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ABSTRACT: A new method of system-testing a Mk 5 cinetheodolite was
initiated and completed at the Naval Proving Ground, Dahlgren, Vir­
ginia, during the period August-October, 1955.

The method is based on the photogrammetric reduction of data ob­
tained from star exposures made at regular angular intervals, at known
chronometer times, and at a known geographic position. Mechanical
precision of the rotation axes and the accuracy of direction angles are
determined with these data.

The vertical errors are determined from exposures made at regular
intervals in a vertical plane having a fixed azimuth, while horizontal
errors are determined from exposures made at regular intervals in azi­
muth having a fixed vertical angle.

The results obtained are given at the end of the report. These data,
because of the errors of timing, are considered correct to plus-or-minus 3
seconds of arc. The errors of timing shall be reduced to plus-or-minus 0.2
seconds of arc in subsequent tests.

It is concluded from the results of the test that the Mk 5 is a satis­
factory ballistic cinetheodolite, except for an apparent camera-tube­
bending effect on elevation readings, and that the method of testing pro­
vides a reliable knowledge of the instrument's static errors.

SYNOPSIS

T HE cinetheodolite is a particular type of goniometric camera adapted to re­
cording phenomena in motion automatically. A goniometric camera is one

that is capable of rotation about two mutually orthogonal axes that are equipped
with graduated circles, whereby the direction angles of an exposure may be
visually read or photographed.

The space coordinates of an object may be determined with the camera
coordinates of the conjugate images, the direction angles of the camera optical
axes, and the ground coordinates of the two corresponding camera stations
from which the object has been simultaneously photographed. The accuracy of
the space coordinates so obtained depends on the accuracy of the given data.
Of particular interest here is the accuracy of the goniometric and camera data,
or specifically, the given mechanical direction angles and the camera coordinates
(x, y, f) of an image.

The accuracy of the direction angles is dependent on:
(1) The mechanical precision of the goniometric axes (horizontal and vertical

axes).

* Statements and opinions advanced in this paper are to be understood as individual expres­
sions of the author and not necessarily those of the Navy Department.

t This is one of the papers obtained by the U. S. Reporter for Commission V of the Interna­
tional Society of Photogrammetry.

286



SYSTEM-TESTING CINETHEODOLITES BY STARS 287

(2) Centering of the circles with respect to these axes (circle eccentricity).
(3) Orientation of reference plane and point.
(4) Orthogonality of the axes with respect to each other.
(5) Vertical deviation of the telescope tube caused by gravity alone.
(6) Dynamic deviations caused by constant and accelerated movements in

tracking.
(7) Deviations caused by differential expansion and contractioil of compo­

nents arising from temperature change.
Errors arising from (1), (2), (3), (4), and (5) may be determined from star

exposure data. The plate bubbles and vertical index constitute the horizontal
reference plane and point.

The accuracy of camera coordinate data is dependen t on:
(1) Magnitude and direction of image displacement owing to aberration

characteristics of the lens.
(2) Focal length accuracy.
(3) Coincidence of the fiducial axes intersection with the point where the

optical axis pierces the focal plane.
(4) Lens system inclination.
(5) Lens element decentering.
(6) Film flatness.
(7) Film distortion.
Because of the long nominal focal length of 600 millimeters and the narrow

cone angle of 3° by 2° errors related to (4), (6), and (7) are trivial if they fall
within the range of similar errors found in most metrical cameras. Errors arising
from (7) are independent of the optical mechanical system. Tests of comparable
film exhibit maximum image displacement owing to film distortion of 11 mi­
crons at the outer edges and 5 microns in the region of most-used imagery.

In fact, most of the camera data errors are trivial compared to the mechani­
cal errors caused by the length-cone-angle geometry of the camera. Perhaps the
most significant of the camera errors are those defined by (2). The unimportance
of camera errors is· contrary to conventional photogrammetric applications
where cameras having short focal lengths and wide cone angles are the practice.
The difference in significance arises primarily from the fact that ballistic per­
sonnel are interested in the coordinates of a rapidly moving object or point,
while photogrammetrists are concerned generally in the three-dimensional
delineation of a space containing an infinite number of static objects.

In any case, errors defined by (2) shall be determined by star exposures in­
sofar as (2) is significant, and (1) and (3) may be ignored for small cone angles.

The bulk of photogrammetric effort is directed toward the delineation of an
undulating object surface and is accomplished largely with various types of
stereoplotting instruments. This practice has led to an opposition to an analyti­
cal approach to the problem on the premise that it is time-consuming, compli­
cated, and impractical. The bulk of the ballistic and missile effort is toward the
definition of a series of space coordinates describing the path of a rapidly moving
object, and is accomplished by analytical means with the aid of automatic
computers. The instrumental approach is in general too slow, and inaccurate.
Thus, independent of the photogrammetrists, mathematicians and physicists
have developed practical procedures and methods of reducing large quantities
of data by analytical means largely owing to the photogrammetrist's inherent
opposition to the analytical approach.

It is clear, then, that the method of handling photogrammetric data is
dependent on the nature of the problem, the background of the investigators,
and the available tools for reducing the data.
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If the photogrammetrist is to properly serve his purpose, the photographic
methods and procedures employed in the analysis of ballistic data should be
encompassed by him in order that the methods and procedures of photographic
ballistics and photogrammetry may be exchanged, evaluated, and exploited
for advancement of the science of photographic measurements.

There are three approaches to the problem of obtaining accurate data with
goniometric photographic recorders of static or moving phenomena.

One approach is to build accuracy into all components of the instrument.
This results in an extremely costly instrument that is wholly dependent on the
manufacturer for adjustment. This is the general practice in Europe.

Another approach is to include provisions for a series of adjustments where,
with a suitable test range, the errors may be adjusted out from time to time.
This is time-consuming where observations are being made from day to day in
large quantities. This is the general practice of surveyors in this country.

A third approach is to build precision into a minimum number of compo­
nents, such as the horizontal and vertical axes; then to determine the remaining
errors by calibration and to enter them as constants in the analytical reduction
of the coordinates of a point. This is a logical outgrowth of data reduction by
automatic computers; it, therefore, is the approach of the U. S. Naval Proving
Ground in system-testing by stars.

SYSTEM-TESTING By STARS

A. INTRODUCTION

Generally, it is highly objectionable to employ one science requiring a special
set of experiences, formulae, and nomenclature to evaluate a precise complex
instrument relative to another science that also requires a special set of experi­
ences, formulae, and nomenclature. The specific reference here is the testing
of a cinetheodolite for static errors by astronomic methods. Three considera­
tions are offered to overcome the basic objections:

(1) Any system developed and component-tested in the laboratory should
be system-tested in the field if the grossness of the field errors does not camou­
flage the real errors of the system;

(2) Observers or operators of the instrument referred to will logically be
more familiar with astronomic methods than optical bench methods; and

(3) The operators have an evaluation tool that frees them from a dependence
on laboratory procedures and equipment.

The following errors may be determined from a series of exposures made
at regular intervals in a vertical plane.

1. Eccentricity of the vertical circle.
2. Inclination of the horizontal axis (Ix).
3. Inclination of the camera optical axis (Io).
4. Index error of the vertical circle.
5. Precision of the horizontal axis (X axis).
The geometry of the observing procedure is illustrated in Figure 1. Assume

that the exposures are made at a fixed azimuth with vertical angles of 30°, 60°,
90°, 120°, and 150° in accordance with Figure 1.

The following errors may be determined from a series of exposures made at
regular intervals in azimuth, with the camera clamped at some fixed vertical
angle, say 60°.

1. Eccentricity of the horizontal circle.
2. Inclination of the vertical axis (Iz).
3. Precision of the vertical axis (Z axis).
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The geometry of the observing procedure is illustrated in Figure 2. Assume
that exposures are made at a fixed zenith angle with azimuth angles of 0°,
60°, 120°, 180°, 240°, and 300°.

In making the exposures in a vertical plane, each of the zenith angles is pre­
set on the zenith circle with the instrument leveled. Each exposure is referenced
to radio time signals at opening and closing. The time interval of exposure de-

y

FIG. 1. Geometry of vertical observing procedure.

pends on the relative aperture and focal length. Three stars are identified on
each exposure defining a near-equilateral triangle and equal radial distances
from the fiducial axes intersection.

The stars are identified by comparison of the negative with a suitable star
chart. The approximate right ascension and declination of the principal point
are required for each exposure to facilitate positioning the negative on the star

FIG. 2. Geometry of horizontal observing procedure.
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chart. The preset azimuth (Az), vertical angle (h), and radio times converted
to sidereal time are employed in these preliminary reductions:

1. Right Ascension (RA). The right ascension of a star is the angle measured
eastward in the plane of the celestial equator from the celestial meridian passing
through the vernal equinox to the celestial meridian passing through the star.

RA = LST - t (time)

where
LST is the right ascension of the observer's meridian and is measured in the

same manner.
t is the hour angle of the star.
The hour angle of the star is the angle measured westward in the plane of

the celestial equator from the observer's meridian to the meridian passing

FIG. 3. Astronomic notation.

through the star. The hour angle, like the right ascension, may vary from 0°
to 360°, or Oh to 24h sidereal time. The hour angle is computed with the cosine
formula:

cos t =
sin h - sin 0 sin rP

cos 0 cos rP
where

h = altitude of star,
0= declination of star, and

c/> = latitude of observer.
The declination of a star is the angle measured in the plane of the star's

meridian above or below the celestial equator. The latitude of the observer is
the angle measured in the plane of the observer's meridian above or below the
equator. These various notations and the equation for cos t are illustrated in
Figure 3.
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If the numerator is negative, t is between 90° and 270°. If the observed
azimuth is between 0° and 180°, + cos t is between 270° and 360° and -cos t
is between 180° and 270°. If the observed azimuth is between 180° and 360°,
+ cos t is between 0° and 90° and - cos t is between 90° and 180°. The sign con­
vention is shown in the following table.

SIGN CONVENTION OF t

Then

Az

00 to J800

1800 to 3600

+ cos t - cos t

12h to 18h

6h to 12"

LST = (Radio time + time zone) + GST 0" + sol.-sid. corr. - A (time)

GCT = (Radio time + time zone)

The date of (Radio time+time zone) = GCT is the argument for obtaining
GST 0\ and is also the argument for obtaining solar to sidereal correction from

2
o
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FIG. 4. Star identification.

tables found in the American Ephemeris. ')0,. = longitude of observer and is the
angle measured eastward in the eastern hemisphere, and westward in the western
hemisphere, in the plane of the equator from the zero meridian passing through
Greenwich to the meridian passing through the observer.

2. Declination. Computation of declination is straightforward and is ob­
tained without reference to time.

sin I) = sin h sin cf> + cos h cos cf> cos A z

Sin 0 is negative when the Az is between 90° and 270° and the product cos h
cos cf> cos Az is greater than sin h sin cf>.

Assume, now, that the celestial coordinates of the principal point have been
determined. The celestial coordinates of the observer and the principal point
are plotted on a star chart. The negative is positioned over the point correspond-
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ing to the celestial coordinates of the principal point, and the y fiducial line of
the negative oriented on the line drawn from the principal point to the ob­
server's position. This is illustrated in Figure 4.

The coordinates of the observer corresponding to RA and 0 are LST and ¢.
The line connecting the plotted position of the principal point and the observer
should define an angle with the meridian passing through the observer equal to
the observed azimuth, approximately. The star images selected for definition
and geometric distribution are easily identified when the position and orientation
of the negative on the star chart are established.

After the stars are identified, the camera coordinates are measured referred

ZEt-!ITH

Z

FIG. 5. Geometry of refraction on an oblique exposure.

to the fiducial axes, and the apparent places of the stars for the instant of ex­
posure are computed. The terminals of the star trails are measured in x and y.
The mean time of opening and closing is used in the apparent places computation
and the mean coordinates of the terminals in photogrammetric computations.

The coordinates of any point are:

xb 1 + xel

YP = Yl

where band e denote beginning and ending, and p, the principal point.
The x and y values are corrected for refraction. The correction is applied so

as to increase the absolute values of x and translate all y values away from the
zenith.

The equations for the refraction corrections are derived from the cosine for­
mula illustrated in Figure S.
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cos "Iz = cos "Ie cos "II - sin "Ie sin "II cos 0 1

293

where
1'z = zenith angle of image,
"Ie = camera zeni th angle (900

- ho),
"II = camera zenith angle of image referred to lens axis, and
'II = the angle in the plane of the film at the principal point between the

vertical plane defined by the observer's zenith and the principal point,
and the plane defined by the star image and the principal point.

The camera angle "II is obtained with camera data.

1
cos "II =

(X,2 + yl2 + P)1/2

• (X12 + y12)1/2

sm "II =
(X,2 + yl2 + P)1/2

YI
cos 01 = -----­

(X12 + yl2) 1/2

where 1 is the focal length of the camera.
Substituting,

Equating for y,

y=
cos "1<1 - cos "I zL

sin "Ie

cos "I.L
cos "IJ - -.-­

sm "Ie

Differentiating y with respect to 1'z,

L
dy = sin "Iz d"lz

sin "Ie

ow,

d"lc = tan "Iz ( 983 B ) tan 1"
460 + T

where
B = barometric pressure in inches, and
T=temperature in Fahrenheit degrees.

Therefore,

sin2 "Iz L
dy = ----.-·K

cos "Iz SIn "Ie

where

(
983 B )K = ---- tan 1"

460 + T

(1)

The correction in x is obtained from the differentiation of an expression in x:

x = L sin "I z sin w

dx = Leos "Iz sin w d"l. = L sin w sin "IzK
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Since

Summarizing,
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x = L sin 'Y z sin w,

dx = x·K (2)

where

1 - cos2 'Yz
dy=----

cos 'Y z

L

sin 'Y z

K

f . v
cos 'Ye = cos 'Ye - - sIn 'Ye-

L L

L = (x 2 + y2 + P)1/ 2

K = ( 983 B ) tan 1"
460 + T

dx = x·K

The mean places of the selected star images are computed with the standard
equations:

1 ( 1 ) (to - 1950)31. 0 = Am + (to - 1950)AVx + - (to - 1950)2 - SVx+ 3rdtx
2 100 100

1 ( 1 ) (to - 1950)300 = 0", + (to - 1950)A V. + - (to - 1950)2 -- SV. + 3rdt.
2 100 100

where
Am, 0", = values of right ascension and declination obtained from the star

catalogue.
to = year of the observation.

A V, SV = annual and secular variations in right ascension and declination
found in the Boss, Yale, or AGK2 star catalogues.

3rdt = third order terms in right ascension and declination also found in
the star catalogues.

The apparent places for the instant of observation may be computed with
Independent star numbers.

1 1
A = 1.0 + f +l' + TjJ. + - g sin (G + 1. 0) tan 00 + - h sin (H + 1.0) sec 00

15 15

o = 00 + TjJ.' + g cos (G + 1.0) + h cos (H + 1.0) sin 00 + i cos 00

where
C

h=-­
sin H

B
g=-­

sin G

A, 0 = right ascension and declination for the instant of observation.
T = fractional part of the year elapsed from the beginning of the Besselian

fictitious year.
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}J-, J./ = proper motions, obtained from the star catalogues.
The values T, f, 1', G, H, i, B, and C are found in the American Ephemeris.

All subsequent factors are determined with this fundamental data.

B. CALIBRATION DATA

1. Procedure for Cones of 10 Degrees or Greater. The focal length and principal
point location are computed with the zenith exposures insofar as they hav:e the
least refraction and the most symmetrical data with respect to the principal
point. The equations for correcting the images for refraction apply to all but
the zenith exposures. The refraction corrections for zenith exposures are derived
from a tangent formula:

tan I'

But, since

f
tan I'f = R

f sec2 I'dI' = dR

f

or

and

Now

Therefore,

or

R sin () = x and R cos () = y,

dR sin () = dx and dR cos () = dy

f sin () sec2 I'dI' = dx

f cos () sec2 I'dI' = dy

(
983B )

tan I' tan I" = tan I'K
460 + T

f sin () sec2 I' tan I'K = dx

f cos () sec2 I' tan I'K = dy

xK
--=dx
cos2 I'

yK
--=dy
cos2 I'

The reduced coordinates and angles subtended by pairs of images comprise the
given data. The angles subtended by three images a, b, and c are computed
with trigonometric functions of right ascension and declination.

cos aLb = sin oa sin Ob + cos oa cos Ob cos (Aa- Ab)

cos bLc = sin 0b sin 0,. + cos 0b cos Oc cos (A b - Ac)

cos cLa = sin Oc sin oa + cos Oc cos oa cos (A c - Aa)



xac = xa + L: ~ x

yac = ya + L: 11Y

f = l' + L: ~z

With these data, the following equations are formed:

al~x + bl~y + el~z = ql

a2~X + b2~y + e2~Z = q2

aa~X + ba~y + ea~Z = qa

el = f'(ml + nl)

e2 = 1'(m2 + n~)

ea = f'(ma + na)

ql = - LaLb sin aLb'~(aLb)

q2 = - LbLe sin bLe'~(bLe)

qa = - LeLa sin eLa'~(eLa)

La
cos aLb'­

Lb

Lb
cos bLe'­

Le

Le
na = 1 - cos eLa' ­

La

xaxb + yayb + P
LaLb

xbxe + ybye + j2

LbLe

xexa + yeya + P
LeLa

bl = yaml + ybnl

b2 = ybm2 + yen2

ba = yema + yana

PHOTOGRAMMETRIC ENGINEERING

Lb
ml =.1 - cos aLb' ­

La

Le
m2 = 1 - cos bLe' ­

Lb

cos aLb' =

cos eLa' =

cos bLe' =

La
ma = 1 - cos eLa' ­

Le

La = (xa2+ ya2+ f2)1/2

Lb = (xb2+ yb2+P)1/2

Le = (xe2+ ye2+ P)1/2

al = xaml + xbnl

a2 = xbm2 + xen2

aa = xema + xana

where

~(aLb) = aLb - aLb

ll(bLe) = bLe - bLe'

~(eLa) = eLa - eLa'

and l' is the first approximation of j.
The equations are solved simultaneously for ~x, ~y, and ~z, which are

applied as corrections to the x and y coordinates and f'. With the corrected
values, new coefficients and constant terms are formed and a second set of
simultaneous equations is solved for IlX2, IlY2, and Ilz2. The forming of revised
coefficients and constant terms coupled with repeated simultaneous solutions is
repeated until the differential unknowns and constant terms vanish.

Then, for any image a,

296
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Over three approximations are seldom required. These values of I, 1;~x and
~~y are employed in all other exposures. The value of 1;~z is a direct measure
of the accuracy of the focal plane setting, while 1;~x and 1;~y are a measure of
the accuracy with which the principal point was made to coincide with the
fiducial axes intersection.

2. Procedure for Cones of Less Than 10 Degrees. The spatial resection method
of determining camera calibration data described in the previous section fails
when the spatial resection angles are very small. Small cone angles of 5 degrees
or less yield extremely small resection angles which in turn produce large
computational errors in the coordinates of the principal point. Fortunately, the
precise location of the principal point is not significant for small cone angles.
For this reason, a method of modified dependencies is introduced for the
determination of focal length only. The method of modified dependencies treats
the given coordinates of the principal point as correct.

The simultaneous equations are developed from the three general forms:

a form

cos al cos ax + cos fll cos a y + cos 'Yl cos a. = cos a'l

cos a2 cos a x + cos fl2 cos a y + cos 'Y2 cos a. = cos a"

cos a3 cos ax + cos fl3 cos a y + cos 'Y3 cos a. = cos a"

fl form

cos al cos flx + cos (31 cos (3y + cos 'Yl cos fl. = cos fl'l

cos a2 cos fl x + cos fl2 cos fl~· + cos 'Y2 cos fl. = cos fl"

cos a3 cos fl x + cos fl3 cos fly + cos 'Y3 cos fl. = cos fl"

'Y form

cos al cos 'Y. + cos fll cos 'Yy + cos 'Yl cos 'Y. = cos 'Y"

cos a2 cos 'Y x + cos fl2 cos 'Y. + cos 'Y2 cos 'Y. = cos 'Y"

cos a3 cos 'Y x + cos fl3 cos 'Y y + cos 'Y3 cos 'Y. = cos 'Y"

where

y"
cos (3" = ------,,~----

(X,,2 + y,,2 + j2)1/2

f
cos 'Y" = --------

(xn2 + y,,2 + j2)1/2

cos a'n = sin GHA" cos 8"

cos flsn = cos GHA" cos 8"

cos 'YS n = sin 8"

Division of each eq)lation by cos 'Y" gives a modified form:
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X1a" + Yla y + cos a. = cos 0181 sec 'Yl

x2a" + Y2ay + cos 01" = cos 01 82 sec 'Y2

x3a" + Y3ay + cos 01. = cos 018 • sec 'Y3

xlb" + ylb y + cos {3. = cos {381 sec 'Y1

x 2b" + y 2by + cos {3. = cos {382 sec 'Y2

X3b" + Y3by + cos {3. = cos {38' sec 'Y3

XIC" + YIC y + cos 'Y. = cos 'Y81 sec 'Y1

X2C" + Y2Cy + cos 'Y. = cos 'Y82 sec 'Y2

X3 C" + Y3Cy + cos 'Y. = cos 'Y8. sec 'Y3

The unknowns are a", ay, and cos 01. in the first group; b", by, and cos {3. in the
second group; and C", Cy , and cos 1'" in the third group. Only the quantities
cos 01., cos {3., and cos 'Y", are needed and these quantities are in error as a
function of the error in the assumedi in the formation of the sec l' values.

lcos a. lcOS 01_,

1 cos {3. = sec 'YI cos {3-t

cos 'Y. cos 'Y_,
j
a" lay

Xl b x + yl by +
C" Cy

j
a" lay

X2 b" + Y2 by +
C" Cy

(cos 01.

1 jcos {3"

lcos 'Y" l
cos 0182

sec 'Y~ cos {382

cos 'Y82

la" jay
X3 b" + Y3 by +

C x Cy lcos a. lCOS a_.
1 cos {3" = sec 'Y3 cos {383

cos 'Y" cos 'Y8.
If the assumed i value were correct, the corresponding values of cos 01", cos f3 ••

and cos 'Y. would be equally correct. In which case, the following equation would
be satisfied:

cos 201 • + cos2 {3. + cos2 'Y. = l.

As a consequence of errors in i,
1

cos2 01" + cos2 {3" + cos 2'Y" = ­
m2

and
1

m=
(cos 2 01. + cos2 {3. + cos2 'Y,)1/2

The direction cosines of z may be improved by the factor m.

cos 01.' = m cos 01.
cos {3.' = m cos {3.

cos 'Y.' = m cos 'Y.
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whereupon

cos2a/ + cos2 (3/ + cos2 'Y/ = 1

\iVith adjusted direction cosines, improved sec 'Y values may be computed:

cos a SI cos a/ + cos (3s1 cos {3/ + cos 'YS I cos 'Y/ = cos 'Y/

cos a82 cos a/ + cos (382 cos (3/ + cos 'Y82 cos 'Y z' cos 'Y2'

cos a 83 cos a/ + cos (383 cos (3/ + cos 'YS3 cos 'Y / cos 'Y/

The entire solution is repeated with revised sec 'Y values and the "sum-of-the­
squares" test repeated until

The sec l' values producing these correct z-direction-cosine values are regarded
as having an implicitly correct 1 component. Therefore,

_ (X12 + Y1
2
)1/2

h-
tan2 'Yl

(
X22 + Y22)1/2

Jz=
tan2 'Y2

_(Xl + Y3
2)1/2

fa-
tan2 'Y3

C. DIRECTION COSINES OF THE CAMERA Z AXIS

The direction cosines of the camera z axis are computed for each exposure.

cos a 8a cos a. + cos (38a cos (3. + cos 'Ysa cos 'Y. = cos 'Ya

cos asb cos a. + cos {38b cos {3. + cos 'Ysb cos 'Y. = cos 'Yb

cos a se cos ex. + cos {3se cos {3. + cos 'Y8e cos 'Yz = cos 'Ye

where

cos a sa = sin GHA a cos oa

cos a 8b = sin GHA b cos Ob

cos a sc = sin GHA c cos Oc

cos (3sa = cos GHA a cos oa

cos (3sb = cos GHA b cos Ob

cos (3S(; = cos GHA c cos Oc

GHA = (GCT + GST 0" + GCT corr. - RA)15

[RA =right ascension =:\ from the apparent place computation (in time).]

cos 'Y8a = sin oa
J

cos 'Ya = ------
(xa2 + ya2 + j2)1/2

J
cos 'Y b = ---------

(xb 2 + yb2 + 12)1/2

1
cos 'Y8e = sin Oc

cos 'Y8b = sin Ob

cos 'Y" = (X,? + Yc2 + j2)1/2

These equations are solved simultaneously for cos (Xz, cos (3z, and cos 1'•.
The geometry of these equations is illustrated in Figure 6.
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FIG. 6. Astronomic direction angles.

D. INCLINATION OF THE CA~fERA OPTICAL AXIS TO THE X AXIS

If the optical axis of the camera is inclined to the X axis, the astronomic
coordinates of each exposure define a secondary circle with respect to the X
axis. A secondary circle is one which is perpendicular to a pole and parallel to
an equator but does not pass through the center of a sphere. Great circles can­
not define parallel planes. Secondary circles can. Thus, while the path traced
by the exposure is a line with any orientation whatsoever with respect to the
celestial coordinate system, it is a secondary circle which defines equal angles
to the great circle that is perpendicular to the inclined X axis.

In other words, the arcs defined by the X axis produced to the celestial
sphere and each principal point produced to the celestial sphere are equal. With
this geometry in mind, we may write an equation for each exposure:

cos a z, cos ax + cos flz, cos flx + cos 'YzJ cos 'Yx = cos 11

COS a z, COS ax + COS flz, COS flx + COS 'Yz, COS 'Yx = COS 12

cos a z" COS ax + COS flz" COS flx + COS 'Y z" COS 'Yx = COS In

where ax, {3x, 'Yx are the direction angles of the X axis, and 1 is the angle
defined by the camera z axis and the X axis. The following equality would exist
if the X axis had no mechanical rotational error:

10 = ---------

Let it be assumed that the Least Square value is 1 0 , which is the value corre­
sponding to a perfectly precise horizontal, or X, axis. Division of the above equa­
tions by cos 10 gives

COS azov + cos flzJ!J. + cos 'Y .,V = 1

cos a.2V + cos fl .2!J. + cos 'Y .2V = 1

cos az3V + cos flz3!J. + cos 'Y z3V = 1
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cos OI.x
v=---

cos 10

cos {3x
J.!.=--­

cos 10

cos "Ix
v=---

cos 10

ormal equations are formed in u, 1-', and II:

[cos 01., cos OI. z]v + [cos OI. z cos {3z]f.L + [cos OI. z cos 'Yz]v = [cos OI. z J

[cos OI. z cos {3,]v + [cos {3, cos {3z]f.L + [cos {3z cos 'Yz]v = [cos {3z]

[cos OI. z cos 'Yz]v + [cos 'Yz cos {3,]f.L + [cos 'Yz cos 'Yz]v = [cos 'Yz]

These equations are solved simultaneously for v, f.L, and II.

z.
:z,Et-JITH

FIG. 7. Spherical relation of static errors.

The geometric relations are illustrated in Figure 7.
Then

1
cos 10 =

(v 2 + J.!.2 + v 2)1/ 2

cos OI.x = cos Iov

cos {3x

cos "Ix

cos IoJ.!.

cos Iov

10 is the inclination of the camera optical axis to the X axis.
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E. ASYMMETRY OF THE X AXIS

Assume there is asymmetry in the X axis. cos. ax, cos (3x, and cos 'Yx are
substituted back in the original observation equations to obtain h 12 , .•• , In.
Then the angular measure of asymmetry in the X axis follows:

~'YXt = 11 - 10

~'YX2 = 12 - 10

~'YXn = In = 10

These values are plotted in arc seconds in Y against degrees of zenith angle
in X for a graphical representation of the angular asymmetry in the horizontal
axis. A plot is shown in Figure 8.

cr

I
..
0

a
2
0
U
lJJ
V) .

FIG. 8. X axis asymmetry.

F. INCLINATION OF THE X AXIS

1. With Respect to the Vertica t. It is assumed that the exposures are made at
known geographic coordinates. Let the direction angles of the observer be

f30

'Yo

where

COS ao = sin A cos cf>

cos f30 = cos A cos cf>

cos 'Yo = sin cf>

The inclination of the X axis, I x, is defined by the vertical and the X axis.

cos ao cos ax + cos f30 cos (3x + cos 'Yo cos 'Yx = cos Ix

2. With Respect to the Z Axis. Inclination of the X axis to the Z axis is fre­
quently referred to as trunnion tilt, or the lack of orthogonality between the
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X and Z axes. The direction cosines obtained by the method of Least Squares
for each axis are combined to obtain Ixz:

COS ax cos az + cos {3x cos {3z + cos ,,/x cos "/Z = cos I xz

G. ECCENTRICITY OF THE VERTICAL CIRCLE, AND INDEX ERROR

The arcs defined by Zl, Z2, ... , Zn are computed. Initially,

cos ao cos a ZI + cos {30 cos {3z1 + cos "/0 cos "/ ZI = cos PI

cos ao cos a Z2 + cos {30 cos {3z2 + cos "/0 cos 'Y z, = cos P2

cos 0'0 cos a z" + cos {30 cos {3z" + cos "/0 cos "/ z" = cos pn

Then the true arcs generated in a plane normal to the X axis may be computed.

sin I x sin 10

cos PI - cos Ix cos 10
cos z'z/ = ---------

cos P2 - cos Ix cos 10

sin I x sin 10

" cos Pn - cos I x cos 10
cos Z Zn = --------­

sin Ix sin 10

Z'Zl' is the index error, and the true arcs generated by the vertical circle are

Z'Z2' - z'z/ = OJ + el = 111

z'z/ - Z'Zl' = 0, + e2 = 112

Z'Zn' - Z'Z/ = On-l + en-l = l1n-1

where the e values are the errors of circle eccentricity.

CIRCLE ECCENTRICITY

Circle eccentricity is defined as the situation where the center of a graduated
circle does not coincide with the mechanical axis of rotation that is normal to
the plane of the circle. Circle eccentricity causes errors in the observed angle
that vary as the sine of the angle referred to the line defined by the circle and
mechanical centers. The mean of double-reading circles cancels out the errors
caused by circle eccentricity. It may be seen from Figure 9,

Direct reading

= 11Mean

Reverse reading On - 1800 = 7J + e

Sum OD + On - 1800 =211

OD + On - 1800

2
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180·

FIG. 9. Double reading circle.

There are several methods of determining the errors, and axis, of circle
eccentricity. It is felt that an analytic solution making 110 assumption regarding
sine curve behavior is the more desirable. The analytic solution is illustrated
in Figure 10.

y

f----------k-r--------,-jX

FIG. 10. Circle eccentricity.
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It may be seen that

305

and

Xo = 0

Xl = R sin 1J 1

yo = R

yl = R cos IJ I

Xl - ~x

tan (111 - ~11) = --­
Yl - ~Y

Since R relates only to scale, we may put R = 1, in which case,

sin IJ - ~x'

cos IJ - ~y'

where

~X
~x' =-

R

~Y' = ~y
R

Expanding,

(tan 11 - tan ~11)(COS IJ - ~y') = (1 + tan 11 tan ~11)(sin IJ - .:b j

Here T/ = true angle and () = observed angle.

tan 71 cos IJ - tan 11~Y' - tan ~71 cos IJ + tan ~Tf~Y'

= sin IJ - ~x' + tan 11 tan ~11 sin IJ - tan Tf tan ~11~X'

The unknowns are AT/, AX', and Ay'. Collecting coefficients of common un­
knowns,

tan 11 cos IJ - sin IJ

= [tan ~71](tan Tf sin IJ + cos IJ) + [~y' - tan ~71~X'] tan 11 - (~x' + tan ~11~Y')

Now

~x'
tan ~71 = --­

1 - ~y'

tan ~71 - tan ~71~Y' = ~x'

Therefore

(~x' + tan ~11~Y')

Letting

~y' - tan ~Tf~X' = u

tan ~71 = v

a = tan 11

b = tan 11 sin IJ + cos IJ ­

c = tan 71 cos IJ - sin IJ
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we may write
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alu + blv = CI

a2u + b2v = C2

Normal equations are formed in v and v:

[a·a]u + [a·b]v = [aoc]

[aob]u + [bob]v = [boc]

Solving for v and v,

u = t1y' - tan t1TJt1x'

v = tan t1TJ

and

tan t1TJ(l - t1y') = t1x'

u = t1y' - tan 2 t1TJ(l - t1y')

u + tan t1TJ
t1y' = ----

1 + tan2 t1TJ

t1x' = (1 - t1y') tan t1TJ

t1x'
tan TJo = ­

t1y'

t1 x = R.ti. x'

t1 y = R.ti.y'

ej = (TJj - t1TJ) - (h

e2 = (TJ2 - t1TJ) - (}2

The equations for determining the axis of zero eccentricity by the alternate
solution may be derived from Figure 11. In accordance with the sine

o

curve,

sin TJoe = eo

and

Therefore,

Expanding,
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FIG. J J. Circle eccentricity.

or

sin 01(COS 7Joe) + [1 - cos 01](sin 7Joe) = et'

A similar observation equation is written for each value of e':

(sin ( 1) cos 7Joe + (1 - cos ( 1) sin 7Joe = et'

(sin ( 2) cos 7Joe + (1 - cos ( 2) sin 7Joe = e;'

307

(sin On) cos 7Joe + (1 - cos On) sin 7Joe = en'

The coefficients in parentheses are the observed vertical angles.
7/0 is the angle of the zero axis.
eo is the eccentricity error of the zero (J angle or reference.
e' is the computed error of any observed angle.
e is the maximum eccentricity error referred to the axis of zero eccentricity.

The observation equations are converted to two normal equations: one in
(cos 7/0 e) and one in (sin 7/0 e).

[sinO' sinO]cos7Joe+ [(sinO)'(1- cosO]sin7JOe = [sinO·e']

[sin O· (1 - cos 0) ] cos 1/oe + [( 1 - cos 0) . (1 - cos 0) ] sin 7Joe = [( 1 - cos 0) .e']

These equations are solved simultaneously for cos 7/oe and sin 7/oe. Then

e = [(cos 1/0e)2 + (sin 7JOe)2]1/2

sin 7Joe
tan 710 = ---

cos 7Joe
and
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H. ASYMMETRY OF THE VERTICAL AXIS

For the evaluation of the vertical axis asymmetry, azimuth circle eccen­
tricity, and inclination of the Z axis, exposures are assumed to have been made,
with the vertical circle clamped, at 60°, or 30°, intervals in azimuth. All details
of radio timing, coordinate measurement, refraction correction, star identifi­
cation, and apparent places are the same.

The 30° almucantor generates a secondary circle that defines equal zenith
angles with the mechanical vertical axis of the instrument. The n:echanical
vertical axis rray be neither parallel to the direction of gravity nor perpendicular
to the X axis. Any small departure from absolute equality of the zenith angles
may be attributed to asymmetry in the vertical axis. The dihedral angles de­
fined by successive altitude circles are true azimuth angles generated by the
azimuth rotation of the instrument.

Assume the direction cosines of the camera optical axis have been deter­
mined for each of the fixed-zenith-angle exposures.

The direction cosines of the mechanical vertical axis are determined.

cos a'l cos az + cos flZ l cos flz + cos 'Y" cos 'Yz = cos 'Yl

cos a., cos az + cos fl., cos flz + cos 'Y., cos 'Yz = cos 'Y2

cos a z" cos az + cos fl •• cos flz + cos 'Y,,, cos 'Y. = cos 'Yn

If there were no asymmetry in the vertical axis,

'Yl = 'Y2 = ... = 'Yn = 'Yo
where

'Yl + 'Y2 + ... + 'Yn
'Yo =

and is the zenith angle for zero asymmetry. The value of 'Yo is obtained by the
method of Least Squares. Division by cos 'Yo gives

cos a.tv + cos flz,iL + cos 'Y "1' = 1

cos a.,v + cos fl z,J.L + cos 'Y z,v = 1

cos az"v + cos flz"M + cos 'Y."V = 1

Normal equations are formed in v, p, and /I.

[cos a z cos a.]v + [cos a. cos fl.]M + [cos a. cos 'Yz]v

[cos a. cos fl,]v + [cos fl. cos flz]iL + [cos fl. cos 'Y.]v

[cos a z cos 'Yz]v + [cos 'Y. cos fl.]M + [cos 'Yz cos 'Y.]v

Solving for v, p, and v,

1

cos az = v cos 'Yo

cos flz = J.L cos 'Yo

cos 'Yz = v cos 'Yo

[cos a z ]

[cos fl.]

[cos 'Y']
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cos az, cos (3z, and cos 'Yz are substituted back in the original observation
equations to obtain cos 'YI, cos 'Y2, ... , cos 'Yn.

The angular measure of vertical asymmetry is obtained from the differences:

"YI - "Yo Az/'

"Y2 - "yo Az 2"

"Yn - "Yo = Azn"

The differences, in arc seconds, are plotted in Y against the azimuth angles,
in degrees, in X.

1. INCLINATION OF THE Z AXIS (IZ)

The inclination of the Z axis follows:

cos I z = cos ao cos az + cos (30 cos {3z + cos 'Yo cos 'Yz

J. HORIZONTAL ECCENTRICITY

Initially, the true horizontal angles generated by the instrument are com­
puted.

and

COS '71,2 =

cos '71,3

cos '71, ..

COS a Z\ COS a Z2 + cos {3'1 COS {3z2

sin 'Y' I sin "YZ2

cos a Zl cos Oz. + cos {3zl cos {3."

sin 'Y z[ sin 'Y ••

cos a ZI cos a z" + cos {3 z[ cos {3 z"

sin "Y z, sin 'Y z"

'71,2 = AZ I ,2 + el.2'

'7l,3 = Azl,3 + el./

where Az is the observed azimuth angle.
The eccentricity of the horizontal circle is determined with values of Az

and e' substituted in equations identical to those described under Paragraph G.

K. PLATE BUBBLE ACCURACY

Normally, the value of a division and the reliability of a plate bubble are
measured with a level trier. However, it is possible to measure the orientation
accuracy of the plate bubbles by making a direct and reverse exposure of the
zenith on the same frame. No special attempt is made to adjust the bubbles.
The X and Y bubbles are centered and exposure made with the horizontal and
vertical circles locked. The horizontal circle is then released, rotated through
180 degrees, and clamped. The X and Y bubbles are recentered and a second
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exposure made without unclamping the vertical motion or advancing the film.
Thus, two zenithal exposures have been made in which the direction has

been established only with the bubbles. If the bubbles are precise aside from
(1) inclination of the vertical axis, (2) vertical axis precision, or (3) inclination
of the optical axis, small equal zenith angles should be defined. In fact, the
small equal zenith angles should correspond to the fixed dihedral angle defined
by the tangent plane of the two bubbles and the film plane. Any inequality of
the zenith angles may be resolved into the component errors of the X and Y
bubbles. The position of the two bubbles is illustrated in Figure 12.

X lGEQ RoSE

y DII2.EC.'-

I (11111111111)11 I X DI C.T

FIG. 12. Repeated centering of the bubbles.

Assume that three direct star images and three reverse star images have
been identified, measured on the film, corrected for refraction, and reduced to
their apparent places as before. The direction cosines of the direct star images
are employed to determine the direction cosines of the principal point in the
direct position; the direction cosines of the reverse star images are employed
to determine the direction cosines of the principal point in the reverse position.
The spherical geometry of the two positions of the principal point is illustrated
in Figure 13. With direction cosines of the observer's position and the direction
cosines of PI and P 2, 1'1 and 1'2 may be computed:

cos CXo cos CX'j + cos f30 cos f3z t + cos 'Yo cos 'Yzt = cos 'Yl

cos exo cos CX Z2 + cos f30 cos f3 Z2 + cos 'Yo cos 'Y z, = cos 'Y2

If the bubbles are perfectly precise, 1'1 =1'2; if not, the measure of unreli­
ability of each bubble is
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where

.6.Xl/l sin Az!,¥/'

.6.y/' cos Az!,¥/'

.6.X2/1 sin AZ21'2/1

.6.Y2/1 cos A Z2"Y2/1

and

cos 'Y" - cos 'Yo cos 'Yl

sin 'Yo sin 'Y1

sin 'Yo sin 'Y2

cos 'Y'2 - cos 'Yo cos 'Y2
cos AZ2 = ---=-------

If there is no error in the bubbles,

These equations are illustrated in Figure 14.
It is assumed that the exposures are made with the Y bubble parallel to the

observer's meridian and the X bubble normal to the observer's meridian. A
more elaborate test would involve repeated exposures with the bubbles shifted
successive divisions. From these data, the value of a division and reliability of
the bubble may be determined by the method of Least Squares. Consider the
X bubble:

FIG. 13. Bubble oriented exposures
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I:1x\/I = a"n\ + b"

I:1 X 2/1 = a.n2 + b.c

Normal equations are formed in a and b.

[1 ]b" + [n ]a" = [l:1 x/l J

[n]b" + [n2]a" = [nl:1x/I J

[nl:1x/l][1] - [n ][l:1 x/l]
a,,/I = ------;[:---:1]:-::-[n-2]::-_----::-[n-:"]-::-[n-::-]-

which is the most probable value of a division in seconds.

[nl:1y/l][1] - [n][l:1 y/l]
au' I = -----:[=-1:-::][-n,2-::-]---[=-n-=-=][=-n::-]-

A perhaps more expedient method would be to make two exposures on the
same frame for two adjacent direct positions of the bubble lying in the meridian
and repeating until the bubble has traversed the length of the graduations.
Then, repeating the entire operation with the remaining bubble lying in the
meridian, the same equations are employed outside the fact that

I:1 x/l = q, - "Y., for the X bubble

and

1:1 y/l = q, - "Y., for the Y bubble.

FIG. 14. Bubble error.
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Error
+1.0*
+0.6
+0.5
+0.3
+0.3
-0.3
-0.6
-0.7
-1.1

SUMMARY OF RESULTS FROM A SYSTEM-TEST OF A CINETHEODOLITE AT THE

U. S. N. PROVING GROUND

HORIZONTAL SYSTEM

Iz=11"
Maximum Z Axis Asymmetry = 06"

Average Z Axis Asymmetry = 03"

VERTICAL SYSTEM

Ix =00"
Maximum X Axis Asymmetry = 13"
Average X Axis Asymmetry =04"

Index Error = 12"
Telescope Inclination (900

- 10) = 33"
Trunnion Tilt (Ixz) = 10"

Focal Length (f) = 599.87 ±0.07 mm.

CIRCLE ERRORS

(Errors in minutes of arc)

ELEVATION CIRCLE

Approximate
Elevation

30°
50°
60°
70°
80°

100°
110°
120°
150°

HORIZONTAL CIRCLE

Mean Computed
Horizontal

60°04.1
120°08.1
180°03.5
239°55.4
299°57.7
360°00.0

Me(tn Observed
Horizontal

60°04.3
120°08.2
180°03.7
239°55.7
299°58.1
360000.J

En'ort
+0.2
+0.1
+0.2
+0.3
+0.4

0.0

Average = +0.2

Deviation from
Average

0.0
-0.1

0.0
+0.1
+0.2
-0.2

* Apparent tube bending, because in all cases the camera was sighting a greater distance from
the zenith than the elevation circle indicated.

t All horizontal pointings were referred to the initial exposure to eliminate unknown errors of
an object space reference mark.
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