

Image-Based Phenotyping in China

Dr. Raechel A. Portelli

Michigan State University

Department of Geography, Environment, and Spatial Science

Center for Global Change and Earth Observation

Agriculture

- With more complex interactions in social and physical spaces occurring, new challenges emerge regarding local to global agricultural practices
 - New technologies make it possible to obtain, analyze, and share data in response to these challenges.

Geographic Science

- Major themes guide geographic science.
 - Scale
 - Pattern
 - Process
- We must clearly establish a <u>scale</u> (spatial AND temporal) of analysis that is appropriate to the <u>patterns</u> we may observe in order to understand the <u>process(es)</u> that we seek to understand.

Phenotyping

Using fine-scale measurements to add to conceptual and mathematical models
of plant to improve crop yield in the face of stress.

Phenotyping in Agriculture

 China is spending a great deal of money to improve crop yield and reduce resource use

Here I will provide an overview of our work in China and an overview of some of The work being done at Nanjing Agricultural University

Imaging for Phenotyping

- It's at the state that UAS was a 10 years ago. Innovation in Tech
- Sensors
 - RGB
 - LiDAR / RGB Photogrammetry
 - Multispectral
 - Hyperspectral
- Platforms
 - Gantry
 - Robots
 - UAS

Image-Based Phenotyping

- Small objects comprised of different pieces
 - Ability to precisely quantify spatial, spectral traits
 - Occlusion, spectral similarity, indefinite object features

What are we measuring?

- main targets:
 - Environmental Conditions
 - Water Stress
 - Disturbance
 - Nutrient Use
 - Light Availability
 - Plant Traits
 - Physiological
 - Structural
 - Temporal

Case 1: Tech at Nanjing Agricultural University

- International Plant Phenotyping Symposium & Training Workshop
 - Brought together delegates from Europe, Asia, Australia, and North America
- As part of the event they broke ground on a phenotyping research center.

Gantry

Robots

More Robots

Case 2: Phenotyping with UAS

- Collaborative Project with Capital Normal University, Beijing, CN
- Goal: To estimate biomass and determine physiological changes during plant growing season.

Xilinhot

Our research site

Fleld Experiments: Xilinhot Station 2018

Field for 3D Structure Experiment

Unclipped ____

Clipped

Grazed

Cow &

Sheep

UAS & Biomass

Remote Sensing

Measurement of radiance coming from the earth's surface

Resolution

spatial temporal spectral radiometric

GEOBIA

- Spatial resolution increases we have more pixels per object
 - Spectral heterogeneity
 - Multi-part objects
 - Ability to measure spatial patterns at higher precision

Spectral Indices

Vegetation index	Formula	Related crop traits	References
BGI2 (Blue Green Pigment Index 2)	R ₄₅₀ /R ₅₅₀	LAI, chlorophyll	Aasen et al., 2015
CSI (Canopy Structure Index)	$2sSR-sSR^2 +sWI^2 WI = R900/R970$ $SR = R_{800}/R_{680}$	Water	Aasen et al., 2015
DVI (Difference Vegetation Index)	R _{nir} -R _{red}	Nitrogen, chlorophyll	Jordan, 1969
EVI (Enhanced Vegetation Index)	$2.5(R_{nir}-R_{red})/$ $(R_{nir}+6R_{red}-7.5R_{blue}+1)$	Chlorophyll	Huete et al., 1997
GNDVI (Green Normalized Difference Vegetation Index)	$(R_{nir}-R_{green})/(R_{nir}+R_{green})$	LAI, chlorophyll, nitrogen, protein content, water content	Gitelson et al., 1996; Garcia-Ruiz et al., 201
NDVI (Normalized Difference Vegetation Index)	$(R^*_{nir}-R_{red})/(R_{nir}+R_{red})$	LAI, yield, biomass	Aasen et al., 2015; Zaman-Allah et al., 2015
OSAVI (Optimized Soil-Adjusted Vegetation Index)	1.16(R ₈₀₀ -R ₆₇₀)/(R ₈₀₀ +R ₆₇₀ +0.16)	Chlorophyll	Gitelson et al., 1996; Berni et al., 2009b
PRI (Photochemical Reflectance Index)	(R ₅₇₀ -R ₅₃₀)/(R ₅₇₀ +R ₅₃₀)	Chlorophyll, nitrogen, water	Suarez et al., 2009
PSRI (Plant Senescence Reflectance Index)	(R ₆₈₀ -R ₅₀₀)/R ₇₅₀	Chlorophyll, nitrogen	Gitelson et al., 1996
PVI (Perpendicular Vegetation Index)	$(NIR-aR-b)/\sqrt{1+a^2}$	Chlorophyll	Richardson and Wiegand, 1977
RDVI (Renormalized Difference Vegetation Index)	$(R_{800} - R_{670})/\sqrt{R_{800} - R_{670}}$	LAI, biomass, nitrogen	Tucker, 1979
RVI (Ratio Vegetation Index)	R _{nir} /R _{red}	Water content, yield, chlorophyll, nitrogen	Rondeaux et al., 1996
TCARI (Transformed CAR Index)	$3^*[(R_{700}-R_{670})-0.2^*(R_{700}-R_{550})$ $^*(R_{700}/R_{670})]$	Chlorophyll	PeŃUelas et al., 1993
VDI(Vegetation Drought Index)	(R ₉₇₀ -R ₉₀₀)/(R ₉₇₀ -R ₉₀₀)	Water stress	Suarez et al., 2009

R* means spectral reflectance.

Morphology

Fragmentation

$$FRAG = \frac{1}{1 + p \cdot |T_N - A_N|^q}$$

where T_N is the number of objects in the image and A_N the number of regions in the reference; p and q are scaling parameters

Strasters and Gerbrands (1991)

$$AFI = \frac{A_{\text{reference object}} - A_{\text{largest segment}}}{A_{\text{reference object}}}$$

Lucieer (2004)

Geometric Feature Circularity

Circularity =
$$\frac{4\pi A}{P}$$

where A is the area and P is the perimeter

Yang et al. (1995)

$$ShapeIndex = \frac{P}{4\sqrt{A}}$$

where A is the area and P is the perimeter

Neubert and Meinel (2003)

Points of Integration

- Environment
- Scale
- Multispectral Imagery
- Analysis
- Ontology/Semantics

Environment

Agricultural Environment

- Human structured
- Homogenous Species
- Lab & Field Environments
- Production-based use
- Crop-based, Grazing-based use

Natural Environment

- Heterogenous species
- Ecological structure
- Field emphasis
- Biodiversity & Resources
- Rangeland, Forestry, Preservation

Scale

Biological Scale

Organism
Organ

Organ

Cell

Geographic Scale

Conceptual Space vs. Realized Space

- It is impossible to capture at a landscape level all the individual insect larva.
- However, we can have a conceptual model of that process, easily moving across scales mentally.
- Our solution: Generate scaledependent models of the processes framed by our conceptual models.

Multispectral Imagery MicroResolution

- Plant resolution (or higher)
- Controlled environment
- RGB
- Multispectral (4-band)

MacroResolution

- Plot scale
- Not controlled
- Multispectral (4-band)
- Vegetation sensors (Landsat, ie)

Analytical Framework

- Plant trait and plot trait extraction
- Segmentation focused to isolate objects of different scales
- Use of spectral data to isolate the objects

Geographic Object-Based Image Analysis

Object Identification workflow

Ontology

Additional Challenge

 Capture, storage, and analyze of phenotype information across useful geographic scales

Solving the Semantic Gap

- PHIS
- Organize and manage highly heterogeneous (e.g. images, spectra, growth curves) and multispatial and temporal scale data (leaf to canopy level) originating from multiple sources (field, greenhouse).

- GEO-Ontologies
- W3C 2003 geo
- Geospatial features
- Feature type
- Place names
- Coordinate references
- Spatial relationships

In the future

- As I continue my own work in integrating phenotyping and geographic approaches to understanding plants, I hope to work with plant geneticists and phenotype scientists
 - To develop multiscale models of the ecophysiological and morphological, and phenological traits of wild plants after forest fire.

Thank you for your attention

<u>Acknowledgements</u>

- Nanjing Agricultural University
- Dr. Jiaguo Qi
- Mr. Michael Bomber
- MSU Asian Studies Center
- MSU Dept. of Geography
- IPPN 2019 Symposium Members

Email: raechel@msu.edu

@CurmudgeonPhD

