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ABSTRACT 

 

The use of small unmanned aircraft systems (sUAS) to acquire very high resolution multispectral imagery has 

attracted growing attention recently; however, no feasible and convenient radiometric calibration method has been 

specifically developed for sUAS remote sensing. In this research we used a modified color infrared (CIR) digital 

single-lens reflex (DSLR) camera as the sensor and the DJI S800 hexacopter sUAS as the platform to collect 

imagery. Results show that the relationship between image raw digital numbers (DNs) and the natural logarithm of 

measured surface reflectance is linear and the y-intercept of the linear equation can be interpreted as the minimal 

surface reflectance that can be detected by each sensor waveband. The empirical line calibration equation for every 

single band image can be built using the y-intercept as one data point, and the natural log-transformed measured 

reflectance and image DNs of a gray calibration target as another point in the coordinate system. Image raw DNs are 

therefore converted to reflectance using the calibration equation. The Mann-Whitney U test results suggest that the 

difference between the measured and predicted reflectance values of thirteen tallgrass sampling quadrats is not 

statistically significant. The method theory developed in this study can be effectively employed for other sUAS-

based remote sensing applications. 

 

KEYWORDS: small unmanned aircraft systems, very high resolution, radiometric calibration, empirical line. 

 

 

INTRODUCTION 

 

    Recently, growing attention has been given to the use of small unmanned aircraft systems (sUAS) as a viable 

alternative to conventional satellite and airborne platforms for acquiring very high spatial resolution multispectral 

imagery (Bland et al., 2004; Everaerts, 2008; Nebiker et al., 2008). Civilian and scientific applications of sUAS-

base remote sensing technology have been mostly found in commercial aerial surveillance (Beard et al., 2006), 

forest fire detection (Merino et al., 2011), oil, gas and mineral exploration and production (Barnard, 2010), marine 

management (Veenstra and Churnside, 2012), meteorological research (Martin et al., 2011), and cropland and 

rangeland management (Wang et al., 2014; Hunt et al., 2010). One advantage of using a sUAS platform is the 

derivation of very high spatial resolution imagery yielding pixels from less than one millimeter to a few centimeters 

in size that can provide very detailed photogrammetric information of the surface. Another advantage is that a sUAS 

can be flown whenever weather conditional is favorable thus providing very high temporal resolution imagery for 
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the target area of interest. In addition, sUAS offers advantage in safety, particularly when dealing with land surveys 

in very difficult terrain. 

Remotely sensed imagery may contain noise or error from the sensor system or the environment. Radiometric 

calibration is therefore a prerequisite in digital image processing, especially when imagery is acquired for 

biophysical analysis, change detection across date, and comparison across sensor. 

Radiometric calibration for digital photogrammetric systems using very large test field has been studied 

(Honkavaara et al., 2010). This method is applicable to calibrate image sensors, large-scale high resolution satellite 

imagery and airborne imagery collected by a pilot navigated aircraft at very high altitudes. Since sUAS flight 

altitude is much lower and the image dimension is much smaller, this method is not feasible to calibrate sUAS 

imagery. 

    The use of empirical line method to calibrate remotely sensed data to surface reflectance is one of the most widely 

used methods for airborne imagery as it is straightforward and effective to be implemented (Smith and Milton, 

1999). Most researchers used two calibration targets of different gray levels and developed a workflow to calibrate 

the imagery (Kruse et al., 1990; Ben-Dor et al., 1994; Van der Meer, 1994; Dwyer et al., 1995; Ferrier and Wadge, 

1996; Laliberte et al., 2011). Some used four targets to improve the calibration accuracy (Farrand et al., 1994; Price 

et al., 1995). No matter how many targets were used in those studies, they all assumed the relationship between 

surface reflectance and at-sensor radiance is linear. Therefore, the light and dark colored calibration targets were 

used to build linear calibration equations to convert at-sensor radiance to estimated surface reflectance for each 

sensor waveband. This calibration method may be acceptable for other studies, but many problems have been. One 

common issue is that at-sensor radiance data are not readily available for all the airborne images. Some studies used 

image raw digital numbers (DNs) instead of at-sensor radiance to build calibration equations (Leliberte et al., 2011), 

despite the fact that the relationship between surface reflectance and image raw DNs is not always linear (Stow et al., 

1996). Commercial digital cameras have become widely used in land survey and photogrammetric analysis because 

they are cost-effective and easier to operate; however, most digital cameras have built-in algorithms that use a 

curvilinear function to transform electromagnetic radiation (EMR) to digital signals as the way human eyes perceive 

grayness. The purpose is to take nice-looking pictures, but not scientific data for research. Therefore, the 

relationship between surface reflectance and image raw DNs remains unknown for these cameras. 

Due to the technical limitations of all the calibration methods aforementioned, a feasible and convenient 

radiometric calibration method needs to be specifically developed for the imagery collected by commercial digital 

cameras using sUAS. The first objective of this research is to discover the relationship between measured surface 

reflectance and image raw DNs. The second objective is to develop a systematic radiometric calibration method for 

sUAS remote sensing based on the analysis results from the first procedure. The third objective is to validate the 

effectiveness of this newly developed calibration method. 

 

MATERIALS AND PROCEDURES 

Sensor 

The sensor used throughout this research is the Canon EOS Rebel T4i digital single-lens reflex (DSLR) camera 

with a Canon L-series 24-mm lens. This camera was modified by LDP LLC (http://www.maxmax.com) to collect 

color infrared (CIR) digital imagery in the green, red and near-infrared (NIR) portions of the spectrum. Detailed 

camera specifications and spectral waveband information are summarized in Table 1. 

 

 

Table 1. Specifications of the modified Canon EOS Rebel T4i digital camera. 

 

Sensor type 
Effective pixels 

(megapixels) 

Pixel unit 

(μm2) 

Full width at half 

maximum (FWHM) (nm) 

Peak wavelength 

(nm) 

CMOS 18.0 4.3 

Green: 530-590 

Red: 590- 680 

NIR: 807-867 

Green: 552 

Red: 638 

NIR: 833 

 

 

Gray Gradient Calibration Panel 

A gray gradient calibration panel will be used to study the relationship between surface reflectance and image raw 

DNs. We have tested more than 10 different materials readily available in the market that are cost-efficient and easy 

to transport, and finally found the Masonite hardboard with a rough surface has the optimal radiometric property that 

meets our need. A calibration panel was made using one whole 244 cm × 61 cm × 0.32 cm (96" × 24" × 1/8", L × W 
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× H) Masonite hardboard and was painted at least 0.5 mm thick using a gray gradient of 9 different levels from 5% 

to 90%. 

We tested the radiometric property of the Masonite hardboard surface for all the gray levels in a clear sunny day at 

around solar noon using the Analytical Spectral Devices, Inc. (ASD) FieldSpec 3 spectroradiometer to take spectral 

measurements at a fixed altitude from 10 different viewing angles 360 degrees around. Reflectance values are 

calculated for the wavelengths between 500 nm and 900 nm that cover the spectral region of the three camera 

wavebands. To give an example, the reflectance curves captured from all the 10 viewing angles for the 30% gray 

level are shown in Figure 1. A one-way analysis of variance (ANOVA) is used to test the null hypothesis (H0) that 

all the 10 reflectance means are the same. The test result shows a calculated F-statistic value of 1.62 (p > 0.05) 

(Table 2), suggesting that we fail to reject H0. The same test result is also obtained for all the other gray levels. It 

indicates the Masonite hardboard surface is highly Lambertian. Hence, it can be considered as a suitable material for 

the radiometric calibration target for this research. 

The mean reflectance curves for all the gray levels are shown in Figure 2. It demonstrates that reflectance value 

decreases as percent gray value increases. The mean reflectance value of each gray level for the spectral region of 

each camera wavebands was plotted against the percent gray value (Figure 3), and an exponential relationship was 

found between these two variables (Table 3). These regression models can be used to estimate the mean reflectance 

of a given percent gray value. 

 

 

 
 

Figure 1. Reflectance curves of the Masonite hardboard painted with 30% gray level captured from 10 different 

viewing angles. The dark black line indicates the mean reflectance curve. 

 

 

Table 2. One-way ANOVA test for reflectance values of 30% gray level. 

 

Source 
Sum of 

squares 

Degrees of 

freedom 

Mean sum 

of squares 
F-statistic 

Critical 

F-value 

(α = 0.05) 

p-value 

Between groups 0.021580 9 0.002398 

1.62 1.88 0.1057 Within groups 7.414008 5000 0.001483 

Total 7.435588 5009 - 
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Figure 2. Mean reflectance curves for all gray levels. 

 

 

 

 
 

Figure 3. The relationship between percent gray value and their corresponding mean reflectance at the spectral 

region of each sensor wavebands. 
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Table 3. Regression analysis between percent gray values and mean reflectance values. 

 

Camera waveband Regression equation Goodness-of-fit (r2) 

Green 𝑦 = 0.676exp(−2.081𝑥) 0.992 (p<0.01) 

Red 𝑦 = 0.637exp(−2.101𝑥) 0.995 (p<0.01) 

NIR 𝑦 = 0.544exp(−2.044𝑥) 0.999 (p<0.01) 
* Note: x represents the percent gray value and y represents mean reflectance. 

 

 

sUAS Platform and Image Acquisition 

    The sUAS used to carry the camera is the "Spreading Wings" S800 hexacopter made by DJI Innovations (Figure 

4). This sUAS is well adapted for flying slow over fixed locations at low altitudes. It can lift a payload of 2.5 kg for 

an overflight of around 15 minutes under a calm weather condition. 

    The camera was installed on the hexacopter gimbal system to collect imagery in the Canon raw digital format 

(*.cr2) for the gray gradient calibration panel at an altitude of 10 m above the ground at around solar noon. Images 

were collected from 9 different viewing angles 360 degrees around the panel (including Nadir). One sample CIR 

image is shown in Figure 5. 

All the CIR images were converted into 8-bit Tagged Image File Format (TIFF) format using Digital Photo 

Professional (DPP) software. The central pixels of the same gray level from images of all the viewing angles were 

extracted, and the mean DNs were calculated and then plotted against the mean reflectance values at wavelengths of 

each camera waveband. 

 

Interpretation and Manipulation of the Empirical Line Calibration Equations 

    Figure 6(a) shows scatter plots and regression models for all the three camera wavebands. The x-axis represents 

image raw DN and the y-axis is reflectance. It demonstrates that the relationship between image raw DN and surface 

reflectance for the modified Canon T4i digital camera is not linear but exponential (r2 > 0.99, p < 0.05). A natural 

logarithm transformation was performed on the mean reflectance values of each gray level to convert exponential 

equations into linear. Figure 6(b) shows a linear relationship between DN and the natural log-transformed 

reflectance values for each camera waveband. Let x equal 0 for all the linear equations in Figure 6(b), and the y-

intercept is 3.56 for the green band, 3.66 for the red band, and 3.79 for the NIR band. Convert the y-intercepts back 

to reflectance and we get 0.028, 0.026, and 0.023 for the green, red, and NIR band respectively. These values can be 

interpreted as the minimum reflectance from the surface that can be detected by each sensor waveband, which is the 

intrinsic property of this camera that does not vary as the external environmental conditions change. In other words, 

the y-intercept of each empirical line equation can be seen as a constant calibration parameter for each camera 

waveband. Reflectance of an object surface is an inherent physical property that does not change in a short time 

period, but image DNs of the object can change as external environment changes from time to time under the same 

camera settings. Consequently, the slope coefficient of an empirical line calibration equation will constantly change. 

It is therefore required to build one calibration equation for every single band image, but it’s not technically viable 

to use such a large gray gradient calibration panel for every fieldwork, especially when collecting data for a large 

geographic area. We have to simplify this calibration procedure in order to make it easier to be implemented in the 

field when a large number of images need to be collected. 

 

Simplification of the Radiometric Calibration Procedure 

    Since it has been proven that the relationship between image raw DNs and the natural log-transformed reflectance 

value is linear and the y-intercept of the calibration equation can be used as a constant calibration parameter for each 

waveband, we just need another data point in the coordinate system to construct a new calibration empirical line for 

every single band image. If that is the case, only one target of one gray level is required, which would make the 

calibration procedure significantly easier. More detailed steps are described as follows. 

    The first step is to construct several calibration targets using the Masonite board painted by the same gray level. 

The mean reflectance of the target at the wavelengths of each camera waveband can be estimated using regression 

equations in Table 3. 

    The second step is to collect imagery for these calibration targets and calculate their mean DNs from every single 

band image. These targets should be distributed in the field at an appropriate space interval according to the flying 

altitude of the sUAS and specifications of the camera being used so that to ensure at least one target will be shown 

in each image. 
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Figure 4. DJI S800 "Spreading Wings" hexacopter in its overflight carrying a modified Canon EOS Rebel T4i 

DSLR camera. 

 

 

 

 

 

Figure 5. A sample CIR image of the gray gradient calibration panel. The gray level is 5%, 20%, 30%, 40%, 50%, 

60%, 70%, 80%, and 90% respectively from the left to the right. The shadow cast on the ground is from the DJI 

S800 hexacopter sUAS. 
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(a) 

 
 

(b) 

 

Figure 6. (a) The relationship between image raw DN (x-axis) and mean reflectance of the gray gradient calibration 

panel (y-axis) for each sensor waveband. Each data point represents one gray level; (b) The relationship between 

image raw DN (x-axis) and natural log-transformed reflectance value (y-axis) of the gray gradient calibration panel 

for each sensor waveband. Each data point represents one gray level. 

 

    The final step is to build an empirical line calibration equation for every single band image, and then use the 

equation to convert pixel raw DNs to reflectance. The constant calibration parameter for each waveband is already 

known. We just need to create another data point using the mean DN of the calibration target as the x-coordinate 

value and the negative natural log-transformed mean reflectance of the target as the y-coordinate value. For 

illustration, the constant calibration parameter for the NIR band of the modified Canon T4i digital camera is 3.79 

(Point A). Suppose the mean DN of the calibration target extracted from the NIR band image is 150 and the negative 

natural log-transformed mean reflectance of the target is 1.45. Therefore, the second point in the coordinate system 
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will be (150, 1.45) (Point B). The slope m of the empirical line calibration equation can be calculated using the 

following equation: 

y y

x

B A
m

B


  

where Ay is the constant calibration parameter, Bx is the x value of Point B, and By is the y value of Point B. Given 

the values in the example above, the slope m is -0.0156. The calibration equation for the NIR band image is: 

ln( .) 0.0156 3.79refl DN      

This calibration equation will be applied to the entire NIR band image and convert image raw DNs into natural log-

transformed reflectance values. These values will then be converted back to reflectance by taking exponential term. 

The same process needs to be repeated for the green and red band images in order to implement the whole 

calibration procedure for every CIR image. 

 

METHOD VERIFICATION 

 

    This method was verified in the Tallgrass Prairie National Preserve in Chase County, Kansas, on August 21, 2013. 

In this verification process, we will compare the measured reflectance of tallgrass sampling quadrats with predicted 

reflectance calculated using this simplified empirical line calibration method described above. A non-parametric 

Mann-Whitney U test will be used to test the null hypothesis (H0) that there is no difference between the measured 

and predicted reflectance values of all the sampling quadrats. 

A total of 13 sampling frames made of PVC pipes were placed along a straight transact at an interval of 

approximate 5 meters. Four 0.6 m × 0.6 m (24" × 24") 50% gray calibration targets were distributed in the field next 

to sampling frames. The sUAS imagery of tallgrass sampling quadrats, together with calibration targets, were 

acquired at a fixed altitude of 20 m above the ground. 

Ten spectral measurements of each sampling quadrat were taken by the spectroradiometer from different viewing 

angles simultaneously when sUAS images were being acquired. The measured mean reflectance and the mean DNs 

of each sampling quadrat were both calculated. The mean reflectance of each target at the wavelengths of each 

sensor waveband was determined beforehand (Table 4). Calibration targets pixels were extracted from each single 

band image and their mean DNs were also calculated (Table 4). 

 

 

Table 4. Mean reflectance and mean DN of calibration targets at wavelengths of each sensor waveband. 

 

Band 
Target 1 Target 2 Target 3 Target 4 

Reflectance DN Reflectance DN Reflectance DN Reflectance DN 

Green 
0.248 

(1.39)* 
151 

0.243 

(1.41)* 
148 

0.251 

(1.38)* 
155 

0.246 

(1.40)* 
150 

Red 
0.229 

(1.47)* 
150 

0.227 

(1.48)* 
146 

0.230 

(1.47)* 
153 

0.226 

(1.49)* 
150 

NIR 
0.197 

(1.62)* 
112 

0.195 

(1.63)* 
110 

0.199 

(1.61)* 
114 

0.196 

(1.63)* 
111 

* Values in parentheses are negative natural log-transformed reflectance. 

 

 

    One empirical line calibration equation for every single band image was built using the constant calibration 

parameter as one data point, and the negative natural log-transformed mean reflectance of the calibration target (y-

coordinate value) and its mean DN (x-coordinate value) as another point. The mean DN of each sampling quadrat 

was then calculated and brought into the corresponding calibration equation to compute the predicted mean 

reflectance value. All the measured and predicted reflectance values of 13 sampling quadrats for all three bands are 

shown in Table 5. 

The Mann-Whitney U test is then performed to study if the difference between measured and predicted reflectance 

values is statistically significant. The smaller value of the two computed U statistics is tested against the critical 

value (Uc) at a significance level of 0.05, which is 45 for a sample size of 13 in a two-tailed test, and then 

accordingly accept or reject H0 based on its p-value. All the computed U statistics and the test results are presented 



9 

 

in Table 5. As the p-values suggest, none of the test results is significant at the 95% confidence level. We fail to 

reject H0 and therefore conclude that there is no statistically significant difference between the measured and 

predicted reflectance values for all the 13 sampling quadrats. It proves that this simplified empirical line method is 

feasible for calibrating very high spatial resolution sUAS imagery in this study. 

 

 

Table 5. The Mann-Whitney U test between measured and predicted reflectance of thirteen sampling quadrats for 

each camera waveband. 
 

Quadrat 
Green band  Red band  NIR band 

Measured Predicted U1 U2  Measured Predicted U1 U2  Measured Predicted U1 U2 

1 0.079 0.073 

91.5 77.5 

 0.057 0.062 

88 81 

 0.361 0.352 

86 83 

2 0.067 0.071  0.052 0.057  0.378 0.366 

3 0.062 0.066  0.057 0.053  0.246 0.254 

4 0.070 0.067  0.058 0.055  0.323 0.336 

5 0.066 0.074  0.061 0.067  0.358 0.351 

6 0.058 0.064  0.048 0.052  0.282 0.290 

7 0.070 0.073  0.054 0.051  0.297 0.291 

8 0.090 0.086  0.052 0.056  0.457 0.468 

9 0.094 0.098  0.079 0.085  0.348 0.342 

10 0.073 0.075  0.066 0.072  0.261 0.257 

11 0.094 0.099  0.082 0.085  0.346 0.336 

12 0.067 0.065  0.060 0.056  0.223 0.228 

13 0.078 0.071  0.069 0.063  0.313 0.327 

 
Z-score -0.333ns  Z-score -0.154ns  Z-score -0.051ns 
p-value 0.741  p-value 0.881  p-value 0.960 

Note: The superscript ns implies that the difference between the measured and predicted reflectance value is not significant at the 95% confidence 

level. 

 

 

DISCUSSION 

 

    The empirical line method of radiometric calibration presented in this research is different from those mentioned 

before (Smith and Milton, 1999; Dwyer et al., 1995; Farrand et al., 1994; Stow et al., 1996), and we believe this 

method has been greatly simplified for sUAS-based remote sensing from three aspects. First, this is the first study 

that discovers the relationship between digital image signals collected by a modified commercial DSLR camera and 

surface reflectance. This type of sensor has been popularly used in sUAS-based remote sensing applications. Second, 

we have discovered that the relationship between image raw DN and surface reflectance for this particular sensor is 

not always linear, but exponential as suggested by this study. Third, we have developed a systematic and feasible 

method to build empirical line calibration equations by using only one gray calibration target, instead of two or more 

targets, which has dramatically simplified the procedure and reduced the workload in the field. 

It is necessary to notice that although our target surface is made of a material that is highly Lambertian, it still 

does not equally reflect incoming solar radiation of different wavelengths (Figures 1 & 2). It reflects more energy in 

the visible region than the NIR region of the spectrum. It therefore requires that one calibration equation has to be 

built for every single band image. Although it increases image processing workload, the calibration accuracy would 

be highly improved. 

Although we consider the reflectance of a calibration target does not change in a short time period, image DNs of 

a target do change as the weather, atmospheric condition or the Earth-Sun geometry changes. All these external 

environment factors may influence the slope coefficient of the empirical line calibration equation, but not the y-

intercept because the y-intercept value can be interpreted as the minimum amount of reflectance from the ground 

that can be detected by the sensor, which is an inherent property of the sensor. It is also worth noting that the 

empirical line calibration equations developed here are only for the specific sensor being used in this study. We have 

to admit that the calibration parameters do vary for different sensors. Therefore a calibration equation has to be built 

and the y-intercept calibration parameter has to be calculated for each sensor waveband using the gray gradient panel 

before data collection. Moreover, although we assume the y-intercept calibration parameter and the mean reflectance 

of a calibration target remain constant in a short time, in reality they do change in a long time period as the 

instrument and the paint coat are both subject to ageing and degradation. The target surface can also easily get 

scratched in the field that would damage its Lambertian property. We would therefore suggest to re-paint the target, 
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re-measure its mean reflectance, and re-determine the constant calibration parameter periodically using the gray 

gradient calibration panel. 

    It is also important to note that the mean reflectance of a gray calibration target being used should be greater than 

the maximum possible reflectance of target area of interest over the spectral region of each sensor waveband. The 

purpose is to improve prediction accuracy when all the points fall within the confident data range that has been 

established. This calibration method is therefore more effectively implemented for a land cover type that is relatively 

homogenous, such as grassland, cropland, and forest, because the maximum possible reflectance of ground objects 

can be more easily estimated. 

The size of a calibration target does matter because it has to be large enough to be seen in the image. It is 

suggested that the target should be at least several times larger than the sensor ground field-of-view (Smith and 

Milton, 1999). Since a sUAS can normally fly at different altitudes during one overflight, the sensor field-of-view is 

difficult to be determined at real time. Our field experience suggests that depending on the image spatial resolution, 

the side of the square calibration target has to be a least ten times larger than the maximum possible pixel size in 

order for the targets to be detected from the image. As described by the FAA rules, the legal upper limit flight 

altitude of a civil sUAS in the United States is 400 ft above the ground. The spatial resolution is about 2.2 cm for a 

Canon T4i image collected at that altitude, so we would recommend the side of a calibration target has to be at least 

22 cm. 

 

SUMMARY 

 

    sUAS has become a very popular platform to collect very high resolution remotely sensed imagery for many 

civilian and scientific applications. Although the sUAS flight altitude is much lower than satellites and piloted 

aircrafts, atmospheric absorption and scattering issues always exist. In order to perform biophysical analysis, change 

detection across date, or comparison across sensor using sUAS imagery, radiometric calibration is the foremost step 

of digital image processing. This research fills the gap through developing a systematic, feasible and convenient 

method to perform radiometric calibration for remotely sensed data collected by a modified ordinary digital camera 

using sUAS as the platform. 

    We have discovered that the relationship between image raw DN and natural log-transformed surface reflectance 

is linear. The y-intercept of the empirical line calibration equation can be interpreted as the minimum surface 

reflectance that a sensor can detect, which can be used as a constant calibration parameter that does not change as 

the external environmental conditions change in a short time period. Another data point in the calibration empirical 

line can be created using the mean DN of a gray calibration target as the x-coordinate and its negative natural log-

transformed mean reflectance as the y-coordinate value. One calibration equation has to be built for every single 

band image as the weather condition can constantly change during the overflight. The material used to construct the 

calibration target is the Masonite hardboard with a rough surface that has a highly Lambertian property. 

Unlike the radiometric calibration procedure of satellite imagery or the traditional empirical line technique, this 

method is novel in that it directly converts raw, unprocessed image data to surface reflectance values. The method 

theory developed in this study can be effectively employed for other sUAS-based remote sensing applications. 
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