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Abstract 

Accurate estimation of grassland biomass at their peak productivity can provide crucial information 

regarding the functioning and productivity of the rangelands. Hyperspectral remote sensing has proved to 

be valuable for estimation of vegetation biophysical parameters such as biomass using different statistical 

techniques. However, in statistical analysis of hyperspectral data, multicollinearity is a common problem 

due to large amount of correlated hyper-spectral reflectance measurements. The aim of this study was to 

examine the prospect of above ground biomass estimation in a heterogeneous Mediterranean rangeland 

employing multivariate calibration methods. Canopy spectral measurements were made in the field using 

a GER 3700 spectroradiometer, along with concomitant in situ measurements of above ground biomass 

for 170 sample plots. Multivariate calibrations including partial least squares regression (PLSR), principal 

component regression (PCR), and Least-Squared Support Vector Machine (LS-SVM) were used to 

estimate the above ground biomass. The prediction accuracy of the multivariate calibration methods were 

assessed using cross validated R
2
 and RMSE. The best model performance was obtained using LS_SVM 

and then PLSR both calibrated with first derivative reflectance dataset with R
2
cv=0.88 & 0.86 and 

RMSEcv=1.15 & 1.07 respectively. The weakest prediction accuracy was appeared when PCR were used 

(R
2
cv = 0.31 and RMSEcv= 2.48). The obtained results highlight the importance of multivariate calibration 

methods for biomass estimation when hyperspectral data are used.  

 

Introduction 

Accurate estimates of grass biomass can provide valuable information about the productivity and 

functioning of rangelands and grasslands and has been an important focus due to its impact on 

ecoysystem process and carbon cycles. Remote sensing offers a cost-effective solution for timely and 

accurate estimation of aboveground green biomass in grasslands from local to regional scale. In recent 

years, remote sensing techniques have been widely used to estimate aboveground green biomass in 

grasslands (Anderson, Hanson, & Haas, 1993; Mirik et al 2005; Moreau, Bosseno, Gu, & Baret, 2003; 

Wylie, Meyer, Tieszen, & Mannel, 2002). Development of hyperspectral sensors, which provide detailed 

spectral information at higher spectral resolution, has offered unprecedented opportunities to estimate 

grassland aboveground green biomass using new techniques, such as narrow-band vegetation indices, red-

edge position (REP), band depth analysis and partial least square regression. Canopy reflectance is mainly 

determined by LAI and other properties (e.g. leaf angle, soil optical properties). While LAI shows a close 

relation to biomass, a good relation between canopy reflectance and biomass can be expected (Gnyp et 

al., 2014). High correlations between biomass and reflectance are shown in hyperspectral data collected 

by field spectrometer, airborne, and satellite sensors (Cho et al., 2007; Psomas, Kneubühler, Silvia, Itten, 

& Zimmermann, 2007). Grassland parameters are generally estimated using standard or multivariate 



regression techniques with data derived from spectral reflectance measurements. Several studies have 

exploited this approach, relating field data with reflectance indices (Cho & Skidmore, 2006; Mutanga & 

Skidmore, 2004), with first derivative reflectance spectra (Lamb et al., 2002), and with continuum 

removed spectra (Mutanga, Skidmore, Kumar, & Ferwerda, 2005). These studies underline the 

complexity of the spectral response of mixed grasslands, especially in presence of a high fraction of non-

photosynthetic vegetation (NPV) and exposed soil (Baldocchi et al., 2004), and canopy architecture 

complexity due to mixed species composition and phenology (Cho et al., 2007; Darvishzadeh et al., 

2008c; Numata et al., 2008). This complexity makes the prediction of biophysical and biochemical 

pasture properties still challenging for the remote sensing community, especially in mixed species 

environments and keeping in account the temporal variability of vegetation properties during different 

stages of pasture growth. On the other hand, in statistical analysis of hyperspectral data, multicollinearity 

is a common problem due to large amount of correlated hyper-spectral reflectance measurements. 

Therefore the aim of this study was to examine the prospect of above ground biomass estimation in a 

heterogeneous Mediterranean rangeland employing multivariate calibration methods. 

 

Materials  

The study site is located in Majella National Park, Italy (latitude 41°52' to 42°14' N, longitude 13°14' to 

13° 50'E). The park covers an area of 74,095 ha and extends into the southern part of Abruzzo, at a 

distance of 40 km from the Adriatic Sea. The region is situated in the massifs of the Apennines. Stratified 

random sampling with clustering was adopted in this study. For this purpose, the area was stratified into 

grassland, forest, shrubland and bare rock out crops, using the land cover map provided by the 

management of Majella National Park. Coordinates (x y) were randomly generated in a grassland stratum 

to select plots. A total of 45 plots (30 m x 30 m) were generated and a GPS (Global Positioning System) 

was used to locate them in the field. To increase the number of samples in the time available, four to five 

randomly selected subplots were clustered within each plot. This resulted in a total of 171 subplots being 

sampled. The 1 m x 1 m subplots differed in species composition and relative abundance while the 

within-subplot variability was small. Within each sub plot, fresh above ground biomass of each species 

were measured. The subplot biomass was then calculated using the composition and cover percentage of 

it’s species. Fifteen replicates of canopy spectral measurements were taken from each subplot, using a 

GER 3700 spectroradiometer (Geophysical and Environmental Research Corporation, Buffalo, New 

York). The wavelength range is 350 nm to 2500 nm, with a spectral sampling of 1.5 nm in the 350 nm to 

1050 nm range, 6.2 nm in the 1050 nm to 1900 nm range, and 9.5 nm in the 1900 nm to 2500 nm range. 

A moving Savitzky-Golay filter (Savitzky and Golay, 1964) with a frame size of 15 data points (2nd 

degree polynomial) was applied to the averaged reflectance spectra to further smooth the spectra. To 

remove spectral offset canopy reflectance was transformed to first derivative by calculating differences 

between adjacent spectra bands. 

 

Methods 

PLS and PC model Structure  

Partial Least Square and Principal Component are two suitable models when hyper-spectral data is 

available. The model structure for both methods has the form: 

𝑋 = 𝑇𝑃𝑡 + 𝐸 

𝑌 = 𝑇𝑄 + 𝐹 

 



Where X and Y are predictors and responses matrixes respectively, which are mean-centered by 

subtracting the mean of each variable from original measurements, P and Q are loading matrix that 

describe how the variables in T are related to original, and E and F are residuals.  

The main different between PC and PLS models is that PLS uses factors determined by employing both X 

and Y in estimation directly. For each PLS regression each component is obtained by maximizing the 

covariance between y and all possible linear functions of X. Selecting the number of factors for PCR and 

PLSR was based on percent variant explained in each factors. Cross-validation is a more statistically 

sound method for choosing the number of components in either PLSR or PCR. It avoids over fitting data 

by not reusing the same data to both fit a model and to estimate prediction error. Therefore visual 

inspection of cross-validated Mean Squared Prediction Error (MSPEcv) values versus the number of 

factor plots was applied as another indicator for choosing the optimal number of factors in both PCR and 

PLSR. 

 

Support Vector Machine 

 The idea of SVM have been developed by Vapnik (1995). Svms are known as learning machines that are 

based on statistical learning theory and  minimizing generalization error bound to achieve generalized 

performance. There are two main categories for support vector machines: support vector classification 

(SVC) and support vector regression (SVR). Regression version of SVM as the most common application 

form of SVM has been proposed by Vapnik, Steven Golowich, and Alex Smola in 1997 and is known as 

support vector regression(SVR).   

Least squares support vector machines (LS-SVM) is an alternative method of SVM introduced by 

Suykens et al. (2002). Ls-svm applied a set of linear equations instead of quadratic programming problem 

used in classical SVMs to simplify the optimization problem.  

LS-SVM equation can be indicated as following equation: 

 

 f(x) = ∑ (α − α∗)k(X, Xi) + b,    αi ≥ 0   , α∗N
i=1 ≤ γ 

 

Where α. And α∗ are the Lagrange multipliers, K(X,Xi) is the kernel function, b is the bias value and g is 

the regularization parameter, determining the trade-off between the fitting error minimization and 

smoothness of the estimated function. The cross-validation process was employed for finding suitable 

parameters values. LS-SVR calculations were performed using the MATLAB functions in the free 

LSSVM toolbox v1.7 

 

Results and discussion 

A key step in performing PCR and PLSR is selecting the optimal number of factors or latent variables. 

Figure (a & b) illustrated cumulative variance explained in reflectance matrix and cross validated MSPE 

of each factors for original reflectance (not shown for first derivative reflectance). It is clear from Figure  

(a) that first five PCs include more than 99.65 percent of variation of reflectance matrix, and in Figure b 

by adding the sixth PC the model error (MSPEcv) started to increasing that indicated the model by adding 

this factor was overfitted, so 5 factors recognized suitable for PCR. 

This figure also indicate that the first 8 PLS factors accounted for 90 percent of the variation in the 

reflectance matrix and Figure  (b) illustrates a rise in cross validated MSPE by adding new factors. It is 

clear that by adding the 9th factor there are an increase in prediction error of the PLS model. Therefore 

the model developed with the first eight PLS factor was found to perform the best performance.  

http://en.wikipedia.org/wiki/Linear_equation


  

Figure 1. Cumulative variance explained in reflectance matrix for PLS and PCR (a) and cross validated MSPE of 

each factors for original reflectance (b), used for selection of optimal number of factors or latent variables 

 

The statistics of PLSR and PCR performance is summarized in Table . The regression results revealed 

that the PLS model applying 8 factors yield better prediction of AGB compared to PCR. The PC model 

utilizing 5 principal component didn’t achieved reasonable prediction of AGB applying both reflectance 

matrices (R
2
original = 0.40 & R

2
 1th derivative =0.31). While performance of PLS models considerably was 

better than PC modes (R
2

original = 0.68 & R
2
 1th derivative =0.86). The prediction accuracy based on first 

derivative reflectance significantly was improved in PLSR compared to original reflectance while using 

the derivative reflectance had negative influence in PCR performance.  In terms of cross validated RMSE, 

the best model was PLSR using derivative reflectance with RMSECV=1.07 and PLSR original , PCR original 

and PCR derivative were in the  next orders with RMSECV= 1.67, 2.25 and 2.41 respectively.   

From the result of both models performance it is obviously clear that the type of data comparison 

techniques significantly influence the prediction accuracy of the models. The PLS technique by 

explaining variation in both predictor matrix (reflectance) and response vector (AGB measurements)  

showed better result compare to PC model that only summarize variation in predictor matrix. Error! 

Reference source not found. show the predicted AGB versus measured AGB applying PCR and PLSR 

models using the original and 1
st
 derivative reflectance. 

 

 

Table 1. Summary statistics of PLSR, PCR and LS-SVM performances 

Regression model Type of input R
2
cv RMSEcv Regression Parameters 

LS-SVM Original Wavelengths 0.66 1.70 gam=65.49   sig2=4084 

 1th derivative 0.88 1.15  

 5 PCs 0.71 1.57 gam=10.66   sig2=12.14 

PLSR Original Wavelengths 0.68 1.67 no. Of factor =8 

 1th derivative 0.86 1.07 no. Of factor=8 

PCR Original Wavelengths 0.40 2.25 no. Of factor =5 

 1th derivative 0.31 2.41 no. Of factor=5 

 

 

 



(a): PLSR (original reflectance) (b):PLSR(1th derivative reflectance) 

  
(c):PCR (Original reflectance) (d):LS-SVM (Original reflectance) 

  

(e): LS-SVM (1th derivative reflectance) (f): PC-LSSVM (first five factors) 

  

  

  
Figure 2. Measured and predicted Biomass using original and first derivative reflectance in PLSR, PCR, and LS-

SVM  



LS-SVM / PC-LSSVM performance for AGB prediction 

The LS_SVM regression was trained using different input data .first SL-SVM was derived using Original 

wavelengths and first derivative spectra.  As statistical regressions, using hyper-spectral wavelengths, 

often suffer from large dimension of input data, while numerous of them seem to be irrelevant, we applied 

5 first PC components derived from PC model to minimize the dimension of independent variable (545 

wavelengths) in LS_SVM and then PC -LSSVM have been used to predict the AGB and the performance 

was compared to other models used in the present study.  The criteria for selecting the first five PC factors 

were explained in pervious section and Figure . In each training the tuning gamma and sig2 was computed 

from cross validation process. Table  depicted a comparative analysis of the prediction accuracy obtained 

by different trained LS_SVM regressions. It is clear that data comparison technique in order to decrease 

the dimension of regression inputs was effective in model performance. Prediction of AGB versus 

measured are illustrated in figure 2 (e &f). From this figure it is clear that measured and prediction 

samples are distributed along 1 to 1 line especially for LS-SVM using derivative reflectance. As can be 

observed from Table  using spectral transformation techniques (especially derivative transformation) have 

improved the prediction of AGB compared to the result of LS-SVM model with original wavelength. 

Cross validated R
2
and RMSE for SL_SVM increased from 0.66 and 1.7 to 0.88 and 1.15 using the 1

st
 

derivative reflectance, respectively.  

 

Conclusions 

This study has applied several multivariate regression techniques to predict biomass in heterogeneous 

Mediterranean grasslands. Validation of the models was done by comparing differences in the coefficient 

of determination (R
2
) and relative root mean square error (RMSE) through cross-validation. In summary, 

multivariate calibration methods, such as partial least squares regression which previously had provided 

enhanced estimates of LAI and canopy chlorophyll content in heterogeneous grassland, at the field level, 

is shown to be important for remote sensing of grasslands. These multivariate methods demonstrated the 

ability to enhance estimates of different grass variables, and thus present new prospects for mapping and 

monitoring heterogeneous grass canopies from air- and space-borne platforms. 
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