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ABSTRACT: The customary procedure in designing photogrammetric objectives
is to correct distortion in the Gaussian image-plane for the intended magnifica
tion. Since in some instruments, such as the Multiplex, the 55/525 Projector,
and similar instruments, the region of actual imagery substantially departs
from the Gaussian image-plane, it is of importance to know the distortion in
this region. The problem was investigated and formulas were derived for com
puting distortion in non-Gaussian image-planes. The significance of distortion
calibration was reviewed, and a complete set of calibration equations was de
rived. The results of the study were illustrated with two representative types of
photogrammetric objectives. A n investigation was also made of the problem of
distortion compensation, and analytical conditions of compensation were de
rived.

DR. K. PESTRECOV

(1)l/s' - l/s = 1/!,

y' = My for finite conjugates; and

y' = F tan ex for an object at infinity.

1. INTRODUCTION

T HE usual procedure for computing the
distortion of a plane-image produced by

a centered lens system is based on two as
sumptions:

1. The position of the image-plane satisfies
the Gaussian image equation:

where sand s' are, respectively, the
axial object and image distances from
the corresponding principal (nodal)
points of the system, and f is the equiv
alent focal-length determined by a
paraxial computation.

2. The positions of the image-points are
determined by the intersections of the
principal rays with the image plane
defined by the equation given above.

If y and y' are the radial distances of the
conjugate object and image points from the
optical axis, and a is the half-field angle in
the object space, the condition of freedom
from distortion is:

For a general system of imagery (not
necessarily involving optics), where their
basic parameters-for example, the object
distance and the equivalent focal-length
are not established, the constants may be

(2) assigned any value. In other words, an in-
finite number of orthoscopic images may be

M and F in these expressions are certain constructed for a given object. Thus utilizing
constants, the significance of which will be orthogonal projection for three-dimensional
presently explained. objects, or orthogonal or conic projection for

• A part of this investigation was conducted under Air Force Contract AF 33(616)3405 when the
author was with Boston University.
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(3)

plane objects, any convenient scale factors
may be used for the drawings. These factors
analytically correspond to the constants of
the equations given above.

When, however, the Gaussian image
equation is satisfied, the constant assumes the
value of the paraxial lateral magnification
(mo) when the conjugates are finite, and it
becomes equal to the equivalent focal-length
(j) when the object is at infinity.

In optical imagery the condition of orthos
copy can be strictly satisfied only in some
special cases. Generally the positions of the
image-points deviate from their ideal position
because of distortion. \iVhen the Gaussian
image-equation is satisfied, the measure of
linear distortion is:

Do = y' - MoY (finite conjugates)
D. = y' - f tan a (object at infinity)

where Do is the linear distortion in the
Gaussian plane, and mo and f are the paraxial
values of the constants.

Strictly speaking, the plane in which the
image is received hardly ever exactly coin
cides with the Gaussian image-plane. This
is due to the residual aberrations and un
certainty of focusing. With corrected lens
systems, this discrepancy in most cases is
not sufficient to cause doubt of the validity
of the established procedure for computing
the distortion.

I n some cases, however, the focusing dis
crepancy may be so great that the image
equation cannot be considered even approxi
mately satisfied. For example, with the
Multiplex, the Twinplex, and other similar
photogrammetric instruments, even the plane
of optimum imagery (the nominal projection
plane) is far from the Gaussian image-plane.
This is because of the substantial spherical
aberration of the projection lenses customar
ily used in these instruments. Furthermore,
these instruments utilize an extended region
of imagery on both sides of the nominal pro
jection plane. Al though this region of imagery
may be considered to be in good focus for
practical purposes, it is theoretically out of
focus with respect to the uniquely defined
Gaussian image-plane. Therefore the dis
tortion computed in this plane cannot be
accepted without a further investigation as a
representative measure of the distortion in
the entire region of imagery.

Accurate knowledge of the distortion pro
duced by a given system is of basic impor
tance in the design and use of photogram
metric optics. Accordingly the problem of de
termining the condition of orthoscopy, and

computing the distortion in non-Gaussian
image-planes, warrants an investigation.

The preliminary results of this investiga
tion were presented in 1948 before a meeting
of the Optical Society of America. l The
author now summarizes the derivations that
previously were not published, and applies
them to an analysis that may be of particular
interest to those dealing with photogram
metric optics.

For the purposes of this analysis. the sec
ond assumption mentioned in the beginning
of this paper is accepted: namely, that the
intersections of the principal rays with the
image-plane, whether Gaussian or non-Gaus
sian, determine the image-positions in this
plane. A justification of this assumption for an
"in focus" image is well presen ted ina book
by Southall,2 who supposes that with a
satisfactorily corrected optical system, the
energy distribution in the image patch ,,·ill
be such that the center of gravity of the dis
tribution will be in practical coincidence with
the image-point determined by the principal
ray. This supposition is now extended to "out
of focus" imagery. There may be, of course,
some cases where the supposition is not
valid. Then the actual energy distribution
will have to be taken into consideration for
an accurate determination of distortion. An
investigation of such special cases is not
within the scope of this paper.

11. BASIC RELATlONSHIPS

A generalized system of imagery is repre
sen ted by Figure 1. Here the object-plane is
I; the conjugate Gaussian image-plane is
10', and the actual image-plane is I'. The
object-point P is imaged at pI by the
principal ray PSP', whose axial intersections
are E, S, and E'. The distance of the object
plane from the first nodal-point II is s, and
the distance of the actual image-plane from

-- +

FIG. 1. A generalized system of ima~ery.
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and

F 0 = lim (p' tan a'/tan a).

The lateral magnification at the exit pupil
(Eo') is

The distance of the Gaussian image-plane
from the paraxial exi t pupil is

Foa' = ?It,1II0Po (finite conjugates);

Foa' = 111,/ (object at infinity). (7)

(9)

While these expressions are formally the
same as the generally known magnification
formulas 3

, their validity is not restricted by
the usual condition that the actual image
plane is the Gaussian conjugate of the object
plane. The constants J\!Jo and Fo, given by
Eq. (8) are analogous, respectively, to the
paraxial lateral magnification (mo) in the
Gaussian image-plane, and to the equivalent
focal-length (}), but their values differ from
the Gaussian values.

Confirming the consistency of notation and
derivation, these constants acquire their
Gaussian values when the image is in the
Gaussian image-plane. This can be easily
demonstrated by substituting for Po' in
Eq. (8) the corresponding Gaussian values
Port' determined by Eq. (7).

Following the usual procedure, the linear
distortion in a non-Gaussian image-plane is
determined by the following equations:

Do = y' - MoY (finite conjugates)
Do = y' - F o tan a (object at infinity)

Contrary to the possible direct geometrical
interpretation of the situation, it is of im
portance to note that Mo~ s'/ s and Fo~s';

however the equal sign is valid for a Gaussian
imagery. I t is true that using M = s' / s or
F=s' in a case of non-Gaussian imagery, or
assigning any other arbitrary values to these
constants, we would also define an ortho
scopic-image. Then we could use these values
in computing the distortion in accordance
with Eq. (9). But an orthoscopic-image thus
defined would be of a differen t size from the
one uniquely determined by the paraxial
values, and the corresponding distortion
would have some values resulting from an
implicit arbitrary calibration. The results so
obtained would tend to be confusing, and
generally they would not yield a distortion
distribution that would be most favorable for
the intended photogrammetric application.

Of course, these results could be recali
brated to suit the use. However, from the
point-of-view of the lens designer it is more
rational to determine the distortion values
using the paraxial constants, and then obtain
the desired distribution by calibration. Good
arguments in favor of this approach are given
in a paper by Dr. 1. C. Gardner. 4

Noting that in the paraxial region Ii m P' = Po',
lim p=po, and lim (tan a/tan a') =m.. we
obtain the following values for the constants
of orthoscopy in any image plane:

M0 = po'/m,po (finite conjugates);
Fo = po'/m, (object at infinity) (8)

(5)

(6)

1110 = //U + s)

?It, = lim (tan a/tan a')
a~O

I I 1. CONDITION OF ORTHOSCOPY AND DIS

TORTION I A NON-GAUSSIAN IMAGE PLANE

The condition of orthoscopy in any image
plane was given in Eq. (2). Substituting
there the values of y and y' from Eq. (4), and
rearranging the results, we obtain:

M = p' tan a' / p tan a (finite conjugates)
F = p' tan a'/tan a (object at infinity)

If the image is to be free from distortion,
M (or F, when the object is at infinity) must
be a constant for the entire image field, in
cluding the paraxial region. Consequently,
the constant values (designated Mo and Fo)
may be determined using paraxial relation
ships.

Therefore,

Mo = lim (p' tan a'/p tan a)

the second nodal-point H' is s'. The corre
sponding distance from the axial intersec
tions of the principal ray are P and p'; they
are po and Po' referred to the paraxial posi
tions Eo and Eo' of the entrance and exit
pupils. The corresponding distances to the
Gaussian image-plane are not indicated in
the drawing to avoid its crowding; they will
be designated by a subscript g in subsequent
text.

The distances are negative for the object
plane, and positive for the image-plane. The
slope-angle of the principal ray is a in the
object space, and a' in the image space; they
are posi ti ve as shown in the ill ustration. The
object-height is y (negative); the image
height is y' (positive). The equivalent focal
length of the lens is f.

The following basic relationships of geo
metrical optics exist between the quantities
of interest to us.

y = p tan a and y' = p' tan a' (4)

The lateral magnification in the Gaussian
image-plane is
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Distortion, being much smaller than the
image-size, is usually plotted on a consider
ably exaggerated scale. If the relative scale
factor for the distortion plot is k, then the
angle of rotation pk, as would be actually
measured on the graph, is given by:

(14)

(13)

(12)

(10)

(11)

Dc = Do - (Me/AIo - l)yo'

Dc = Do - (Fe/Fo - l)yo'

tan Pk = k(MeiMo - 1)

tan PI. = k(FeiFo - 1)

Another way of interpreting the trans
formation from characteristic linear to cali
brated linear distortion is to visualize the
distortion curve as having been rotated

In accordance with relationships of analytic
geometry, these equations show that the
calibrated-distortion is obtained by a trans
formation of the origi nal rectangular system
of coordinates into an oblique one. In this
transformation the new and old ordinate
axes remain in coincidence, and the abscissa
axis is at an angle p relative to the original
abscissa axis. This angle is determined as

Ian P = Me/Uo - 1 (finite conjugates)
tan P = Fe/Fo - 1 (object at infinity)

Dc = Do + (Mo - Mc)y;

Dc = Do + (1'0 - Pc) tan a.

Since in usual graphical representation,
linear distortion is plotted on the ordinate
axis as a function of the ideal image-size
Yo', which is plotted on the abscissa axis, it
is desirable to introduce Yo' into Eq. (11).
This is done by substituting y=Yo'j M o and
tan a = Yo' j Fo. Thus we obtain the following
expressions connecting the characteristic and
calibrated distortion:

Fe = calibrated focal-length.
Yo' = MoY (or Yo' = Fo tan a) ideal image

size.
yo' = Mey (or yo' = Fe tan a) calibrated

image-si ze.
y = object-size.

y' = actual image-size.

The characteristic linear distortion is de
termined by the previously given Eq. (9).
The calibrated linear distortion is determined
by the following equations:

Dc = y' = Mey (finite conjugates)
Dc = y' = Fe tan a(object at infinity)

If y' is now eliminated, using Eq. (9), the
relationship between the characteristic linear
distortion and calibrated linear distortion
becomes

IV. CALIBRATED DISTORTION

A. THEORETICAL RELATIONSHIPS

For a period some confusion existed among
lens designers and photogrammetrists with
regard to the procedures and significance of
distortion calibration. Later, particularly
after Dr. Gardner published the paper men
tioned above, the situation became clarified.
Recently, however, the significance of calibra
tion appeared to be questioned again in a
paper by J. G. Lewis. 5 I t is desirable, there
fore, to review the theory of calibration,
and to present the calibration equations in a
form which can be readily used in practice.

The concept of calibration appears to be
generally known only in its application to
systems with an object at infinity (such is
nearly the case with aerial cameras), al
though a calibration procedure must also be
used for the proper adjustment of such in
struments as reduction printers and rectifiers,
whose conjugates are finite. It may be also
noted that even in a representative document,
such as the Military Standard on photo
graphic lenses,6 no terminological differentia
tion is made between the distortion computed
by using the paraxial constant of orthoscopy
(the equivalent focal-length, when the object
is at infinity) and the distortion computed
with an adjusted (calibrated) value of the
constant. Since such a differentiation appears
to be desirable, and it is also needed for clarity
of the subsequent text, the term characteristic
distortion will be used to denote the distortion
computed with the appropriate paraxial
constant. The term calibrated-distortion will
denote the distortion based on the constant
determined in the process of calibration.

Although the transformation relationships
between the characteristic- and calibrated
distortion should have been of theoretical
and practical interest to those dealing with
photogrammetric optics, a complete presenta
tion of these relationships has not been lo
cated in prior literature. Therefore they will
be derived here. The following notation will
be used:

Do = characteristic linear distortion.
Dr = chat-acteristic relative distortion. The

characteristic-distortions are deter
mined wi th paraxial constants of
orthoscopy M o or Fo.

Dc = calibrated Ii near distortion.
Dre = calibrated relative distortion. The

calibrated-distortions are determined
with calibrated constants of orthos
copy Me or Fe.

Me = calibrated magnification.
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through an angle minus Pk with respect to the
abscissa axis.

If now the original abscissas are denoted
X, the transformed abscissas are denoted
X', and the original ordinates are denoted
Y( Y = kD o), the transformation equations
for abscissas are:

X' = X/cos Pk

when the abscissa axis is rotated; and

X' = X/cos Pk - Y sin Pk

when the distortion curve is rotated.
In either case the transformed abscissas do

not represent a quantity that has a photo
gram metric meaning. Therefore, for a con
ventional graphical representation the cali
brated-distortion curve must be replotted, in
a rectangular system of coordinates, as a
function of the calibrated image-size ye'. As
a result, the shape of the calibrated-distortion
curve will differ somewhat from the original
shape of the characteristic curve. As will be
shown later, there may be cases in which this
change cannot be disregarded. Still rotation of
the abscissa axis is a useful means for rapid
orientation as to a possible gain by a calibra
tion.

As is the case with characteristic linear
distortion, calibrated linear distortion is al
ways equal to zero on the optical axis because
Do, Yo', and tan a are equal to zero. It will
be shown later that the calibrated relative
distortion never becomes zero on the axis.

The characteristic and calibrated relative
distortions are defined by the following ex
pressions:

D, = y'/Moy - 1 and Dre = y'/Mey - 1

D, = y'/Fotan a - 1 and Dre = y'/Fe tan a - l.

By elimination of y' we obtain:

D,,=D,Mo/Me+(Mo/Mc-l) (finite conjugates) (

D,,=D,Fo/Fe+(Fo/Fe-l) (object at infinity). 15)

These equations show that the calibrated
relative distortion is obtained by mul tiplying
the characteristic relative distortion by a
factor, and adding a constant term. Since
this factor usually does not differ significantly
from one, the effect of the multiplication may
be disregarded, and the calibrated-distortion
obtained by a parallel translation of the
abscissa (image-size) axis through a distance
equal to the respective constant term of Eq.
(15) taken with the opposite sign. The most
interesting fact, not generally known, is that
calibrated relative distortion never becomes
zero on the axis, although characteristic rel-

ative distortion does. The value of the
calibrated relative distortion on the optical
axis is given by the constant term of Eq. (15).

I t should be re-emphasized that the trans
formation equations for linear and relative
distortions do not involve any physical
changes of the optical system. I ts focusing, all
its physical parameters, and the actual image
positions (y') are the same both after and
before the calibration. This fact was used by
some optical designers as a basis for object
ing to the whole concept of distortion calibra
tion. They reasoned that the constant of
orthoscopy and the corresponding ortho
scopic-image are uniquely defined for a given
system by the paraxial parameters (Po', po,
and me), and, consequently, the distortion
curve is also uniquely determined with re
spect to the orthoscopic-image. Indeed, the
correct physical interpretation of the situa
tion is that, so long as the paraxial parameters
remain fixed, it would be impossible to design
a lens system, even of a most bizarre form,
that would produce an orthoscopic (distor
tion-free) image different from the one defined
by the paraxial constants given in Eq. (8).
Therefore, the process of calibration appeared
to be an attempt to use an extraneous proce
dure in order to change arbitrarily the ideal
image-size that was uniquely determined in
the course of optical design.

vVhat had been overlooked in these argu
ments was that this ideal image-size is not of
interest to the photogrammetrist when the
image is distorted. He is interested in the
actual positions of the image points and their
transfer to the map wi th least deviations from
the positions determined by the scale. The
calibration procedure is equivalent to a
search for a most favorable scale (in other
words, a most favorable photogrammetric
grid) that would minimize the position errors
in the final map. This search does not require
knowledge of the lens construction, its par
axial parameters, or of the ideal image-size,
because a reduction of the position errors
may be achieved by an empirical fitting of a
grid to accommodate best the image posi
tions of the control points. The calibration
transformations, derived in the preceding
text, provide a mathematical means for de
termining a favorable fitting on the basis of
distortion data.

It is hoped that a misunderstanding about
distortion calibration will not arise again,
and that its significance is now clear not only
to photogrammetrists but to optical designers
as well.
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TABLE I

154-MM. F/6.3 TOPOGON. CHARACTERISTICS DISTORTION DATA

Fo=EFL=153.706111111.

a (degrees) 0 10 20 25 30 35 37.5 40.0 42.5 45.0

Yo' (mm). 0.000 27.103 55.944 71.674 88.742 107.626 117.943 128.975 140.846 153.70t>
Do (mm.) 0.000 +0.017 +0.088 +0.148 +0.227 +0.321 +0.352 +0.355 +0.330 +0.272
Dr (%) 0.000 +0.063 +0.157 +0.206 +0.256 +0.298 +0.298 +0.275 +0.234 +0.177

FIG. 2. Characteristic linear and % distortion
154111111. f/6.3 Topogon.
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The curve of the calibrated distortion is
given in Figure 3. A comparison of the data of
Tables I and II and of Figures 2 and 3 shows
that, as a result of calibration, the maximum
value of linear distortion has been reduced
from the original 0.355 mm. to 0.081 mm.,
and the total spread has been reduced from
0.355 mm. to 0.162 mm. This is a considerable
improvement, which may be advantageous
in some actual applications. As predicted
theoretically, the total spread of the cali
brated per cen t distortion 0.299 per cen tis,
within the computational accuracy, the sal11e
as 0.298 per cent spread for the characteristic
distortion. The abscissa axis for the per cen t
distortion only has shifted through an interval
of +0.230 per cent.

To compare the shapes of the characteristic
linear distortion and of the calibrated distor
tion curves, a plot is presented in Figure 4. It
shows the characteristic linear distortion
curve of Figure 2 rotated through an angle of
24.67 degrees toward the abscissa axis, and
the calibrated linear distortion curve the same
as plotted in Figure 3. The two Cll rves are in

B. ILLUSTRATION OF THE CALIBRATIO:-!

PROCEDURE

To show what can be gained by calibration
a lens with a considerable distortion wa~
purposely chosen. This is a 154 mm. f/6.3
Topogon, whose formula was derived from
one given in the U. S. Patent 2,031,792.7 The
characteristic distortion data for this lens, wi th
an object at infinity, are listed in Table I.

The distortion values Do and Dr are plotted
a~ functions of t!1e ideal image-size Yo' in
Figure 2. InspectIOn of the linear-distortion
curve shows that the distortion distribution
can ?e considerably improved by such a cali
bratIOn that the linear-distortion at 37.5 de
grees (Yo' = 117.943 mm.) would have the same
absolute value as the linear-distortion at 45
degrees (Yo' = 153.706 mm.); bu t their signs
would be different. To obtain this calibration
we use Eq. (12) for an object at infinity. Th~
equation to be solved is:

0.352 - (Fc/153.706 - 1)117.943
= - 0.272 + (Fc/153.706 - 1)153.706.

From this we obtain the following value
for the calibrated focal length

F c = 154.069 111111.

Since the plotting scale for the linear dis
tortion in Figure 2 has been exaggerated 200,
the. scale factor k = 200. Then the angle of ro
tatIOn of the abscissa axis for the transforma
tion of the characteristic linear into the cali
brated distortion is, in accordance with Eq.
(14) :

tan p = 200(154.059/153.706 - 1) = 0.4594;
p = 24.67 degrees.

Confirming the validity of the theoretical
formulas, the distortion values that may be
re.ad agai~st the rotated abscissa axis agree
With the directly computed values of the cali
brated linear distortion listed in Table II.
The value of per cent distortion on the axis
(a=O) was computed using the expression for
the constant term in Eq. (15). Thus on the
aXIs;

Drc = 100(153.706/154.059 - 1)%;
Drc = - 0.230%.

FIG. 3. Calibrated linear and % distortion for
154111111. f/6.3 Topogon.
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TABLE II

154-MM. F/6.3 TOPOGON. CALIBRATED DISTORTION DATA
Fe = 154.059 mOl.

a (degrees)

Ya' (mm.)
De (mm.)
D,e (%)

o

0.000
0.000

-0.230

10

27.165
-0.045
-0.166

20

56.073
-0.041
-0.073

25

71.839
-0.017
-0.024

30

88.946
+0.023
+0.026

35

107.873
+0.074
+0.068

37.5

118.214
+0.081
+0.069

40

129.271
+0.059
+0.046

42.5

141.169
+0.007
+0.005

45

154.059
-0.081
-0.053

FIG. 5. Optical layout of an objective of the
type that may be used in 55/525 projector

formula would be used for actual manufac
turing.

In accordance with the Geological Survey
Speci fications, the lens should be set in the
Twinplex projector at the principal-distance
(the distance from the diapositive plane to
the internal nodal-point) of 55.0 mm., have
the nominal projection distance of 525.0 mm.,
and work satisfactorily in the region of projec
tion distances from 425.0 mm. to 625.0 mm.
Since for these projection distances, the ob
ject distance (the principal-distance) remains
unchanged, the lens is required to work in an
extended region of non-Gaussian image
planes. Hence, the knowledge of distortion in
this region is of theoretical as well as practical
importance.

To satisfy the geometry of the specifica
tion, the lens should have a nominal equiva
lent focal-length of 49.7845 mm. and yield a
magnification of -9.545455 in the nominal
projection distance of 525.0 mm. from the ex
ternal nodal-point. The numerical values of
these quantities (as well as of the other
quantities that will be used in the subsequent
text) have been detemlined with a sufficient
number of decimal places to secure the dis
tortion values to the fourth decimal for
smooth graphical representation of the
curves.

Because of the substan tial spherical aberra-

A- CHARACTERISTlC LINEAR OISTORTlON OJRVE ROTATED TOWANO THE
A8SClSSA AlitlS TlR)UGH AH ANGLE Of 24.67~ THE ABSCISSA AXIS
HAS NO PMOTOGRAMMETRIC MEANING FOR THE CURVE.

8- CALleRATID DISTORTION CURVE Pl.OTTEO AGAINST CAUBRATm
IMAOf SIZE.

&!..
e+o'~ ..

l'~I -0., CALIBRATED 'MAGE SIZE Y: 'N M'LLIMETERS

!z
:J

FIG. 4. Comparison of shapes of characteristic
and calibrated distortion curves for 154 mm. f/6.3
Topogon.

practical coincidence up to the field angle of
25 degrees (yc'=71.839 mm.), and then de
part significantly, As was mentioned before,
the abscissa values have no photogrammetric
meaning for the rotated characteristic linear
distortion curve. Therefore, starting in this
case from yo' = 71.839 mm., wrong distortion
values would be obtained by reading the
points on the rotated curve against the ab
scissas which represent the calibrated image
size yo' and are in the proper relation with re
spect to the ordinates of the calibrated dis
tortion curve. However, the rotated curve
and the calibrated distortion curve indicate
nearly the same total distortion spread.

V. DISTORTION IN A NON-GAUSSIAN

REGIO WITH A REPRESENTATIVE

PROJECTION OBJECTIVE

To explore distortion variation in non
Gaussian image-planes, a formula was de
ri-,red for a representative projection objec
tive of the type that may be used in the Geo
logical Survey Twinplex Projector 55/525. The
optical layout of this lens is given in Figure 5.
In the course of the design, the main em
phasis was put on the practical elimination of
distortion in a Gaussian projection plane,
while the other aberrations were not neces
sarily brought into an entirely satisfactory
balance. For this reason not all the design
parameters of the lens are given in Figure 5.
Thus the possibility is eliminated that the

GloSS' 523586

6'7549 6'7549

To Projection Spoce
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tion encountered with lenses of this type, the
actual computed equivalent focal-length of
the lens should be somewhat longer than the
nominal focal-length as deriyed from the
specification; otherwise the usable region of
imagery will be nearer to the projector than
is specified. Therefore the computed equiva
len t focal-length of the lens was set to be
50.2832 mm.

Then the design work proceeded until a
formula was derived whose distortion was
considered to be negligible at the specified
magnification in the Gaussian image-plane.
Following a customary procedure, no consid
eration was given in the course of the design
to the distortion in the specified region of non
Gaussian image-planes. The distortion in
these planes was computed only after the final
formula had been established.

The basic paraxial parameters, used for
computing the object and image distances, are

listed in Table III, where EFL denotes the
equivalent focal-length, and the other sym
bols are the same as were defined in Figure 1
and the associated text.

The distance and magni fications for the
three non-Gaussian projection planes and one
Gaussian plane are given in Table IV.

The characteristic linear distortion was
computed in the four projection planes listed
above, and the data are listed in Table V.

A graphical presen tation of distortion data
is given in Figure 6. The data show that the
distortion in the region of actual imagery sig
nificantly departs fro111 the distortion com
puted in the Gaussian image-plane. Thus,
while in the Gaussian image-plane the total
spread of distortion is 35 microns, with the
maximum absolute values of 21 microns, the
total spread is 46 microns in the far projec
tion-plane, 58 microns in the nominal projec
tion-plane, and 74 microns in the near projec-

TABLE III

BASIC PARAXIAL PARAMETERS

Parameter
Valu.e

EFL
50.2832111111.

111~

1.001700
HEo

-0 0853111111.
H'Eo'

-0.0856111111.

TABLE IV

SETTING DATA: MAGNIFICATIO:-l AND DISTANCES

Plane

Non-Gaussian
Non-Gaussian
Gaussian
Non-Gaussian

smm.

-55.0009
-55.0009
-55.5510
-55.0009

Pomm.

-54.9156
-54.9156
-55.4657
-54.9156

S'1n1n.

425.0000
525.0000
530.2592
625.0000

Po'mm.

425.0856
525.0856
530.3448
625.0856

Mo

7.727571
9.545455
9.545455

-11.363342

TABLE V

CHARACTERISTIC LINEAR DISTORTION IN FOUR IMAGE PLANES AT DIFFERENT PROJECTION

DISTANCES (s')

Projection D1:stances (s') in millimeters
Nominal

I I IField Angle 425.0 525.0 530.3 625.0
in Degrees

Linear Distortion Do in millimeters

10 -0.0034 -0.0023 -0.0018 -0.0011
15 -0.0069 -0.0067 -0.0053 -0.0065
20 -0.0096 -0.0112 -0.0109 -0.0129
25 -0.0112 -0.0160 -0.0179 -0.0209
30 -0.0071 -0.0156 -0.0206 -0.0241
35 +0.0053 -0.0071 -0.0174 -0.0197
40 +0.0294 +0.0133 -0.0037 -0.0030
45 +0.0628 +0.0422 +0.0146 +0.0215
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FIG. 6. An objective of the type that may be
used in 55/525 projector. Characteristic linear
distortion curves in image planes at different
projection distances s'.

tion-plane. The respective absolute maxima
are 24, 42, and 63 microns. The shapes of the
distortion curves are such that not much
could be gained by a calibration.

Whether or not this variation of distortion
should be considered as disturbing may be
evaluated by using the well-known approxi
mate formula which determines how much a
stereoscopic model of a plane will be warped
in the presence of distortion. The formula is:

z = s'fj.x/d
where:

z is the model warpage (its departure
from a true plane).

tox is the maximum stereoscopic parallax
caused by distortion.

s' is the projection distance.
d is the base length (the distance between

the axes of the projectors).

We may assume, for the purposes of orien
tation, that the maximum stereoscopic paral
lax is directly proportional to the total distor
tion spread. Then using the spreads listed
above, and the respective projection-dis
tances of 625 mm., 525 mm., and 425 mm., we
determine that the warpages in these three
projection-planes will be in the ratio of
nearly one to one. Therefore, in this particu
lar case, the warpage may be expected to be
within the tolerance in the whole region of
imagery if it is within the tolerance for the
nominal projection-plane.

It is reasonable to assume that the lenses
used in actual photogrammetric projectors,
being of the same type as the one used in
this investigation, should have the same fa
vorable distortion characteristics. Still it may
be of interest to determine what the real
situation is by measuring the model warpage
in the entire region of imagery of representa
tive instruments, and not only in the nominal
projection plane as is done customarily.

I"

l'

VI. COMPENSATION OF DISTORTION

If aerial negatives contain a distortion
greater than can be tolerated for precision
mapping, the distortion must be compensated
either optically or mechanically at one of the
steps of the mapping system. A representa
tive optical compensation scheme, shown in
Figure 7, utilizes a printer which produces a
distortion-free positive from a distorted aerial
negative. This scheme will be investigated
here.

Although a solution of the compensation
problem obviously requires that the distor
tion-curve of the aerial negative should be
"matched" by the distortion-curve of the
printer, the analytical expression of this con
dition is not obvious. The reason for this is
that using calibration one may represen t dis
tortion by an infinite number of curves. The
question then arises whether or not the condi
tion of compensation imposes any inherent
restriction upon the selection of distortion
curves, and whether or not a particularly
favorable selection exists. The answer to this
question and the compensation condition are
derived from the following analysis.

In Figure 7 the aerial camera lens is at L 1 ;

it produced a distorted image y' in the focal
plane I'. The printer lens is at Lz; it produces
in the printer image-plane ]" a distortion
free image y" of the object on the ground,
which may be assumed to be at infinity. The
distortion produced by the camera lens and

FIG. 7. A distortion compensation scheme. The
aerial camera lens L 1 produces a distorted image
y' in the camera focal plane I'. The printer lens
L z produces a distortion-free image y" of the
object on the ground.
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the compensating distortion produced by the
printer are computed using the constants F I

and M2, without making an assumption
whether their values are paraxial or cali
brated. M 2 is the magnification of the printer
in its image-space. It is more convenient,
however, to use relationships in the printer
object-space, where its magnification in the
negative is 1/M 2• Then the following equa
tions may be written

y' =1', tan a+DJ ; y'=y"IM2+D2 ; y"=MFJ tan a

where D, is the distortion in the negative, D 2

is the compensating distortion introduced by
the printer in the negative plane, and M is the
factor which determines how much the actual
image produced by the printer is magnified
(or reduced) with respect to the assumed ideal
or calibrated image-size in the negative. By
eliminating y' and y" in this set of equations,
we obtain the following condition for distor
tion com pensation:

D, - D2 = (MIM2 - 1)1', tan a (16)

Now we will prove that if this equation is
satisfied, it will be also satisfied with any other
pair of F/ and M 2 ' and the corresponding dis
tortions D,' and D 2'.

On the basis of the calibration transforma
tions given by Eq. (11), we may write that

DI = D,' + (1',' - 1',) tan a;

D2 = D,' + (11M2' - IIM2 )M'FI' tan a

I t should be noted that the reciprocals of
M 2' and M 2 have been used because, as was
before stated, the equation refers to the
printer object-space. The object-size, denoted
yin Eq. (11), is in this case y" which repre
sents the actual image-size produced by the
printer. This image-size is fixed and not af
fected by the calibration. Therefore,

y" = kIF, tan a = M'F,' tan a.

Substituting now the values of D, and D 2 into
Eq. (16), we obtain

D,' - D,' + (1',' - 1',) tan a

- (11M,' - I/M2)M'F/ tana
= (M1M2 - 1)1', tan a

This reduces to:
DI' - D,' = (M'IM,' - 1)1',' tan a (17)

Since both Eqs. (16) and (17) are satisfied,
the condition of elimination of distortion will
be fulfilled with any arbitrary pair of values
F i and M 2 if it is fulfilled in the process of de
sign for one pair of values. The following con
siderations introduce, however, the restric
tion that each pair of values must be either
paraxial or calibrated, if distortion is com-

pensated within the entire field of coverage,
and that the compensating characteristic dis
tortion-curves are necessarily identical.

Suppose we have succeeded in eliminating
distortion for the entire field of coverage.
This means that the condition of compensa
tion has been satisfied with a pair of values of
F i and M2• Then, as was proved, the condition
of compensation must be satisfied with any
other values of these constants, including
their paraxial val ues and the corresponding
characteristic distortions. Hence Eq. (16)
must be satisfied for a pair of characteristic
distortion curves.

According to the theory of optical imagery,
a characteristic distortion-curve may be
represented by a series with the terms con
taining odd powers of the image-size, the
first term being cubic. From this it follows
that the difference of distortion values D i-D 2

of two characteristic distortion-curves cannot
be directly proportional to the first power of
the ideal image-size F i tan a throughout the
field of coverage, as would be required by Eq.
(16). The equation can be satisfied only when
the value in parentheses is equal to zero, or
when M, = M. The condition of compensation
of characteristic distortion-curves now be
comes D i = D" which makes the curves iden ti
cal in the plane of the negative (not, as per
haps one could expect, that one curve should
reproduce the other with the reversed sign of
the distortion values).

Since the characteristic distortion-curves
must be identical, it is obvious that a com
pensating calibrated-distortion-curve cannot
be identical with a characteristic-distortion
curve. The impossibility of securing the
identity of a characteristic-distortion-curve
with a calibrated-distortion-curve may be de
ducted also from the following basic consid
eration. As before stated, a characteristic-dis
tortion-curve may be represented by a series
with the terms containing odd powers of the
image-size, starting with a cubic term. A cali
brated-distortion-curve according to Eq. (12)
may then be represented by a similar series
minus an additional term with the first power
of the ideal image-size. If the curves are to be
identical, all their terms containing the same
powers must be equal. This condition obvi
ously cannot be satisfied for the extra term in
the calibrated-distortion-curve.

Now let Eq. (17) represent a compensation
of two calibrated-distortion-curves. This
equation is satisfied with any calibrated
values M t and M 2 ' when Eq. (16), represent
ing the compensation of characteristic-distor
tion-curves, is satisfied (with M = M,). There-
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fore, we can choose M' = M 2', and make the
calibrated-distortion-curves also identical.
Thus one may in the process of design at
tempt to secure the identity either of the two
characteristic or of the two calibrated-distor
tion-curves. There is no inherent criterion for
a choice bet""een these two al ternatives. The
lens designer will prefer, however, to use the
characteristic-distortion-curves because they
are based on the paraxial constan ts which
have to be computed anyway when the opti
cal system is set up and when it is modified in
the course of the design. Furthermore, by
using the characteristic-distortion-curves, the
designer ,,"ill avoid the additional computa
tions needed for calibration.

If the designer did not succeed in obtaining
the iden ti ty of two characteristic-distortion
curves, Eq. (16) will not be satisfied through
out the field (it may be, however, satisfied for
some image-points). Then Eq. (17) also will
not be satisfied throughout the field inde
pendently of whether both distortion-curves
are calibrated, or one of them is characteristic
and the other calibrated. In this case the
image produced by the printer will contain
some residual distortion. Then by calibrating
either one of the compensating curves or the

residual distortion-curve, the designer may
have a better evaluation of the effective rc
siduals, and he may distribute them favor
ably. But, as was reasoned before, a calibra
tion will not permit making the compensatin~

curves identical or to eliminate distortion
completely.
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O NCE vVoodrow Wilson was asked if he
would give a speech on a particular top

ic. He replied, "That depends on how long
you want me to speak and how much time
I'll have in which to prepare my remarks. If
it's to be a 15 minute speech, I'll need nearly
a week to prepare it; if it's to be a 30-minutc
speech, I'll need only a day or so to prepare
it; but if it's to be a 60-minute speech, I'm
ready to give it right now."

As I've been asked to give a 60-minute
speech, I claim readiness to give it "right
now," \i\Toodrow Wilson style, without refer
ence to notes or manuscript. I will be doing
so, not because of any great ability to speak

extemporaneously, but because most of my
talk will be gi ven from lantern slides and I
never have acquired the ability to read a
paper and point to features on the screen si
multaneously.

Actually, I abandoned the idea of reading
a paper this morning when I learned of the
embarrassment which this habit caused a cer
tain minister. As he faced his congregation he
reached in his coat pocket for the carefully
prepared manuscript of his sermon. Finding
to his consternation that he had left it at
home he said, "Friends in speaking to you
this morning I must rely largely on the Lord
for guidance; but I assure you that next Sun-

* Presented at the Society's 25th Annual Meeting, Hotel Shoreham, Washington, D. C. March 8 to
11, 1959.


