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An Analysis of Errors Using
the Graduation Process

U. V. HELAVA,
Division of Applied Physics,
National Research Council of Canada, Ottawa

ABSTRACT: The principles of graduation can be applied to the analysis of
errors in certain photogrammetric operations. In case of aerial triangula-
tion this procedure makes possible separating the combined effect of the
errors of systematic character from the errors of accidental nature. For
this purpose the relatively inaccurate data given by some of the methods
for direct determination of the elemenis of outer orientation of an aerial
camera may be used provided that these data are affected by accidental
errors only. The graduation procedure was found to be successful when
applied using data obtained with the Airborne Profile Recorder. Success-
ful applications wusing horizon camera, statoscope, solar periscope,
Shoran, etc. data seem feasible.

INTRODUCTION

THE graduation or smoothing process is a well-known procedure in statistics
and experimental physics. Its main purpose is to find a smooth graphical
curve representing a set of observations which due to various errors are dis-
persed. However, in the analysis of errors in photogrammetry and in connection
with other surveying problems, the possibilities of graduation have seldom if
ever been utilized. In the field of photogrammetry there are many problems
which offer interesting possibilities for applications of this technique. In the
following pages a brief outline of the principles of graduation and its application
to the analysis of errors and to some photogrammetric problems are described.

THE PROBLEM OF GRADUATION

The problem of graduation is easiest to explain in terms of graphical repre-
sentation. Suppose that as a result of observations or experiments, a set of
values of a wvariable v, (31, ¥, * -+ ¥.) is obtained corresponding to equi-
distant values of its argument x, (x3, %3, - - - x,). Suppose further that it is
known, a priori, that y is a continuous function of x over the whole range of
observations. Then

y = F(x)
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The y values can be plotted against x values. If the observations are free from
errors, all the plotted points lie on a smooth curve representing the equation
y=F(x). This is not the case in practice. The plotted points are displaced from
their proper positions due to the errors of observation. The curve y=F(x) is
therefore not precisely indicated and only an approximation of its shape and
position is possible. To eliminate personal judgment inherent in such an ap-
proximation the graduation procedure can be used. Then the graduated values
of y will fulfill an equation y’ = F’(x) which is an approximation of y= F(x).

The problem of graduation also arises in connection with interpolation. If
the original set of observations is free from errors, their values can be used for
interpolation of y for any intermediate x. This means that if a table of differences
if formed,

Aly; = yo — gy, | A%y = Alyy, — Aly; | Ay = A?y, — A%y, etc

Alye = 3 — yo | A%yy = Alyy — Alyy | Adyy = A?y; — A%y,

etc etc etc
the differences are found to be regular. However, if the observations are errone-
ous, the differences are irregular and cannot be used for interpolation. The prob-
lem of graduation is to find another set of y values (y/, ', - - -, ¥,/) which
gives regular differences. The terms of the new set should not of course differ

too much from the original values. How much they may, is an important detail
which will be dealt with later on in this paper.

SOME METHODS OF GRADUATION

Many different methods of graduation are developed for practical applica-
tions; some of them are mentioned below. The derivations of the formulas will
not be given here but instead a brief explanation of the main ideas. Most of
these methods are designed for equidistant argument intervals, but can be
extended to the case of unequal x-intervals by applying ‘“‘divided differences.”
(For derivation of formulas and for ‘“‘divided differences’ see 1, 2, 3, 4).

The simplest of the smoothing methods is based on assumption that F(x)
can be approximated between three consecutive points by a linear function, or
by a straight line in the graphical representation. A linear function is fitted to
the three values using the method of least squares in order to find the graduated
value of the middle ordinate. This gives a formula:

yu, = 1/3(%—1 + Van + y”+1) (1)

This is actually the average value of three consecutive ordinates.

The same consideration can be extended to the case of unequal x intervals,
assuming of course that the total x range is still so small that a linear approxi-
mation is justified. We obtain

:\'gr, = 1/3(}’"—1 + yn + yn-H)

|

(2)

which refers to
xr/rl = 1/3(3.'71—1 + Xn + xu-{»l)

The procedure of graduation is easy to perform using this method of linear
approximation either numerically or graphically. The graphical procedure con-
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sists of constructing the center of gravity of the triangle formed by the three
original points.

If the smoothness of the curve is not sufficient, the procedure may be re-
peated using the data obtained from the single application. The result of the
second application may be processed a third time and so on, until the required
smoothness is obtained.

The method explained above is simple and fast to apply and it is usually
well justified. However, if the curve representing F(x) is not flat, but possesses
considerable curvatures, the linear approximation is not acceptable. Then a
parabolic function can be used for approximation of F(x) for a number of con-
secutive observations. For adjustment of a parabola at least four points are
needed. It is however more convenient to take an odd number of points, say,
five, seven or nine, because in this case one of the points is in the middle. The
value of the ordinate of the middle point is established by fitting a parabola to
the observations using the method of least squares. For five points, for instance,
a formula is obtained:

yul == 1,"/35[—3(3':)72 + y11+2) + 12(:\’71—1 + yn+l) + 17;\’:;] (3)
For seven and nine points

'r\’“, = 1“’21[_2(:\';143 + yn-{»li) + 3(,%42 + yn+2) + G(yn—l + yn+l) + 7yn] (4)
ynl = 1/231 [‘21(,"1144 + yn+1) + 14(3'1473 + yn+1!) + 3()(}}117‘2 + yn+2)

5

+ 54‘(,\':1 -1 + yn+]) + 59}’:1] ( )
Similar formulas can be computed for a greater number of points and for higher
order parabolas.

An increased number of points or a second application of the graduation
formulas will produce a smoother curve. However, the possible advantages of
these procedures for practical application are diminished by the fact that the
computations are quite laborious, and very much the same result can often be
obtained by using the simpler method previously described.

A very elegant method of graduation is based on the work of Professor
Whittaker. In his method no assumption is made as to the equation of the
curve representing F(x) except that the curve should be a smooth one. The sum
of squares of the third differences of graduated values Y (A%)? is used as a
measure of smoothness and the sum of the squares of the residuals Y (y—y’)?
is regarded as a measure of the ‘“‘closeness of fit.”” Graduation is performed in
such a way that expression D (A%)2+e > (y—y')? is a minimum. The funda-
mental equations were derived from the theory of probability, and the resulting
curve is a compromise between ‘‘smoothness’” and ‘‘closeness of fit."" The
parameter € is a measure of the relative weights assigned to the “‘smoothness”
> (A%’)? and “closeness of fit” D (y—7v")2. A small value of € produces a very
smooth curve which does not follow closely the observations, whereas a large
value of e produces graduated terms which are close to the observed ones but
with more irregular third differences.

The graduation formula for this method is:

yi' = koyn + R1(yn-1 + yur1)) + Ra(yu2 + yuy2) + - - (6)

The values of coefficients k£ and the number of terms to be included are depend-
ent upon the value of e. A table of coefficients is published in ref. p. 314.
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APPLICATION OF THE GRADUATION PROCESS TO THE ANALYSIS OF ERRORS

Let us suppose that two different sets of observations (y)/, v/, - - -, and
v/, 3, - - - ) are made of the same unknowns V. Suppose further that the

two sets possess different kinds of observational errors: for instance, the first
group, is affected mainly by accidental errors, while the second is dominated by
a systematic error which is a continuous function of the same argument,
E,)' =F(x).

For each value of the variable we have two observations:

a) v =V + E,

If

b) v/ =Y + E,  or y/ =V + F(x) \H
Therefore
v — 3y = F(x) — Ey,
or
(y'" — ) + E, = F(x) - (8

The equation (8) indicates that the differences (y’” —v’) can be regarded as
observations of F(x), each of them being affected by an accidental error E, .
From these observations an approximation of F(x) can be determined using the
graduation technique. It is then possible to establish the values of the original
unknown using equation (7)b.

A CRITERION FOR THE DEGREE OF SMOOTHING

It was stated previously that the graduated values should not differ too
much from the corresponding original observations. This statement is rather
loose and does not define precisely how far to proceed with the smoothing. A
more exact criterion can be found by studying the residuals y—7y’.

Let YV denote the “‘true” value of which y is an observation. The “‘true
error’ of each observation is then y— V. If a series of observations including #
terms, is available, the mean square error of the series can be computed.

: — ©)

n

If the graduated values y were a perfect representation of the values V,
then each one of the residuals y —y" would be precisely equal to the correspond-
ing error y— V. Therefore the mean square value of residuals:

/Z(y—w~’

m = SO (10)
n

should be equal to m. Thus m’?/m?*=1 and
Y-
1

=n (11)

m?
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or, if we employ the conception of weight, W=1/m?:
Yy —y)W=n (12)
1

This formula together with the fact that the final result must be as smooth
a curve as possible gives the criterion for graduation. In other words, the final
result is the smoothest curve which satisfies the equation (12)*. For the applica-
tion of this criterion however the accuracy of the original observations must be
known since it is needed for determination of the weight or weights. Sometimes
this accuracy is independently available. Often however, this is not the case and
a proper smoothing would not be possible. Fortunately the series of observations
itself provides in many cases a means for determining the weights as will be
shown later.

DIRECT DETERMINATION OF THE MEAN SQUARE ERROR OF OBSERVATIONS

The determination of the mean square error of the original observations is
based on an assumption that the correct curve can be very accurately approx-
imated over a certain number of the argument values, by an analytical curve
of a certain order. In this case the differences which are of a higher order should
vanish. For most smoothing problems, and especially for those of photogram-
metry, it is sufficient to assume that the third differences are equal to zero, or
very small,

Let us assume for the moment that the third differences are equal to zero.
This means, that any consecutive four points should lie on a second-order
parabola. In case of e.g. aerial triangulation this is theoretically the case. In
the third difference four points are involved as can be seen from the general
equation for direct computation of the third differences:

AV = Yo — 3yn—1 + 3yn—2 — Yn-3 (13)

All observations, however, are affected by accidental errors. Suppose that
their mean square error is +m,. The mean square error of the third difference is
therefore

My = v/m*+ 9m,* + 9m,? + m? = v/m,2-20 = m,~/20 (14)

Since the true value of the third difference is zero, the third differences
computed from the observations provide a simple means to estimate the mean
square error of the original data. It should be noted that a single determination
of Mys is greatly affected by the local errors of the original data. It is obvious
that an average of many determinations is more reliable.

Let us now assume that the third differences are not zero, but “very small.”
We assume further that we have a fairly large number (N) of observations of
the third differences. In practice this is often the case. The true error E of the
third difference is

Eys = 23y — AsF(x)
N N
D (Ex)?= 2 (ay — ot ()2
1 1

* In photogrammetric bridging Y_ A3y’ should be theoretically equal to zero.
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N N N N
2 (Ex)? = 2 (09) — 2 209aF(x) + 2, (aF(x))? (15)
1 1 1 1

Since the errors are supposedly accidental the term in the middle will be
very small; the larger the number of observations, the smaller the term. In
addition, the third differences of F(x) were supposed to be very small when
compared with the corresponding values derived from the observations.

The ratio of the square sums is still smaller and we can write:

N N
D (Ea)r ) (s9)° (16)
1 1
N
D (Ea)?
1
My# = =
therefore
N
D (ary)?
1
o S S 17
" N-20 (17

Equation (17) allows us to estimate the mean square error of the original obser-
vations. If necessary, the accuracy of this estimation can be improved by apply-
ing formula (15) after once performing a graduation in which /’(x) can be used
instead of F(x), for estimation of the terms ignored in the equation (16).

PracTticAL Usg OF THE CRITERION

The criterion for graduation given above can be used in connection with
different methods of smoothing. A certain graduation process is applied, and
then the sum of the weighted squares of residuals is computed on the assumption
that the smoothed curve is free from errors. This result may not be close to the
number of observations, but gives in any case an idea about the degree of
smoothing obtained. Following this, the smoothing procedure is modified while
bearing in mind the requirement of the criterion. In practice, the modification
can be made on the basis of the principle of iteration. For instance, in the case
of linear approximation, the procedure is repeated using the values obtained
from the previous application of the method. In the case of parabolic approxi-
mation, more points can be included while for the probability method a different
set of coefficients is used in order to get the required degree of graduation.

Finally a curve which satisfies the criterion may be obtained and is accepted
as the final approximation of F(x). In general, no individual one of the curves
so produced will be immediately acceptable, but nevertheless the criterion
indicates that the proper curve lies between two of them. The final curve based
on the residuals involved can then be derived by interpolation.

According to the present experience of the author, the final result is practi-
cally the same regardless of which one of the graduation methods is used,
provided the final curve is fairly flat. The linear method is the easiest to apply.
On the other hand, the probability method is the most nearly correct and the
safest, especially if sharp changes of curvature are to be expected.
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APPLICATIONS TO PHOTOGRAMMETRY

Photogrammetry lends itself very well to the application of the graduation
process. In many photogrammetric operations the same quantity is determined
by two series of observations—one being affected by systematic errors or ac-
cumulative accidental errors, and the other by non-accumulative accidental
errors only. Application of the graduation process leads to a proper separation
of errors and permits determination of the unknown quantity. It is interesting
to note that this simple and very effective way of establishing the final values
has, as far as we know, been overlooked in photogrammetric procedures, despite
the fact that some of these offer an ideal application field.

RADAR PrROFILE DATA

The ideas explained above were applied to an analysis of errors in long
distance bridging. In this bridging Radar Profile Data were used for the control
of elevations and the scale of bridging (5). The smoothing process was applied
for the analysis of errors in elevation. The results are shown in Figure No. 1a.
Repeated linear smoothing led to the required result. The same data were later
processed by using parabolic formulae and the probability method. The results
are represented in Figures No. 1b and 1c.

As can be seen from the figures, the procedure leads to very promising
results. The remaining errors may be explained by small systematical errors in
the Radar Profile Data and accidental errors in the triangulation. It should be
noted that the final result of graduation is substantially the same in all three
figures.

Adjustment of elevations is not the only place where the graduation process
can be applied in bridging, utilizing Radar Profile Data. The clearance, or dis-
tance from airplane to terrain is also given by the Radar Profile equipment,and
can be compared with the clearances or variations of clearances obtained from
aerial triangulation. This possibility will be tested in the near future.

Horizon CAMERA DATA

In the horizon camera method the horizon is photographed in two perpen-
dicular directions simultaneously with the survey photograph. The variations
of the attitude of the survey camera can be derived by measuring the horizon
photographs. The results of such measurements are fairly accurate as such,
and especially free from systematic errors. Therefore, these data are very
suitable for combining with aerial triangulation in order to separate errors by
the graduation process.

StAaTOoscoPE DATA

A number of instruments exist which use air pressure to indicate variations
of flight altitude. All of them are included here under the name statoscope. The
statoscopes refer their indications to an isobaric surface. Once the shape and
inclination of this surface have been established, the residual errors of the
statoscope data are mainly accidental. The systematic errors of the b, values of
an aerial triangulation can therefore be analyzed by applying the smoothing
process outlined above.

RApio PositioNING METHODS

It seems to the author that the combination of a radio positioning method
such as Shoran, Hiran, Decca, etc., with aerial triangulation would lead to a
considerable improvement in the accuracy attainable by any of the methods
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alone. The errors of Shoran information after processing for photogrammetric
use for instance, may be assumed mainly accidental over a considerable area.
Starting from this assumption, several possibilities of applying graduation can
be developed by combining the Shoran co-ordinates with the photogrammetric
ones.

For example, let us consider an aerial triangulation between two geodetic
points. The Shoran equipment will provide the relative coordinates of all the
air stations. These values can be compared with the corresponding photogram-
metric values, i.e. with the “traversing’’ coordinates obtained by adding up the
b, and b, components of the bridging. The whole system can be tied into the
geodetic coordinates by using the points on first and last model of the bridging.
If, in addition, the Radar Profile data are available, the procedure can be ex-
tended to a three dimensional ‘‘traverse.” Some other methods, including a
block adjustment, are also conceivable.

CONCLUSIONS

The graduation process enables a separation of accidental and systematic
errors if two sets of observations possessing different types of errors are avail-
able. The effect of systematically accumulating accidental errors is also greatly
reduced in certain cases. This offers the possibility of increasing the accuracy
of many photogrammetric and other surveying operations. The application is
still new in this field but the promising results obtained so far allow the expec-
tation that the theory described above may be a subject for further develop-
ment and many practical usages.
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