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" M. Josef Krames, Photogrammetric Depariment, Federal Office of
Standards of Weight and Surveying, Vienna, Austria

SECTION 1

HOTOGRAMMETRY is one of the newest branches of scientific study.

Although its first steps were taken long before photography was invented,
it started as an independent branch of science about the beginning of this
century. Very soon after the first World War, it achieved its greatest progress
by solving the principal problem of aerial photogrammetry, that is to say, the
relative orientation of two successive photographs, by applying the optical-
mechanic method, and by improving the instruments thoroughly. But all great
efforts made for these purposes contrasted strangely with the fact that important
theoretical fundamentals, i.e., the geometrical ones, had not yet been cleared
entirely. We readily admit that at this time the defect was not yet recognized.
It seems to be characteristic that the first impulse to eliminate this deficiency
arose from the practical experience with the newly developed apparatus. It was
R. Bosshardt who, in 1933 (2), described for the first time an observation of the
uncertainty of the relative orientation, due to the fact that the contemplated
model points on each plane, being perpendicular to the base-line, were situated
on a circle which passed through the base-line. A year before, however, S.
Finsterwalder (9) had already mentioned the “‘dangerous case’’ (by computing)
of the reciprocal adjustment (by means of five linear equations, the determinant
of their factors may equal zero). But he still believed that this could be avoided
by a suitable selection of the orientation points. Later on, G. Poivilliers (39)
stated at the Fourth International Congress for Photogrammetry, held at Paris
in 1934, that also such special ground forms are geometrically imaginable,
which, if being surveyed, caused the principal problem to have two quite different
solutions. Up to this date, the photogrammetrists, and well-known investigators
of pure geometry too (38), were of the erroneous opinion that, in case of un-
even ground, there may exist only one solution; furthermore, that this solution
would be obtained indeed by putting at least five pairs of collimating rays in
their position of intersection.

The above indicated statements have started discussions about what nowa-
days is called “‘critical surfaces” of aerial photogrammetry. An explanation of
this problem was given by the author in a fundamental paper (16) completed
in 1937, but without the knowledge of the above mentioned information.
Chiefly, he gave an exhaustive consideration of the most general surfaces of the
kind referred to. Especially, he indicated that besides the real orientation, rep-
resenting the main solution, there still may exist one or two additional solutions
essentially different. Further, he pointed out that all ground forms at hand, or
other photographed objects (including the plane ones) which may show these
qualities, belong to the so-called orthogonal ruled surfaces of second degree
(or to certain degenerate forms). Therewith, it is necessary in each case, that
the two surveying centers should lie on the surveyed surface (being geometrically
complete), and should have certain special positions there. The cases of inexact
adjustment mentioned by S. Finsterwalder and R. Bosshardt could now be ranged
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among those specialized cases of ‘‘critical surfaces” for which an additional
solution is identical with the main one.

The author also examined the quadratic transformation between the model
surfaces appearing in separate solutions. Furthermore he studied the variations
of all five-parameter “‘critical surfaces’’ associated with two perspective centers.
In three other papers (17, 18, 19), he dealt with remarkable special cases of
these surfaces, and with a series of geometrical details resulting from his studies
about the “‘critical surfaces’; e.g., it was shown that two different solutions of
the principal problem are interchanged by rotating one of the pencils of rays
around a distinct straight line of space.

In his summary of 1942 (20), the author discussed the ‘‘critical zones of
space’’ for the first time, being in close connection with the “critical surfaces,"”
and dealt with them later on in detail in his ten publications of 1947 and 1948,
(21-30). Above all, he recognized that always a well defined “‘critical zone of
space’’ is attached to each movement of the two pencils of collimating rays, such
movements being performed in the execution of the optical-mechanical ad-
justment. Herewith, the useful effect of these investigations for photogrammetry
became obvious.

SECTION 2

In the above mentioned papers, a ‘“‘critical zone of space’” was defined as
the totality of all those space points whose pairs of conjugate rays, caused by an
arbitrary displacement of the two pencils, have y-parallaxes that are smaller than
can be readily measured. Each critical zone of this kind is limited by two surfaces
of the second order, and this is valid for the angular or two-projector®* method
as well as for the single-projector method of orientation. Besides this, the
measurement of parallaxes may be either actually on the spatial model (21-27)
or one the picture plates, (28, 29, 30). In all these cases the complete spatial
distribution of the y-parallaxes, caused by a displacement of the pencils of rays,
is made very evident by a linear pencil of surfaces of constant parallax (all of
them being of second order).

Further on, general formulas for the calculation of the main sizes of the
“critical zones of space’” have been derived (25, 28). One of these sizes has also
been calculated by J. Killian (14) in another manner, but only for some typical
special cases. These formulas show immediately that a “‘critical zone of space”
becomes the more extended, the smaller the quantities of orientation are which
produce the concerned displacement. This is of some practical importance re-
garding the fact that each topographical surface, lying entirely inside of a “‘critical
zone of space’’ is a product of the relative orientation of the same effect as a‘‘criti-
cal surface.” Herewith, a very illustrative geometrical explanation was found
for the fact, proved by W. K. Bachmann (1) and confirmed by H. Kasper
(13), that the usual optical-mechanical procedure does not converge beyond a
certain approximation (not at all a maximum one). The writer succeeded finally
in showing the relations between the unknowns of orientation into simple mathe-
matical relations which, between certain narrow limits, can also be understood
as equations of condition between the quantities of orientation; these relations
were formerly recognized by R. Finsterwalder (3, 4) and E. Gotthardt (10).
Owing to numerous other details the reader has to refer to these related papers.

It would require a special geometrical knowledge to follow the explanation

* Editor’s note—In the single-projector method, relative orientation is achieved by both the
angular and translational motions of one projector, whereas in the two-projector method, only the
angular motions of both projectors are employed.
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of these various new results, especially a knowledge about the orthogonal ruled
surfaces of second degree. Therefore, we confine ourselves to giving a short and
easily comprehensive outline about the graphical method discovered by the
author in connection with his investigations about the “‘critical zones of space.”
Finally, for a better understanding, a practical example is described.

SECTION 3

It is already known that in performing relative orientation of two aerial
photographs, three different phases can be distinguished. The first one, called
pre-orientation, includes all operations

; by means of which such a position of

2 i the two pencils of collimating rays can
i / be reached that, relative to the re-

i maining orientation, only the terms of

| the first order of the well-known types

of observational equations have to be
taken in consideration. The author
has proposed the designation ‘‘main
phase’ (37) for the sum of the orien-
tation movements which then are still
to be accomplished. The largest part

2 of all publications issued up to today
about the principal problem of aerial
photogrammetry, refers to this main-
phase. In practice, the emerging of

B this phase is usually noticed by the y-

parallaxes of the collimating rays
which are measured either in the spa-
tial model or on the picture plates, be-
F1G. 1. The system of coordinates. cause, these quantities do not amount
to certain maximum values (depend-
ing on the flying height and the model scale). The author denoted finally the last
part of the main-phase wherein the orientation quantities are determined and
applied from the already mentioned equations of condition as the “‘final phase”
32).
( Now, we consider two air photographs of a topographical surface in which
the normal case of stereo-photogrammetry is realized, at least approximately.
Then, as usual, we assime a rectangular system of coordinates, the origin of
which being identical with the center O; of the left photograph. Furthermore,
the positive y-axis and the positive z-axis are directed backwards and upwards
respectively. Of course, this system defines exactly the signs of the translatory
movements of the two pencils of rays in the directions of the axes as well as the
signs of the rofary movements, i.e., of the x-tilt (y—z), y-tilt (3—x), and swing
(x—y) (see also Figure 1). It is to be regretted that no standards have been
adopted yet concerning these signs.

Once the main-phase is completed then the principal problem—the re-
establishing of the original position of the two pencils during exposure—may be
reduced to the following one: T'here are given some model-points Py; and the small
residual parallaxes dpy measured at these points are given as well. It is required
to find out such displacements of the two pencils by which all these parallaxes dis-

appear.

As usual, we denote the small quantities of orientation, which produce a
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distinct change in y-parallax, dw., dws; dés, doe; dki, dka; dby, dbys; db:1,dbs.
Let the coordinates of a model-point P; be x, v, 2. Then the parallaxes dpx
existing at Py, will be changed in accord with the movement by the amount
of (1,3,7,13)

2 + 22
¢wy=-—3L;——@w1—dm)—-1[—mw1+(x—zmw2+dm1—dm”
b4
+ [xdks — (x — b)dxs + dbyy — dbys]. 1)

Herein b indicates the base-length of the spatial model. Thus, for each model-
point, it must be assured that:

dpy = — dps. )

If the parallax is not measured directly on the spatial model but on the picture
plates (28, 29, 30), the observed picture parallaxes dp;’ should first be trans-
formed into the corresponding space-parallaxes. For this purpose, we represent
the focal length of the photographic camera by f; then, the plane of the picture
plates may be represented by the equation z= —f, and we obtain

Z
dpr = 7 dpi’.

This transformation is easily determined by simple arithmetic or graphically.

SECTION 4

The term contained in the second bracket of equation (1) obviously indicates
that the y-parallax dy, which is present for a pair of conjugate rays, being orig-
inally directed towards the point Py, depends on only four quantities of orienta-
tion dky, dks, dby, dbys. Likewise, the other bracket in (1) represents the parallax
dz, being measured in the z-direction, and only originating from des, des, db.a and
db,s. Accordingly, if we put

—x-dpy + (v — b)do: + db,y — db.s = dz

(3)
x-dxl — (x = b)dKz + dbyl s dby2 = dy

then, the equation (1) reads more simply:

2
dp, = — (y— -+ z) (dw; — dws) — —y—dz + dy.
2

3

In this general form, the equations (1), (3), (dinclude the “two-projector”’
method as well as the “single-projector method,” as two special cases.

It is evident that each of the quantities dy, dz is a constant for each point
P; of a plane v (x=constant), being perpendicular to the base-line. Therefore,
on each plane » of this kind there exists a precisely defined point G with the
coordinates:

d
Xmg Fo—me— 2 =t 5)

dwl e dw2 dw1 ot dW2

we denote it as the “base-point’ of the plane v. The introduction of this point
is of fundamental importance for our purpose.
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If x is obtained for all possible values, it follows from equations (4) and
(3) (the latter one being linear relative to x) that the base-points G of all planes
v will form a well determined straight line in space. Generally, this straight line
g goes not intersect the base-line. On g, particularly, there are also situated the
base-points G°, and G* of the planes »° (x=0) and »* (x=5). The graphical loca-
tions of these points are essential for our method.

Indeed, as we obtain the coordinates of the points G°, G® from the equations
(5) and (3):

—bd¢2(dbz1 - dbzz) 70 — b‘dl(z(db,,l = dbyg) .

X0 =0, ¥ ;
dw1 = dwz dwl b= d“’Z

Xb _ b’ Yb _ —b-d¢1(dbzl - dbzg) . Zb _ bndKl(dbyl = dbyg) )
dw, — dws dw; — dw,

we may also derive from the base-points and their coordinates, the following
equations:
(A) In case of the “two-projector method’’ (for which we have to put:

dw1 — dw2 = dw, dbyl = dbyz = db,l = dbzz = 0).

¥ Zb
d¢1 = T dw, dK] = 'b_ dw,

- 8 (6)
d¢2=7dw, dK2=';dw;

(B) In case of the ‘“‘single-projector method” (for which we may assume
dwl = dd)l =dK1 = dbyl = dbzl = 0) .

Vb — yo Zb — 70
d = d ’ dky = d ! ‘
b2 5 w3 K3 5 w3 R0
dbys = Zbdw,, db,s = — Ydw,.

Thus, in both cases, the proportions of all the five unknowns of orientation
are already precisely determined by the coordinates 0, ¥°, Z° and b, Y?, Z* of
the base-points G, Gb.

Therefore, it is only essential to determine these two points G°, G®. If this
cannot be done directly, as will be shown in Section 5, then, according to the
previous statements, we have to determine the base-points Gi, and G, of any
two different planes », and »., which are perpendicular to the base-line, and to
let the intersection of the spatial connecting line g of these points with the planes
be »° (x=0) and »* (x=5).

SECTION 5

Now, we will show how to obtain the base-point G of an arbitrary plane »,
that is perpendicular to the base-line by an easily-performable graphical pro-
cedure. For this purpose, we only have to assume that the main-phase is already
accomplished, and that the proportions dp1idpy:dps of the parallaxes observed
in three points P;, P, Ps, being situated on », are known. We consider that
the plane » is viewed from the left, and we let this plane intersect the drawing
plane. Furthermore, the system of coordinates used in » may have its center
at the point B (x, 0, 0) lying on the base-line, whereas the positive y- and z-axes
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are directed towards the left and upward respectively (compare Section 3).

Thereupon, the model-points P;, P,, P are plotted by using a suitable scale
(see Figure 2). Next we draw through the point B the three straight lines
p1, P2, ps, being directed towards the points P;, P, Pjs; then, we erect at these
points the straight lines 71, ns, 73, being respectively perpendicular to p1, p2, ps.
The lines n1, nz, ns form a triangle to which a second one, being similar and simi-
larly situated with regard to the first one, is to be added. For this purpose we draw
through Pi, P,, P; the rays, being parallel to the z-axis, and trace on them,
beginning from the points Py, P, P,
any three distances K;, K, K3, whose
lengths are of the same proportions as
dpi, dps, dps. The signs of these quan-
tities and distances are to be respected
carefully. The lines g1, g, g3 of the sec-
ond triangle, being parallel to 7, 7.,
n3, respectively, are drawn through
the end points of these distances.
Thereupon, the center of similarity of
both the triangles, is obtained immedi-
ately, and it is already identical with
the requested base-point G of the plane
v. This quick construction also re-
mains performable if vertices of the
triangles are extending over the edges
of the drawing-sheet.

From Figure 2 (where the distance ;
N1=K,, further N2=K,, etc.) it is F16. 2. Graphic solution for the base point.
evident that the same point G is also
obtained if the used distances Ki, Ki, K; are somehow proportionally altered,
e.g. by multiplying them with a positive or negative factor. If one of the given
parallaxes dpj becomes zero, then the corresponding straight lines 7, and gz are
joined, whereupon G is situated on z,=g; (see Figure 3).

In order to prove these results, first consider that the distances Ki, K, K
are altered proportionally in such a way that the straight lines g1, g, g3, being
drawn through their new limits and being parallel to i, 7s, 73, pass directly
through the base-point G (see Figures 2 and 4; the latter one illustrating the
same data as Figure 2). These distances, altered in such a manner, may be
denoted by Si, Sz, S;. On the other hand, by replacing the values dy and dz
in the equation (4) according to equation (5), equation (4) becomes

dﬁv = S(dw1 = dwz), . (8)

whereby we give for purpose of abbreviation,

2
=—L o stlvsz ©)
z z
As this is equivalent to
y__GBEH-2 (10)
4 y—Y

_the result is the following important relation between a movement of the
pencils and the parallaxes dp,, being produced by this very movement:
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F1G. 3. Solution in the special case Fi16. 4. Proof of the special solution.
where one correction is zero.

A model-point Py is given with its coordinates x, v, 2z and the parallax dp,,
produced at this plane by a certain pencil-movement (see Figure 5). If, inside of
the plane (x =constant) and in the direction of the z-axis, this point Py is displaced
along the distance Sy=dp,/dw—dw,, and if we connect its new position Qi (y,
z+S) with the base-point G (Y, Z) by a straight line g, then, this line g, is always
perpendicular to the connecting line pi. (y/z=constant) of the two points: B (0, 0)
and Py (y, 2).

The shifting movement Py—(Q; has to be accomplished either upwards or
downwards depending whether S; is a positive or negative quantity. In Figure
5 the quantities 2, .S and Z are of the negative sign.

We can also say: If we displace the straight line n, being erected in
the point Py perpendicular to the ray pi, in the z-direction along the distance
Sk=dp,/dw —dw, (having the proper sign), then, this line always passes through
the base-point G of the plane v, being attached to Py.

Henceforth, we can easily understand that the base-point G of a plane
(x =constant) (in which three model-points P;, P;, P; together with the propor-
tions dp:dps:dps of the corresponding parallaxes are given) coincides exactly
with the center of similarity, being determined by the previous construction
(Figures 2 or 3). It is only this center of similarity for which the relation just
proved (considering all three points Py, P;, Ps) is true (compare also Figure 4).

SECTION 6

If the base-point G of a plane » is obtained, then also the distances S;, Sa, S;
are given immediately, as was shown. Moreover, if we know not only the
proportions of the parallaxes dpi, dps, dp; to be eliminated, but also these
parallaxes themselves, then on account of equation (2), it follows from equation

(8):
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—d —d —d
dw; — dws = i = P2 = i . (11)
S1 S, S3

Herewith, we obtain the differential tilt, being required for the elimination
of the parallaxes dp:, dp> and dps;, by means of simple graphical construction.
Or, in general:

With the base-point G of a plane v perpendicular to the base-line, and with
the real amount dpy of the parallax that exists at a model-point Py, being situated
on v, the differential tilt, by which this parallax shall be eliminated, is already
clearly determined. It amounts to:

—d
dw1 = dw2 = pk * (12)

k

Herein, we put for the “angular method’ dw, —dw: =dw, and for the “single-
projector method,” dw;=0. By means of dw or dw., according to (6) or to (7),
the other unknowns of orientation are also determined.

The application of the construction, being described in Section 5, has no
meaning if the base-point G of a plane » lies outside of the drawing-sheet or
at infinity. In the last case, all distances S;= =, so that the differential tilt van-
ishes, How the existing parallaxes dp; are to be eliminated in such a case, by
using a graphical method, has already been explained by the author in another
publication (35). Last, as we enter
into details, it may be mentioned )
that in practice, such cases can easily y ; z
be avoided by suitably tilting one of
the projectors.

In practical applications, usually
there is a large number of model-
points P available, as well as their
corresponding parallaxes dp;. In us-
ing more than the required number of
these points for a precise determina-
tion of the orientation movements, a
new question arises: how the position
of the base-points in the various
planes perpendicular to the base-line
is to be brought in best agreement
with all given measurements, and
with the connecting straight line g of
these points as well (Section 4). It is
not difficult to solve this problem ow-
ing to the well-known principles of
least squares adjustment. But if these
measurements are remarkably con-
tradictory, then either the initial po-
sition of the pencils is still too far from
the real orientation, or there are sys-
tematic mistakes caused by the instru- .
ments or by the photographic emul-  Fic. 5. Effect of displacing the model point.
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sion. Especially, in view of equation (12), large mistakes can be recognized
quickly from the drawing. But if both pencils are to some extent without mis-
takes, usually then a single application of this method meets the requirements.
A second application is needed to establish the required relative orientation only
if the pre-orientation is not sufficiently advanced.

SECTION 7

Another explanation remains: how a definite solution can also be obtained
if only the proportions of the quantities of orientation are known (i.e. with
sufficient accuracy). For this purpose, we use a diagram in which the different

d
\\\ Py w :
Thedor = |
dp; _ :
14 dw
O P !
‘ .
L ":dﬂ
ol
~
N
e
Lo
F1G. 6. Solution where the given orientation F1G. 7. Similar to Figure 6 except for a
values are merely proportional to the actual different value of slope.

values.

values of dw for the ‘‘angular method’” (or of dw. for the ‘‘single-projector
method’”) are entered as abscisses and the alterations of parallaxes dp, are
produced at any model-point P, possibly at Py, as ordinates (Figure 6). After
introducing the values (6) or (7), the equation (1) expresses a linear relation
between dw (dw:) and dp,, and this relation is represented by a straight line that
passes through the origin. In Figure 6 the coefficient of slope of the line m is
negative. In order to show that the derived formulas are independent from this
circumstance, in a second diagram (Figure 7), the straight line m has been drawn
rising to the right.

That the parallax dp,, originally existing in P4, is eliminated, dw (dws) must
be assumed in such a manner that the parallax dp,, being produced at Pj,
satisfies equation dp,= —dp: (Section 3). At first, we take any (small) value
dw’ of dw (dws) and, accordingly to (6) or (7), we determine the orientation
values. These are, together with dw’, to be introduced on the orientation instru-
ment. If dp; has changed in parallax dp’ =dp1+dp,, then, we take for the correct
value dw’’ of the differential tilt from Figure 6 or 7:

do'": (—dw') = dp1:(dp’ — dp’),

respectively,
do' :do’ = dpi:(dpy — dp’)
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or:

dp,
dpr — dp’

dwll g

do’. (13)

Introducing this value in (6) or (7), we obtain those quantities of orientation
which eliminate (starting from the initial position) dp; in P; as well as all the
other parallaxes dp;. In order not to be obliged to recover the initial position
of the two pencils, the situation, being obtained by dw’, may be corrected im-
mediately with the quantities (6) or (7), being determined by

i dp’
do = Bal’ =~ =t . (14)
dp1 — dp’

With such linear interpolation being allowed during the main-phase, the
possibility exists of overcoming the formerly (Section 2) mentioned ‘‘non-con-
vergence”’ of the relative orientation, as it is to penetrate into the interior of the
“critical domains of space.” Up to now, this has not yet been kept in view with
any other method of orientation. : )

Furthermore, these interpolations ensure a very valuable new criterion for
the quality of orientation of the pencils. Indeed, except for ground-control, up
to now we had to be satisfied with the absence of all observed parallaxes, which
exist in the field of view. Now, the following re-examination of an adjustment
can be executed:

We double the quantities of orientation, which had produced the last displace-
ment of the pencils, and introduce these doubled values on the plotting apparatus.
If the first orientation is correct, then in the new position, all parallaxes should be
equal to and opposite from the original ones. In fact, only if dp’= —dp1, do we
satisfy equations (13) (14) (compare also Figures 6, 7):

do"” = 3do’, do = — }do/,

i.e., in this case the initial adjustment itself represents the best approximation
to the perfect solution of the principal problem.

More generally, this control may also be carried out in the following manner.
After the application of the quantities of orientation, being determined by
dw’ and eliminating all the measurable parallaxes dp, the values (6) or (7) are
additionally multiplied with a factor #» and are introduced on the plotting
apparatus. Afterwards, the original parallaxes dp; should appear in their
n-fold values. If other ones emerge, possibly the m-fold values of these quanti-
ties (m+n), then (beginning from the initial position) the (nz+1/m+1)-fold
values of the first used quantities of orientation have to be applied. For better
use, we may also directly correct the just obtained position of control, by
applying the [—m(n+1)/m~+1]-fold values of the previously used quantities
on the apparatus. The factors m and » may adopt any arbitrary values, even
negative ones.

The author has recently reported further possibilities of development con-
cerning this graphical method in another paper. The essential question is to
determine the most probable position of the base-point of a plane v (x=constant),
in which no measurable y-parallaxes can be observed any more. Other variations,
based on practical experiments with different modern instruments, are still

to be expected.
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SECTION 8

Regarding the use of this new method for practical purposes, in most of the
cases it will be possible to select in each of the planes »° (x=0) and »* (x=5)
at least three model-points, so that by these six points the base-points G° and
G® may be obtained directly (see 4, 5). In case of an independent pair of pictures,
it should be assured even before the pre-orientation, that the axes of rotation
of the projectors are, insofar as possible, parallel to the axes of the photographic
pair. On the other hand, this precaution will hardly be possible with the single-
projector method because one of the projectors must remain stationary. How-
ever, the practical experiments conducted in this office have shown the following
fact: Discrepancies in the parallelism of corresponding axes have no significant
effect if the discrepancies are less than 1° for normal-angle photographs, or 2°
for wide-angle photographs. Therefore, it can be stated that deviations that do
not exceed these limits of the angular errors during the main-phase have no
harmful effect on our graphical method.

If bigger deviations of axes occur, the required rotations of the pencils by
small angles could also be done by resolving them into components according
to the rules of the wector analysis; namely, each into three rotations around
the axes of the projectors. We may also resolve the translatory displacements
of the pencils in the same manner, if necessary.

Finally we describe a practical example of an orientation according to the
“angular or two-projector method.” This example was worked out using a
multiplex instrument. The selected orientation points had the following co-
ordinates (expressed in mm.):

point } x 1 y z ' dpr point & ' y ‘ 3z dpi
3 0 158.5 | —427.5 0.1 4 1515 232 —426.5 | 0 (15)
1 0 0 —428.5 0 2 151.5 0 —427.6 | 0
5 0 | —244.2 | —428.5| 0.1 6 151.5 | —213.5 | —426.5 | 0.25

The last columns contain the parallaxes dp;, which were measured at these
places. The construction of the base-points G° G° was then made on graph
paper at the actual or full scale of the spatial model, which may be gathered
from Figures 8 and 9 (reduced for publication). The coordinates of the points
G, G being obtained according to Section 5, Figure 2, were read as follows:

Vo= — 86.5, Z"= — 428.5; Vb =229.2, Zb= — 427.6 mm.
Thereupon, the distances
S3 =S5 = 89 mm, and S¢= 222.5 mm.

were determined (to compare to Figure 2, 4 or 5). According to equation (12),
afteewards, we obtained the differential tilt:

dw =~ 7' (the sign  stands for centisimal minutes)
and, according to equation (6), the other angles of orientation were:
dp; = 1.51dw = — 10.5"; dps = 0.57dw =~ 4°

16
dk; =~ 2.82dw = 21'; dky =~ 2.83dw ~ 21", +e}

U

Corresponding to the signs of these quantities, the principal ray of the left
projector, being directed downwards, was to be turned to the right, but the
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principal ray of the right projector to the left, while both the pencils were to
be swung counterclockwise. The tilting dw was only applied on the left pencil
(its principal ray was moved to the front). Thereafter, all parallaxes had in
fact completely disappeared.

In order to assure accuracy, according to Section 7, the above mentioned
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F1G. 9. Sample graphic solution
F1G. 8. Sample graphic solution in the zero plane. in the x="5 plane.

angles of orientation were applied a second time. Then the following parallax
values appeared:

dpr= 0 dps = 0
dps = — 0.15 mm dps = — 0.4 mm.

As these values were 509, larger than the expected negative of the values
of dpy given in (15), —2-fold values of the angles (16) were introduced in
addition on the instrument. This last correction was performed according
to equation (14).

Although operating with such small quantities of orientation and parallax
values by means of the multiplex cannot be measured accurately, all practical
experiments with the new method have brought results that are in complete accord
with the theoretical considerations and the conclusions expected of them.

By his graphic method, representing the subject of this article, the author
has demonstrated the practical importance of his extensive research in photo-
grammetry. In any case, his method seems to be more suitable and more easily
adaptable (34, 35) than the method suggested by G. Powvilliers at the 6th
International Congress for Photogrammetry, held in The Hague in 1948 (40).
Where his method results in an approximate solution of the so-called “‘plane
resection problem,” the method described in this paper is more exact, because
by it the operation with very small distances is avoided. Moreover, it permits
complete utilization of the accuracy of the coordinates and the parallax values that
form the given data, and finally, the method seems to be so clear and simple that it
can be understood tmmediately and applied correctly by any skilled operator.
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LARGE AND INTERMEDIATE SCALE MAPPING OF
EXTENSIVE AREAS WITH APPLICATION OF
SPATIAL AERIAL TRIANGULATION.
MAPPING EXAMPLE OF ISRAEL

T. Blachut dipl. Ing., Henry Wild Surveying Instruments Supply
Co. Ltd., Heerbrugg, Switzerland

HERE is an ever growing need for the mapping of extensive areas (which
may, in some instances, cover the whole territory of a country) at large
or intermediate scales such as 1/2,500 and 1/5,000. As a matter of fact, this type
of work is by no means limited to such highly developed areas as make up
most of Europe, but also applies to regions that have yet to be fully developed.
Whatever the detailed specifications may be, such projects always entail
major surveying assignments which must be completed as quickly as possible
while meeting very exacting precision requirements. Large scale maps have
many uses and must be kept up to date systematically, so that this precision
of the techniques and the final accuracy of the results are essential requisites if
the whole operation is not to be repeated after a short time.

Bearing the above in mind, there has been a tendency to supplement the
photogrammetric work with a great deal of ground control when using such
scales for the actual mapping, which would increase costs to a variable extent,
depending on the nature of the terrain and on some local factors. Nevertheless
with the many refinements embodied in modern photogrammetric cameras and
plotting equipment, it becomes advisable briefly to review some of the tech-
niques currently used in aerial surveying.

Attention will be drawn, in particular, to use of spatial aerial triangulation
in the determination of geodetic control points, with the simplification and
economies which this entails in large and intermediate scale mapping, especially
in those regions which have to be surveyed for the first time.

In the case under review, two methods could be contemplated:

Note: Comments on this paper are invited. To ensure consideration for publication in the
December issue, receipt before October 15 ss necessary.




