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ABSTRACT  

 
Accurate Indoor 3D models could be a valuable asset for many applications such as building reconstruction, 

rescue operations, and Building Information Management (BIM). Through image processing, 3D models can be 

generated from high quality images captured by off-the-shelf digital cameras. To acquire redundant data and 

produce real scale models, a multi-camera system can be used. This paper presents a methodology for robust 

estimation of motion parameters of a multi-camera system. First, the interior orientation parameters and mounting 

parameters among the cameras are estimated through a single-step procedure using images covering a calibration 

test field. Then, synchronized images are taken at a given time interval while the system is moving through building 

corridors. In the next step, features are extracted and matched between all possible intra-epoch and inter-epoch 

image pairs. False matches across Epipolar lines are filtered out in two steps: a) using the known mounting 

parameters for the intra-epoch matches and b) while estimating inter-epoch Relative Orientation (RO) parameters. In 

the proposed methodology, the system rotation (R) and translation vector (r) between successive epochs are 

estimated through rotation and translation compatibility constraints that involve the mounting parameters among the 

individual cameras on board the system. Knowing the system motion parameters (R and r), outliers along and across 

Epipolar lines can be detected.  Preliminary results have shown that the system motion parameters are reliably 

estimated using the proposed methodology.  
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INTRODUCTION 

 
An accurate 3D model of indoor urban environments can be a valuable asset to cultural heritage documentation, 

generation of virtual environments, city planning, urban design, and fire & police planning (Chow, 2014). A 3D 

model will help us to find an appropriate path to or out of a building in case of emergencies, especially when vision 

is limited due to smoke or blockage in a part of building. Accurate 3D models facilitate metrology – e.g., area and 

volume computation, which are needed for reconstruction and maintenance purposes. Augmented reality, video 

games, robot navigation, and disaster management are some of the other applications in which indoor 3D models 

can play an important role.  

One of the major methods to generate accurate and textured 3D models is imagery. Compared to laser scanning, 

imaging sensors are more attainable and cost significantly lower. These days, a few hundred dollar digital camera is 

capable of taking high quality images at different conditions, which is suitable for accurate 3D modelling. However, 

extensive post processing is required to extract 3D information out of 2D images. By using multiple cameras, larger 

area of the scene is captured and redundant data is recorded, which improves efficiency of 3D reconstruction 

algorithms. In addition, true scale recovery of scene geometry is directly possible by taking the rigid inter-camera 

mounting parameters into account. The mounting parameters are the translation and rotation between a reference 

camera and the remaining ones, which are estimated together with the interior orientation parameters of the 

individual cameras through a multi-camera system calibration (Detchev et al., 2014). The system calibration should 

also address the synchronization of the different cameras especially when dealing with a dynamic scene or a moving 

multi-camera system.   

Estimation of system trajectory is the most important and challenging part of 3D reconstruction. The system 

trajectory is described by the Exterior Orientation Parameters (EOPs) of the reference camera throughout the data 



 

ASPRS 2015 Annual Conference 

Tampa, Florida ♦ May 4-8, 2015 

acquisition campaign. The EOPs of the remaining cameras are derived from those associated with the reference 

camera using the mounting parameters. The system trajectory can be optimized through a bundle adjustment that 

keeps the inter-camera relative orientation fixed.  

Various methods to estimate the trajectory of single/multi- camera systems have been studied for Simultaneous 

Localization And Mapping (SLAM), Visual Odometry, and Structure from Motion (SfM). A simple method to 

reconstruct the trajectory is 2D to 2D correspondence. In this method, a new image in a given sequence is oriented 

relative to the previous image by correspondent image points and rescaled using common points within the existing 

model. Other approaches to estimate the system trajectory, which is based on 2D/3D correspondences, are reviewed 

in Scaramuzza and Fraundorfer (2011). While the trajectory is being reconstructed, a local bundle adjustment can be 

used to optimize the EOPs and 3D points, which is called a sliding-window-based bundle adjustment (Fraundorfer et 

al., 2010). 

One way to robustly estimate the system motion is to incorporate all the possible relative orientations – which 

are up to a scale – to find the absolute orientation. Govindu ( 2001, 2004, 2006) published series of papers for robust 

motion estimation from a set of pair-wise relative orientation parameters. For a sequence of N images, at most N (N-

1)/2 relative rotation matrices 𝑅𝑖
𝑗
 between image pairs (i, j) can be computed. The absolute rotation of every image i 

relative to the world coordinate system (𝑅𝑖
𝑤) can be robustly estimated while considering the compatibility 

constraint 𝑅𝑗
𝑤𝑅𝑖

𝑗
= 𝑅𝑖

𝑤. This problem is also called multiple rotation averaging, which is reviewed in Hartley et al. 

(2013) 

In this research, a methodology is developed to robustly estimate the rotation and true scale translation of the 

reference camera, using the rigid inter-camera mounting parameters and the pair-wise relative orientation of the 

cameras between successive epochs. Knowing the reference camera motion, the EOPs of all the cameras at any 

epoch can be computed. The rest of paper describes the proposed methodology and the experimental result using a 

real dataset. 

 

PROPOSED METHODOLOGY 
 

Figure 1 shows reference and slave cameras at two different epochs. As mentioned earlier, the system motion is 

defined by the rotation and translation of the reference camera 𝑐𝑟 from time 𝑡1 to 𝑡2, which are denoted by  𝑅𝑐𝑟(𝑡2)
𝑐𝑟(𝑡1) 

and 𝑟𝑐𝑟(𝑡2)
𝑐𝑟(𝑡1), respectively. The rigid rotation and translation between the reference camera (𝑐𝑟) and a slave camera 

(e.g., 𝑐𝑖) is defined by 𝑅𝑐𝑖

𝑐𝑟  and 𝑟𝑐𝑖
𝑐𝑟  (mounting parameters). Assuming the n mounted cameras have overlapping field 

of view, and the displacement between two successive epochs (𝑡1 and 𝑡2) is short, n
2
 sets of relative orientation 

parameters between the cameras can be estimated.  The possible pair-wise relative orientation parameters are 

depicted in Figure 1. 

 

 

 
Figure 1: Reference and slave cameras at two different epochs 𝑡1 and 𝑡2, and the possible sets of pair-wise 

relative orientation parameters 

 

To find the relative orientation between the cameras at different epochs, the Essential matrix is estimated by a 

RANSAC and 5-point algorithm (Li and Hartley, 2006), and decomposed to rotation and translation components. At 

this stage, outlier feature matches across the Epipolar lines are filtered out. Using the mounting parameters, all the 

pair-wise relative rotation matrices between the cameras at different epochs can be used to derive the relative 
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rotation matrix of the reference camera between epochs 𝑡1 and 𝑡2 – i.e., 𝑅𝑐𝑟(𝑡2)
𝑐𝑟(𝑡1). Therefore, n

2
 independent estimates 

of the rotation matrix 𝑅𝑐𝑟(𝑡2)
𝑐𝑟(𝑡1) are obtained. The estimates are then averaged to estimate the system rotation robustly. 

For the true scale translation of the reference camera (𝑟𝑐𝑟(𝑡2)
𝑐𝑟(𝑡1) ), a system of linear equations is formed using all the 

estimated translations between the camera pairs at different epochs. Knowing the system motion parameters, outlier 

matches along the Epipolar lines can be identified – which are not detectable by stereo Epipolar geometry. In the 

next two sections, the concept of rotation and translation estimation using the derived sets of relative orientation 

parameters are explained. 

Rotation Estimation 

In order to robustly estimate the rotation of the reference camera from 𝑡1 to 𝑡2, 𝑅𝑐𝑟(𝑡2)
𝑐𝑟(𝑡1), compatibility constraints 

between the estimated pair-wise rotation matrices are established. Significant overlap among the images between 

successive epochs, allow for the estimation of the relative orientation parameters between a reference/slave camera 

at time 𝑡1 and a slave/reference camera at time 𝑡2. Therefore, four types of rotation constraints between the cameras 

are possible – i.e., [𝑐𝑟(𝑡1), 𝑐𝑟(𝑡2)], [𝑐𝑟(𝑡1), 𝑐𝑗(𝑡2)], [𝑐𝑖(𝑡1), 𝑐𝑟(𝑡2)], [𝑐𝑖(𝑡1), 𝑐𝑗(𝑡2)], where i, j are slave camera 

indices. Each compatibility constraint yields to an estimate of the rotation matrix between 𝑐𝑟(𝑡1) and 𝑐𝑟(𝑡2) – i.e., 

𝑅𝑐𝑟(𝑡2)
𝑐𝑟(𝑡1).  

 In general, n
2
 estimates for the system rotation between two epochs (𝑅𝑐𝑟(𝑡2)

𝑐𝑟(𝑡1)) can be derived. The problem of 

averaging estimates of a rotation matrix is called single rotation averaging (Hartley et al., 2013). In this research, 

angle-axis representation of the rotation matrix is used for averaging. Each estimate of  𝑅𝑐𝑟(𝑡2)
𝑐𝑟(𝑡1) is decomposed to an 

angle of rotation 𝜃 around a unit axis 𝑣. Care must be taken that 2𝜋 − 𝜃 and −𝑣 also defines the same rotation, so 

the decomposition is not unique. In this work, the magnitude of 𝜃 is always small between successive epochs, so the 

decomposition with positive rotation angle is selected. However, some of the rotation estimates could be outlier due 

to weak estimation of relative orientation in poor textured areas or in case of short baseline. A rotation estimate is 

considered as outlier when the angle of rotation 𝜃 falls outside a given confidence interval. After removing the 

outliers, the inlier sets of angle-axis are averaged to robustly evaluate the rotation matrix 𝑅̅𝑐𝑟(𝑡2)
𝑐𝑟(𝑡1). 

 

Translation Estimation 

After computing the system rotation (𝑅̅𝑐𝑟(𝑡2)
𝑐𝑟(𝑡1)), the true scale translation of the reference camera between two 

successive epochs is estimated, which is denoted by 𝑟̅𝑐𝑟(𝑡2)
𝑐𝑟(𝑡1). Similar to the rotation estimation, four translation 

compatibility constraints can be established. Each compatibility constraint is a vector summation that involves the 

unknown translation vector 𝑟̅𝑐𝑟(𝑡2)
𝑐𝑟(𝑡1), and the estimated translation of the camera pairs between 𝑡1 and 𝑡2. Each 

translation compatibility constraint is a set of three equations in four unknowns – the three elements of translation 

𝑟̅𝑐𝑟(𝑡2)
𝑐𝑟(𝑡1) and a scale factor 𝜆 for the translation of the camera pairs between two epochs. Therefore, for n

2
 possible 

compatibility constraints, a system of linear equations is formed with 3n
2
 equations in n

2
+3 unknowns, which 

directly solves for the three elements of  𝑟̅𝑐𝑟(𝑡2)
𝑐𝑟(𝑡1) and the n

2 
scaling factors. 

 

EXPRIMENT AND RESULTS 
 

The data acquisition system consists of three cameras mounted on a cart and a laptop equipped with a software 

that controls the cameras and records synchronized images (Figure 2-a). The cameras are tightly fixed while being 

slightly tilted inward to increase the images overlap. The interior orientation and mounting parameters of the 

cameras are estimated through a one-step bundle adjustment procedure (Detchev et al., 2014), using images of the 

test field shown in Figure 2-b, which is specifically designed for multi-camera system calibration.   
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Figure 2: a) The multi-camera data acquisition system and b) calibration test field  

The multi-camera system was pushed through a corridor loop and 1656 images (3 cameras*552 epochs) were 

captured every 1.5 seconds. In this experiment, nine sets of relative orientation parameters could be estimated 

between each camera at one epoch and the three cameras at the next epoch. As mentioned earlier, the nine sets of 

relative orientation parameters are related to the reference camera (top camera) and averaged to robustly estimate the 

rotation of the reference camera between successive epochs (𝑅̅𝑐𝑟(𝑡2)
𝑐𝑟(𝑡1)). The translation of the reference camera 

between successive epochs (𝑟̅𝑐𝑟(𝑡2)
𝑐𝑟(𝑡1)) are then estimated by solving a system of linear equations. Knowing the robust 

motion parameters of the reference cameras between the successive epochs (𝑅̅𝑐𝑟(𝑡2)
𝑐𝑟(𝑡1), 𝑟̅𝑐𝑟(𝑡2)

𝑐𝑟(𝑡1)), the EOPs of all the 

images can be computed. Figure 3-a shows the estimated trajectory of the system using the proposed methodology. 

In this figure, the beginning of the trajectory loop is quite far from the end, which is due to accumulation of errors 

during the sequential estimation of the trajectory. This error accumulation is inevitable for such a long sequence, but 

could be minimized through a global bundle adjustment using all the images. Figure 3-b shows the optimized 

trajectory after global bundle adjustment. The proposed strategy can successfully reconstruct the approximate 

trajectory, to be optimized by global bundle adjustment.   

 

Figure 3: a) The estimated trajectory by the proposed method and b) optimized trajectory after bundle 

adjustment 

  

CONCLUSIONS AND FUTURE WORK 
 

In this paper, the concept of trajectory estimation for a multi-camera system using pair-wise relative orientation 

parameters was described. The constant inter-camera mounting parameters allows for relating the estimated pair-

wise relative orientation parameters to the reference camera, and robustly evaluate the system motion parameters. 

Knowing the system motion parameters will further allow for the removal of outliers and provide reliable 

approximations for a global bundle adjustment to estimate accurate trajectory.   

In poor textured areas or very small movement of the system (e.g., by rotating the multi-camera system around 

itself), the relative orientation parameters are weakly estimated. In this case, detection of bad estimates requires a 

more sophisticated algorithm, which will be the focus of our future work. In addition, other rotation averaging 

methods will be investigated and tested. 

 

 

(b) (a) 

(a) (b) 
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