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Abstract 
 
        3D modelling of objects can be achieved through either optical imagery or laser scanners. For optical imagery, 
advanced matching techniques can generate dense point clouds from multiple overlapping images. On the other hand, 
laser scanners can directly provide precise and reliable 3D point clouds along scanned objects. Derived point clouds 
from laser scanners and dense-matching techniques usually include excessive number of points. Processing (e.g., 
segmentation of planar and linear/cylindrical features) such huge number of points is computationally expensive and 
might not be necessary. For example, to segment planar regions, we can obtain reliable segmentation results while 
using fewer points in areas with dense point distribution. Therefore, down-sampling (i.e., thinning) the original point 
cloud is a good strategy to increase the efficiency of the data processing stage. However, inappropriate down-sampling 
might compromise the segmentation results.  
        This paper introduces an adaptive down-sampling procedure that only removes redundant points. More 
specifically, in areas with high point density, more points are removed while the majority of points will be maintained 
in areas with sparse points. The paper also presents segmentation results for original, randomly/uniformly down-
sampled, point-spacing-based down-sampled, and adaptively down-sampled point clouds while commenting on the 
computational performance and segmentation quality for these scenarios. The results demonstrate that the adaptive 
down-sampling represents the best balance between maintaining inherent details and speeding-up the segmentation 
process. 
 
Keywords: Adaptive Down-sampling, Point Density, Segmentation, Quality Control 
 

1. Introduction 
 
        Three dimensional modelling of our environment is important for many applications, such as digital building 
model generation, urban planning, as-built mapping of industrial sites, cultural heritage documentation, and change 
detection. The main tools for acquiring the necessary data for 3D object reconstruction and modeling are optical 
imagery and laser scanners.  Laser scanners can directly deliver precise point clouds along scanned objects with high 
density. Using optical imagery, one can also generate point clouds through the matching of conjugate features in 
overlapping images. The derived point clouds from either approach can then undergo processing techniques for 3D 
modeling of objects within the sensors’ field of view. 
        Based on the utilized platform, laser scanners can be categorized into airborne laser scanners (ALS), terrestrial 
laser scanners (TLS), and mobile terrestrial laser scanners (MTLS). ALS units are mainly used for the generation of 
digital elevation models (e.g., digital surface models – DSM – and digital terrain models - DM) as well as digital 
building models (DBM). Acquired point density from ALS, which is usually in the range of 1 to 40 pts/m2 (Hyyppä 
et al., 2009) is suitable for building roof extraction and DTM generation. For example, Habib et al. (2010) used ALS 
data with point density of roughly 1.5 pts/m2 for terrain and off-terrain classification of the point clouds as well as the 
extraction of roof patches. The roof boundaries are then refined with the help of imagery for accurate DBM 
reconstruction. Kraus and Pfeifer (2001) worked on eliminating off-terrain objects to generate high quality DTMs. 
Due to the nature of the data acquisition scenario, ALS data cannot provide the necessary details for the extraction of 
specific objects such as building facades, light poles, trees, and fences. Recent developments in laser scanning and 
geo-referencing technologies are allowing for the acquisition of point clouds with high point density from other 
platforms in a short time (e.g., MTLS and TLS systems). Such systems deliver point clouds that can be used of the 
extraction of objects that could not be derived from ALS data as well as indoor modeling. Valero et al. (2012) used 
TLS to generate indoor building models through a space-discretization segmenting procedure. Yang et al. (2012) used 
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MTLS to generate geo-referenced feature imagery for classifying and extracting building facades and trees through 
shape constrains. Based on the above discussion, one can see that current research and technological advances clearly 
demonstrate that LiDAR systems onboard different platforms can be used for the acquisition of point clouds for 
various 3D modeling applications.  
        Optical imagery, on the other hand, can generate 3D models and point clouds by matching conjugate features in 
overlapping images. Through feature-based matching, 3D points and linear features can be derived from imagery 
(Baillard et al., 1999). However, feature-based image matching is not capable of reconstructing a 3D model with high 
level of detail. In order to get more details, pixel-wise matching – dense-matching – techniques could be implemented. 
Haala (2013) has shown that dense matching and current software tools are capable of generating large scale landscape 
digital surface models from airborne imagery.  
Derived point clouds from TLS, MTLS, and image-based dense-matching techniques usually include excessive 
number of points. Processing (e.g., segmentation of planar and linear/cylindrical features) such huge dataset is quite 
time-consuming and might not be necessary. For example, to segment planar regions, we can obtain reliable 
segmentation while using fewer points in areas with dense point distribution. Therefore, available software tools for 
point cloud processing (e.g., “Cloudcompare” (2011)) have down-sampling functions to thin large datasets. The 
research community has been also working on developing alternative strategies for point cloud down-sampling. For 
example, Puttonen et al. (2013) proposed two methods for down-sampling point clouds according to the point-to-
scanner distance. However, none of the above techniques consider the point distribution along physical surfaces during 
the down-sampling process. For laser scanners, the point density depends on the distance between the scanner and the 
scanned objects. For image-based point clouds, on the other hand, the point density depends on the texture of visible 
surfaces (Mikolajczyk et al., 2005) and the extent of occluded areas.  
        An optimum down-sampling should consider the varying point density. In this paper, we introduce an adaptive 
down-sampling procedure (Al-Durgham et al. 2014) that only removes redundant points as defined by estimated and 
desired point density values. More specifically, more points are removed in areas with high point density while the 
majority of points in areas with less point density are maintained. Furthermore, we present segmentation results from 
the original, randomly/uniformly down-sampled, point-spacing-based down-sampled, and adaptive down-sampled 
point clouds while commenting on the computational performance and segmentation quality in these scenarios. The 
paper finally makes some conclusions and recommendations for future work. 
 

2. Scheme 
        
        In this section, we introduce the strategy for the adaptive down-sampling which will be applied prior to point 
cloud segmentation for the extraction of planar and linear/cylindrical features. Then, quality control measures are 
utilized for improving the segmentation results, which are finally evaluated to investigate the impact of different down-
sampling procedures. The flowchart for the down-sampling and point cloud segmentation is shown in Figure 1. 
 

 
Figure 1. Flowchart of the down-sampling, segmentation, and testing strategy 

 

2.1. Adaptive Down-sampling 
         
        For reducing the size of a given point cloud, random down-sampling is the most commonly used approach. Such 
an approach removes points using a specific down-sampling rate throughout the entire area. This strategy would lead 
to loss of details in low-density areas. Therefore, to avoid compromising post-processing activities while enhancing 
their execution time, an adaptive down-sampling should be used to keep points in low-density areas and remove 
redundant points in high-density areas. Therefore, the first step of the proposed strategy is to evaluate the point density 
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at the individual points as represented by their local neighborhoods. In this paper, we implemented the proposed 
methodology in Zahra and Habib (2013) for local point density estimation. Then, the introduced adaptive down-
sampling in Al-Durgham (2014) is carried out by specifying a desired point density while using the probability-based 
test in Equation 1. 
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Where, 
t is the desired point density in pts/m2, 
di is the local point density at the ith point local neighborhood in pts/m2, and 
r is a random number that is picked from a uniform distribution in the range [0, 1]. 
        According to Equation 1, in areas where the point density (di) is less than the desired point density (t), the test 
value (δ) will be larger than 1, which in turn will be larger than any randomly selected value (r) from a uniform 
distribution in the range [0, 1]. Therefore, those points will be maintained in the down-sampled dataset. Alternatively, 
in areas where the point density (di) is larger than the desired point density (t), the test value (δ) will be less than 1. In 
a given neighborhood with a high point density, the probability of picking random numbers that are less than or equal 
to the test value (δ) is (δ). Then, the probability of maintaining points in that neighborhood is (δ) and the probability 
of removing points in such neighborhood is (1 - δ) provided that we have enough samples in the neighborhood. An 
illustration of the adaptive down-sampling performance on a simulated circular point cloud with 4.0m radius is shown 
in Figure 2. The simulated point cloud has a maximum point density of 1200 pts/m2 at the center and the point density 
reduces as we move towards the perimeter of the circular point cloud. In this example, the desired density is set to 400 
pts/m2. According to Equation 1, in the central area of the circle, the test value (δ) will be 1/3. Therefore, the portability 
of picking random values (r) that are less than or equal to 1/3 is 1/3. Therefore, this approach will maintain 1/3 of the 
points in the central neighborhood while removing the remaining 2/3 provided that we have enough samples within 
such neighborhood. In summary, using such approach, we can derive more uniformly-distributed points in areas with 
high point density while keeping points in neighborhoods with low point density intact. 
 

 
(a)                                            (b) 

Figure 2. (a) The point density distribution before (a) and after (b) applying the adaptive down-sampling for a 
circular point cloud with 4.0m radius (Adapted from Al-Durgham, 2014) 

 

2.2 Planar and Linear Feature Segmentation  
        
         To evaluate the impact of the adaptive, random, and point-spacing-based down-sampling strategies on 
subsequent data processing activities, we implement a region-growing segmentation procedure that simultaneously 
extracts planar and linear features from the original and down-sampled point clouds. The segmentation procedure is 
carried out through the following steps: 
1. Randomly select a pre-specified percentage of the point cloud to act as seed points; 
2. A local neighborhood for each seed point (seed region) is established; 
3. For each of the seed regions, we perform a Principal Component Analysis (PCA) (Belton and Lichti, 2006) to judge 
whether the defined seed region belongs to planar, linear/cylindrical, or rough features; 
4. For the classified planar and linear/cylindrical seed regions, we perform a least-squares adjustment procedure to 
determine the parameters of the best fitting plane or line/cylinder through each of the seed regions; and  
5. Starting from the seed regions, we proceed with region growing using the estimated parameters for the enclosing 
feature. 
 

2.3 Segmentation Quality Control and Evaluation 
        To evaluate the impact of the different down-sampling procedures on the segmentation, we implement 
quantitative quality control measures that have been introduced by Lari and Habib (2014). These measures will 
quantify the following: 



ASPRS 2015 Annual Conference 
Tampa, Florida ♦ May 4-8, 2015 

 

1. The frequency of non-segmented points, which should have been incorporated in any of the segmented features, 
and 
2. The frequency of over-segmentation instances (i.e., instances where a single planar or linear/cylindrical surface 
have been segmented as two or more segments) in the segmentation results. 
For both datasets, fewer instances (i.e., lower frequency) indicate a better segmentation. In addition to the above 
segmentation quality control measures, we also investigate the execution time of the segmentation and quality-
control processes. 

3. Datasets Description 
 
        To comparatively evaluate the performance of the different down-sampling strategies, we use three sets of point 
clouds that are derived from TLS and imagery. Datasets 1 and 2 are collected from TLS (Leica HDS3000). The third 
dataset is generated from imagery captured by a UAV (Dji phantom 2) through dense matching. The specifications of 
the original datasets are shown in the Table 1. Table 2 shows perspective views of these datasets, where the assigned 
color is based on the height of the points. 
 

Table 1. Specifications of the real datasets for the experimental results 
 Dataset 1 Dataset 2 Dataset 3 
Number of points 2,765,436 785,243 230,434 
Max. Point Density (pts/m2) 562,239 24,071 1,264 
Min. Point Density (pts/m2) 0.002 0.002 0.092 
Mean point density (pts/m2) 6,808  1,996 109 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Perspective views of datasets 1 (a), 2 (b), and 3 (c) 
 

4. Experimental Results 
 
        In this section, we test the performance of three down-sampling strategies: 1) adaptive down-sampling; 2) random 
down-sampling; and 3) point-spacing-based down-sampling. The adaptive down-sampling is established using 
Equation 1 to have a pre-specified point-density value. Random down-sampling is applied using “Cloudcompare” to 
have a down-sampled dataset that has exactly the same number of points as the adaptively down-sampled dataset. For 
the point-spacing-based down-sampling, points are removed according to a set inter-point spacing, which corresponds 
to the pre-specified point density. The pre-specified desired point density and minimum distance for adaptive and 
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point-spacing-based down-sampling for datasets 1, 2, and 3 are shown in Table 2 while the point density statistics for 
the original and down-sampled datasets are shown in Table 3. 
        From Table 3, one can see that the minimum point density values for the adaptively down-sampled and original 
datasets are exactly the same. This means that points in areas with sparse point density have been maintained. However, 
for the randomly and point-spacing-based down-sampled datasets, the minimum point density have decreased. The 
reason for that is the random down-sampling does not consider point density during the removal process. Therefore, 
in sparse areas that might have few neighboring points (i.e., some points whose distance is less than the pre-set 
distance), those points will be removed. For the point-spacing-based down-sampling, only the distances between 
neighboring points are considered. When two points are closer than a pre-set distance, points are removed. In the 
sparse area, the neighboring points could be removed according to the pre-set distance. We should also note that the 
adaptive down-sampling is the only approach that achieved the closest mean point density to the desired one. For the 
random and point-spacing-based down-sampling approaches, we can see that these methods had point density values 
that are significantly different from the desired one (i.e., either too small or too large). 

 
Table 2. Down-sampling parameters for the adaptive and point-spacing-based approaches 

 Adaptive down-sampling 
Desired point density (pts/m2) 

Point-spacing-based down-sampling 
Min. spacing between points (m) 

Dataset 1 220 0.0674 
Dataset 2 200 0.0707 
Dataset 3 50 0.1414 

 
Table 3. Statistics for the point-density values for the original and down-sampled datasets 

 Original Adaptive 
down-sampling 

Random 
down-sampling 

Point-spacing-based 
down-sampling 

Dataset 1 
Number of Points 2,765,436 841,051 841,051 499,770 
Max. Point Density 
(pts/݉ଶ) 

562,239.317 1,071.759 308,826.804 454.679 

Min. Point Density 
(pts/݉ଶ) 

0.002 0.002 0.000 0.001 

Mean point density 
(pts/݉ଶ) 

6,807.726 178.526 2,000.476 108.672 

Dataset 2 
Number of Points 785,243 343,237 343,237 223,957 
Max. Point Density 
(pts/݉ଶ) 

24,071.217 946.743 19,103.060 386.271 

Min. Point Density 
(pts/݉ଶ) 

0.002 0.002 0.002 0.002 

Mean point density 
(pts/݉ଶ) 

1,995.906 151.371 947.618 90.557 

Dataset 3 
Number of Points 230,434 137,219 137,219 74,785 
Max. Point Density 
(pts/݉ଶ) 

1,264.293 188.815 849.833 53.950 

Min. Point Density 
(pts/݉ଶ) 

0.092 0.092 0.090 0.090 

Mean point density 
(pts/݉ଶ) 

108.988 43.310 66.195 22.126 

       
  We then applied the region-growing-based segmentation on the original and down-sampled datasets. The 
segmentation execution time for the different datasets is shown in Table 4. In spite of the fact that the adaptive and 
random down-sampling approaches have the same number of points, the execution time for the adaptive down-
sampled datasets is much better than that for random down-sampled point clouds. For the point-spacing-based down-
sampled datasets, the number of points are much smaller than the adaptively and randomly down-sampled datasets. 
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Therefore, the segmentation execution time for that data set is less when compared to the adaptively and randomly 
down-sampled point clouds. 
 

Table 4. Segmentation execution time for the different datasets 
 Time (hh:mm:ss) 
Dataset Original Dataset Adaptive down-

sampling dataset 
Random down-
sampling dataset 

Point-spacing-based 
down-sampling dataset 

1 01:10:46 00:11:30 00:17:51 00:05:17 
2 00:33:17 00:05:43 00:06:00 00:02:51 
3 00:03:31 00:01:33 00:01:41 00:00:50 

         
        The quality control procedure proposed by Lari and Habib (2014) is finally used to improve the quality of the 
segmentation results. The quality control measures are shown in Table 5. Due to space constraints, this paper will only 
investigate the qualitative aspects of the segmentation results. Quantitative measures will be thoroughly evaluated in 
future research publications. The segmentation results before and after the quality control are shown in Figures 4 to 
15. Closer investigation of such results illustrate the comparative impact of the different down-sampling procedures. 
More specifically, problematic areas are marked for demonstrating the impact of the different down-sampling 
approaches on the segmentation quality. For dataset1, we can see that there is information loss when working with the 
randomly and point-spacing-based down-sampled datasets. Especially in randomly down-sampled dataset, some of 
segments are missed and some over segmentation problems could not be refined through the quality control process. 
For the point-spacing-based down-sampled datasets, identified problems could be caused by the sparse points in low-
density areas and/or the region-growing process. 
         For the second dataset, we missed some segments in both the randomly and point-spacing-based down-sampled 
point clouds.  For dataset 3, since the density values are similar for the different down-sampled point clouds, the 
differences between the segmentation outcomes are minor. However, we still missed small segments in the randomly 
down-sampled dataset and both the randomly and point-spacing-based down-sampled datasets have incomplete 
segments. 

 
 

Table 5. Statistics of the quality control measures for the segmentation results from the different datasets 
Dataset Original Dataset Adaptively down-

sampled dataset 
Randomly down-
sampled dataset 

Point-spacing-based 
down-sampled 
dataset 

Dataset 1 
QC Non-
Segmented Points  

Time : 01:40:00 
 

Time : 00:13:36 
 

Time : 00:26:21 
 

Time : 00:10:26 
 

QC Over-
Segmentation 

Time : 06:57:59 
 

Time : 01:23:45 
 

Time :  01:12:47 
 

Time : 00:39:10 
 

Number of Planes 
after QC 

276 130 126 79 

Max. (pts/plane) 277,789 96,099 111,498 67,837 
Min. (pts/plane) 20 29 42 29 
Average 
(pts/plane) 

6,045.329 4,153.829 3,916.738 3,831.089 

Dataset 2 
QC Non-
Segmented Points  

Time : 00:23:57 
 

Time : 00:04:40 
 

Time : 00:06:12 
 

Time : 00:01:57 

QC Over-
Segmentation 

Time : 01:56:16 Time : 00:21:22 Time : 00:18:39 Time : 00:10:21 

Number of Planes 
after QC 

70 37 36 28 

Max. (pts/plane) 251,316 118,585 109,334 78,653 
Min. (pts/plane) 35 24 115 25 
Average 
(pts/plane) 

8,156.457 5,390.216 6,874.971 4,554.964 
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Dataset 3 
QC Non-
Segmented Points  

Time : 00:01:00 Time : 00:00:47 Time : 00:00:27 Time : 00:00:13 

QC Over-
Segmentation 

Time : 00:21:39 Time : 00:07:31 Time : 00:09:38 
 

Time : 00:10:21 
 

Number of Planes 
after QC 

33 18 22 22 

Max. (pts/plane) 165,285 96,525 98,160 52,497 
Min. (pts/plane) 20 65 47 34 
Average 
(pts/plane) 

6,511.273 5,107.583 5,759.045 3,009.227 

 
(a) 

 
(b) 

Figure 4. Dataset1: Original Dataset – Planar segments (a) before and (b) after Quality Control 
 

 
(a) 

 
(b) 

Figure 5. Dataset1: Adaptively down-sampled dataset – Planar segments (a) before and (b) after Quality Control 

 
(a) 

 
(b) 

Figure 6. Dataset1: Randomly down-sampled dataset – Planar segments (a) before and (b) after Quality Control 

Incorrect  Missing 
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(a) 

 
(b) 

Figure 7. Dataset1: Point-spacing-based down-sampled dataset – Planar segments (a) before and (b) after Quality 
Control 

 
(a) 

 
(b) 

Figure 8. Dataset2: Original Dataset – Planar segments (a) before and (b) after Quality Control 

 
(a) 

 
(b) 

Figure 9. Dataset2: Adaptively down-sampled dataset – Planar segments (a) before and (b) after Quality Control 

Incomplete  Incorrect  
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(a)  

 
(b) 

Figure 10. Dataset2: Randomly down-sampled dataset – Planar segments (a) before and (b) after Quality Control 

 
(a) 

 
(b) 

Figure 11. Dataset2: Point-spacing-based down-sampled dataset – Planar segments (a) before and (b) after Quality 
Control 

                         
(a)                                                          (b) 

Figure 12. Dataset3: Original Dataset – Planar segments (a) before and (b) after Quality Control 

                                       
(a)                                                                             (b) 

Figure 13. Dataset3: Adaptively Down-sampled dataset – Planar segments (a) before and (b) after Quality Control 

Missing  Missing  

Missing  

Incomplete  
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                                               (a)                                                                              (b)          
Figure 14. Dataset3: Randomly down-sampled dataset – Planar segments (a) before and (b) after Quality Control 
 

                                          
                                               (a)                                                                              (b)          
Figure 15. Dataset2: Point-spacing-based down-sampled dataset – Planar segments (a) before and (b) after Quality 
Control 
 

5. Conclusions and Recommendations for Future Work 
        
        In this paper, we introduced an adaptive down-sampling strategy while comparing its performance through point 
density and segmentation results for three down-sampled datasets. More specifically, the segmentation of the original, 
adaptively down-sampled, randomly down-sampled, and point-spacing-based down-sampled point clouds are 
qualitatively and quantitatively evaluated. Through point density analysis, we demonstrated that compared with other 
methods, the adaptive down-sampling provides the closest mean point density to the desired one. Moreover, it keeps 
the points in sparse neighborhoods intact. The adaptive down-sampling also helped in speeding up the segmentation 
process when compared with a randomly down-sampled dataset that has the same number of points.  We also evaluated 
the segmentation results after its quality control. It has been shown that some segments could be lost in the randomly 
and point-spacing-based down-sampled datasets. On the other hand, the adaptively down-sampling dataset maintained 
the major details in the different datasets. 
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