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ABSTRACT

The limitations to the now prevalent arithmetic notions of scale as a constant and a
fraction are discussed and are shown to arise from the fictitious vertical photograph. An
alternative proposal is made for the use of "scale numbers" which have analytic proper
ties and which yield insight into the role of scale, especially in obliques. '

Four specific aerial photographic problems are analyzed. These deal with the prob
lem of getting the range at which air-ground guns or rockets are fired, the problem of
getting accurate scale over unknown territory and without barometric altimeter correc
tion, and the problems of determining altitude·and depression angle in forward oblique
photography made in level flight and in a dive.

In all these problems, use is made of scale as a changing parameter; and the useful
ness of this approach to these and other problems is demonstrated:
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I. INTRODUCTION

T HIS paper consists of two unequal parts. The first part deals with the con
cept of scale; the second with a series of (it is hoped) practical and u&eful

problems.
The second part of this paper was actually started in connection with the

author's work on determination of sea-wall heights for the Inch'on invasion
(Reference 1). The origin of this problem was summarized in that paper, from
whic'h the following section is reprinted:t

"The description of the analysis used in this problem rightly emphasizes that our basic
data (ground distances on the vertical photos, Figures 4 and 5), were derived through use
of a 1: 12,500 map of Inch'on. Perhaps we could have used high-altitude photographs
and made either easy assumptions re verticality or tedious corrections to verticality.
There was neither virtue nor time enough for this procedure. Low-altitude' barometric
altimeter errors in jet aircraft are too large for even rough photogrammetric procedures.

"It became obvious that w'hat was needed (for future problems) was a method of
making ground measurements which would be completely independent of both any
(prior-known) ground data and of altitude.

"This sounds like a tough specification. Actually itis both fairly si111ple and fairly

* Paper read at Eighteenth Annual Meeting of the Society, Hotel Shoreham, Washington,
D. C., January 9 to 11, 1952.

t This quotation is from Reference 1, 'pp. 97-98.
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64 PHOTOGRAMMETRJC ENGINEERING

obvious. A verbal argument will illustrate the system which the author conceived after
the main problem was solved..

"Suppose we have a camera mounted at 0° depression angle with respect to the
longitudinal axis of the aircraft (i.e., a bore-sighted ,camera). Suppose flying either at
very low altitude (or in a dive), an object of lateral dimension x is photographed at a
certain time t. If at a known interval later the same object is photographed': then the
ratio of image sizes is a direct function of the distances away from the object. The trick
is to get the difference in the two distances without knowing either distance. This can
be done if we know both true ground speed and the exact interval between photographs.
Knowing this (readily available) information will enable calculations of the true size of .
the ground object. Putting the same argument in another way, the rate of change of
Sx, dSx/dt, is a simple function of the distance from the target. We can obtain dSx/dt
from two successive photographs taken at times which are not necessarily close, and
easily make the required ground measurements."

n. THE CONCEPT OF SCALE AND ITS USE

Scale-as it is used almost universally-refers to the ratio of photographic
image size (or map dimension) to the size of the original ground object. The
numbers used are always give'n as, say 1: 5,000, or 1 :40,000-which is read as
"one to five thousand or one to forty thousand." That this usage is well nigh
universal and traditional does not insure that it is either good or useful. In fact,
the author believes that this usage is neither good nor useful.

Within the author's experience, and that of numerous photogrammetrists,
aerial photographers, and photo-interpreters, to whom he has talked, the sole
use of "scale" has been to go from the map or photograph (the image) to the cor
responding ground dimension. Thus a small number (image) is multiplied by a
large number to get the ground distance. This multiplier is obviously the re
ciprocal of the number defined above as scale.

In an earlier paper (Reference 2), scale numbers Si were defined so that an
image measurement multiplied by the appropriate scale number yields the cor
responding ground measurement. The scale numbers used in that paper were
Sv, S"" Sy, Sk, SA for the truly vertical photograph, for x and y directions in tve
oblique photograph, for height, and for area, respectively.

The important point is that these scale numbers Si are the ones that are ac
tually used by everyone; thus the definition is an operational one. In Reference 1
this point is discussed as follows (p. 83):

"The scale of Figures 4 and 5 was thus determined to be 1:3,270 and 1:3,290. (This
is conventional representation of scale. The author much prefers to use vertical scale
numbers Sv, which would be 3,270 and 3,290. These numbers are easier to write and to
use, for their definition is an operational one. The major use to which a map is put is to
calculate ground distances. Therefore Sv is defined as the number by which a map dis
tance is multiplied to get a ground distance. This usage does away with the confusion
always present when discussing "large-scale," "small-scale," etc.)"

This matter of operational definitions is very important, and the particular
example herein treated is simple; for a comprehensive discussion on operational
concepts and definitions, the reader is referred to Nobel Prize-Winner P. W.
Bridgman's, "The Logic of Modern Physics" (Reference 3), wherein, among
other things, he says (p. 7) " ... For, of course, the true meaning of a term is
to be found by observing what a man does with it, not what he says about
it.... tt ....

Some may feel that this point has been labored or bdabored more than
enough. This is not so. In the next paragraphs we shall see that the concept of
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scale as a fraction, and other pernicious notions, have had a stultifying effect
on photogrammetric analysis.

Let us now examine another underlying tradition entering into the nature
and use of scale.

The arithmetic concept of scale-derived from consideration of the vertical
photograph-is a convenient fiction. It would indeed be a lovely (photogram
metric) world if all aerial photographs were truly vertical, thus yielding a con
stant scale number in all directions on the photographs. However, the truly
vertical photograph (meaning that the lens axis was perpendicular to the sur
face of the earth immediately below the aircraft, and that this axis is also per
pendicular to the film plane) is a rare event, even when such photography is at
tempted. The vast body of photogrammetric literature, techniques, and equip
ment designed to deal with tilt is ample testimony to the rarity of the vertical
photograph.

Thus the vertical photograph is but a very special case of the oblique photo
graph. When the aerial photograph is not even a near-vertical, it is even more
obvious that the arithmetic concept of uniform and constant scale----:-so handy
for a vertical-is of no avail.

In the oblique photograph the scale numbers are constantly changing, and
at any given point the scale numbers are (in general) different in all directions.
This point is even more obvious when examining a map covering a good fraction
of the world. In conformal maps, the scale is the same in all directions at any
point, but varies continuously from point to point. In other types of maps, the
scale is different in different directions at any point. Were one to build a theory
of scale (and photogrammetry) starting with the oblique photograph, it is clear
that scale (or preferably "scale numbers") must necessarily be represented by a
continuous point function. These expressions must clearly be differential equa
tions.

An earlier paper by the author (Reference 2) could well have been subtitled,
"The Differential Calculus of Scale," for in this paper, the scale numbers Si for
elements of interest in an oblique photograpb were derived. These expressions
were differential eql,lations and will be repeated here.

In all these equations x and y refer to the conventional cartesian coordinate
directions when the photograph is so held that its top and bottom edges are
parallel to the horizon and the foreground is at the bottom of the photograph.

The symbols used are:

H = flying height
f = focal length

X = ground distance in x direction
Y = ground distance in y direction
h = height of an object on the ground
I = image measurement (for x, y, h, this is a length)

A = ground area
a = image area
cP = angle off axis, measured down from horizon
() = depression angle of camera axis, measured down from the horizon

The scale numbers Sv, S", S", Sh, SA were defined above.

dX dY H
S =-=-=-

• v dI dI f
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1.-....
dX H cos r/>

S", = -= - -----
dI f sin (0 + r/»

dY H cos2 r/>
Sy = -= - -----

dI f sin2 (0 + r/»

dh 2H cos2 r/>
Sh=-=------

dI f sin 2(0 + r/>~

dA
SA = - = SxSY '

da

In both References 1 and 2 methods were developed indicating the usefulness
of these scale numbers for making small measurements from photographs, meas
urements which either assumed that the appropriate Si remained sensibly con
stant over the small interval used, or employed an approximate or average value
of the appropriate Si over larger areas on the photograph. It is clear that the
more or less orthodox and cumbersome geometric analysis of the oblique photo
graph could solve these problems only with cumbersome, stiff, inelegant ma
chinery. Most important, the insight into what is really happening in an
oblique photograph is either lost or is very difficult to achieve. Examination of
the effects of small changes in angle of depression, in small excursions over the
image- plane,-these are practically impossible to evaluate by ordinary geo
metric and arithmetic analysis.

Scale is a changing function; it can best be handled by the differential and
integral calculus. Photogrammetric analysis has, by and large, and with only
infrequent exceptions, ignored the potentialities and power of the analytic ap':
proach.

There remains to be developed the integral calculus of scale-wherein any
ground measurement, especially over large distances and areas on the photo
graph, can be made. One can at least write the expressions for which simple and
practicable working systems must be developed. Sample expressions are:

For Y distances: .

For areas:

f "'2fY2
A = S xSydydx.

%1 111

As an example of the power of the analytic approach and the comparative
sterility of the orthodox geometric analysis, the author cannot refrain from
mentioning that in discussions with some few photogrammetrists, they failed
completely to understand what is meant by "scale at a point" or "two scales
(x and y) at a point in an oblique photo." These concepts are of course ele
mentary, and differ not one whit from the most elementary concept in the dif
ferential calculus, that of slope at a point.

It is not claimed that these notions solve all problems, for even in Reference
1, the author ignored more topics than were then treated. It is a beginning,
however, and it is hoped that other workers will continue from this modest be
ginning.
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III. GROUND MEASUREMENTS WITHOUT ALTITUDE OR GROUND DATA.

GROUND

FiG. 1

I

/ I fiGHTER
/ / I DIVE
~ '-.. 'H PATHH H, 1

PROBLEM ONE-ESTIMATING THE RANGE OF AIR-GROUND GUN OR ROCKET FIRE

I t is of occasional interest and importance to be able to evaluate fighter per
formance. One clue in this evaluation may be offered by determination of the
range at which rockets or guns were fired. Consider the case of the aircraft mak
ing a ground attack, and assume that the aircraft mounts a motion-picture
camera whose axis is essentially parallel to the longitudinal axis of the aircraft.
The camera will take photographs at
va'rious positions on the closure path,
such as H, HI, and H 2• Assume now
that some ground object G (which can
be any two convenient points) lies on
a line perpendicular to the flight path
and intersects that line. Thus G lies in
a plane perpendicular to Figure 1 at
P and contains P. In this case there
are no cosine corrections to make.
The image remains on axis and ex
pands as the aircraft closes in ort the
target. The following simple formula applies

Gj
1=

H
(1)

where
I = image size
j = focal length
G = ground object size
H = distance from aircraft to ground object H
From equation (1), we have

log 1= logGj - log H.

WRence

dI -dH

Idt Hdt
(2)

and

H = - (:~) ( d~ ).

Idt

(3)

Because dH/dt is negative, and is the rate of closure, it is equal to the negative of
aircraft speed; equation (3) can be rewritten

H= Va/c( :1 ).
Idt

(4)

To use equation (4) for determination of range H it is first necessary to interpret
the term in parentheses on the right hand side of the equation. This term is the
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(=412 mph).

reciprocal of the rate of change of image site per second. This quantity can be
determined from successive measurements on the emotion picture film. An ex
ample will demonstrate this:

Let

Vale = 600 feet/sec.

Then at H = 2,000', we have

dI +dH 600
-=--=--=0.30.
I dt Hdt 2 ,000

This means that at this point (H = 2,000'), the image I is growing at the rate
of 30% per second.

If frame speed is known to within X% and aircraft speed to within- Y%, it
is clear that an upper limit on the accuracy of determination of the range H is
certainly (X+ Y)%, for we have not as yet estimated the accuracy of deter
mination of dI/ldt. A rough statement of over-aU accuracy can be made, how
ever. This method is a photo-interpretation class measurement process. It is in
the 5-10% class, giving such accuracy easily, but capable, under unusual con
ditions or with special equipment, of accuracies of the order of 1%. To the
obvious question which may be raised "Why not put known objects on the
target range?" the obvious answer is that we are discussing doing this under
combat conditions, which severely limit ground access for the experimenter.

Another approach for this identical problem begins with equation (1), and
photographs taken at the two positions H l and H 2• If H l is the range at which
firing starts we have' immediately

(5)

(6)

where t is the interval between photographs. From equations (5) and (6), we
obtain immediately

(1 - ~:)
(7)

Thus, without knowing the size of any ground object, but from measuring
the ratio of successive images of the ground object, H is determined. The time
of firing of a gun or rocket does not necessarily (and in fact will likely not) coin
cide with any particular exposure; nor are gun cameras so mounted as to record
the very first part of a trajectory. These factors mean only that care and further
improvisation must be taken in application of the methods given here, and in
ve-stigation of the accuracy of the method must be considered an integral part
of the problem in each application.

PROBLEM TWO: ACCURATE ALTITUDE DETERMINATION IN VERTICAL PHOTOGRAPHY

BY A METHOD OF DIFFERENCES

The thinking on the following interesting problem will be recognized as in
timately related to the preceding problem.
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Suppose a photographic aircraft is flying at a great distance from a friendly
meteorological station, and over territory whose height above sea level is un
known (Figure 2). The aircraft carries a sensitive altimeter of the conventional
type. Again, by a method essentially the same as in the previous problem, it is
possible to make fairly accurate scale determinations.

This solution to the problem depends on the aircraft's taking two photo
graphs over the same ;irea at different altitudes.

Now, unless the proper sea-level pressure setting is known, absolute altitude
HI above sea level cannot be computea from the (temperature-corrected) altim-

GROUND LEVEL

SEA LEVEL
FIG. 2

eter reading. But this correction is in the nature of a dial rotation only, so
that the same absolute error will be made at H 2• This very fact insures that the
difference HI - H 2 can be accurately computed. Of course temperature correc
tions to the readings at HI and H 2 must be made, and one must be sure that
there is no inversion between HI and H 2• At considerable altitudes, say 20,000'
and higher, in photographic weather, such inversions are extremely improbable.

The solution in this case is much the same as in the preceding problem, and
yields very simply that

HI - H 2
HI =----- (8)

Note that in measurement of I r and 12, the selected points need not be
physically related and should be preferably some distance apart. For example,
if HI is about 20,000 and H 1-H2 about 2,000', then 11112 will be 0.90.

If the two points on the print are about six or seven inches apart, the differ
ence in image 'sizes between 12 and II, and therefore their ratio can be deter
mined quite accurately. (It must be remembered that 1 2 and II are image
measurements of the same ground distance.)

There are some interesting implications and possibilities in this differencing
method. It affords an extra parameter as it were, and may prove very useful
in related work, such as tilt analysis. Some work along this line, using some of
these ideas, has been started by Mr. Eldon D. Sewell.

A word about the accuracy of this method. It is obviously and intimately a
function of the accuracy of the sensitive altimeter; the estimates of the Equip-
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ment Laboratory altimeter experts, which the author obtained through Dr.
Sam Burka, are about 1!% of altitude. It is entirely possible, and needs in
vestigation, that a goodly portion of such error may cancel out when taking
differences, over relativeJy small changes. But this hopeful notion has no sound
basis as yet, and must be regarded as a teasing prospect.

It is clear from a description of this method that certain aspects of practical
problems have been ignored-tilts, relief, etc. All this means is that further de
velopments are needed. In their aosence, this must be relegated to t,he class of
P.I. techniques, which ,are charaCterized by accuracies, real and required, of
several per cent.

/
e

/

FIG. 3

PROBLEM THREE: ALTITUDE, CAMERA DEPRESSION ANGLE AND SCALE DETER

MINATION FROM LEVEL-FLYING FORWARD OBLIQUE PHOTOGRAPHY

Consider now the following interesting problem. A modern high speed air
craft has installed in it a forward oblique camera. It makes a level pass over a

target area; and now we wish to de
termine'dimensions, distances, etc. of
ground objects captured on the pho
tography. If we can get, or know
speed and camera interval data, this
problem is easily solved; and as part
of the" solution, the exact angle of de
pression of the camera is found. True
ground speed in a low flying high
speed aircraft can be obtained to
within several per cent, and if care is
exercised, more accurately than this.
Calibrated intervalometers, or
watches mounted in cameras and
photographed on the film can yield
the interval between photographs to

(9)...

within a per cent or two.
Reference to Figure 3 will explain the geometry of such photography.
In this figure, () is the camera axis depression angle, cP1and cP2 successive

positions of the ground object G with respect to the axis as the aircraft advances
from A toB.' .

As before G is required to lie on a line perpendicular through G.
Then if 11 is the length of the image of G when the aircraft was at A, 12 the

length of the image when the aircraft was at B, these image lengths are related
to the actual length G by the equations

Sx!·I1 = G

SX2'[2 = G

where the Sx,'s are the x scale numbers

H cos cPi
Sx' = (10)

, f sin (8 + cPi)

Now using the concept of effective altitude H., which w~s defined in Reference 2
as that number which, when divided by focal length, yields the appropriate
scale, we have

He·
Sx'=-", f (11)
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He, ana H e2 are drqwn on Figure 3.
From equations (9) and (11), we have

Also from Figure 3,

H c, - H e2 = Va/c·t cos IJ

where t is the interval between photographs, and Va/ c the aircraft speed.
Equations (12.) and (13) together yield

Va/c' t cos IJ
H e2 = ---~-

(;: - 1)

71

(12)

(13)

(14)

If we now knew 0, we would have H e2 and from equations (10) and (11), the
actual height H. Observe that 1>" 1>2, 12, 1, are numbers which are obtainable
directly from the photographs. Va/ c and t must be obtained from other sources.
This problem was discussed above in connection with Problem One.

A brief discussion about the role of 0 in this problem is in order. If the de
pression angle 0 is of the order of 100 or less, equation (14) clearly demonstrates
that we can be no more than 1.5% off by assuming cos 0 = 1. This is true for the
particular object at G only. Remember that G was selected for convenience only,
and that we may be interested in other objects as well. The true role of 0, and
its importance, especially when small, is more easily seen from equation (10).
Here we have sin 0 in the denominator (assume for the moment that 1> is very
small) where it exerts a powerful lever on the value of S•. Of course, if the flying
characteristics of the aircraft at various altitudes and fuel loads are well known,
its altitude (the angle between the alc longitudinal axis and the flight path) is
determinable and careful ground measurements may be made of the camera
installation angle; thus, the angle of depression 0 may be found. Nothing is
wrong with this procedure. However, the following solution for 0 is quite
simple.

From equations (10) and (12)

12 = [COS cf>1] [Sin (IJ + cf>2)]. (15)
1, COScf>2 sin (IJ + cf>,)

In this equation 0 is the only unknown.
For convenience, set

12 COS cf>2
K=---·

1, cos cf>1
(16)

Equation (15) now can be written

F(IJ) = sin (IJ + cf>2) - K sin (IJ + cf>,) = O. (17)

This is readily solved by ewton's method. A full exposition of the method will
be found in any text book on the theory of equations or numerical methods. A
brief description follows:

The Taylor'.s expansion for F(Oo+6.0) is given by

(M)2
F(Oo + M) = F(Oo) + "t1IJF'(IJo) + --FI/(IJo) +

2
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where F' (fJo), F" (fJo) , .. are the first, second, etc. derivatives of F(fJ) evaluated
at 80•

H t::..6 is reasonably small, we may drop the higher terms; we have

F(Oo + t::..e) = F(Oo) + t::..eF'(Oo). (18)

Now let fJo be the first approximation to the root of equation (17); t::..0 is the cor
rection sought after, so that F(fJo+fj.fJ) =0. From equation (18), setting F(80

+ fj.fJ) = 0,

t::..e=
F(Oo)

---.
F'(Oo)

(19)

Tbis method is easily demon
strated graphically.

It is clear from Figure 4 that if
F(fJ) is plotted as a function of fJ and
if fJo is the first approximation to fJ R , F(S
that

e

(20)

FlG.4

I
I I

I :-F(S>
I I 0

I ..-J
~e

F(Oo)
---

t::..o
F'(Oo) =

whence comes equation (19) for AfJ.
If necessary, the process may be

repeated. In 'general it will not be nec
essary.

From equation (17)

F'(O) = cos (0 + tP2) - K cos (0 + tPl)'

Two examples will illustrate the simplicity and power of· this method of
solution.

ANGLES ARE EXAGGERATED
DRAWING IS NOT TO seA L E

\ .

Example A
Let us set up the following condi-

<P, • -r tions, illustrated in Figure 5 (which, be-
tP. • + .7' cause of the small angles, is not to scale).

"0 ~ • +4.15' A 14" focal length 9 X9 inch camera is
o aT' 6'In 0,0 mounted at a true depression angle fJ r

1
... )o/. = 6°. The true ground speed of the air-
.f/,r~, craft is 500 mph and its altitude above

terrain is 500'. The camera cycles in 2.00

r::m~:l==-i466C+==U6E;C~rseconds. Assume photo #1 of the series
1--2794-+- 1466': 1466~ we are analyzing is made at cPl = -1°
i---4260~. I : (i.e., 1° above the axis). Then, under the: 4760'-----<I I

I 5726': above conditions,

FlG.5 tP2 = + 0.70° and tP3 = + 4.15°.

.Observe now that the angles cPl, cP2, cP3 are determinable from the photographs,
and being determined with reference' to the principal point, are found inde
pendent of any knowledge about fJ. * 12/11 will be determined from photographs

* A word is in order abollt the sensitivity of the measurement of the <Pi. The 24" 9 X9 camera
has a half side angle of 10.5°. Thus, assuming linearity, there is roughly 2.33°/inch on the focal
plane, or 0.433 inches/degree.
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1 and 2. The value of this ratio may be calculated from the data at hand, using
the true value (}T = 6° and the values of €/>1 and €/>2' Equation (15) yields

12 = [COS (-1O)J [Sin 6. 7°J
II COS (0.7°) sin 5°

= 1.338.

Let us assume, as the first approximation to €/>T, fh = 9°. Equation (17) yields
(after dropping the cosine terms)

F(Ol) = sin 9.7° - 1.338 sin 8° = - 0.0179.

Similarly

FI(Ol) = cos9.7° - 1.338 cos 8° = - 0.337.

Whence, from equation (19)

(
-0.0179)/::,,() = - = - 0.0532 radians = - 3.05°.
-0.337 .

Hence, the corrected first approximation is

01 + /::,,() = 5.95°.

Thus the first approximation to OT, over but 1. 7° of image travel, converges to
within 0.05°. Part of the reason for this, of course, is the high scale ratio of
1.338 between the two photographs.

We may do this same analysis for photographs 1 and 3, with €/>l and €/>a.
In this case,

I a
- = 2.025.
II

For assumed 0.1 = 90°

F(Ol) = sin 13.15° - 2.020 sin 8° = - 0.0535

and

FI(Ol) = cos 13.15° - 2.020cos8° = - 1.021.

Whence

(
-0.0535)

flO = - radians = - 3.00°
-1.021

which, to two significant decimal places, gives the correct or true value of ()
as 6.000 !

Not much more can be expected from an approximation method.
With the true value of () so easily derived, it is straight forward to go back

to equations (10), (11), (1'2), and (14) to obtain the elements needed for a
complete analysis of any object in the photographs, using now the applicable
formulas for the Si given earlier.

An important point to note in connection with this method (and the sample
calculations) is that it utilizes no fancier computer than a standard engineer
type 10" slide rule. One criterion for evaluating usefulness or practicality which
the author places on "field methods" is that they require no calculator more
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complex or bulky than a 10 inch slide rule. For exactly this reason, the Aerial
Photo Slide Rule, designed by the author, (and described in Reference 2) has a
complete polyphase duplex slide rule on one side.*
Example B

Take now the same problem for large depression angles, such as Or = 45°.
In this case, let us use a 12", 9X9 camera cycling at one second intervals. Let the
flying height be 500 feet, and the true ground speed 500 mph. Figure 6 shows
this situation.

FIG. 6

o

FIG. 7

I t is clear that the aircraft advances 733 feet between successive photo
graphs. The forward coverage per photograph is about 850 feet. Thus we cannot
in advance guarantee that any particular ground object will be photographed
twice. If it happens to be an object, as at 0 in Figure 6, lying just outside the
coverage, 0 will be photographed in the next shot, but will be missed on the
following one. An object at P for example, is captured in the background of the
coverage angle shown, and will appear in the foreground.in the next shot.

However, our analysis requires 0 and H l which may be determined from two
successive photographs, and which perforce must use some object or pair of
points that occur in both photographs. Once 0 and H are determined, the com
plete geometry of any photograph is at hand, and is applicable to other objects
which may have been photographed but once.

Consider now the specific situation in Figure 7.
In this case, for the first photograph of P, taken at A, cPl is -18.43°. In the

second photograph, taken at B, cP2 is +16.85°. As before

I 2 = [COS -18 .43oJ [Sin 61. 85
0J = 1. 954.

II COS 16.85° sin 26.57°

Assu me now a value of 01 = 50°.

* There has been much justified effort lately to raise the status (and recognition) of the photo
interpreter from that of a technician to that of a professional man. Surprisingly enough, most of this
effort has come from outside the ranks of the photo-interpreter. Even more surprising-in fact
fantastic-have been the counter efforts of some photo-interpreters to degrade, stunt, and perma
nently harm their cause by statements such as "the photo-interpreter has no need of trigonometric
scales (or in fact any scales but the C and D). Trigonometric scales frighten and confuse the photo
interpreter." In this connection it should be remembered that every year around the first of
October in every college in this fair land, seventeen and eighteen year old boys, from town and
country alike, are initiated into the esoteric mysteries of the slide rule, and that many of these boys
have yet to take their first shave. The fact that these boys are more or less randomly selected and
that photo-interpreters and intelligence people are specially selected raises more questions than it
answers.
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We get

F(fh) = - 0.1135

and

- 1.282

yielding

- 0.0885 radians = - 5.07°.M=
F(Or)

---=
F'(Or)

Thus the first approximation to the 45° value of (Jr is (J = 44.93° showing
again fast convergence to (Jr.

How about really large errors in estimating (Jr?
Take (Jr=300 (a 15° error), with the preceding data for 1>r and 1>2.

Again

F(Or) = sin 46.85° - 1. 97 sin 11. 57° = 0.3345

and

F'(Or) = cos46.85° - 1.97 cos 11.57° = 1.247

whence

(
0.3345 )

/::,,0 = - = 0.2684 radians = 15.36°.
-1. 247

Thus the first approximation to(Jr, is (Jr+f::,,() =45.36°, which is within 0.36°!!
If this value of (J=45.36° is used as the.next approximation, the second ap

proximation will be found to be (J = 45.026°. Successive values of (J are 30°, 45.36°,
45.026°.

Actually, the first approximation, 45.36° is good enough for any photo in-
terpretation purpose.

PROBLEM FOUR: ALTITUDE, DIVE ANGLE, AND· SCALE DETERMINATION FROM FOR

WARD OBLIQUE PHOTOGRAPHY

Consider now the problem of the previous section extended to the case of the
aircraft in a dive, a situation illtls- ,
trated in Figure 8, where a is the dive
angle. This problem is obviously and
considerably more difficult than the
preceding one, for there is the addi
tional variable of a. A complete and
exact solution can be achieved, and is
given in schematic form in this paper;
however, the method of solution is
not one which is in the same class as
the previous simpJe methods, and is
not therefore, a good field method. FIG. 8

Reference to Figure 8 (in which·
the fourth angle 1>4 is not shown because of complexity of the drawing) and pre
vious similar analysis, enables us to write the series of equations for four succes
sive photographs.
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12 HI cos ¢1 sin [(8 + a) + ¢2]
(21)

II H 2 cos ¢2 sin [(8 + a) + ¢d

I a HI cos ¢1 sin [(8 + a) + ¢a]
(22)

II H a cos ¢a sin [(8 + a) + ¢d

14 HI cos ¢1 sin [(8 +a) + ¢4]
(23)-

II H 4 cos 4>4 sin [(8 + a) + ¢d

H 2, H a, and H 4 are simple functions of HI.
Let p = Va/ct, the distance the aircraft travels between successive exposures.

Then

H 2 = HI - P sin a)
H a = HI - 2p sin a .

H 4 = HI - 3p sin a

Thus equations~(21), (22), and (23) are functions of three unknowns:

(24)

(25)

Everything else in these equations is determined from the photographs or,
from aircraft data (speed and camera interval). Equations (21), (22), and (23)
can be written as

EJ(Ht, a, 8) = 0)

cf>(H1, a, 8) = 0).
'!F(H 1 , a, 8) = 0

Assume now that we have approximations lI10 ' ao, ()o to the values of HI,
a, () which satisfy equations (25) and that I:i.H1, l:i.a, I:i.() are the three desired cor
rections to the approximate values.

If then the three functions of equation (25) are expanded in Taylor's series
for three variables about '(H1o' ao, ()o) and the higher order terms involving higher
derivatives are dropped we have (as in the case of the single variable)

)

(&e) (aEJ) Il:i.a -- + 1:i.8 - = 0
aa 0 a8 0

EJ(H 10 + I:i.H 1 , ao + l:i.a, 80 + 118)

(
aEJ)= EJ(H 10 ' ao, 80) + I:i.H 1 -- +
aHI 0

cf>(H lo + I:i.H 1 , ao + l:i.a, 80 + 118)

(
a<I> ) (acf> ) , (a<I»= <I>(H10' ao, 80) + I:i.H1 -- + l:i.a - + 118 - = 0

aHI 0 aa 0 a8 0

'!F(H lo + I:i.H 1 , ao +- l:i.a, 80+ 118)

= '!F(H 10' ao, 80) + I:i.H1 ( a'!F) + l:i.a (a'!F) + 118 (a'!F ) = 0 J
aHI 0 aa o. a8 0

(26)

In equations (26), the subscript~on the partial derivatives indicate that they
are to be evaluated at (H10' ao, (fo). .

Equations (26) are now three linear equations in the three unknowns I:i.H1,

l:i.a, 1:i.(J and can be (more or less) readily solved by standard determinantal
methods. At this point, the coefficients of the I:i.'s are numbers. (There is little
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point to give the actual values of the partial derivatives here, for they would
only complicate the appearance of the equations.)

This then, is the complete solution for the problem.
An instructive solution to this problem is easily found if (J is known (as it

may be for a particular aircraft-camera combination from previous solutions to
the level flight problem).

In this case, let
12 COS <P2

K=--
h cos <PI

1a cos <Pa
L=--

h COS <PI

HI
X=-

H2

HI
y=

Ha

V;i = (J + <Pi

Substituting equations (27) in equations (21) and (22) yields

K sin (a + V;l) - X sin (a + V;2) = 0

L sin (a + V;l) - Y sin (a + V;a) = O.

Now substituting in equation (29) the value

HI HI
Y=-=------

H a HI - 2p sin a

and solving for HI yields

(27)

(28)

(29)

(32)

2pL sin a sin (a + V;I)
H1 = ~~

L sin (a + V;l) - sin (a + V;a)

Substituting from equation (30) into equation (28) and replacing X by HI/HI-P
sin a yields, after simplification,

KL sin (a + V;l) + K sin (a + V;a) - 2L sin (a + V;2) = O. (31)

This is a straightforward equation in a, F(a)'=O and is readily soluble by
Newton's Method, as demonstrated previously.

This completes the solution, for having a, one finds HI from equation (30),
and as before, the entire geometry of the situation is in hand.

There are other problems for which this type of scale-ratio analysis might
prove useful. Some preliminary analysis of tilts in near vertical 6" focal 9 X 9
cameras has so far demonstrated that when photographs are made at 60%
overlap and image lines perpendicular to the flight paths are measured, we have

12- = K. = 1 + O. Olt°
11

which says simply that under favorable circumstances (no relief, etc.) there is
a 1% change in the scale ratio per degree of tilt. ow 1% of an image line 8
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inches long is a sizeable and easily measured quantity. So it is clear that fairly
small tilts yield measurable" results. These preliminary thoughts are just that.
Mr. Eldon D. Sewell is working on some problems which may combine this
analysis with the height-ditferencing methods; It is hoped some fruitful results
may soon be available for presentation in this journal.

IV. CONCLUSION AND ACKNOWLEDGMENT

The four problems discussed previously cannot be regarded as a complete
catalog of solutions. The author has demonstrated a method, and a different
approach. This different approach, if there is a common denominator to the
several problems considered, is characterized by gathering and using more
data internal to the aircraft and its motions. What of the fellow in the field
whose problem is slightly different and which does not fit neatly into one of
the enu~erated pigeon holes? If he can improvise his own methods, based, if
necessary, on insights and suggestions found herein, he will be in good shape.
If he insists on a made-to-order computing form for a non-routine problem,
the author would be inclined to mistrust his results anyway. The foregoing is
another way of saying what has been said loud, long, and often before-we need
at least a few people in the field who can improvise methods for riew problems
on the spot. Routine problems are best handled routinely; but nonroutine
problems can never be so handled.

Most ideas are the direct or indirect by-product of stimulating conversation;
the thoughts in this paper are no exception. To Col. Richard Philbrick, Major
James Henry, Eldon D. Sewell, Dr. Sam Burka, Captain Walter Levison, and
Yale Katz, who, allowing themselves to be buttonholed, have shown interest
when they could have legitimately shown boredom, much thanks. And since
this paper was written at home, a special type of thanks to my wife.
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NEWS NOTE

THE NEW FA-181 SENSITIVE ALTIMETER

This new Sensitive Altimeter has been designed particularly to withstand the sever
est service in "the field. It meets the requirements of Military organizations. For durabil
ity, the Altimeter mechanism is supported by a shock mounting in a sturdy aluminum
case with a latched metal lid. The instrument case contains a desiccant to absorb mois
ture and the instrument may be completely sealed to prqtect it during transport. The
new Altimeter employs the W&T Mechanism featuring the self-balancing principle and
custom calibration.

The W&T Palmer Altirule has been 'designed to compute elevations c'irectly from
observations when using the two-base method. Information on the FA-181 Altimeter,
the W&T Palmer Altirule and modern Altimetry methods is available from the manu
facturer, Wallace & Tiernan Products, Inc., 1 Main Street, Belleville 9, New Jersey.


