
WATER SURFACE ELEVATION CALCULATION USING LIDAR DATA 
  

 
1George J. Toscano*,  
1Partha P. Acharjee, 
2Collin McCormick,  
1Venkat Devarajan, 

1Dept. of Electrical Engineering, University of Texas at Arlington, Texas, USA,  
2Natural Resources Conservation Service, Fort Worth, Texas, 76115 

george.toscano@mavs.uta.edu,  
partha.acharjee@mavs.uta.edu,  

collin.mccormick@ftw.usda.gov, 
venkat@uta.edu 

 
 

ABSTRACT: 
 
The spectral reflectance of water is very small in near infra-red range. Specular reflection from water surface occurs 
due to the smooth surface of water body. For these two reasons, high LiDAR data dropout rate is often observed 
from water bodies. Though DEMs or TINs created using LiDAR data have very good vertical accuracy, if any water 
body is present, those LiDAR deliverables sometimes become erroneous. If LiDAR data dropout rate is very high, 
the DEM or TIN generation system often interpolates the elevation obtained from the land edge of the water body. If 
the interpolated data is taken from land edge of the water body, water surface will no longer look flat. Therefore, in 
the DEMs and TINs, the presence of the water body boundary will not be well defined. In our previous paper on 
hydro break line generation, our proposed method required the accurate calculation of the surface elevation of water 
bodies, which could be problematic. In this paper, a solution to this problem is proposed and validated, which does 
not require pre-calculated break lines. 
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1. INTRODUCTION 

Hydro-flattening involves the process of levelling the water surface or giving a single elevation value to the 
water surface in case of still water body. In the case of streams and rivers, water surface must be levelled from bank 
to bank. In this paper, only still water bodies such as lakes and ponds are considered.  

Though extensive research has been performed on detecting water bodies (Antonarakis et al., 2008; Brzank et 
al., 2008; Höfle et al., 2009, Smeeckaert et al. 2013, Toscano et al. 2014), no significant research is found in the 
literature on water surface elevation calculation. For example, Antonarakis et al. (2008) classified not only water but 
also gravel, bare earth and different types of forest. Brzank et al. (2008) classified water in Wadden sea area, based 
on supervised fuzzy classification using feature height, intensity and 2D point density. Höfle et al., (2009) modelled 
LiDAR data dropouts and used seeded region-growing segmentation to detect potential water regions.  

Without enforcing hydro-breaklines, if a TIN is generated, the normal interpolation process might take data 
from the land edge of water body and create unrealistic TIN surfaces. An example is shown in figure 1 and 2. In 
figure 1, a point cloud is shown for a chosen area in the state of Oklahoma, USA. In figure 2, a TIN surface for the 
same area containing four water bodies (numbered 1 to 4) are shown. In this figure, large triangles are obtained on 
the water bodies due to LiDAR data voids (visible in zoomed-in mode). High data dropout rate or LiDAR data voids 
occur for the following two reasons: 

  
a) very small spectral reflectance of water in near infra-red range and  
b) issues with specular reflection from water surface.  

 
        Specular reflection or mirror like reflection from water surface occurs due to the smooth surface of a water 
body, resulting in very high intensity return if the deflection angle is small and, no return if the deflection angle is 
high. The surface elevation calculation becomes complex because of this high data dropout rate from a water 
surface.  
        This paper assumes the approximate location of water bodies based on the algorithm described in our previous 
paper (Toscano et al. 2014). It further improves upon our previous paper on hydro break line generation in two 
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ways: a) a significantly better approach to water body elevation calculation is presented and, b) the use of hard 
coded numbers in our previous algorithms is significantly reduced. Hence, the method is more robust and applicable 
to more geographic locations.  
 
 

 

 
Figure 1: LiDAR point cloud for an area in the state of Oklahoma, USA. 

 

 
Figure 2: TIN of the test area in Oklahoma 

 
 

 
2. OVERVIEW OF OUR METHOD 

In order to calculate the surface elevation of a water body by the method proposed in this paper, the area is first 
rasterized and then its elevation histogram is generated. The surface of a water body has the same nominal elevation. 
So, if a histogram is created based on elevation, a sharp peak should be obtained at the corresponding water surface 
elevation. However, sometimes a very small number of LiDAR returns is obtained from water bodies (example: test 
area water body 2, 3 and 4) and in those cases, a sharp peak might not be obtained in the elevation histogram. To 
solve this problem, a method is proposed to modify the histogram.  

Along with a sharp peak for a water body, many peaks are created which do not represent any water body. To 
remove those false peaks from the histogram, a Gaussian filter is designed using water surface elevation distribution. 
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After Gaussian filtering, a spline interpolation is used to determine the peak location and from that surface 
elevation of the water body is determined. The block diagram of the proposed method is shown in figure 3. 

 
 

 
 

Figure 3: Block diagram of the proposed method 
 
 

3. DETAILED DESCRIPTION OF OUR METHOD  

In this section, our proposed method is described step by step for a test area. For better representation of an 
elevation histogram all the elevation values are given from a reference elevation of 369.18 meters (the lowest 
elevation of all the LiDAR returns in the .las file of the test area) in this paper. 

 
 
3.1 Creating 2m Elevation Raster 

LiDAR elevation data is rasterized at the very beginning. The area is divided into 2m x 2m square grid. Now to 
create a 2m elevation raster, in each 2m x 2m square, all the single returns and, all the last returns (in case of 
multiple returns) are stored. Thereafter, the median elevation value of those LiDAR returns are calculated and 
assigned as the elevation of each 2m x 2m square. Interpolation methods such as the inverse distance weighted 
method, kriging etc., are generally used for DEM generation. However, for our algorithm, the median elevation 
value is taken to avoid some high elevation last returns which might not be from the ground. Zero elevation and zero 
intensity values are assigned to squares, from which no LiDAR return is recorded. The median elevation raster for 
the test area is shown in figure 3.  

 
 

Figure 3. 2m median Elevation Raster 
 
3.2 Creating elevation histogram  

In this step, the elevation histogram is created from the elevation raster. For each of the water bodies, a 
rectangular elevation raster containing a water body is chosen and, an elevation histogram is generated from it. In 
figure 4 and 5, rectangular elevation raster for water body 1 and its corresponding elevation histogram are shown.  
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It is found that on the one hand, a smaller bin size for the histogram unnecessarily increases the complexity of 
the overall algorithm and, on the other hand a larger bin size lacks precision in water body detection. The bin size 
for the elevation raster is chosen to be one inch as a reasonable compromise.  

From the surface of the water body 1, a large number of LiDAR returns are obtained. Since water surface is 
nominally flat, many LiDAR returns must come from the same elevation, creating a peak at that elevation. 
Therefore, the highest peak of the histogram in figure 5 represents the surface elevation of the water body. The 
highest peak is found at 608 inches elevation from the reference elevation of 369.18 meters.  

 

 
Figure 4: Elevation raster for water body 1. 

 
 

 
Figure 5. Elevation histogram for water body1. 

 
      For water body 2, the elevation histogram is shown in figure 6. The highest peak in the histogram is found at 

elevation of 768 inches. However, a manual approach to determine the water surface elevation found it to be 
approximately 602 inches. This discrepancy is caused by the high LiDAR data dropout rate from within the water 
body causing a large data void in it, which results in a very small peak at actual water surface elevation. In the next 
section, a method is discussed to solve this large data void problem by creating a modified elevation histogram. 
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Figure 6. Elevation histogram for water body 2. 

 
 

3.3 Creating and applying modified elevation histograms 

It is clear that the peak corresponding to water body 2 is smaller because the void pixels failed to contribute to 
the peak. The peak is reduced in size roughly by a factor of v/n where v is the void data size and n is actual pixels 
from the water body (scattered pixels) that contributed to the histogram. Based on this logic, a modified histogram is 
calculated as follows.  

 
1. Large data voids are identified using connected component analysis.  
2. Let the number of scattered pixels inside a large data void be n. It should be noted that pixels in large 

clusters might represent an island inside the water body and will not be scattered.  
3. Let the distribution of LiDAR data return from such pixels be hn(x).  
4. Let the data void size be v 
5. Let the unmodified histogram containing the actual water surface returns be hu(x).  
6. A modified elevation histogram hv(x) can then be expressed as:  
 

hv(x) =  hu(x) + (v/n)*hn(x) …   …   … (1) 
 

Application of this equation has the effect of accentuating the impact of the waterbody in the overall histogram. 
 

Analysis shows four large data voids can be identified (per step1 above) for water body 1 and, one large data 
void each is obtained for water body 2, 3 and 4. Next the number of scattered pixels within each void was identified 
per step 2 above. The total number of pixels in the elevation histogram was also calculated in each water body. For 
all the water bodies the data void size (v) and the number of scattered pixels (n) inside the voids is shown in table 1. 
All of this information is used together with equation 1 above to modify the original histograms to obtain the 
modified histograms.  

 
Modified histograms for water body 1 and 2 are shown in figure 7 and 8 respectively. It can be seen that for 

water body 1 the elevation peak at 608 inches is shifted by 2 inches to 606 inches and for water body 2 the highest 
peak is now obtained at 602 inches elevation from the previous 765 inches elevation. 
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Table 1: Size of data voids inside water body and number of scattered pixels inside the void 
 

Water body Total number of pixels in 
the elevation histogram 

hu(x) 

Size of data voids in 
pixels (v) 

Number of scattered 
pixels inside data void (n) 

1 (top left) 
 

139420 270 130 

3455 84 

645 72 

7001 317 

2 (top right) 89369 55131 3804 

3 (bottom left) 35946 13335 372 

4 (bottom right) 20472 7688 1343 

 
 
 
 

 
Figure 7: Modified elevation histogram for water body 1 
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Figure 8: Modified elevation histogram for water body 2 

 
 

 
3.4 Low pass filtering the modified elevation histogram: 

After modifying the elevation histogram, it is low pass filtered to remove spurious peaks and to more precisely 
determine the water surface elevation. The correlation between two random variables X and Y is maximized if their 
density functions have similar shapes. This logic motivates us to calculate water surface elevation histogram from 
some test area containing a water body and use that histogram to design a Gaussian filter. Now if elevation 
histogram of an area is correlated with the Gaussian filter, only the peaks due to water surface will be significantly 
amplified compared with other spurious peaks.  A one dimensional Gaussian filter is used as the low pass filter. The 
impulse response of the Gaussian filter is given in equation (2) 

 

𝑔𝑔(𝑥𝑥) =  1
√2𝜋𝜋.𝜎𝜎

𝑒𝑒−
𝑥𝑥2

2𝜎𝜎2 …   …   …   (2) 
 
 

        The parameters of this filter are determined by statistical analysis of several water body returns. The standard 
deviation of the Gaussian filter is calculated from three selected 200m*200m areas from three different water 
bodies. One of the water bodies and the selected area are shown in figure 9. The standard deviation of the elevation 
in this area is found to be 1.6721 inches. Similarly, for two more water bodies, the standard deviation of water 
surface elevation is calculated and found to be 1.9233 inches and 1.3482 inches. So the overall standard deviation is  
 

𝜎𝜎 =  ��
𝜎𝜎12 + 𝜎𝜎22 + 𝜎𝜎32

3
� 

            = 1.6646 inches 
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Figure 9. 200m*200m area selected for water surface elevation standard deviation calculation 

 
        The kernel length required for the FIR Gaussian filter is �6𝜎𝜎 –  1� or 9. The coefficients for the Gaussian filter 
are determined to be [0.0134, 0.0472, 0.1164, 0.2001, 0.2397, 0.2001, 0.1164, 0.0472, 0.0134] using equation (2). 
After convolving with the Gaussian filter, resultant histograms for water body 1, 2, 3 and 4 are shown in figure 10, 
11, 12 and 13 respectively.   
      
 

 
Figure 10: Filtered, modified elevation histogram for water body 1 
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Figure 11: Filtered, modified histogram for water body 2 

 
 

 
Figure 12: Filtered, modified histogram for water body 3 
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Figure 13: Filtered, modified histogram for water body 4 

 
 

3.5 Cubic Spline Interpolation of the modified and low pass filtered histogram data points: 

After smoothing the histogram using the Gaussian filter, cubic spline interpolation is performed to determine 
the redefined location of peaks. Cubic spline data interpolation connects data points in adjacent bin locations of the 
histogram. Each spline (between two adjacent bins with elevation xi and xi+1) can be represented by equation (3) 
 

fi(x) = aix3 + bix2 + cix + di  … … … (3) 
 

        Part of interpolated histograms of both water body 1 and 2 is shown in figure 14 and 15, from which it can be 
seen that surface elevation of water body 1 is most likely at 606.7938 inches and surface elevation of water body 2 is 
similarly at 602.9388 inches. The highest peak elevation/location change with each stage of histogram operation is 
shown in table 2. 
 

 
 

 
Figure 14: Partial histogram for water body 1 after cubic spline interpolation 
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Figure 15: Partial histogram for water body 2 after cubic spline interpolation 

 
 

Table 2: Highest peak elevation/ location of histograms for water bodies  
 

Water body Initial elevation 
histogram 

Modified elevation 
histogram 

Filtered elevation 
histogram 

Cubic spline 
interpolation 

1 (top left) 
 

608 606 607 606.7938 

2 (top right) 765 602 603 602.9388 

3 (bottom left) 745 589 588 588.0868 

4 (bottom right) 725 578 577 576.5470 

 
 

 
 

4. RESULTS AND DISCUSSIONS 

        In this section, a method is described to validate the results obtained using our automated approach to elevation 
calculation. The correct answer for the water body elevation or ground truth is calculated using a manual approach. 
It is known that if the break lines enclosing the water body were known, the elevations within the break lines can be 
averaged to determine the correct elevation. Therefore, using ArcGIS a polygon feature was manually created inside 
the water body 1 as shown in figure 16.  All the LiDAR returns are extracted from the polygon and the mean is 
found to be 384.5482 meters. Subtracting the reference elevation, the mean elevation is found to be (384.7482-
369.18) meters or 605.04 inches, which is close to the elevation (606.7938 inches) obtained by the method proposed 
in this paper. In a similar way, for all the other water bodies, the water surface elevation is calculated in the 
proposed method and then verified manually by drawing polygons inside the actual hydro break lines. The 
comparison is shown in table 3. 
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Figure 16: Polygon feature drawn manually inside the hydro break line to calculate water surface elevation 
 
 

Table 3: Comparison between proposed method and manually extracting data method 
 

Water body number Surface elevation in 
proposed method (in 

inches) 

Surface elevation  by 
manually extracting data 

(in inches) 

Difference 
(in inches) 

1 606.7938 605.04 1.7538 

2 602.9388 602.924 0.0148 

3 588.0868 586.2271 1.8579 

4 576.5470 576.40 0.147 

 
 
 

5. CONCLUSIONS  

 
       A new method is proposed and validated to accurately calculate the elevation of still water bodies from LiDAR 
point clouds. The advantage of the proposed method is, it does not require that the hydro break lines be pre-
calculated. Only the LiDAR data of a rectangular area around the water body is required. Therefore, if hydro break 
lines are not available with the LiDAR data, the proposed method is very useful. On the other hand, if the water 
surface elevation is calculated using this approach, together with the approach that we have described in a previous 
paper (Toscano et al., 2014) to identify the boundaries of a water body, accurate hydro break line generation can 
essentially be automated.  
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