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I. INTRODUCTION

T HERE are numerous iterative solutions to the problem of three-point
space resection, but no efficient explicit solution to the problem. The com

plexity of an explicit solution is the main reason why iterative solutions are
numerous and more generally known as the only practical solutions. Geometers
have long recognized that given three face angles in space and the corresponding
ground lengths, a direct solution to the problem of exterior orientation is possi
ble by solving a fourth-degree equation whose coefficients are formed from the
given data. The camera coordinates of the three images and the ground co
ordinates of the corresponding objects comprise the original raw data from
which the three face angles and corresponding slope ground lengths are computed.

In general, iterative solutions have been employed because they are simpler
and in most cases give results with fictitious photographs that exceed the pre
cision of the uncalibrated lens and film. These facts, combined with the fact
that the explicit solution has been only theoretically possible, serve to reduce
the space problem almost wholly to one of differential mathematics. The im
practical part of the explicit solution has not been so much solving the fourth
degree equation as it has been forming the coefficients of the degree equation.
Then too, photogrammetry has never been considered a geodetic tool, but
rather a compilation tool replacing primarily the plane table and alidade in
compiling topographic detail on a geodetic framework established by ground
control parties.

What value then does a rather complicated explicit solution have? To the
analytical photogrammetrist and mathematician, it is an intellectual achieve
ment in which the satisfaction of either solving or deriving is its own reward.
There are other practical uses, however. We have no way of evaluating, for
example, an iterative solution except by its application to a fictitious photo
graph. The explicit solution provides a set of data for evaluating iterative solu
tions on actual space exposures. If an iterative solution gives results comparable
to those of an explicit, we are justified in saying the iterative solution is suf
ficiently accurate from at least theoretical considerations. Thirdly, no terrestrial
geodesist would consider extending primary control by any but explicit for
mulas, even though all his observations are reciprocal and repeated. Then cer
tainly we can not expect to extend geodetic control from the air, where the ob
servations are neither reciprocal nor repeated, by any calculations less than ex
plicit ones. Finally, there are certain research problems requiring a photographic
record from which the geometry of phenomena is computed by analytical
photogrammetry. The geometrical relations of the phenomena become a co
ordinate system by which all physical data are evaluated. Clearly the geo
metrical reference of the physical data must be explicitly exact.

The purpose of this paper is to describe an explicit solution to the problem
of resecting the position of the camera in space from three control points-a
solution that is no more lengthy than the differential analytical geometry
solutions. The only conditions imposed are those of strong solid geometry; and
they are no less than the rigorous specifications for "strength of figure" that the
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geodesist imposes on his ground quadrilateral triangulation schemes.
The method consists of first solving a fourth-degree equation for m by

Ferrari's solution of the biquadratic. Knowing m, the perspective ray lengths
are computed directly, after which the sif( elements of exterior orientation are
computed with the perspective ray lengths as the additional required data be
yond the ground and camera coordinates. m is simply the ratio of one per
spective ray to another. The fourth-degree m-equation described in this report
has relatively simple coefficients and consequently presents an explicit solution
that is practical insofar as the equation is simply formed. The body of this re
port describes the explicit solution. A numerical example is woven into the
description to assist the reader in understanding the solution. Derivation of the
m-equation is given in the Appendix at the end of this report. The quartic in
m reduces to a simple quadratic when four points are used. The development
of the m-quadratic is also given.

II. COMPUTATION PROCEDURE

A. The computation procedure is readily broken down into five operations:
1. Computation of constants for coefficients of m-equation from camera and

ground data.
2. Forming coefficients of m-equation, and solution of m-equation by

Ferrari's method.
3. Computation of perspective ray lengths.
4. Computation of space coordinates.
5. Computation of space orientation.
B. Computation of constants for coefficients of m-equation from camera

and ground data.
Fictitious photograph datal
1. Given photograph coordinates (millimeters)

x y

a. - 46.5384847 29.92755493
b. 46.3825116 17.69356712
c. - 2.5773321 -42.57624638
p.p. 0 0

2. Given ground coordinates (feet)

z
o
o
o

100

X
A. 14,158.3027
B. 17,696.36364
C. 10,000.

3. Values to be determined

y

17,102.38904
8,870.49290

10,000.

Z
500.0
200.0

o

LA = 10,598.9339
XL = 14,158.46096

t = 3°0'0"

LB = 11 ,001.49989
YL = 12,402.66566

s = 330°0'0"

LC = 11,093.49358
ZL = 10,000.
AZ = 30°0'0"

Consider Figure 1. It is necessary to decide in the computation the pair of
perspective ray lengths of which m shall be the ratio. Let m = (LB' / LA '). Solving
for m where m is equal to LB/LA, the computer selects as a pivot point, ground

1 The fictitious data are given to a rather ridiculous number of decimal places to illustrate
the numerical accuracy of the solution.
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point C or whatever point is not included in the ratio. Selecting C as the pivot
point, the following values are required for the coefficients of the m equation.

1. cos A 'LB' = .65605899
2. sin 1'1= .96540730
3. sin 1'2 = .92688849
4. cos 1'1 = .26074653
5. cos 1'2= .37533681
6. A fB'2 = 80 ,372 ,000.0
7. D1 = 11 ,804. 34512
8. D2=11,741.79875

Where the A 'LB' is the angle at L
between A' and B' or a and b; 1', the
dihedral angle between planes A'LC'
and B'LC'; 1'2, the angle at C between
slope lines A 'C' and B'C'; A 'B'2, the
square of the slope line A'B'; and D1 ,

D 2, the diameters of circles A'LC'
and B'LC'. Insofar as the face angles
are used in computing 1', and the
diameters D 1 and D 2 , angles B'LC'
and C'LA' are also required. The
three face angles at L are computed
by the conventional angle-between
two-lines formula.

xa· xb + yb· ya + F
cos A'L B' = ------:.--=----=

La·Lb

sin A'LB' = .75470958

xb . xc + yb· yc + F
cos B'LC' = ------:.--=----.-:.

Lb·Lc

sin B'LC' = .65919584

xc· xa + yc· ya + F
cos C'LA' = --------

Lc·Ld

sin C'LA' = .70224495

where

.65605899

.75197131

.71193541

La = (xa2+ ya2+ j2)1/2 = 114.2868719

Lb = (xb 2+ yb2+ F)1/ 2 = 111. 6440759

Lc = (xc 2+ yc2 + j2)1/2 = 108.7169692

then

and

cos 'Y1 =
cos A'LB' - cos B'LC'· cos C'LA'

sin B'LC'· sin C'LA'
.26074653
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COS 1'2 =
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(XA-XG)(XB-XG)+(YA - YG)(YB-YG)+(ZA -ZG) (ZB-ZG)

A'G'·B'G'

.37533681

B'G' A'G'
Dl = = 11,804.34512, D2 = = 11,741.38161

sin B'LG' sin A'LG'

B'G' = [(XB - XG)2 + (YB - YG)2 + (ZB - ZG)2]1/2 = 7781.37520'

A'G' = [(XA - XG)2 + (YA - YC)2 + (ZA - ZC)2] 1/2 = 8245.325950

A'B' = [(XA - XB)2 + (YA - YB)2 + (ZA - ZB)2]1/ 2 = 8965.04322

A'B'2 = 80,372,000.0.

Thus we have computed the minimum data required to form the coefficients
of the m-equation.

C. Forming the coefficients of the m-equation and solution of the m-equa
tion by Ferrari's method. The quartic in m is written as follows:

A 1m 4 + B lm 3 + G1m 2 + Elm + F 1 = O.

Here the caps denote coefficients and not ground objects. The coefficients are
obtained by substituting the constants computed above in the right members
of the equalities shown below.

D 2 ( D l 2 sin
2

1'2)A =-. 1-----
1 D 1 A'B'2

B l = - 2 [cos 1'1 cos 1'2 + cos A 'LB'· D
2
.(1 - 3:..~ sin2 1'2)J

D l A'B'2

[
Dl D2 , , A'B'2

Cl = - + - + 4 cos 1'1 cos 1'2 cos A LB - --- sin2 1'1
D2 D l D 1 ·D2

(
DID2 )J- (4 cos2 A'LB' + 2) -- sin2 1'2
A'B'2

E l = - 2 [cos 1'1 cos 1'2 + cos A'LB' .D
1

• (1 - 2D22
sin2 1'2)J

D2 A'B'2

Numerical value of coefficients

Al = - .486866835

B l = 2.387037152

Gl = - 3.797357154

E l = 2.373002132

F l = - .4761703759.

At first, forming the above coefficients may seem to be a very tedious task
until one notices that the coefficient A, and the constant term F, are nearly
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alike, and also that B, and E, are nearly alike. We now write the fourth-degree
polynomial with the numerical value of its coefficients:

.486866835m4 - 2.387037152m3 + 3. 797357154m2 - 2.373002132m

+ .47617037589 = O.

It is desirable that the coefficient of m 4 be unity; therefore dividing f(m)
through by A, we obtain

m 4
- 4.90285429m3 + i.79958066m2 - 4. 87402706m + .97803001 = O.

According to Descartes rule of signs, f(m) shows four variations and there
fore has four, two or no real positive roots. However, we are interested in only
one of the four roots. The desired root is real and positive because m ~ (LBILA)
and both LB and LA are real and positive. In solving the m-equation by Fer
rari's solution we end up with a pair of quadratics, both of which must be
solved to evaluate the desired root. A simple method of determining which of
the roots is the desired root will be described when we have found the four roots.
Continuing with the m-equation, let the coefficient of m3 be aI, m2, bl ; m, CI, and
the constant term d l • Then blm2+clm+dl is transferreil to the right side of the
equality sign. This gives

m 4 - 4.90285429m3 = - 7. 79958066m2 + 4. 87402706m - .97803001

a2

- 1m
2 is added to each side

4

a2

-1m2 = 6.0094950·m2
4

m 4 - 4.90285429m3 + 6.009495m2 = - L79008566m2 + 4. 87402706m

- .97803001.

Now the left side is a perfect square: (m2-2.451427145m)2. If the right side
were a perfect square, the solution would be immediate. Since m is probably
rational, we do not expect this. In order to make the right side a perfect square,
we add

to both sides, which is equivalent to

( m2 _ 2 .451427145m + ~IY

on the left side and

(YI-l. 79008566)m2+ [4.87402706- y(2 .451427145)Jm+ (:2 -.97803001)

on the right side. We seek to determine YI so that the above becomes the square
of a linear expression, say Ilm+n. In general, if

um2 + vm + w = (lIm + n)2

the discriminant
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That is,

or
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v2 - 4u·w = O.

u=h2, v=211 'n, and w=n2

412'n2 - 4P·n2 = O.

Thus the right-hand side of the equation will be the square of a linear expression

11m + nl if Yl

satisfies the equation.

[4.87402706 - y(2.451427145))2 = 4(Yl - 1.79008566)(~ - .97803001)

which expanded gives a cubic in Yl.

23.7561397816 - y(23.8"664448) + y2(6.009495047)
= y3 _ (1. 79008566)y2 - (3. 91212004)y + 7.003029984.

Collecting,

y13 - 7. 799580707 y12 + 19.98452444Yl - 16.753109798 = O.

This equation is readily solved by Cardan's formulas insofar as any root of Yl
satisfying the cubic is suitable. In conformance with the cubic solution we let

a'2
P=b'--'--,

3

a'· b' 2a'3
Q=c'---+--

3 27

where a', b' are the coefficients of y2 and y, and c' is the constant term. This
gives a cubic of the form y'3+py'+Q=O. Then by formula

b' = 19.98452444 c' = - 16.753109798

a'2
--= - 20.27781974 a'b'/3 = 51.95697042

3

P=- 0.29329530 35.203860622

2a' - 35.14633146

27

Q= 0.057529162

or

y'3 _ . 293295295y' + .059529160 = O.

A root of this equation is most simply calculated trigonometrically

where

a
Yl = Y' --

3

• /- P ep
Y' = 2V ·-3-' cos 3
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+QV27
cos q, = . ,r---T = .973697344

2Pv - P

655

and

q, = 160°13'02/1.915

q,
cos - = .59614325

3

:!... = 53°24'20/1.972
3

y' = .3727971219

a'
y' - - = 2.97265736 = Yl.

3

Substituting this value of Yl back in the discriminant, P=4 uw

2t = 1.1825716969

v = - 2.4132258777

w = 1. 23114293

1 = VU = 1.087461124

n = VW= 1.109568804

or

-v
n = -- = - 1. 109568804.

21

Now we may write the pair of quadratics which give the four roots and in par
ticular the one desired root.

General equations:

al Yl
m 2 + _. m + - = 1m + n

2 2

al Yl
m 2 + -·m + - = - 1m - n.

2 2

Substituting the numerical values of 1, 111 and y,

(1) m 2 - 2.451427145m + 1.4863286784 = 1.087461124m - 1.109568804

(2) m 2
- 2.451427145m + 1.4863286784 = - 1.087461124m + 1.109568804.

Collecting,

m 2
- 3.538888269m + 2.5958974824 = 0

m 2 - 1. 363966021m + 0.3767598744 = O.

Solving these two quadratics we obtain the following four roots.

ml = 2.500905049

m2 = 1.037983224

ms = .979205069

m4 = .384760952.
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We note that all four roots are real and positive. Which of the four roots is the
required root may be computed by an equation that gives the length of the
omitted perspective ray LC' at the same time.

Let the first value be ml, the second m2, the third ms, and the fourth m4·
Usually two of the roots will be suffic~fntly large or small to make evaluating
absurd. Let us suppose that the choice lies between m2 and ms.

Since all values of m satisfy the equation

A'B'2 = LA'2 + LA'2m2 - 2LA'2m cos A'LB',

another relation must be selected. For this relation we express LC in terms of
LA and LB. LA·cos A'LC'+(D22-LA2)1/2 sin A'LC'=LB·cos B'LC'+
+(DI 2_LB2)1/2 sin B'LC'=LC. The root m that gives a value of LA and LB
that satisfies the above equality is the correct root, and in determining this
value of m we automatically obtain LC. In this problem, the desired root was
found to be 1.037983224 by the procedure outlined above.

D. Perspective ray lengths.
The lengths of LA and LB may be computed directly.

A'B' 8965.04322
LA' = -----------

(1 + m22 - 2m2 cos A'LB')1/2 .845844384

LA' = 10,598.9274

LB' = LA'·m2 = (10598.9274)(1.037983224) = 11,001.50883

LC' remains to be computed.

LA' cos A'LC' + (D22 - LA'2)1/ 2 sin A'LC'

= LB' cos B'LC' + (D 12 - LB'2)1/2 sin B'LC' = LC

LC' = 11,093.48998

lA

FIG. 2. Section through hillside principal plane.

Summarizing,

LA' = 10,598.9274

LB' = 11,001. 508831

LC' = 11,093.48998.

E. Space Coordinates (Figure 2)
If the hillside plane is parallel to

the datum plane, the determination
of the Z ordinate of L is immediate.
We assume this not to be the case.
The normal Z' to the hillside plane
is computed.

LA' .LB' .LC' sin 'YI
Z'=-----

D 1 •D 2 sin 'Y2

= 9720.85245

Z' is inclined an angle p to the verti
cal. p is the dihedral angle between
the hillside plane and the datum
plane. The cosine of p is equal to the
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area of the datum triangle divided by the area of the hillside triangle.

AG- BG- sin 'Yo
cos P = = .99815463

AC'· BC'· sin 'Y2

where A C, B C are the datum ground lengths and 'Yo is the angle at C in the
datum plane.

AC2 + BC2 - AB2
cos 'Yo = ------- = .3745910926

2AG-BC

AC = [(XA - XC)2 + (YA - YC)2]1/2 = 8230.15188

BC = [(XB - XC)2 + (YB - YC)2]1/2 = 7778.80454

AB = [(XA - XB)2 + (YA - Y B)2Jt/2 = 8960.02232.

The vertical component of Z' is simply the cosine of P times Z'.

ZN' = Z' cos P = 9702.082505.

The foot of ZN' is above the datum plane an amount equal to tan p·b.Y'L.
where b. YL is the horizontal distance from the lowest elevation to the foot of
Z' along the hillside plane principal line.

1 [(A'C'2 + LC'2 - LA'2)
I:1YL = - sin tPBC

2 AC

(B'C'2 + LC'2 - LB'2). JCosz p
- sm tPAC--

BC sin 'Yo

= 4883.364471

where c/>BC and tPAC are the angles in the datum plane at C between the datum
trace of the hillside principal line and the datum lines A C and B C.

and

cos tPAC =

cos tPBC =

tan PAC

tan p

tan PBC

tan P

= .998629095

.422628905

finally

ZA -ZC
tan PAC = ----

AC

ZB -ZC
tan PBC = ---

BC

.0607522202

.0257108915

ZL = Z'·cos P + I:1YL tan p + zc
z' cos p = 9702.91381

t:..YL- tan P = 297.08251

ZC = 0.00000

ZL = 9999.99632
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Now XL and YL are computed. Let

XL = X'L + XC

YL = Y'L + YC

then

1
X'L = . [~l(YB - YC) - ~2(YA - YC)] = 2402.67931

2 sm 'Yo

1
Y'L = [~l(XB - XC) - ~2(XA - XC)] = 4158.44511

2 sin 'Yo

where

AC2 + RC2 - RA2
J.ll = ---A-C-.-B-C-- ~2 =

BC2 + RC2 - RB2

AC·BC

and

RA2 = LA'2 - (ZL -ZA)2 = 22,087,332.33

RB2 = LB'2 - (ZL - ZB)2 = 24,993,269.06

RC2 = LC'2 - (ZL -ZC) 2 = 23,065,593.94

Then since XL=X'L+YC and YL= Y'L+YG,

XL = 12,402.67931

YL = 14,158.44511

ZL = 9,999.9963

.901429245

.8963167631

.8907865685

9499.9963

10598.9274

9799.9963

11001. 50883

9999.9963

11093 .48998LC'

LA'

LB'

ZL -ZB
cos MB = ---

ZL -ZC
cosMC =---

F. Space Orientation
At this point the determination of the angular elements of exterior orienta

tion is extremely simple. The direction cosines of the photograph nadir point
referred to the principal point are obtained from the simultaneous solution of
three cosine-of-the-angle-between-two-lines equations.

La-cos MA = xa·cos an + ya cos {3n + i·cos t

Lb·cos MB = xb·cos an + yb cos {3" + i·cos t

Lc· cos MC = xc· cos an + yc cos {3" + f· cos t

The photograph pyramid edges have been previously determined.

La = 114.2868719

Lb = 111.6440759

Lc = 108.7169692

ZL -ZA
cosMA =---
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Setting up the numerical values of the equations and solving by successive
division and subtraction, we obtain the following set of data:

29.92755493 = 102.437239086

17.69356712 = 99.451043264

-42.57624638 = 98.000655486

f 0 cos t + x· cos an +
a. 100 -46.5384847

b. 100 46.3825116

c. 100 - 2.5773321

yo cos fin Locos M

o - 92 .92099633

o - 43.96115259

-1

-1

12.23398781 2.986195822

72.50380131 4.436583600

.131660101 = .0321369328

1.649269799 = .1009205477

o 1.517609698 = .0687836149

cos fin = .0453236527

(by substitution of cos fin) cos an = .0261696166

cos t = .99862919

and

1 =+= tan OA 0 tan 0"

cos an
tan s = -- = .577394253

cos fin

t = 3°0'01'''.36

s = 329°59'53" .196.

The azimuth of the principal lines is computed by the tangent of an angle
between-two-lines-formula referred to the radials from the ground nadir

tan OA ± tan 0"
tan Az = -------

where
XL - XA

tanOA = ----
YL - YA

x'a
tan 0" = --

y' 0 cos t

and
x'a = xa cos s - ya sin s

y'a = xa sin s + ya cos s.

Thus each control point and image point provide a set of data for an azimuth
computation. Rotating the photo coordinates through angle s and translating
the origin along the principal line fo tan t we obtain the following values for the

new coordinates.

x'

a.

- 25 .33809974

43.94667800

b.

49.01496342

-13.11124895

c.

- 23.52134664

-40.82410716
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tan 8b = 3.743521745 tan 8e = .576954055

tan 8B = -1.001622824 tan 8e = 1.730753286

tan A z = .577290878 tan A z = .577313801

A z = 29°59'50".811 A z = 29°59'54" .358

True Value
10,598.9339
11 ,001.49989
11,093.49358
14,158.46096
12,402,66566
10,000.0

3°
3300

300

L

G'

FIG. 3.

then

tan 8a = - .577356066

tan 8A = - .000030606

tan A z = .5773458637

A z = 29°59'59".317

mean

Az, = 29°59'54".828.

Comparing the solved-for value of the unknowns with the correct value, the
following differences or errors are noted:

Variable Error
LA' - .0055 (feet)
LB' .0089
LC' - .0036
XL - .0158
YL .0136
ZL - .0036
t 1".36
S 6" .804
A z -5".172

These errors are due entirely to the inability to preserve the absolute value
of any set of numbers after compound arithmetical operations have been per
formed on them with a 10-bank calculating machine.

III. APPENDIX

A. Most of the analytical geometry formulas employed in the computation
of space coordinates and space orientation are self-evident. Ferrari's solution of
the biquadratic and Cardan's solution of the cubic may be found in any text
book on the theory of equations. The fourth degree equation in m, the reduction
to a second-degree equation in m when four control points are used, and the
equality in the omitted perspective ray length may not be so evident. The deri-

vation of these equations is given
to provide additional insight into
the mathematics of the explicit solu
tion.

B. Derivation of m-equation. The
elements of the derivation are illus
trated in Figure 3. The picture plane
and datum plane are omitted from
the space pyramid to make more
clear the relation of the basic parts

AI",~_-I-~---:::==I=::::::;;::.-~~_-7B' of the pyramid in the development
~ of the equation.

Let C' be the vertex of spherical
triangle AsBsCs whose sides are
1, 2, and 1'2, and whose angle at
Cs is 1'1. Now by the law of co
sines in spherical trigonometry, cos
1'2=COS 1 cos 2+sin 1 sin 2 cos 1'1.

Let LA'= U and LB'= U·m
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By the law of sines in plane trigonometry,

sin 1 sin B'LC' sin 2 sin A'LC'
-- = and -- = ----
U'm B'C' U A'C'

The chord of any circle divided by the sine of the inscribed angle is equal
to the diameter of the circle. That is,

A'C'
DAC =---

sin A'LC'

B'C'
DBC =---

sin B'Le'

therefore,

sin 1 1 sin 2 1 •--=-)
U·m D 1

or

U'm
sin 1 = --,

D1

U
sin 2 = 

D2

where

D1 = DBC and D2 = DAC.

Having an expression for the sine, we may write an expression for the cosines:

(D12 - U2m )1/2
cos 1 = ,

D1

1'1 is a dihedral angle at the intersection of planes A'Le' and C'LB'. Since 1'1 is
a dihedral angle, it may be computed with the apex angles.

cos A'LB' - cos A'LC'· cos B'LC'
cos 'Y1 = -------------

sin A'LC'·sin B'LC'

and the face angles are computed from the image coordinates and camera
constants.

1'2 is the angle at C in the hillside plane between slope lengths CIA' and C'B'

(XA -XC)(XB-XC)+(YA - YC)(YB- YC)+(ZA-ZC)(ZB-ZC)
cos 'Y2 =

A'C'·B'C'

Recapitulating, we have an expression for sin 1, cos 1, sin 2, cos 2, and the values
of '1'1 and 1'2 are known. Substituting in the original spherical cosine formula.
we have

cos 'Y2 =
(D 12 - U2m2)1/2(D22 - U2)1/2+ U2m cos 'Y1

D1D2

Transposing,

cos 'Y2D1D2 - U2m cos 'Y1 = (D12 - U2m2)1/2(D22 - U2)1/2

Squaring,

cos2 'Y2D12·D22 - U2m2 cos 1'1 cos 'Y2D1D2 + U4.m2 cos2
1'1

= D12.D22 - D12. U2 - D22U2m 2 + U4.m 2•
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Two trigonometric identities are substituted.

DI2D22 - DI2D22 cos2 'Y2 = DI2D22 sin2 'Y2

U4m2 - U4m2 cos2 'Y2 = U4m2sin2 'YI.

Substituting these identities and factoring out the U2 terms, we obtain

U2(D 12+ D22m2 - 2 cos 'YI cos 'Y~lD2m) - U4m2 sin2 'YI = DI2D22 sin2 'Y2.

Now

•

A'B'2 = LA'2 + LB2 - 2LA'·LB' cos A'LB'.

Let LA'= U and LB'= U·m

A'B'2 = U2 + U2m2 - 2U2m cos A'LB'

U2(1 + m2 - 2m cos A'LB')

A'B'2
U2 = ----------

1 + m2 - 2m cos A'LB'

Substituting the right-hand expression for U2,

(D 12+ D22m2 - 2 cos 'YI cos 'YIDID2m) A'B'4 sin2 'YIm2
A'B'2 - -----------

1 + m2 - 2 cos A'LE' (1 + m2 - 2m cos A'LB')2

= D ID 2 sin2 'Y2.

Multiplying both sides of the equation by

(1 + m2 - 2m cos A'LB')2

A'B'2

we obtain

m4(D22) - m3(2D22 cos A'LE' + 2 cos 'YI cos 'Y~ID2)

+ m2(D 12+ D22+ 4 cos 'YI cos 'Y2 cos A'LB'· DID2 - A'B'2 sin2 'Yl)

- m(2D12cos A'LE' + 2 cos 'Yl cos 'Y~ID2) + DI2

Collecting the coefficients of like powers and the constant terms,
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Simplifying further and dividing through by D1Dz, we have a fourth-degree
equation in m.

where

Al = DZ(l - ~ sinZI'z)
D 1 A'B'z

B 1 = - 2 [cos 1'1 cos I'Z + cos A'LB"~: (1 - 2 :~,zsinZ I'z)]

[
Dl Dz A'Bz

C1 = - + - + 4 cos 1'1 cos I'z cos A'LB' - -- sinz 1'1
Dz Dl DID2

(
DIDz )J- (2 + 4 cosz A'LB') -- sinz 1'2
A'B'Z

E l = - 2[COS 1'1 cos 1'2 + cos A'LB' Dl(l - 2D
2
z sin2I'2)J

D2 AB'2

C. Reduction to a second degree equation when four points are used. Let
there be a fourth point G (Figure 4) on the opposite side of plane A'LB' from
C'. Let the angles at G' corresponding to 'Yl and 'Yz be l>t and Oz and the diameters
corresponding to D l and D 2 be Da and D 4• Prior to the substitution of

A'B'Z

1 + m2 - 2m cos A'LB'

in the previous derivation the following pair of equations are written:

U2(D12+ D22m2 - 2 cos 1'1 cos I'zDID2m) - U4m2sin2 1'1 = D12D22sin2 1'2

U2(Da2+ D42m2 - 2 cos 01 cos 02DaD4m) - U4m Zsinz 01 = DazD42 sinz Oz.

Eliminating the U4 m2 term we obtain

UZ[(D12+ D22m2 - 2 cos 1'1 cos I'2D1D2m) sin2 01

- (Da2+ D42m2 - 2 cos 01 cos 02DaD4m) sinz 1'1]
= D I 2D22 sinz I'z sin2 01 - Da2D42 sin2 02 sin2 1'1.
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L.

c

FIG. 4.

Now substituting

A'B'2lj2 = _
1 + m 2 - 2m cos A'LB'

we have a quadratic in m

7]m
2 + bn + w = 0

where

7] = A 2 - K

~ = B 2 + 2 cos A'LB'· K

w = C2 - K

and

A 2 = (D22 sin2 ('>1 - D42 sin2 'Y1)

B 2 = 2(cos 01 cos 02 sin2 'Y1DaD4 

cos 'Y1 cos 'Y2 sin 2 01D1D2)

C2 = (D12 sin2 01 - D32 sin2 'Y1)

(
D 2D22

K = _1__ sin2 'Y2 sin2 01 
AB2

Again we note that the A 2 and C2 terms are nearly alike while the K term
is repeated. Solution of the quadratic in m here gives the additional required
data for an ex )licit four-point solution that is completely general in that no
special conditions are imposed on the geometry of the control points, such as
defining a single plane. Just as often as not four control points will be available
in which case the tedious solution of the quartic is avoided. The plot of the
quartic and the equivalent pair of quadratics are shown in Figure 5 for general
interest.

D. The equality in the omitted point. Reference is made to Figure 3.

LB'
sin 1 = --,

D1

LA'
sin 2 = -.

D2

By the law of the sum and difference of sines of two angles.

sin LB'C' = sin (1 + A'LC')

sin LA'C' = sin (2 + B'LC')

or

LB' (D 12 - LB'2)1/2
sin LB'C' = - cos B'LC' + sin B'LC'

D1 D1

LA' (D 2 - LA'2)1/2
sin LA'C' = - cos A'Le' + 2 sin A'LC'

D2 D2



and

or
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LC' = D2 sin LA'C' = D1 sin LB'C'

LC' = LB' cos B'LC' + (D12 - LB'2)1/2 sin B'LC'

= LA' cos A'LC' + (D 22 - LJ1'2)1/2 sin A'LC'.

FIG. S.

NEWS NOTE
AERIAL PHOTOS FOR ATOMIC ENERGY COMMISSION

665

Aerial photography of a several hundred square mile area for a new facility of the
Atomic Energy Commission near Arco, Idaho was completed by Aero Service Corpora
tion of Philadelphia within eight days after the recent contract award. Speed perform
ance of the aerial phase of the survey was necessary to complete this before snowfall.

Compilation of the precise photo mosaics for the area is moving ahead rapidly. The
AEC contract also calls for Aero Service to deliver topographic maps, compiled at a 10
foot contour interval and horizontal scale of 1 inch equals 1,000 feet.


