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ABSTRACT: A proposed direct solution of the relative orientation of two
photographs from the same station is critically examined. An improved
solution is developed b11t both solutions are noted to be defective in relation
to real data.

T HE relative orientation of two overlapping photographs exposed at the same
station is treated by von Gruber in Chapter II of his essays (1). It does not

seem that the German photogrammetrist envisaged a direct solution to the
problem such as that given by Prof. A. H. Faulds in his recent paper on the
subject (2). ,

If we have two rectangular systems of reference Sand S,t, the transformation
of direction-cosines is given by

I' = alll + aj2m + a131l,

m' = anI + a22m + ann,

n' = a311 + a32m + a33n,

where the co-efficients all, al2 ... a33 are governed by six independent rigorous
conditions which are well known. Hence the orthogonal matrix

depends on three independent quantities only and it follows that two rays, with
direction-cosines in both systems, provide more than enough data for the
determination of this matrix. Faulds' method (which depends on three points
observed on both photographs) utilizes redundant data and fails to make use of
the rigorous conditions between the elements of the unknown matrix.

If the directions 1 and 2 correspond to two points coordinated on both
photographs we have

II' = allli + a12ml + a13nl

12' = alll2 + a12m2 + al3n2

ml' = a2111 + a22ml + annl

m2' = a2112 + a22m2 + ann2

~t' = a3111 + a32m l + a33n l

n2' = a3112 + a32m2 + a33n2

1.1

1.2

2.1

2.2

3.1

3.2

in which 1.1, 2.1, 3.1 refer to the first ray and 1.2, 2.2, 3.2 to the second. These
six relations are not independent because of the conditions between the direction
cosines, and in fact 3.1 and 3.2 contribute no additional information. Hence we
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have four equations 1.1, 1.2,2.1,2.2 to determine the three independents of the
matrix, and it follows that there is some redundancy even with two points. In
fact it can be seen that the direction-cosines must satisfy the condition

1/12' + m1'm2' + n/n2' = 11/2 + m1m2 + n1n2,

in order that measurements in S' be consistent with those in S. In Faulds'
method it would be necessary to impose two further conditions before it could
be assumed that the method of solution would yield an orthogonal matrix. Thus
for a real data a rigorous one-shot solution is not quite the simple matter that
it appears to be.

The author's own solution described below is still open to the objections
outline<;l above, but since it is based on two common points instead of three,
it is less vulnerable than Faulds' to the errors of observation. Assuming for the
moment that the observations on the two points are consistent, so that the
last condition is satisfied, the problem now is to find a third ray whose direction
cosines are perfectly consistent with those of rays 1 and 2. (We require this ray
in order to maintain the linearity of the equations.) The necessary ray is given
by the vector product of the unit vectors defined by the rays 1 and 2, and we
bring it into play by means of the following theorem. "The orthogonal trans
form of the vector product of two vectors is equal to the vector product of their
transforms." This follows at once from the purely rotational character of the
orthogonal matrix.

Hence, if we write

l;l = m1n2 - m2n1,

ms = n l l2 - n211,

Is' = 1n1'n2' - m2'n/,

ms' = nl'12' - n2'1/,

Then from the theorem we get

Is' = alll3 + a12m3 + a13n3

tna' = a2l13 + a22m3 + ann3

n/ = a31lS + aS2m3 + a33n3

1.3

2.3

3.3

and combining 1.3 with 1.1 and 1.2, we get a set which may be solved for au,
a12, alS. Similarly a21, a22, a23 are determined from the set 2.1, 2.2, 2.3 while a31,

a32, a33 are found from 3.1, 3.2, 3.3.
Jn view of the possible inconsistency mentioned above, it would be best to

determine a12 and a13 only from the first set while a23 alone is determined from the
second. The remaining elements are then found from the conditions.

Le. all = ± v(l - a12 2 - a13 2),

ass = ± vO - a13 2 - an2),

a2l = - (a33a12 + allalSan)/(all2 + a12 2),

an = ± vO - a21 2 - an2),

The signs of the radices are usually determinate, being fixed by the relation
ships between the co-ordinate axes of the two photographs.
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When the matrix has been determined, the co-ordinates Oil one photograph
may be converted into their values on the other by

x' = !'. (aux + al2Y + alJ!)/(a31X + a32Y + an!),

y' = 1" (a21 x + a22Y + a23!)/(a31 x + a32Y + an!).

Although the direct solution appears to be of academic interest only, in the
case of twin-camera photography, it may be useful at the start of a flight to
provide a good first approximation to the relative orientation for each simul
taneous pair. Thereafter it would seem preferable to use differential methods
to obtain improved values for each pair, if necessary using redundant data and
least square techniques.

WORKED EXAMPLE

The following example (which uses fictitious data) was computed by a col
league Mr. S. Hull of the Ordnance Survey Photogrammetric Group. It will be
noticed that the table of direction-cosines and vector components leads directly
into the simultaneous solutions of the sets (1.1, 1.2, 1.3) and (2.1,2.2,2.3). The
solution scheme is a simple one based on alternate division and subtraction
which leads directly to the values of al3 and a23. The first stage of the back
solution gives a12.

DETERMINATION OF MATRIX FROM PHOTO 23 TO PHOTO 23'
Photographic Co-ordinates

Photo

23

23'

Point 1 Point 2

x, y, x~ yz
+50.16 +47.83 -52.73 +41.87

x,' yt' X2' )'2'

+64.91 +170.68 -80.73 +156.95

j= 150.64

/,=151.13

DIRECTION-COSINES AND COMPONENTS OF VECTOR PRODUCT

Pt. 1/1 n I' m' n'

1. + .30250 + .28845 + .90846 +.27384 +.72006 + .63759
2. - .31957 +.25375 +.91295 - .34744 + .67546 + .65042
3. + .03282 - .56648 + .16894 + .03767 - .39963 +.43515

+1.00000+ .953556+3.003178+ .905258+ 2.3803641
+ 1.00000 - .794036 -2.856808+ 1.087211- 2.113653
+1.00000-17.260207 +5 .14747l + 1.147776-12.176417

- 1.747592-5.859985+0.181953- 4.494017
-18.213763 +2.144294+0.242518 -14.556781

+ 1.000000+3.353177-0.104116+ 2.571548 Solution
+ 1.000000+0.117729-0.013315+ 0.799226

+3.470906 -0.090801 + 1. 772322

+1.0QOOOO -0.02616 + 0.51062

a12= -0.104116-3.353177al'= -0.013315+0.117729a13= -0.01640
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The Completed Matrix

(
+ .99952, - .01640, - .02616)
+ .02746, +.85936, +.51062
+ .01411, - .51109, + .85941
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An Analysis of Errors Using

the Graduation Process
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ABSTRACT: The principles of graduation can be applied to the analysis of
errors in certain photogrammetric operations. In case of aerial triangula
tion this procedure makes possible separating the combined effect of the
errors of systematic character from the errors of accidental nature. For
this purpose the relatively inaccurate data given by some of the methods
for direct determination of the elements of outer orientation of an aerial
camera may be used provided that these data are affected by accidental
errors only. The graduation procedure was found to be successful when
applied using data obtained with the Airborne Profile Recorder. Success
ful applications using horizon camera, statoscope, solar periscope,
Shoran, etc. data seem feasible.

INTRODUCTION

T HE graduation or smoothing process is a well-known procedure in statistics
and experimental physics. Its main purpose is to find a smooth graphical

curve representing a set of observations which due to various errors are dis
persed. However, in the analysis of errors in photogrammetry and in connection
with other surveying problems, the possibilities of graduation have seldom if
ever been utilized. In the field of photogrammetry there are many problems
which offer interesting possibilities for applications of this technique. In the
following pages a brief outline of the principles of graduation and its application
to the analysis of errors and to some photogrammetric problems are described.

THE PROBLEM OF GRADUATION

The problem of graduation is easiest to explain in terms of graphical repre
sentation. Suppose that as a result of observations or experiments, a set of
values of a variable y, (Yl, Y2, . . . y,,) is obtained corresponding to equi
distant values of its argument x, (Xl, X2, . .. X,,). Suppose further that it is
known, a priori, that y is a continuous function of X over the whole range of
observations. Then .

)' = F(x)


