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ABSTRACT: In a paper entitled ' Theorte des Erreurs de L’ Orientation
Relative,” by Dr. W. K. Bachmann, equations were derived to describe
model deformations in a stereo model. These equations however, differed
from heretofore commonly accepted Von Gruber equations in the expres-
sion for Y model deformation. In this paper, an attempt is made to
resolve these differences by constructing a more general theory of model
deformations based upon the relative accuracy of measurement of a point
in a photo and its projected image. Taking this factor into account, it is
concluded that in a perfect projection system, the equations derived by
the methods of Von Gruber and Bachmann were equivalent. In addition
to demonstrating this equivalence, a method is also presented for weighting
measurements of ¥ parallaxes and model coordinate measurements in a
stereo model.

1. INTRODUCTION

bér

N A paper entitled, ‘““Theorie des Erreurs de I.’Orientation Relative,” by W. K.
Bachmann!, a set of equations were developed which were intended to de-
scribe the model deformation present in a stereo model after relative orientation
had been completed in an autograph type plotting instrument. These equations
however, were at variance with the heretofore commonly accepted Von Gruber?
equations in the expression for § ¥ model deformations. The reason for this dif-
ference is found in the way in which the principle of symmetry has been applied
in the two derivations. In the relations developed by Von Gruber, the principle
was applied in the model whereas in the relations developed by Bachman, it
was applied in the plane of the photos themselves. Because the assumption of
symmetry in the photo plane is more in agreement with the method of observa-
tion employed in an autograph, it was concluded by Bachmann that relations
developed by Von Gruber were false in the general case for such an instrument.
Upon reviewing the theory behind these relations, it appeared to the author
that a logical inconsistency was present because, assuming a perfect projection
and measuring system, it did not seem reasonable that the same source information
(i.e., a photo tmage) should yield two different answers for the same quantity simply
because one set of measurements is made in the image plane and the other set
made in the projection plane. Moreover, since the difficulty was not geometric
—the results of the mathematical develop for both methods agreed perfectly
with their geometric models—it was concluded that an important factor was

1 Bachmann, W. K., “Theorie des Erreurs de L'Orientation Relative,” Lausanne Imprimerie,
La Concorde, 1943.
2 Von Gruber, O., “Einfache- und Doppelpunkteinschaltung in Raum,"” 1924.
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being neglected which was common to both methods, but which could only be
uncovered by building a more general theory to describe the phenomena of
model deformations. As will be shown in this paper, this factor concerns the
relative accuracies of measurements made on a photo and its projection.

2. DEFINITIONS

Throughout this paper, the following defined quantities will be used:

P(X, Y, Z) =Model coordinates of a point in a right hand coordi-
nate system with Z positive upwards.

P(x, y) =Photographic coordinates of a point on a photo posi-

tive in a right hand coordinate system with z positive

upwards.
Xe )
Ri=| ¥ | =Position vector from an exposure station L; to any
| = (Zk—h) | point in the stereo model.
[ )
re=| yr | =Position vector from an exposure station L; to any
|—f) point on a photographic positive.

#=An orthonormal matrix expressing the angular rela-
tionship between the axis of the photo coordinate sys-
tem and the model coordinate system for a photo k.

Ari=the 7th row vector of 4;.

By;=the jth column vector of 4.

A*=Transpose of an orientation matrix A
PS=(X,—X,)=X parallax of a point in the stereo model

3. FUNDAMENTAL RELATIONSHIPS BETWEEN PHOTO AND GROUND
COORDINATE SYSTEMS:

In matrix notation, Ry and 7, are related as follows:

—(Z—="h

‘R = —(—2 Ary (1)

21k
Ty = :Z A*Ry (2)

Tk

where

zre = Asri (3)
Zrr = Bis*R; 4)

Also, since AA* =1 is the identity matrix, substituting (2) into (1) gives

Z — h ZTA:

-~ 7 (5)
Defining
(dXi)
ARy = J’ dYy |

|
(IZ/,- Jl
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and letting dRx| 4 be the total differential of R, regarding ) constant and
de| r, the total differential of R regarding 4, as constant, it can be shown that

—(Zy— h) dAy
de‘.Ak == —_( : [dAk = - "kAk:I Tk (6)
27k 27k
iR e, ool (Zk—h)[l b R ]d (7
Elrg = Ay s | arg /
' 37k (Zk - h)
— dBis*
drka‘ = '—fl:dAL* == —‘I‘j—‘ RkAk*:l Rk : (8)
A Tk
— RiBis*
drijr;, = - Ar* [I i :|de )
Tk Zry

Substituting the appropriate orientation matrix for the particular system
of rotation employed will result in expressions for dX, dV, and dx, dy found in
any text book describing the theory of errors in photogrammetry.

4. INTRODUCTION TO A GENERAL THEORY OF MODEL DEFORMATIONS

Let it now be assumed that two photographs L; and L, have been relatively
oriented. Defining the exposure station L; as the origin of a ground coordinate
system, it is possible to determine the true position vector R with respect to Ly
by either of the following matrix relations:

R=1L,+ R, (11)
where

R, is the position vector of P with respect to L,
R, is the position vector of P with respect to L
Z. is the position vector of Ly with respect to L,

Assuming, for the time being, that relations (10) and (11) do not have the
same weight when used to determine R, then to use the maximum information
available, R should be the weighted mean of these relations, such that for,

IVlR — [VlRl
WsR = Wy(Ls + R»)

Il

then
(W1 + Wo)R = WiRy + Wu(L: + Ry) (12)

where W, is in each case the diagonal matrix of the weights to be applied to
X4, Vi, and Zj respectively.

If R is the true vector as determined above, then the model deformations 6R
due to errors in R; and R, can be expressed by:

] ~ OR IR
(Wi 4+ W»8R = W, —— AR, + Ws— AR, (13)
OR, IR,

Now the geometric condition for relative orientation using equations (10)
and (11) is given by:
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which after substitution of formula (1) becomes,

(Zo—h) | -~ (Zo—=h) [
_ _1—) — Ay = Ly — e — dory
/ zr1 f 22
Factoring for (Z,—h) gives:
— (L= h [f P ; i,lm} = I (14)
I 271 (Zy — h) am

Taking equation (14) out of matrix form and solving for (Z,—h) and (Zs—h)

noting,

i’ B)
|
/_1 == . 0 |
o)
the lollowing results:
— Bf B(Zy — h
(7, ~ ) = " e S (15)
= (Zo—h) | Xi— X
— Ann —— — Aaurs
271 (Zl = /l) ZT‘_)
—Bf B(Zy — h)
(7 — ) = — - D & (16)
—(Z1—h) f /
T T T Anry + — Aars
(Zg = /I) 271 279
Substituting into (1), and recalling Px =X, — X,, then
B
R — R1 = T R1
Px
RZIQ+R2— L>+—)—R_),
X
therefore:
B R,
ARI = (l’Rl == *dl“‘\' (17)
Px Px
B R,
ARg = = (de e B d]{\’) (18)
Px Px

When (17) and (18) are substituted into (13), the following final expression
is obtained relating weight and errors for X;, Vi, and Z, to model errors §X,
oY, 6Z;

dPy

(Wi 4 W2)6R = WidR + WdR, — (WiRy + WsRs) (19)
X
5. DiscussioN oF FACTORS AFFECTING W
In general, the determination of the elements of W, depends on two factors:
a. The geometry of the scheme employed in making measurements of model

deformations.
b. The accuracies of these measurements.
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The first factor takes into account the geometry of the stereo model and the
geometric place in space where the measurements will be made, whether it be in
the plane of the photograph, in the model, or somewhere in between.

The second factor takes into account those influences which affect the
accuracy of any measurement. These consist of such items as negative resolu-
tion, resolution of the projection system employed, accuracy of the measuring
instruments, etc. It is this factor which was neglected by both Von Gruber
and Bachmann and which led to their apparently different results. -

Since the above two factors are independent of each other, they do not have
to be treated simultaneously. However, before the influence of the second factor
can be understood, it is necessary that the relations involved in the first factor
be also understood. Therefore, the next two sections will be devoted to develop-
ing the matrix W, based on the geometry of the Von Gruber and Bachmann
methods.

6. DEVELOPMENT OF THE MATRIX W BasEp UroN THE GEOMETRY
oF THE VON GRUBER METHOD

The basic assumption of the Von Gruber method is that an unbiased esti-
mate of the vector R is the arithmetic mean of the vectors R determined from
the right and left photos. Referring to equation (12), this is in effect saying that
W, and W, are identical. Letting Wi =W.=W, and Zi—h=Zy—h=Z—h, and
expanding equation (19) gives:

f&X (dXI + ng - f X1 + X2
WdPx | .
2W oY | = Wlle + dY2| = i+ 7, | (20)
8z | 0 J —2Z - b))
Now if
(W1 0 0
W = 0 Wa 0 )
0 0 ‘W3J
solving for 8 R gives finally the well-known Von Gruber relations:
Z—h
60/ = ——dPx
B
¥ dY,+ dY,
e — Dgp g Hatals
B
X
0X = — - dPx + dX, (21)

Since w;, ws and w; cancel out, W can be any diagonal matrix, none of whose
elements w1, ws, and ws, equals zero. For purposes of conveniencg however, W is
designated simply as the identity matrix. Therefore, for the Von Gruber method,

(1 0 0
W1 = W2 =10 1 0 (22)
0 0 1
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7. DEVELOPMENT OF THE MATRIX ¥, BASED UPON THE GEOMETRY
OF THE BACHMANN METHOD

The basic assumption of the Bachmann method is that an unbiased estimate
of the vector R is obtained by taking the arithmetic mean of the absolute
values of the vectors dr; which are the projections of dR; in the negative plane
of their respective photographs. The projected components of the vector Ry,
designated as & and n; respectively, are computed with the aid of equation (2).
The errors in these components caused by errors in the vector R, can be com-
puted with the aid of equation (9) which is reproduced below:

R B3*
dromy = — 2 A, [1 . . :ldk,;
Zrk Zrk
Designating
(le
dRx) = 0
0 )
o
dR]'k = dYk
0 )
and defining a new quantity ® by,
RiBis* )
Dy = (fu1, Pr2, brs) = Ap*| I — — (23)
Zrk
then
=¥
d& = Pd Ry (24)
A
— )
dn = —— Prd Ry, (25)
A0

Suppose now the mark, which represents the true position of the point in the
plane of the negative, lies on the origin of the vectors d§, and dn.. Then dn; and
d§, represents the error in the position of a point with respect to the mark in
the plane of the negative. Now in order to remove the discrepancies dn; and
dé&, it is required that the point be moved a distance —dn; and —d§&, back to
the mark. This is equivalent to saying that the image of the point in the model
is moved through distances 6X, 6V and 6Z which are related to dX; and d V.
To do this the following geometric conditions must be fulfilled,

X,
s By 2 s R ol G
. v (H — h)
AV, = — oV 4+ sz
f (H—1h
Z—h
s2=2"" ip. (26)

B
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Substituting (26) into the negative of (24) and (25) gives then

7 Y
—dg, = — B [—— Rxi + 5RX]

Zri (Z —h)
d / d)[ — +6Rj| 27)
Nk = T k (Z — /7) Yk ¥
where
[6X) l( 0 )] i’X;, 5 [0 ]I
\
5RA\‘:E 0 ||§ 5R1'=||5Y||C Rxr. =1 0 {; R)k={yk|
l o) Lo Lo ] Lo
Adding equations (27) to (24) and (25) gives then
—/ / —oZ
—— @Ry = — Di| 5 Rx; + 6Rx
Ly, Zrk (Z —h)
= / —oZ
—— ®dRyr = — ®| —— Ry + Ry (28)
ZTk lTk (Z == /1)
Recalling ®; = (¢x1, r2, Prs) and taking (28) out of matrix form gives,
~J f 87
—— $0X = — ¢n [ka — = Xk:|
Zrk LTk (Z —h)
—f f 6z
—— PpbV = —— due [dyk Sl ey Y,;I
L A (Z — h)

Solving for 8X and 8V, noting that ¢ and ¢y are column vectors gives

'f_ VouFen 60X = —f— Vo o l:ka - — ] Xk]

Tk L1k (Z — h)

L Voi*pra 0V = L NZIT Iil”"'k — —= o Yk:| (29)
Zrk A (Z — h)

Substituting further

N r
"—'{* Verton =i and  —— V¥ = QU

Tk 1k

equations (29) can be written for both the left and right hand pictures by

1,015)( — Ipl —(in s —aZ )(ltl
L (Z — &)
4 i o 6Z
Yo X = s _dl\g — ——(Z T ,Y2:| (30)
Q.M' = &l] (l’}"l S e ﬁz = l“}
. (Z —h)
r 6z
oY = Q LdYg = (_Z B }g] (31)
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Solving for X and 8V and recalling

VA dPy
Z — h B
5X = —— dPy + dX,
B
== Iyl Qldl'rl + 9-3(111'-3
oV = dPx + ———
B Q+ Q
Z—h
6/ = —dPx (32)
B

It is clear from equations (30) and (31) that since weights have no effect on
the determination of 8Z, w; can be set equal to one, therefore, the weighting
expression for the Bachmann relations in (32) which also satisfies (19), is
given by

¥r 0 0]|
W,=10 @ 0]
0 0 1}

8. DEVELOPMENT OF THE MATRIX W) FOR THE VON GRUBER
METHOD BASED UPON MEASURING ACCURACY

The ultimate factor which limits measuring accuracy is the certainty with
which a point can be identified in the plane of measurement. This certainty is
affected by all the things which affect the image such as film resolution, lens
resolution, film distortion, illumination, exposure conditions etc. The relation-
ship between the weights of measurements made in the photo plane and in its
projected image can be expressed mathematically as follows:

P = Kipi (33)
where
K is the weight of an image measurement in the projected plane.
Pr 1s the weight of an image measurement in the photo plane.
K is the ideal factor of proportionality between the two weights.
To show that this relation is reasonable, consider an errorless measuring

system, and
pr = Ky 1Py,

since py is given, then P> K;p, cannot be true because this would imply that
a projected image has a higher definition accuracy than the image being pro-
jected; this leads to the ridiculous conclusion that to improve his measurements
all one would have to do would be to project his picture to a plane and reproject
it back to the original photo plane and thereby obtain a better image than the
one he started out with. Therefore, any relation between weights for measure-
ments on a photo and its projection must be of the form given in (33).

But what of the condition P) < K;p. This condition exists if there are agents
between the photo and its projection which cause the quality of the projected
photo image to deteriorate to a degree greater than that given by the ideal fac-
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tor of proportionality Kj. In this paper, however, it will be assumed these agents
are not operative and that only the condition P, = Kypy exists. This is equivalent
to saying there is a perfect geometric projection of the photo image to its pro-
jection plane, thereby eliminating any consideration of lens resolution, illumi-
nation, the method of measurement emploved, etc.

8.1 DETERMINATION OF Kj

There are many different ways of defining Ky, depending upon how image
quality is defined in the plane of the photo. In measurement theory, quality
is generally defined in terms of the mean square error with which a point can be
identified. This identification is the result of two measurements along different
components which are generally considered independent. The variety of choices
for these components permits K; to be defined in many different ways. In the
discussion to follow, it will be assumed that all photo measurements are made
along those components whose projections in the projection plane are parallel
to the X and Y axes. Under this assumption, the relations developed in para-
graph (6) are applicable and can be rearranged into the following:

‘ d&x | = :ji Vb F i , dRx; l
VA
“f

l dﬂkl = V brs ¢k21 dRYkl (34)
Zri ———

The above equations can be thought of as expressing the correlation between
an error in a measurement in the image plane and an error in a measurement
in its projection. Assuming now a series of independent measurements of duy,
d&r, dX, and dY; of the same point, the following statistical relationships can
be written between these quantities.

_f o
Bt deel} = 2 /guba E{ | dRx. |}

E{ I dnse | } Z_T]“; V bre o E{ I dRyy [ } (35)

where { } is the expected value of the observed quantity within the braces { {.
If also assumed that each observation d§, and dy,, is weighted by pi, then since
all observations are made on the same point, they all have the same weight, and

P?JcE{ ‘ dé, l } = %‘f \/¢k1*¢k1PskE{ ] X 1 }
T

puEl | dnel} —;f Vo dapwEl | dV]] (36)

It is easily seen now, that if

.
Ky = —— Vo b = ¥
Ly

and

”::i VrTdre = Q

Koy,
Zo

I
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equation (33) is satisfied by

Pxr = Yipu
Py = Qpu (37)

8.2 APPLICATION OF MEASURING WEIGHTS TO VON GRUBER METHOD

From the above discussion, it has been shown that if measurements are
made in the stereo model, they should be weighted according to the formulas
of equation (37). Applying this principle to the general equation given in (12)
and subsequently (19), leads to the conclusion that for the Von Gruber method,
the final weighting matrix must be of the form

Viper 0 0
W= 10 Qipae O (38)
0 0 1

Therefore, the final form of the equations for the Von Gruber Method
should be

5X = :B—‘dpx + X

57 — — ¥y APy 4 PmhdY 1 + peQdl,
B P+ Prpafle
Z — h

9. DEVELOPMENT OF THE MATRIX W FOR THE BACHMANN METHOD
BASED UPON MEASURING ACCURACY

As previously, let it be assumed that the weight of measurements £ and 7;
are pg. and py respectively. Then equations (30) and (31) become

0z
YipudX = Yipu (dX1 — Z——_h Xl)

YA
Vepd X = Yape (dXz —us X2>
8z
le,,lal" == le,ﬂ (dY1 = (_Z__—h) }1>
Q2P,,25Y = Qgp,,z <dY2 = Z — h Yz) (4())

Solving these equations in the same manner as (32) gives finally,
f\bkpek 0 0
Wi =10 Qpur 0 (41)
0 0 1

and
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— X
oX = dPy + dX,
B
51 = X apy 2ol F putkdl
B P&t A Pl
(Z—=h)

0z

I‘l

dPy (42)

Note that the expressions for W, and the model deformations 6 R are identical
for the Von Gruber and Bachmann Methods after measuring accuracy has been
taken into consideration. This means, of course, that based on the purely
theoretical considerations given in this paper, it must be concluded that both
the Bachmann and Von Gruber Methods are equivalent. Any differences which
arise in the application of these methods can only be ascribed to those mechani-
cal agencies which alter the quality of the projected image or to the methods
of measurement employed.

(It is interesting to note also, that if p,; and p,e are equal, then equation (42)
reduces to (32). It is this characteristic of the Bachmann equation which led to
its differing from the Von Gruber Equation, for under this condition measuring
accuracy is assumed in the geometric statement of symmetry in the photo
plane. Such is not the case for the Von Gruber Method.)

10. EFFECT OF MEASURING ACCURACY IN THE WEIGHT OF V
PARALLAX AND MODEL MEASUREMENTS

In the measurement of V parallaxes and the X, ¥V, Z coordinates of a point
in a stereo model, two major sources of error affect the actual value of those
measurements. The first consists of the systematic errors introduced by errors
in the elements of relative orientation, and the second, the random errors
caused by an inability to make measurements of these quantities accurately.
Since errors in relative orientation affect only the geometry of the stereo
model, they cannot have any bearing on the accuracy with which measurements
can be made of points in the stereo model. Hence it must be concluded that
errors in relative orientation can have no influence on weighting measurements
of ¥ parallax and coordinates X, V, and Z in a stereo model. On the other hand,
by its very definition, the random errors of measurement do affect such observa-
tions and therefore, must directly influence their weights. The following sections
based upon the notions developed previously in this paper will develop the
theory for determining such weights.

10.1 EFFECT OF MEASURING ACCURACY ON THE WEIGHT OF Y PARALLAX MEAS-
UREMENT

It will be recalled that V parallax in a stereo model is defined by
Pyr=YV,— T (43)
and
dPy = dY, — d¥, (44)

Applying the general law of error propagation, the relation between the
weight coefficients of Py, dVs, and dY, is given by

QPYPY = Qngz + QYIYI i ZQYIY
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Since a measuring error for 1 is

independent of V5, then
40 .35 .30 _
Qpypy = Qvyy, + Qv,y, (45)
But from equation (37), the
« weights of VY, and YV, are given by
P and P2, respectively. There-
fore, the weight coefficient of a V

“

50 45 40 parallax measurement is given by

by .1“‘..1

Qpypy = (46)

P prld

As a practical example in order
to show the application of equation
G e 20 (46), the weight coefficients were
computed for a model formed by 20
degree convergent photography. For
this example p,. was assumed to be
F1G. 1. Resolution in the photo proportional to the resolution in
plane in lines mm. terms of lines per millimeter as shown
in Figure 1. Evaluating equation

(34) for Q; for a ¢, w, k system of orientation revealed for w, =k =0,
@ = _Z = 7 (47)

Zrg — Xisin¢r + (Z — k) cos ¢

In Figure 2 are shown the comparative dimensions of the neat model and its
dimensions in the left hand photo.

Table I shows all the pertinent data for the computation of the weight co-
efficients for each point.

Noting k/Qp,p, are normalized weight coefficients based on the weight co-
efficient of point 9, Figure 3 shows a graph of lines of constant weight coefficients
in a stereo model formed from convergent photography.

TaABLE
Dara ror THE CoMPUTATION OF WEIGHT COEFFICIENTS OF A V-PARALLAX OBSERVATION IN A
STEREO MODEL FORMED FROM 20° CONVERGENT PHOTOGRAPHS

Normal-
Model Coordinates Vi Ve lz.(‘(l
insaiy weight
k

Pt. .\' )' Z’[' ﬂ] f),,] Qg [)7,2 QPYPY
1 2.184 0 —6.385 .940 1.0 12 .8 2.816 .97
2 8.165 0 —8.431 712 .8 .940 1.0 2.816 .97
3 2.184 4.257 —6.385 L040 .8 712 .0 3.669 75
4 8.165 4.257 —8.431 12 =6 L9140 .8 3.669 .75
5 2. 184 —4.257 —0.385 940 .8 712 0 3.669 75
O 8.165 —4.257 —8.431 L1112 0 940 .8 3.009 75
7 5.174 4.257 —7.408 810 T 810 o 3.524 .78
8 5.174 —4.257 —7.408 .810 7 .810 o h 3.524 .78
9 5.174 0 —7.408 .810 9 .810 .9 2.740 1.00
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F1G. 2. Comparative dimensions of the neat model area and its corresponding
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FiG. 3. Graph of lines of constant weight
coefficients for Y parallax measurements in a

20°

convergent photography model.

By studying Figure 3 it is readily
seen that significant variations exist for
the relative weight coefficients of meas-
urementof ¥ parallaxes for the resolution
model postulated. On the basis of this
test example, it seems that further in-
vestigation should be considered in this
area, particularly to study the effect of
these differences on relative orientation
as they apply to aerial triangulation.

10.2 EFFECT OF MEASURING ACCURACY
ON THE WEIGHT OF MODEL DEFORMA-
TION MEASUREMENTS

Recalling the 6X, 8, and 8Z are ob-

served model deformations and that

-
X = dPx + dX, .
. — ¥ iPy 4 PdYy 4 ppQed¥s
B Pl + Pl
Z—h

0/ = dPx
B

and applying the laws of weight propagation and substituting from (37), ob-
servational weight coefficients of measurement of X, 8V, 6Z are given by the
following expressions
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o (-
e B/ par B Pl
Vi\>/ 1 1 Pa) + (Ppf)
Qsvsy = <—1> ( + ) = s 5
B) \par  pes (P + Ppfh)*

Z— e\ 1 1
Qizsz = ( > ’: + :l (48)
B par pes

Though a complete evaluation of these expressions for a numerical example
will not be given in this paper, preliminary work has shown that here also there
are significant differences in the weight coefficients of each of the above quantities
at various positions in the stereo model. These differences appear to be of the
same order of magnitude shown for the weight coefficients of the ¥ parallax
measurements given previously.

The importance of investigating the above relations further is self evident
particularly with respect to work being performed in aerial triangulation where
it would be extremely desirable to know the relative worth of model measure-
ments made in various parts of a stereo model and their effect on presently em-
ployed procedures.

11. DiscussioN AND CONCLUSIONS

Summarizing, this paper has attempted to show that the apparent discrep-
ancies between the equations of model deformation developed by Von Gruber
and Bachmann are in reality non-existent and are due only to the omission of
considerations of measuring accuracy in their derivation. To support this con-
tention, complete sets of equations involving these considerations were developed
for both methods and demonstrated to be equivalent. Although the techniques
used in this paper were specifically directed towards eliminating the differences
between the two methods, it is quite apparent that other situations can also
be studied in the same manner. For instance, the author has studied the weight-
ing of d¥ and dX when measurements are made in the photo plane, along the
photo x and y axes—a situation that arises in computational procedures. Another
example that could be studied is what happens when the measuring mark falls
in neither the model nor the image plane.

Also, the possibility that ¥ parallax and model coordinate observation weight
coefficients can vary significantly throughout a model merits further investiga-
tion. Such an investigation might be directed towards evaluating these effects
on the determination of the elements of relative and absolute orientation with
respect to the needs of aerial triangulation.

Finally, it seems that a fruitful area of study might be opened by analyzing
the conditions under which

P <Kipr

Results of such a study would have particular applicability to such instru-
ments as the Kelsh and Multiplex plotters where the above condition is almost
sure to be involved.
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