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INTRODUCTION

A S THE use of high-speed electronic computers is increased, it is inevitable that
.t"1.. a greater number of analytical-as compared to instrumental-computa­
tions wiII be performed in photogrammetry.

One goal of mapping from aerial photographs is to reduce to a minimum the
quantity of ground control required. The extension of horizontal and vertical
control by analytical photogrammetric methods is constantly becoming more
nearly an economic reality. If only two or three photographs in a strip are being
considered, the area covered is usuaIIy smaII enough that the effect of earth's
curvature and the convergence of meridians is neglected. However, as the ex­
tension process is continued, so that long strips of aerial photographs are con­
sidered, factors such as earth curvature and convergence of meridians are no
longer negligible. The situation is aggravated with high-altitude photography
since this commonly means smaIIer-scale photography and a greater distance
covered by a strip of photographs.

A method is presented herein for determining the geographic coordinates of
both exposure stations and ground control pass points. These coordinates are
the latitude and longitude as well as the true heights above sea level for the
computed points as based on any adopted spheroid. At the same time the
orientation elements of the photographs at each exposure station are determined.
This orientation is most commonly expressed as tilt, swing, and azimuth of the
photograph.

I t is convenient, especiaIIy on long strips of photographs, to have the true
azimuth of the photograph rather than some grid azimuth determined. On
extensive areas it is common practice to have the positions of widely separated
control points specified in terms of geographic coordinates, that is, in terms of
latitude 4>, longitude A., and elevation above mean sea level h. Hence it is
desirable that the positions of points sought be expressed in the same terms of
geographic coordinates. Herein, mean sea level is indicated by the surface of the
reference spheroid. If the surface of the geoid be used as the surface of mean sea
level, a correction should be added. Of course, once the geographic coordinates
of the exposure stations and of the ground control have been computed, any
conventional geodetic process may be followed in converting these to a partic­
ular system of coordinates for a desired type of map projection.

GEOCENTRIC COORDINATES

The geographic coordinates and the elevation above sea level of the ground
control points are first transferred to a rectangular coordinate system. This

* This paper is based upon a portion of a research project conducted for the Engineer Research
and Development Laboratories. Clearance for publication has been given with the stipulation that
"Nothing contained herein is to be construed as necessarily coinciding with U. S. Army Doctrine."
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(1)

rectangular coordinate system is established with its origin at the center of the
reference ellipsoid of the earth. The +Z axis is toward the north pole, the +X
and + Y axes lie in the plane of the equator with the +X axis in the meridian
plane through Greenwich. The relation between geocentric coordinates and geo­
graphic coordinates was developed by Professor Earl Church. l The formulas to
convert the geographic coordinates and elevation of a point to its correspond­
ing rectangular coordinates are given as:
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,p, A, and It = geographic coordinates and elevation above sea level of the
ground control point.

For the Clark spheroid of 1866,

a = 20, 925, 832 ft.
b = 20, 854, 892 ft.

This X, Y, and Z coordinate system is called the geocentric coordinate
system to distinguish it from any local space survey coordinate systems on the
ground which will be introduced later.

Figure 1 shows the relationships existing between the X, Y, and Z geocentric
coordinates of a point and the corresponding 1>, A, and It geographic coordinates
and elevation above sea level for the point.
In which

X, Y, Z = geocentric coordinate system
M, N, K = local survey coordinate system

x, y, z = photographic coordinate system
a, b = semi-major and semi-minor earth axes

L = exposure station
f = focal length of lens

nand N' =nadir point on the photograph and on the ground respectively
p = principal point of the photograph

1>, A= latitude and longitude of the nadir point N'
It = fligh t heigh t

t, s, a=tilt, swing, and azimuth of the photograph

If three or more ground control points with their geographic coordinates and
elevations above sea level are given at the beginning of strip of photographs, it

1 Professor Earl Church, "Coordinate Determination of Ground Points on Aerial Photographs."
(Air Force Problem 48), Problem Report 0.25, June 15,1951.
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is possible to determine the coordinates or the exposure stations and the orienta­
tion elements of successive photographs in the strip. This is performed by opera­
ting geometrically with the intersection of the bundles of rays from the point
of the exposure station, through the photo image points, to the corresponding
ground poi II ts. Use of electronic compu ters enables these com putatiolls to be
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FIG. 1. Relation between geocentric, local survey and photographic coordinate systems.

performed in a matter of minutes or even of seconds. Coordinates of pass points
for successive photographs are, of course, also computed.

GEOGRAPHIC COORDINATES

If the exposure stations of the photographs in the strip are solved using the
geocentric coordinates of the ground control points at the beginning of the strip,
then the newly determined coordinates of the exposure stations of the photo­
graphs in the strip will also refer to this geocentric coordinate system. By re­
version of equations (1), (2), and (3), the following equations are obtained. 2

y
tan A = - - (4)

X

Z (a2+ ah)
tan <p =

ylX2 + P (b2+ ah)
(5)

2 Phase I-Interim Technical Report, "Development of Computational Procedure Suitable
for Use with Electronic Computing Equipment for Bridging Horizontal and Vertical Control in
Military Mapping," by Cornell University, Engineer Research & Development Laboratories,
July 1, 1955.
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in which again
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a2 - b2

e2 = --­
a2

(6)

The geographic coordinates and the elevation above sea level for all the exposure
stations can be solved by the method of successive approximation from these
equations. Equation (4) can be solved directly. The solution of (5) and (6)
follows a process of successive approximation by initially assigning an approxi­
mate quantity for h in (5). After an approximate ¢ is obtained from equation
(5), then since e2 is a known constant for any given spheroid, the values are
substituted in equation (6) to compute a new approximate value for h. By
alternately using equations (5) and (6), the latitude, ¢, and elevation of the
exposure station above sea level, h, will converge to their correct values. Usually
no more than two successive approximations are necessary.

By the above method, the geographic coordinates of all the exposure stations
as well as their elevations above sea level can be obtained. Therefore, the
curvature of the earth has been take care of automatically.

Some variations of equations (1) through (6) should be noted.

[
a(l - e2

) J
Z = + h sin cP

. yI1 - e2 sin2 cP

and

hence

yIX 2 + Y2 = [ a. + hJ cos cP
yl1 - e2 S1l12 cP

Dividing (3a) by (3c) gives exactly

[
Z J [a

2 + ahyl1 - e
2

sin
2 cPJ

tan cP =
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(3a)

(3b)
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(Sa)

Thus it is noted that equation (5) as used is an approximate form. However,
the approximation is small and equation (5) is satisfactory for most precisions.
When photography is encountered such that ¢ is much greater than 45° then the
relationship l/tan ¢=cot ¢ should be used.

Equation (6) for flight altitude is seen from Figure 1 to be derived as a
difference between the length of two normals terminating in the major axis. 3

Inspection shows that as the photography approaches the equator, both Z and
sin ¢ approach zero. Equation (6) is not sufficiently accurate for the range

3 "Geodesy," by George L. Hosmer, John Wiley & Sons, Inc., New York, 1930, page 172.
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(6a)

2° >cf> > - 2°. A general, though more elaborate, formula is obtained as the
difference between the lengths from the origin of the geocentric coordinates to
the given point and to the surface of the spheroid where h equals zero.

V e2 sin 2 ¢(1 - e2)
h = yX2 + Y2 + Z2 - a 1 - -----­

1 - e2 sin2 ¢

SPACE ORIENTATION

The next step is to determine the nadir points of the photographs and the
principal planes of the photographs with respect to true north. That is to say,
the true azimuth of the principal plane of each photograph in the strip will be
sought.

The orientation elements between each photographic coordinate system and
the geocentric coordinate system can be obtained by any of the known methods
of analytical aerial triangulation. The more common of these solutions include:

(1) a combined solution to solve for the geocentric coordinates of the ex­
posure station and the three independent orientation elements simultaneously
(the Herget solution);

(2) a bifurcated solution to solve for the geocentric coordinates of the ex­
posure station, first, and then the orientation elements of the photograph (the
Church solution);

(3) a solution, first, for the relative orientation between .each two adjacent
photographs in the strip, second, for the absolute orientation elements which
are the orientations between the photographic coordinate system and the
geocentric coordinate system, and finally, third, for the geocentric coordinates
of the exposure stations in the strip (the British Ordnance Survey Method).

The computed direction cosines between the geocentric coordinate axes and
the photographic coordinate axes can be shown in Table 1.

TABLE 1. SYMBOLIZED TABLE OF DIRECTION COSINES

x y z

X u, V, w,

y U2 lI-t W2

Z U3 Va W3

In this table, u 2 for instance, symbolizes the known direction cosine between
the geocentric Y axis and the photographic x axis.

For any given photograph, tilt, swing, and azimuth relate the nadir point,
the principal plane of the photograph, and the true azimuth or angle between
the principal plane and true north. To obtain tilt, swing, and azimuth, a local
space coordinate system is introduced at each exposure station. This local
space coordina te system is assumed:

(1) to have its + Y axis in the meridian plane of the exposure station of the
photograph in the strip with its positive direction toward the north;

(2) to have its +Z axis in coincidence with the norlllal line drawn from the
surface of the ellipsoid through the exposure station upward; and

(3) to have its +X axis perpendicular to the Z - Y plane with its positive
direction toward the east.

The direction cosines between the geocentric and local space coordinate
systems will be:
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cos N X = - sin cP cos Acos M X = + sin A

cos MY + COSA

cos MZ = 0

cos NY

cos NZ

+ sin cP sin A

+ cos cP

cos KX =

cos KY

cos KZ

+ cos cP cos A 1
- cos cP sin A

+ sin cP J

(7)

(8)

I n which ¢ and A= geographic coord ina tes of the exposure station of anyone
photograph in the strip, whose tilt, swing, and azimuth are sought:

M, N, and K indicate the local X, Y, and Z axes respectively.
MX, .illY, and MZ = the angles made by the space coordinate X axis with

the geocentric coordinate X, Y, and Z axes respectively.
NX, NY, and NZ = the angles made by the space coordinate Yaxis with the

geocentric coordinate X, Y, and Z axes respectively.
KX, K Y, and KZ = the angles made by the space coordinate Z axis with

the geocentric coordinate X, Y, and Z axes respectively.
From the known orientation elements between the photographic coordinate

axes and the geocentric coordinate axes as shown in table (1) and from the
known orientation elements between the geocentric coordinate axes and the
local space coordinate axes as given in Equation (7), the orientation elements
between the photographic coordinate axes and the corresponding local space
coordinate axes can be computed. Only five of the nine elements of orientation
have a direct relation to the tilt, swing, and azimuth of the photograph. These
five equations are:

cos Kx = cos KX 'UI + cos KY 'U2 + cos KZ 'U3)

cos Ky = cos KX 'VI + cos KY 'V2 + cos KZ 'V3

cos Mz = cos M X . WI + cos MY· W2 + cos M Z .W3

cos Nz = cos NX 'WI + COS NY 'W2 + cos NZ 'W3

cos Kz = cos KX 'WI + cos KY 'W2 + cos NZ 'W3

The quantities on the right side of this equation are known from the rela­
tions of Table 1 and equation (7). In the equation (8), cos Kx and cos Ky denote
the direction cosine elements of the local space coordinate Z axis with reference
to the photographic x and y axes respectively. CosMz, cos Nz, and cos Kz
denote the photographic coordinate z axis with reference to the local space
coordinate X, Y, and Z axes respectively.

The introduction of the above local space coordinate system for each photo­
graph in the strip is only for the purpose of solving the five quantities on the
left side of equation (8) in order to obtain the tilt, swing, and true azimuth of
each of the photographs in the strip. The following equations give tilt, t, swinR,
S, and azimuth, a:

cos t = cos Kz )

tan S = cos Kx/cos Ky

tan a = cos Mz/cos Nz

(Y)

(10)

Since cos Kz is always positive, therefore, cos t is always positive. The proper
quadrant of s and a can be determined by the criterion:

Sin s = - cos K.r/sin ( and ros s = - ros Ky/sin t)

Sin a = - cos Mz/sin { and cos a = - cos Nz/sin d
This method of solving tilt, swing, true azimuth, and flight height of each
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photograph in a strip can be extended theoretically to an indefinite length of
strip. The only prerequisite is that the extension of control by any method has
previously been completed for each photograph. It should be noticed that the

-corrections for the curvature of the earth and for the convergence of meridians
will automatically be taken care of by equations (6) and the third equation of (9).

In the course of extension, the new pass points, whose locations on the
ground are given ill geocentric coordinates, can be transferred to the geographic
coordinates ¢ and A and the ground elevation above sea level, h. These quanti­
ties can further be transferred to any map projection or can be applied to the
mapping- by means of photogrammetric stereo-plotters.

If ten sig-nificant fig-ures are used in the computations of ¢, A, and h, then ¢
and A will be determined to the nearest lOath of one second of arc, and It will
be determined to the nearest foot. Only eight significant figures are required to
provide computations of tilt, swing, and azimuth to comparable accuracy.

The high speed electronic computer gives promise that the photogrammetric
extension and control problem may be solved more rapidly, accurately, and
economically than by the mechanical-optical method.

DOUBLE REFLECTING PROJECTOR

• An accurate projector
built into a table

• Compact, low cost

• Range: V3 reduction to
3X enlargement

• 12" F:4.5 anastigmat
coated lens

• Dimensions: 35" wide,
72" long, 36" high

• Simple to operate and
adjust

W rite for literature and prices.
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