correlation 
analyses

Comparative analyses of (i) resolution btw data sets (1) & (2), 
(ii) variable nature btw data sets (2) & (3), and (iii)sensors btw 

data sets (1) & (4)
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Spectral/Spatial Feature Extraction and Selection 
To use reflectance and textural information derived from both WV2 and TM imagery for estimating and 

mapping forest LAI, two types of features (variables) (SFs): spectrum-based features and texture-based features 
were extracted from WV2 imagery but only one type spectrum-based features from TM data.  The spectrum-based 
features include band reflectance and various VIs (Table 2, 12 VIs and six band reflectances from TM data while 13 
VIs and eight band reflectances from WV2 imagery).  In this study, per TM data, the 12 VIs consist of nine 2-band 
VIs and three 3-band VIs (Table 2). The reason we chose the 12 VIs extracted from TM data (also among them, nine 
VIs from WV2 data) is that they have been effectively and successfully used to estimate and map forest canopy LAI 
from moderate and high resolution multispectral remote sensing data (e.g., Colombo et al., 2003; Soudani et al., 
2006; Song and Dickinson, 2008; Kraus et al., 2009; Gray and Song, 2012; Gu et al., 2012; Zhou et al., 2014). For 
the WV2 data, the 13 VIs consist of nine VIs that are the same as those constructed from TM data and four NDVI-
like VIs (Table 2). Accordingly, we can base the same reasons as aforementioned to use the nine VIs in this analysis.  
The other four NDVIs were selected according to the studies by Cavayas et al. (2012) and Pu and Landry (2012). 

A total of 13 texture-based features were selected and extracted from the eight WV2 MS bands in this analysis, 
comprising five 1st-order grey level statistical texture measures and eight 2nd-order grey level statistical texture 
measures (Table 3).  The selection of the 13 texture-based features was based on literature review and their potential 
for estimating and mapping forest structural parameters including LAI from high resolution MS data, which has 
been demonstrated in many existing studies (e.g., Kraus et al., 2009; Murray et al., 2010; Gebreslasie et al., 2011; 
Ozdemir and Karnieli, 2011; Gómez et al., 2011, 2012; Gu et al., 2012, 2013; Shamsoddini et al., 2013; Zhou et al., 
2014). The 1st-order statistical texture measures are derived from the pixel values in a moving window with 
different window sizes, but don’t consider the spatial relationships among pixels within a window. The 2nd-order 
statistical texture measures are calculated from the spatial-dependency gray-level co-occurrence matrices (GLCM) 
describing the probability of each pair of pixel values co-occurring in a given direction and distance (Haralick et al., 
1973). In this study, to assess the effects of the window size (for both 1st- and 2nd-order texture measures) and 
direction (for 2nd-order texture measures only) on the power of texture-based features to estimate forest LAI, based 
on literature review, four window sizes (3×3, 5×5, 7×7, and 9×9) and four directions (0o, 45o, 90o, and 135o) were 
tested with WV2 Band5 (typical Red band). The reasons for choosing Band5 to test the effects were (1) the 
workload was too heavy to test all window sizes and directions for all eight WV2 bands, and (2) per preliminary 
correlation analyses of band reflectances with LAI measurements (Table 2), Band5 produced the best correlation 
with LAI.  In this testing, we first determined the window size with a fixed direction 0o based on correlations of 
texture-based features with measured LAI, and then determined a direction with a selected window size for GLCM 
calculation.  After the best window size and direction with Band5 were determined, the window size and direction 
were then applied to all other WV2 MS bands. 

To reduce redundancy and data dimensionality without losing significant useful spectral and spatial 
information, it is necessary to select a subset of SFs from the total of 18 spectrum-based features extracted from TM 
data and the total of 125 SFs (21 spectrum-based features and 104 texture-based features) from WV2 data prior to 
canonical correlation analysis (CCA) to produce low dimensionality CCA transformed variables (see below).  To do 
so, we first calculated Pearson’s correlation R2 value for each SF with LAI measurement and retained all SFs with 
R2 value > R2

(0.001,df=68) = 0.1482, we then calculated Pearson’s correlation R2 value between any two SFs separately 
from three groups of retained SFs: (1) retained spectrum-based features from TM data, (2) retained spectrum-based 
features and (3) retained texture-based features from WV2 data. Per any pair of retained SFs, if there exists a high 
correlation of R2 ≥ 0.9 from groups 1 and 2, and R2 ≥ 0.8 from group 3, then one SF with a relatively higher R2 with 
LAI measurement would be retained (Zhang et al., 2014). By examining all possible combinations of any two SFs 
with this procedure, the retained SFs selected for further CCA processing would ensure a relatively low redundancy 
level. 

 
Canonical Correlation Analysis (CCA) 

CCA is one technique of multivariate analyses, which evaluates the relationship between two sets (or groups) of 
variables. Each set can contain multiple variables. Given the two sets of variables (e.g., a set of SFs extracted from 
remote sensing images and the other set of forest biophysical variables, LAI, biomass, etc.), CCA finds 
corresponding pairs of linear combinations from the original two groups of variables, called canonical variables.  
The first pair of linear combinations is the one with the largest correlation and the two linear combinations are called 
the first pair of canonical variables (SAS, 1991; Nielsen, 2002).  The second pair of linear combinations is the one 
with the second largest correlation, subject to the condition that they are orthogonal to the first pair of canonical 
variables, and the two linear combinations are called the second pair of canonical variables.  Higher order canonical 
correlations and canonical variables are defined similarly (Nielsen, 2002).  When there is only one variable in a set  
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Table 2. Summary of 16 vegetation indices, 8 bands of WV2,  
and 6 bands of TM tested in this analysis. 

 
 

Bands R2 Bands R2

a = slope of the soil line

b = soil line intercept

L = a correction factor

Note: Band1 0.1777 TM1 0.1874

 (1).                                        are denoted as reflectances in blue (TM1, Band2), Band2 0.2749 TM2 0.2881

red (TM3, Band5), near-infrared (TM4, Bands 7&8) and short wave Band3 0.3211 TM3 0.3624

infrared (TM5) wavelengths, while                     Band4 0.4088 TM4 0.4541

 represent reflectance in coastal (Band1), yellow (Band4) and red-edge (Band6). Band5 0.4881 TM5 0.2102

(2). All R2 values were calculated with in situ LAI measurements and Band6 0.0215 TM7 0.2296

corresponding VIs are statistically significant at 0.999 confidence level Band7 0.3673
(R2

(0.001,df =68) = 0.1482) except WV2 Band6. Band8 0.3162

n/a

n/a

n/a

n/a

n/a

n/a n/a
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Table 3. A list of 1st- and 2nd-order texture measures*, 
extracted from eight WV2 MS bands and used in this analysis. 

 
Note:  B# represents band number of WV2 MS imagery. Per the 1st-order textures, pi is relative frequency of grey level i in the 
pixel window; X is pixel value (grey level) in the window; N is the number of gray levels. Per the 2nd-order textures, i, j are the 
row/column numbers in a spatial-dependency matrix; p(i,j) is the value in the cell i,j in the matrix; N is the number of rows or 
columns and equals to the number of grey levels.   
*: Haralick et al., 1973; Anys and He, 1995; Lu and Batistella, 2005; Kraus et al., 2009; Zhou et al., 2014.   
 
of original variables (e.g., a biophysical variable, LAI in this study) and the other set of variables are multiple 
variables (e.g., a set of SFs), CCA only provides a set of transformation coefficients for the multiple variables (SFs) 
that align the coefficients with the variation of the variable (LAI).  In this study, the SAS CANCORR procedure 
(SAS, 1991) was applied to implement CCA to estimate and map forest LAI from the SFs extracted from TM and 
WV2 images.  During the implementation of the CCA procedure in SAS, the input data (i.e., SFs and LAI) first 
needed to be standardized. 
 
Estimating and Mapping Forest LAI 

In this analysis, based on the dimensions and properties of input variables, one canonical variable for one set of 
SFs using CCA procedure (SAS, 1991) with 70 samples was produced. The canonical variable was then used to 
develop a corresponding linear regression model with LAI measurement to estimate and map pixel-based forest 
LAI. For estimating and mapping the pixel-based LAI from each set of SFs, the corresponding pixel based canonical 
variable was first calculated with a corresponding set of SF values in standardized format.  The developed four 
linear regression models then were used for calculating pixel-based LAI values from the corresponding sensors’ 
data.    
 
Accuracy Assessment Criteria 

The coefficient of correlation (R2), root mean square error (RMSE), and cross-validation (CV) RMSE (SAS, 
1991) were used as accuracy assessment criteria to assess the degree of correlation between two variables, 
estimation accuracy, and prediction capability for estimating and mapping forest LAI associated with different 
spectral variables and textural feature extraction methods. The R2 can be calculated from a Pearson’s correlation 
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definition. The RMSE can be defined as
n

yy
RMSE

n

i
ii




 1

2)ˆ(
, where, yi(i 1,2,.. .,n)  are actual LAI 

measurements; ˆ y i(i 1,2,.. .,n)  are LAI values estimated from a linear regression model; n  is the number of 

samples. The CV RMSE is calculated via iteratively generating regression models with n-1 samples while reserving 
one sample from the input data set (rotating n times) for testing a corresponding regression model.   
 
 

RESULTS 
 
Correlation Analyses of Individual SFs with LAI 

Per TM data, a Pearson’s correlation (R2) was calculated between ground measured LAI and each of the 18 
spectrum-based features (6 single TM band reflectances and 12 VIs) using 70 samples (Table 2). All R2 values are 
statistically significant at  = 0.001.  For all 12 VIs, all R2 values are higher than those for all six single TM bands 
except for NDMI (Normalized Difference Moisture Index) and ISR (Infrared Simple Ratio index) that with TM5 
(SWIR) did not produce a higher R2 compared to that with single band TM4 (NIR) only.  Compared with the 
correlation results created with spectrum-based features from TM data, most WV2 single bands and VIs have 
produced similar correlation results except three additional NDVI# (NDVI2, NDVI4 and NDVI5).  Per the 
correlation results created with all WV2 MS bands, we have noted that Band5 (Red) has produced the highest R2 
value, even higher than that with TM4 (NIR).  Consequently, the WV2 Band5 has been used to test to determine the 
best window size and direction for extracting texture-based features from all WV2 MS bands. 

Testing was conducted to determine an appropriate window size for extracting five 1st-order statistical texture 
measures (Table 3) from every WV2 MS band. Fig. 4(a) presents the testing results with WV2 Band5 and four 
window sizes: 3×3, 5×5, 7×7, and 9×9.  Per Fig. 4(a), in considering all five texture measures, the 3×3 window size 
has generated the best result.  With a fixed direction of 0o, Fig. 4(b) illustrates the testing results of eight 2nd-order 
statistical texture measures (Table 3) with WV2 Band5 and four window sizes: 3×3, 5×5, 7×7, and 9×9. As can be 
seen in the figure, the 9×9 window size created a relatively better R2 across the eight texture measures.  Therefore, 
with the fixed 9×9 window size, we further tested the effects of four directions (0o, 45o, 90o, and 135o) on R2 value 
with the eight texture measures extracted from WV2 Band5. The testing results of the eight texture measures with 
each of the four directions are shown in Fig. 4(c). As seen in Fig. 4(c), the direction 90o has led to a better R2 value 
compared to the other directions. Based on the testing results aforementioned, the 3×3 window size might be used to 
calculate the five 1st-order texture measures, and the 9×9 window size with a direction of 900 might be used to 
calculate the eight 2nd-order texture measures from all eight WV2 bands. Fig. 5 presents correlation analysis results 
of all 13 texture-based features extracted from all eight WV2 bands with ground measured LAI.  By comparing the 
correlation analysis results of the 13 texture measures among the eight WV2 bands, for both 1st-order and 2nd-order 
texture measures, it was observed that the eight WV2 bands could be divided into two groups based on their 
corresponding R2 values: a visible band group (Bands 1-5) and a Red-edge and NIR group (Bands 6-8).  The 13 
texture-based features extracted from the visible band group have produced higher R2 values compared with those 
created from the Red-edge and NIR band group.   
 
CCA Processing 

To conduct CCA processing, there are four data sets of predictor SFs as input data with only one response 
variable, LAI:   (Set1) 11 spectrum-based features from TM data; (Set2) 10 spectrum-based features from WV2 
data; (Set3) 17 texture-based features from WV2 data; and (Set4) 27 pooled spectrum-/texture-based features from 
WV2. Table 4 shows substantial retained SFs for the four data sets after reducing redundancy among the potential 
SFs (see section 3.2 above). Consequently, based on the principle of the CCA algorithm and the four sets of SFs 
with one biophysical variable LAI, only one set of transformation coefficients for one set of SFs can be produced in 
this study.  By using the transformation coefficients, one canonical variable for each set of SFs can be calculated, 
which will be correlated to LAI measurement to model and map pixel-based LAI.    
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Fig. 4. Comparisons of coefficients of correlation (R2) of texture measures with LAI measurement among four 
window sizes (3×3, 5×5, 7×7 and 9×9) and among four directions (0o, 45o, 90o and 135o). (a) WV2 band 5 with five 
1st order texture measures and four window sizes; (b) WV2 band 5 with eight 2nd order texture measures, four 
window sizes and direction 00; (c) WV2 band 5 with eight 2nd order texture measures, four directions and window 
size 9×9. 
 

 
 
Fig. 5. Comparisons of coefficients of correlation (R2) of texture measures with LAI measurement among the eight 
WV2 MS bands. (a) R2 values were created with five 1st order texture measures with window size 3×3 and (b) with 
eight 2nd order texture measures with window size 9×9 and direction 90o. 
 

Table 4. A summary of spectral features (SFs) selected for conducting CCA analysis. 
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Fig. 6 presents four scatter plots created with standardized canonical variable 1 against standardized LAI 
measurements. All plots in Fig. 6 show significant linear relationships between canonical variable 1 and LAI. Per 
the four plots, it is clearly illustrated that (1) canonical variable 1 derived from Set2 has produced better correlation 
with LAI compared to that derived from Set1 (R2 = 0.64 vs. 0.59); (2) canonical variable 1 derived from Set3 has 
produced higher correlation with LAI compared to that derived from Set2 (R2 = 0.69 vs. 0.64); and (3) canonical 
variable 1 derived from Set4 has resulted in much higher correlation (R2 = 0.84) with LAI compared to either the 
one derived from Set2 or Set3.  These results demonstrate that the textural information extracted from the high 
resolution WV2 data can be used to account for more spatial variation of the LAI measurements in the 70 samples to 
improve the accuracy of estimating forest LAI.  In addition to using the R2 values to evaluate the linear correlations 
with the four sets of SFs, RMSE and CV-RMSE indices (Table 5) were also used to evaluate the quality of the four 
linear regression models. From this evaluation it can be concluded that the linear regression model created with Set4 
of SFs is best. 

 
LAI Mapping with Canonical Variable 1 

To estimate and map pixel-based forest LAI, the pixel based canonical variable values were first calculated with 
corresponding four sets of linear transformation coefficients calculated by CCA from the four sets of SFs  in 
standardized format (ENVI4.8, 2012).  Then the four linear regression models between the canonical variable and 
LAI, shown in Figure 6, were used to calculate pixel-based LAI values.  Fig. 7(a) presents an LAI map produced by 
using Set1 of SFs and Fig. 7(b) and Fig. 7(c) present LAI maps created by respectively using Sets 2 and 3 of SFs 
while Fig. 7(d) shows an LAI map produced by using Set4 of SFs. The LAI maps were made with TM4 image in 
grayscale as their background.  In general, all LAI maps clearly show the spatial variation of LAI with low LAI 
values distributed in patches close to the southern boundary, located west and east of Hillsborough River in 
orange/red color.  These areas with relatively low LAI were mostly distributed by several terrestrial communities, 
including sandhill, xeric hammock, and mesic flatwoods communities.  The residential areas, located towards the 
southeast corner and close to the north boundary of the study area, also had a low LAI value in red to orange.  Street 
trees are distributed throughout this residential area. The areas with higher LAI value within the study area, in the 
light yellow to green color, were occupied by several palustrine communities, including floodplain swamp, 
floodplain forest, floodplain marsh, and especially floodplain swamp and floodplain forest areas with LAI values 
mostly greater than 3.0.   
 
Comparisons 

Table 5 lists mean and standard deviation (S.D.) values of the four LAI maps, separated into two mapped areas: 
lowland and upland, created with Set1 of SFs from TM data, and Sets2-4 of SFs from WV2 imagery.  As can be 
seen in the table, Sets1-3 of SFs have produced similar results (mean and S.D.) with a relatively better LAI map 
created with Set3 of SFs, then the one created with Set2 of SFs and a relatively less reliable one created with TM 
data ((Set1 data). Clearly, the pooled spectrum-/texture-based features (Set 4 of SFs) have created the best LAI map 
and shows greater S.D. values for the two mapped areas compared to those with Sets1-3 of SFs. Thus the results of 
three comparative analyses demonstrate that (1) for evaluating the effect of spatial resolution on mapping accuracy 
of forest LAI, the LAI map created with Set2 of SFs is more accurate than that created with Set1 of SFs; (2) for 
evaluating the effect of feature property on mapping accuracy of forest LAI with WV2 data, the LAI map created 
with Set3 is more accurate than that created with Set2; and (3) for evaluating the effect of sensors on mapping 
accuracy of forest LAI, obviously, the LAI map created with WV2 data (Set4) is much more accurate than that 
created with TM data (Set1). 

 

Data sets SFs

(Set1) TM 11 spectrum-based SFs TMs 1, 2, 3, 5, 7, SR, SAVI, NLI, TSAVI, EVI, ISR

(Set2) WV2 10 spectrum-based SFs Bands 1, 2, 3, 4, SAVI, NLI, MSR, ARVI, NDVI2, NDVI3
(Set3) WV2 17 texture-based SFs B1RAN1, B1ENT1, B5RAN1, B5MEA1, B5ENT1, B1DIS2, B2CON2, 

B2DIS2, B3DIS2, B3ENT2, B4DIS2, B4ENT2, B5MEA2, B5VAR2, 
B5CON2, B5COR2, B8MEA2

(Set4) WV2 27 spectrum/texture-based 
SFs

SFs from Set2 and Set3
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Fig. 6. Scattering plots of standardized LAI measurements (n = 70) against corresponding standardized canonical 
variable 1 for (a) TM data with 11 spectrum-based SFs, (b) WV2 data with 10 spectrum-based SFs, (c) WV2 data 
with 17 texture-based SFs, and (d) WV2 data with 27 spectrum- and texture-based SFs.  

 
 

DISCUSSION 
 

Both spectral and textural features extracted from WV2 Band6 (Red-edge) have produced very low correlation 
(R2) with in situ LAI measurement (see Fig. 5, Table 2) in this analysis. Although we did not find any similar 
conclusions related to the results of WV2 Red-edge band use in existing literature, such correlation results seem 
reasonable because in spite of a large variation of LAI measurements (LAI: 0.88 – 4.50), a relatively small variation 
of Red-edge band reflectance was observed in this study.  This phenomenon is understandable because the red-edge 
wavelength is located in the middle of Red-NIR “transition slope”. Although a large variation of LAI could cause 
great variations of Red band and NIR band reflectances, the middle wavelength reflectance between Red and NIR is 
relatively “constant”.  Unlike a red-edge optical parameter: red-edge position, its shift (left or right shifting) is 
significantly related to changes of chlorophyll content (Munden et al., 1994; Belanger et al., 1995), LAI (Danson 
and Plummer, 1995; Pu et al., 2003), and biomass (Filella and Peñuelas, 1994), etc.  Accordingly, given the 
relatively “constant” reflectance of the Red-edge band under varying LAI measurements, very low R2 values for all 
texture-based features were also predictable. 
 

Table 5. Summary of LAI mapping and accuracies of LAI  
modeling with the CCA technique. 
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Note: All numbers in the table represent LAI values; S.D. is standard deviation;  1--root mean square error calculated from all 70 
samples with linear regression models in Figure 5; 2--corss-validation RMSE averaged from all the 70 samples.   
 

 

 
 

Mean SD RMSE1 CV-RMSE2

(A) LAI map with TM data (11 SFs)
Lowland 3.03 0.670
Upland 2.29 1.138
Overall 2.58 1.043

(B) LAI map with WV2 data (10 SFs)
Lowland 3.03 1.025
Upland 2.19 1.541
Overall 2.47 1.445

(C) LAI map with WV2 data (17 SFs)
Lowland 3.43 0.811
Upland 2.17 1.544
Overall 2.60 1.469

(D) LAI map with WV2 data (27 SFs)
Lowland 3.86 1.124
Upland 2.90 1.761
Overall 3.22 1.641

0.3552 0.4126

0.6733 0.6560

0.6034 0.6170

0.5437 0.5774
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Fig. 7. A comparison of LAI maps: (a) LAI map was produced with the 11 spectrum-based SFs from the TM image 
and a regression model in Figure 6(a); (b) LAI map was produced with the 10 spectrum-based SFs from the WV2 
image and a regression model in Figure 6(b); (c) LAI map was produced with the 17 texture-based SFs from the 
WV2 image and a linear model in Figure 6(c); and (d) LAI map was produced with the 27 spectrum- and texture-
based SFs from the WV2 image and a linear model in Figure 6(d). 
 

In this study, Fig. 5 (a, b) clearly illustrates that all eight WV2 MS bands could be separated into two groups: 
Visible band group (Bands 1-5) and NIR and Red-edge band group (Bands 6-7) based on correlation R2 values of 
the individual 1st- /2nd-order texture measures with LAI measurement.  Higher correlation R2 values created with the 
visible band group than those created with the NIR and Red-edge band group were observed. Such experimental 
results suggest that relatively stable spectral information (with lower amplitude) derived from the visible region 
compared with that derived from NIR and Red-edge bands could result in the extraction of better quality texture 
measures from visible bands than from NIR and Red-edge bands. Existing studies on the comparison of the ability 
of spectral features extracted from visible bands with that from NIR bands for estimating or correlating some forest 
structural parameters also demonstrate what we found here, although the structural parameters do not include forest 
LAI.  For example, Gómez et al. (2011) used spectral/spatial features extracted from QuickBird-2 imagery to 
estimate forest structural diversity and they found that the visible reflectance was more powerful than NIR data.  In 
identifying forest tree species with hyperspectral measurements, Gong et al. (1997) demonstrated that the 
discriminating power of the visible region is stronger than the NIR region.  

In this study we demonstrate that texture-based features have a higher capability to estimate and map forest LAI 
compared with spectrum-based features using WV2 multispectral imagery.  Our experimental result confirmed some 
findings from previous studies.  For examples, Shamsoddini et al. (2013) compared the power using 11 GLCM 
texture measures extracted from eight WV2 MS bands and one panchromatic (Pan) band to map forest structural 
parameters with spectrum-based variables.  Their study showed that texture measures performed better than 
spectrum-based variables for estimating the forest structural parameters. Gu et al. (2012) also compared the ability 
of four texture measures extracted from IKONOS-2 Pan band in retrieving urban forest LAI with that of four VIs 
and concluded that texture measures exceeded the VIs in estimating LAI of forests with a low canopy density and 
regular spatial structure, in which the soil background has a strong effect on remote sensing of canopy LAI.  In our 
study area, most of the area is covered with relatively low LAI canopy and the effect of soil background on the 
canopy spectrum is significant.  Consequently, it should be reasonable that the texture-based features extracted from 
the eight WV2 bands outperformed the spectrum-based features for estimating and mapping the mixed natural forest 
LAI.  Our and other studies’ results all suggest that the detailed textural information derived from high resolution 
images could potentially improve estimating and mapping finer forest structural parameters. 

The results of estimating and mapping forest LAI with two sensors’ data demonstrate that the WV2 sensor has a 
greater potential for estimating and mapping forest LAI than the TM sensor. Such a general conclusion can easily be 
understood by the following two points.  (1) Spectral and textural information extracted from the WV2 imagery 
should be more powerful than using spectral information extracted from TM data only in estimating and mapping 
forest LAI.  This is because local spatial structural information of pixel values is a function of the forest structure 
present and the image spatial (high) resolution, and this interior relationship between forest structure and image 
spatial resolution provides opportunities to glean supplementary information about forests from the imagery 
(Falkowski et al., 2009). Therefore, such textural information extracted from the high spatial resolution image along 
with spectral information (e.g., band reflectance and VIs) from the image should benefit characterization of forest 
structural parameters, including LAI compared to using spectral information only.  For example, with spectral and 
textural features extracted from IKONOS, Colombo et al. (2003), Song and Dickinson (2008) and Zhou et al. (2014) 
all demonstrated that combining both spectral and spatial information provides some improvement in estimating 
LAI of forest and other vegetation canopies compared with spectral information only. For estimating other 
vegetation structural parameters such as vegetation communities and vegetation fractional coverage, Murray et al. 
(2010) and Gu et al. (2013) also proved that the combination of spectral and textural information could lead to 
increasing estimation accuracy for these vegetation structural parameters. (2) Even using only spectral information 
available from both sensors, relatively high spatial resolution data from the WV2 sensor would help characterize the 
forest structure compared to the relatively low spatial resolution data from the TM sensor.  In our study area, the 
experimental result of estimating LAI under a sparse stand condition with more soil background effect on canopy 
spectrum demonstrates this point. 
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CONCLUSIONS 
 

The experimental results demonstrate that to estimate and map forest LAI, (1) using high resolution data is more 
accurate than using relatively low resolution data; (2) extracted from the same WV2 data, all selected texture-based 
features together have higher capability than that with all selected spectrum-based features together; (3) a 
combination of spectrum-based features with texture-based features could lead to even higher accuracy of mapping 
forest LAI than their either one alone; and (4) the WV2 sensor outperforms the TM sensor significantly in mapping 
forest LAI. In this study, since most of the area, especially in upland areas, has a sparse stand condition with LAI 
mostly lower than 3.0 and more soil background effect on canopy spectrum, using high resolution WV2 data might 
benefit mapping forest LAI.  The high resolution WV2 data can offer detailed textural information that is potentially 
helpful to estimate and map finer forest structural parameters including LAI. Our finding of first making use of 
spectral and textural information extracted from WV2 data for improving forest LAI mapping will enrich current 
literature. Given the advantages of high resolution WV2 data (i.e., high spectral and spatial resolution features 
availabilities) for estimating and mapping forest LAI, it is easy to understand why the WV2 sensor outperforms TM 
sensor.  In addition, the experimental results also indicate that the Red-edge band in WV2 has a worse performance 
in estimating LAI than the other WV2 bands, and WV2 MS bands in the visible range have a much better correlation 
with ground measured LAI than that with Red-edge and NIR bands.  Since only a few studies from the existing 
literature could confirm our findings, and especially no studies to be found that evaluate the Red-edge band’s 
performance for estimating forest LAI, more testing and validation work is needed, especially for different forest 
ecosystems. 
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