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INTROPUCTION AND PURPOSE

IN THE paper, "A Resume of Aerial
Triangulation Adjustment at Army

Map Service," which appears in PHOTO
GRAMMETRIC ENGINEERING, December,
1951, Mr. R. S. Brandt in part of his dis
cussion describes some practical procedures
for the adjustment of horizontal aerial
triangulation. Since the publication of this
paper, these methods have beeh somewhat
altered at the Army Map Service.

Some variations in the treatment of the
computations for the X error and azimuth
error curves have been adopted. These
variations have led to a new mathematical
approach, which provides a more rigorous
solution to the problem of separation of the
components of total X error and total
azimuth error for three or more noncol
linear points in a triangulated strip. As
used here, the terms, "total X" and "total
aziI?uth" errors, are defined as the alge
braIc sum of the X scale and swing errors
and the algebraic sum of the azimuth and
Y scale errors, respectively.

The problem of component separation
is common to the analysis of either graphi
calor coordinate horizontal triangulation;
generally it is encountered when field
control is distributed at random or asym
metrically within a rectangular coordinate
system. This paper purports to present and
briefly explain these newer technical meth
ods for the determination of compensatory
values in horizontal aerial triangulation.

X AND AZIMUTH CURVES

There has been no significant departure
from the O. Von Gruberl theoretical equa
tions for the accumulation of X and Y
scale error. Professor Von Gruber's equa
tion, Ax = kX2/2, has been written, Ax
=.kX2. Since k/2 is no more or less a con
stant than is k, the represented ordinate

1 Von Gruber, 0., Beitrag zu Theorie und
Praxis von Aeropolygonierung und Aeronivell
ment, Bildmessung und Luftbildwesen, Number
3, 1935.

remains identical. Von Gruber, however,
was concerned with the actual scale-change
accumulation and assumed a true scale in
the starting model with a resultant zero
slope of the X curve at the zero abscissa.
In practice, such an assumption is fre
quently not correct; since Ax = kX2 is the
equation of a true parabola, the assump
tion is not necessary. If three or more
control points along the line of flight 'can
be obtained, then the point-slope equation
of a parabola Ax=kX2+hX (where h is
the slope of the curve at the zero abscissa)
will, by simultaneous solution at the two
control points, X;eO, give the proper
curve for any angle of tangency at the
starting point. Adhering to Von Gruber's
conclusion that the Y scale error is the
first derivative of the equation of the X
error curve, then by differentiation the
equation for Ay becomes Ay = 2kX+h.
Here, Ay refers to the Y sGale error in units
per unit, and must of course be multiplied
by the Y distance of the point being con
sidered, from the chosen instrument X
axis. As defined in this treatise, the in
strument X axis is any line of constant
ordinate in the instrument coordinate sys
tem. The X scale and azimuth error ac
cumulations are assumed to be functions
of the directed X distance parallel to this
line. .

A significant economy of computation
has been achieved by treating the azimuth
error with a parabolic equation identical
to that of the X scale error. This treatment
is not an argument against the conclusion
of Mr. Brandt2 that the azimuth error
curve is probably a circle. The fact is that
in practice the infinitesimal quality of the
curvature constant is such that there is no
significant difference between the ordinate
of a parabola and that of a circle at any
point. The assumption that the azimuth

2 Brandt, R. S., Resume of Aerial Triangu
lation Adjustment at Army Map Service,
PHOTOGRAMMETRIC ENGINEERING, Vol. XVII,
Number 5. December, 1951.



628 PHOTOGRAMMETRIC ENGINEERING

error curve is the parabola AAz = A X2+BX
leads to the use of its first derivative,
ASw=2AX+B as the equation of the
Swing curve.

THE COMPONENT SEPARATION PROBLEM

While the accumulation of the X scale
and the azimuth errors are functions of X,
the error components of Y scale and Swing
are functions of both X and Y. More spe
cifically, the errors of Y scale and Swing
are directly proportional to their Y dis
tance from the instrument X axis. There~

fore, when Ay and ASwing exist at any
abscissa, the only point at which they are
zero is a point zero distance from the X
axis, or more simply, on the axis itself.

In the past the separation of the four
components of horizontal error (see Figure
1), has been accomplished, where possible,
by reducing ASwing and A Y to zero by the
method of interpolation ·of total X and
total azimuth error values to their proper
values at the axis. This can be done with
a reasonable degree of approximation when
there are control points of nearly equal
abscissae, located on opposite sides of the

instrument X axis. Under practical condi
tions, however, numerous cases are en
countered where this method cannot be
used. The practical problem is more gener
ally represented in Figure 2 wher:ein a
random distribution of control is given in
an iirea of sparse gr'ound control.

With points A and B distributed as in
Figure 2, the axis may be placed at any
ordinate between the two points by simple
interpolation. However, the ~ethod of re"
ducing A Y and ASwing to zero by inter
polating the proper total X and total
azimuth error values to points on the axis
at control points M and N, obviously
cannot be applied. Under such conditions
in the past, an approximation method has
been employed, wherein a tentative X
curve was drawn to the total X error values
of the mean point A-B, point M and point
N, considering the ASwing component to
be zero, as if the points were actually
located on the instrument axis. A correc
tion for A Y could then be computed from
this tentative X curve and applied to
points M and N, after which the final
azimuth, Swing, X and Y curves could be
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computed in that order. As stated, this
was an approximation method, which
limited the precision of the adjustment,
and in the case of coordinate triangulation,
proved undesirably laborious.

A SOLUTION TO THE COMPONENT
SEPARATION PROBLEM

A mathematical method has been de
veloped, which provides a rigorous solutio'n
for any case of noncollinearity of control
points. From a practical accuracy stand
point, it is desirable that the points be
located respectively at the two ends and
somewhere near the middle of the triangu
lated strip, but this requirement is not
essential to solution of the problem.

Assuming at the start that the X and
azimuth error curves are parabolas, and
that the Y scale and Swing curves are the
first derivatives of the first two, then for
any triangulated strip such as Figure 2, by
adding the first derivative of the X curve
to the equation of the azimuth curve, and
conversely, subtracting the first derivative
of the azimuth curve from the X curve
equation, one may set up four simultane
ous equations, each with four unknown co
efficients of X. Using Figure 2 as a working
model, this may be, done in the following
manner:

(1) known total X error at Pt. M = kX2
+hX -(+Dy)(2AX+B)

(2) known total X error at Pt. N = kX2
+hX-( -Dy)(2AX+B)

(3) known total Az error at Pt. M=AX2
+BX+(+Dy)(2kX+h)

(4) known total Az error at Pt. N = A X2
+BX+( -Dy)(2kX+h)

where k is the constant of curvature of the
X error curve, h is the slope of the curve
at zero abscissa, A is the constant of curva
ture of the azimuth error curve, B is the
slope of the curve at zero abscissa, and Dy
is the signed Y distance from the ordinate
of the mean control point A -B, at zero
abscissa.

The simultaneous solution of the fore
goi~g equations will give the coefficients of
the error curves from which corrections to
the coordinates of each photo tie point
can be readily computed. It should be
noted in this discussion of error compo
nents that the algebraic sign of the error
rather than that of the correction has been
used throughout. For correction, a reversal
of signs of the final values is necessary.
Also, in coordinate triangulation care must
be exercised in handling the equations in
cases where the instru men t coordinates
and the true X and/or Y coordinates in
crease in opposite directions.

AUTHOR'S NOTE: Credit is hereby grate
fully given to Mr. R. S. Brandt, Chief,
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